
ESC101: Fundamentals of  Computing 

 
Using linked lists 

Nisheeth 
 



Linked List 
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struct node { 
     int data; 
     struct node *next; 
}; 

data 

10 

next 

struct node  

4 2 1 -2 NULL 
head 



Use of typedef  

Listnode head, curr; 
 /* search in list for key */  
Listnode search(Listnode list, int key); 
/* insert the listnode n in front of listnode list */ 
Listnode insert_front(Listnode list, Listnode n); 
 /* insert the listnode n after the listnode curr */ 
Listnode insert_after(Listnode curr, Listnode n); 

Define a new type Listnode as struct node * 

Listnode is a type. It can be used for struct node * in variables, argument, return type, etc.. 

typedef struct node * Listnode; 
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Deletion in linked list 
Given a pointer pnode. How do we delete the node pointed by pnode? 

NULL 4 2 1 -2 

pnode 

call free() to release storage for 
deleted node. 

4 2 -2 NULL 

    pnode  
(should be freed) 

1 

After deletion, we want the following state 

Delete operation needs the 
pointer to previous node to 
pnode to adjust pointers. 

ppnode 

delete(Listnode pnode, Listnode ppnode);  4 



Listnode delete(Listnode pnode, Listnode ppnode) { 
    Listnode t; 
    if (ppnode)  
        ppnode->next = pnode->next; 
    t = ppnode ? ppnode : pnode->next; 
    free (pnode); 
    return t; 
} 

The case when pnode is 
the head of a list. Then 
ppnode == NULL. 

4 

pnode 

2 
NULL 

this 
pointer is 
returned 

NULL 
2 

Delete the node pointed by pnode. 
ppnode: pointer to the node before 
pnode, if it exists; otherwise NULL.  

Function returns ppnode if it is  
non-null, else returns the successor 
of pnode.  
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Listnode search(Listnode head, int key) { 
   Listnode curr = head; 
              (curr != NULL && curr->data != key)  
       curr = curr->next; 
    
    return curr; 
}  

curr = curr->next 
step to next node 

curr->data == key? 
Does the current node 

contain the key? 

curr = head 
start at head of list 

curr== null 
(reached end  

of list)? 

NO 

Found! 
return curr 

NO 

FAILED! 
return curr (NULL) 

 

YES 

YES 
search for key in a list pointed 
to by head. 
Return pointer to the node 
found or else return NULL. 

Disadvantage: 
Sequential access only. 

Searching in LL 

while 
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Linked List: A useful application 
• Customer information can be defined using a struct 
     struct cust_info {  

int Account_Number; 
int Account_Type; 
char *Customer_Name; 
char* Customer_Address; 
bitmap Signature_scan; // user defined type bitmap 

} ; 

• A customer can have more than 1 accounts 
– Want to keep multiple accounts for a customer together for easy access 
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Linked List: A useful application 

• “Link” all the customer accounts together using a “chain-of-pointers” 
    struct cust_info {  

int Account_Number; 
int Account_Type; 
char *Customer_Name; 
char* Customer_Address; 
bitmap Signature_scan; // user defined type bitmap 
struct cust_info* next_account; 

} ; 

• So each customer can be defined by a linked list (and each such 
linked lists can have  one or more nodes) 8 



name 

next 

cust 

A B A C C A 

cust[0] cust[1] cust[2] cust[3] cust[4] cust[5] 

NULL NULL NULL 

cust[i].next, cust[i].next->next,  
cust[i].next->next->next etc.,  
when not NULL, points to the “other” 
records of the same customer 

Linked List: A useful application 
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Can think of this as an array of 
singly linked lists 

Some lists have a 
single node, some 

have more than one 
node 



1. Insertion and deletion  are inexpensive, only a few “pointer changes”.  
2. To insert an element at position k in array:  

create space in position k by shifting elements in positions k or higher  one to 
the right.  

3. To delete element in position k in array: 
compact array by shifting elements in positions k or higher one to the left.  

 A list of things can be represented in an array. So, where is the advantage with linked list? 

 Direct access to kth position in a list is expensive (time proportional to k) but is 
fast in arrays (constant time). 

Disadvantages of Linked List 

Reminder: Why linked lists, not arrays? 
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Linked Lists: the pros and the cons 

1 2 3 4 NULL 
list 

Operation Singly Linked List  Arrays 

Arbitrary 
Searching.  

sequential search 
(linear-time) 

sequential search  
(linear-time) 

Searching in a 
sorted 
structure. 

Still sequential 
search. Cannot take 
advantage. 

