
ESC101: Fundamentals of Computing

Using linked lists

Nisheeth

Linked List

2

struct node {
 int data;
 struct node *next;
};

data

10

next

struct node

4 2 1 -2 NULL
head

Use of typedef

Listnode head, curr;
 /* search in list for key */
Listnode search(Listnode list, int key);
/* insert the listnode n in front of listnode list */
Listnode insert_front(Listnode list, Listnode n);
 /* insert the listnode n after the listnode curr */
Listnode insert_after(Listnode curr, Listnode n);

Define a new type Listnode as struct node *

Listnode is a type. It can be used for struct node * in variables, argument, return type, etc..

typedef struct node * Listnode;

3

Deletion in linked list
Given a pointer pnode. How do we delete the node pointed by pnode?

NULL 4 2 1 -2

pnode

call free() to release storage for
deleted node.

4 2 -2 NULL

 pnode
(should be freed)

1

After deletion, we want the following state

Delete operation needs the
pointer to previous node to
pnode to adjust pointers.

ppnode

delete(Listnode pnode, Listnode ppnode); 4

Listnode delete(Listnode pnode, Listnode ppnode) {
 Listnode t;
 if (ppnode)
 ppnode->next = pnode->next;
 t = ppnode ? ppnode : pnode->next;
 free (pnode);
 return t;
}

The case when pnode is
the head of a list. Then
ppnode == NULL.

4

pnode

2
NULL

this
pointer is
returned

NULL
2

Delete the node pointed by pnode.
ppnode: pointer to the node before
pnode, if it exists; otherwise NULL.

Function returns ppnode if it is
non-null, else returns the successor
of pnode.

5

Listnode search(Listnode head, int key) {
 Listnode curr = head;
 (curr != NULL && curr->data != key)
 curr = curr->next;

 return curr;
}

curr = curr->next
step to next node

curr->data == key?
Does the current node

contain the key?

curr = head
start at head of list

curr== null
(reached end

of list)?

NO

Found!
return curr

NO

FAILED!
return curr (NULL)

YES

YES
search for key in a list pointed
to by head.
Return pointer to the node
found or else return NULL.

Disadvantage:
Sequential access only.

Searching in LL

while

6

Linked List: A useful application
• Customer information can be defined using a struct
 struct cust_info {

int Account_Number;
int Account_Type;
char *Customer_Name;
char* Customer_Address;
bitmap Signature_scan; // user defined type bitmap

} ;

• A customer can have more than 1 accounts
– Want to keep multiple accounts for a customer together for easy access

7

Linked List: A useful application

• “Link” all the customer accounts together using a “chain-of-pointers”
 struct cust_info {

int Account_Number;
int Account_Type;
char *Customer_Name;
char* Customer_Address;
bitmap Signature_scan; // user defined type bitmap
struct cust_info* next_account;

} ;

• So each customer can be defined by a linked list (and each such
linked lists can have one or more nodes) 8

name

next

cust

A B A C C A

cust[0] cust[1] cust[2] cust[3] cust[4] cust[5]

NULL NULL NULL

cust[i].next, cust[i].next->next,
cust[i].next->next->next etc.,
when not NULL, points to the “other”
records of the same customer

Linked List: A useful application

9

Can think of this as an array of
singly linked lists

Some lists have a
single node, some

have more than one
node

1. Insertion and deletion are inexpensive, only a few “pointer changes”.
2. To insert an element at position k in array:

create space in position k by shifting elements in positions k or higher one to
the right.

3. To delete element in position k in array:
compact array by shifting elements in positions k or higher one to the left.

 A list of things can be represented in an array. So, where is the advantage with linked list?

 Direct access to kth position in a list is expensive (time proportional to k) but is
fast in arrays (constant time).

Disadvantages of Linked List

Reminder: Why linked lists, not arrays?

10

Linked Lists: the pros and the cons

1 2 3 4 NULL
list

Operation Singly Linked List Arrays

Arbitrary
Searching.

sequential search
(linear-time)

sequential search
(linear-time)

Searching in a
sorted
structure.

Still sequential
search. Cannot take
advantage.

Binary search possible
(logarithmic-time)

Insert key after
a given point in
structure.

Very quick
(constant-time)

Shift all array elements at insertion
index and later one position to
right. Make room, then insert.
(linear-time)

1 2 3 4 array

11

Will see later

Singly Linked Lists

Operation Singly Linked List

Find next node Follow next field

Find previous node Can’t do !!

Insert before a node Can’t do !!

Insert in front Easy, since there is a
pointer to head.

Operations on a linked list. For each operation, we are given
a pointer to a current node in the list.

Principal Inadequacy: Navigation is one-way only from a
node to the next node.

12

Doubly linked lists
head tail

4 2 7 -1

(ii)
data

(i) pointer
to previous
node

(iii) pointer
to next
node

Each
node
has 3
fields

struct dlnode {
 int data;
 struct dlnode *next;
 struct dlnode *prev;
};
typedef struct dlnode *Ndptr;

Defining node of Doubly linked list and the Dllist itself.

struct dlList {
 Ndptr head; /*ptr to first node */
 Ndptr tail; /* ptr to last node */
};
typedef struct dlList *DlList;

NULL

NULL

13

Circular Linked List

14

So far, we were modeling a singly linked list by a pointer to the
first node of the list.
Let us make the following change:

Make the list circular: next pointer of last node is not NULL, it
points to the head node.

4 2 1 -2

head

4

head
head

NULL

15
An empty circular list A circular list with a single node

Why circular linked list

• Round robin scheduling

• Board games

• Processes on CPU

16

Linked Lists to construct other data structures

17

Stack Queue

Tree

Stack
• A linear data structure where addition and deletion

of elements can happen only at one of the ends of
the data structure
– Last-in-first-out (LIFO).
– Only the top-most element is accessible at any

point of time.
• Some operations:

– Push: Add an element to the top of the stack.
– Pop: Remove the topmost element.
– IsEmpty: Checks whether the stack is empty or

not.

Can implement a stack using arrays or using
linked lists (we will see both approaches)

18

Stack using (statically allocated) arrays
• Uses an array and a marker.

Esc101, Structures 19

#include<stdio.h>
#define MAX 100 // global

int stack[MAX]; // global (elements on the stack, each assumed integer)
int marker = -1; // global

int top_value();
void insert(int value);
int delete();

int full();
int empty();

Empty and full

Esc101, Structures 20

int full() {
 if (marker == MAX-1) {
 return 1;
 else
 return 0;
}
int empty() {
 if (marker == -1)
 return 1;
 else
 return 0;
}

Insert (push)

Esc101, Structures 21

void insert(int value) {
 if (full()) {
 printf(“Stack is full, can’t insert value \n”);
 }
 else {
 marker = marker + 1;
 stack[marker] = value;
 printf(“%d inserted at %d \n”, value, marker);
 }
}

Delete (pop)

Esc101, Structures 22

int delete() {
 int top = -1;
 if (empty()) {
 printf(“Stack is empty, can’t delete value \n”);
 }
 else {
 top = stack[marker];
 marker = marker - 1;
 printf(“%d deleted from %d \n”, top, marker);
 }
 return top;
}

top_value and main
• Writing the top_value function is given as a simple exercise

Esc101, Structures 23

int main() {
 insert(20);
 insert(10);
 delete();
 insert(100);
 if (delete() == -1) {
 printf(“element can’t be deleted \n”);
 }
 return 0;
}

An issue with (statically allocated) array based approach

• delete/pop doesn’t actually remove the elements from the
array; it simply changes the index (marker) of the top element

24

3 stack[0] marker = 0

6 stack[1] marker = 1

9 stack[99] marker = 99

23 stack[98] marker = 98

3 stack[0]

6 Stack[1]

9 stack[99]

23 stack[98] marker = 98

pop

Stack using arrays
• The array based approach we saw is just one of the ways

• We kept the array fixed (didn’t shift the indices of elements after

delete/pop) and simply moved the marker

• We can use arrays in many other ways too, to implement a stack

– Can also shift the indices of elements in the array upon delete/pop

• .. and, of course, we can also use a linked list to implement a stack
(next class)

Esc101, Structures 25

	ESC101: Fundamentals of Computing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Linked List: A useful application
	Linked List: A useful application
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Circular Linked List
	Slide Number 15
	Why circular linked list
	Slide Number 17
	Stack
	Stack using (statically allocated) arrays
	Empty and full
	Insert (push)
	Delete (pop)
	top_value and main
	An issue with (statically allocated) array based approach
	Stack using arrays