Binary search possible 
(logarithmic-time) 

Insert key after 
a given point in 
structure. 

Very quick 
(constant-time) 

Shift all array elements at insertion 
index and later one position to 
right. Make room, then insert. 
(linear-time) 

1 2 3 4 array 
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Will see later 



Singly Linked Lists 

Operation Singly Linked List 

Find next node Follow next field 

Find previous node Can’t do !! 

Insert before a node Can’t do !! 

Insert in front  Easy, since there is a 
pointer to head. 

Operations on a linked list. For each operation, we are given 
a pointer to a current node in the list. 

Principal Inadequacy: Navigation is one-way only from a 
node to the next node. 
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Doubly linked lists 
head tail 

4 2 7 -1 

(ii) 
data 

(i) pointer 
to previous 
node 

(iii) pointer 
to next 
node 

Each 
node  
has 3 
fields 

struct dlnode { 
      int data; 
      struct dlnode *next; 
      struct dlnode *prev; 
}; 
typedef struct dlnode *Ndptr; 

Defining node of Doubly linked list and the Dllist itself. 

struct dlList { 
   Ndptr head; /*ptr to first node */ 
   Ndptr tail;   /* ptr to last node */ 
}; 
typedef struct dlList *DlList; 

NULL 

NULL 
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Circular Linked List 
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So far, we were modeling a singly linked list by a pointer to the 
first node of the list. 
Let us make the following change: 

Make the list circular: next pointer of last node is not NULL, it  
points to the head node. 

4 2 1 -2 

head 

4 

head 
head 

NULL 

15 
An empty circular list A circular list with a single node 



Why circular linked list 

• Round robin scheduling 
 

• Board games 
 

• Processes on CPU 
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Linked Lists to construct other data structures 
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Stack Queue 

Tree 



Stack 
• A linear data structure where addition and deletion 

of elements can happen only at one of the ends of 
the data structure 
–  Last-in-first-out (LIFO). 
– Only the top-most element is accessible at any 

point of time. 
• Some operations: 

– Push: Add an element to the top of the stack. 
– Pop: Remove the topmost element. 
– IsEmpty: Checks whether the stack is empty or 

not. 

Can implement a stack using arrays or using 
linked lists (we will see both approaches) 
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Stack using (statically allocated) arrays 
• Uses an array and a marker. 

Esc101, Structures 19 

#include<stdio.h> 
#define MAX 100 // global 
 
int stack[MAX]; // global (elements on the stack, each assumed integer) 
int marker = -1; // global 
 
int top_value(); 
void insert(int value); 
int delete(); 
 
int full(); 
int empty(); 



Empty and full 

Esc101, Structures 20 

 
int full() { 
 if (marker == MAX-1) { 
  return 1; 
 else  
  return 0;  
} 
int empty() { 
 if (marker == -1) 
  return 1; 
 else 
  return 0; 
} 



Insert (push) 
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void insert(int value) { 
 if (full()) { 
  printf(“Stack is full, can’t insert value \n”);  
 } 
 else { 
  marker = marker + 1; 
  stack[marker] = value;  
  printf(“%d inserted at %d \n”, value, marker); 
 } 
} 



Delete (pop) 
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int delete() { 
 int top = -1; 
 if (empty()) { 
  printf(“Stack is empty, can’t delete value \n”);  
 } 
 else { 
  top = stack[marker]; 
  marker = marker - 1;  
  printf(“%d deleted from %d \n”, top, marker); 
 } 
 return top; 
} 



top_value and main 
• Writing the top_value function is given as a simple exercise  
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int main() { 
 insert(20); 
 insert(10); 
 delete(); 
 insert(100); 
 if (delete() == -1) { 
  printf(“element can’t be deleted \n”); 
 } 
 return 0; 
} 
  



An issue with (statically allocated) array based approach 

• delete/pop doesn’t actually remove the elements from the 
array; it simply changes the index (marker) of the top element 

24 

3 stack[0] marker = 0 

6 stack[1] marker = 1 

9 stack[99] marker = 99 

23 stack[98] marker = 98 

3 stack[0] 

6 Stack[1] 

9 stack[99] 

23 stack[98] marker = 98 

pop 



Stack using arrays 
• The array based approach we saw is just one of the ways 
 
• We kept the array fixed (didn’t shift the indices of elements after 

delete/pop) and simply moved the marker 
 
• We can use arrays in many other ways too, to implement a stack 

– Can also shift the indices of elements in the array upon delete/pop 
 

• .. and, of course, we can also use a linked list to implement a stack 
(next class) 
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