
ESC101: Fundamentals of Computing

Linked Lists

Nisheeth

ESC101: Fundamentals
of Computing

Are Arrays the Best?
 ADVANTAGES
 Allow us to create several variables of a given type
 Allow us to give them very convenient names e.g. arr[i]
 Can access n-th element very very easily – just use arr[n-1]
 Very easy to set up, can also change size using dynamic arrays and realloc
 Can have arrays of structures as well
 Inserting a new element at the end of the array simple

 DISADVANTAGES
 Inserting in the middle/beginning of array tedious - need to shift elements

one location to make space – can be time consuming too!
 Realloc is an expensive procedure – Mr C has to find new space for the

enlarged array, allocate that space and then copy all old elements one by
one

 Sometimes if there is not enough memory, realloc may just fail and return a
NULL pointer

ESC101: Fundamentals
of Computing

Realloc can fail! 000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025

str[0]
str[1]
str[2]
str[3]
str[4]
str[5]
str[6]
str[7]
str[8]
str[9]

str[10]
str[11]
str[12]
str[13]
str[14]

char *str = (char*)malloc(15 * sizeof(char));
int a;
char *ptr = (char*)realloc(str, 18 * sizeof(char));
if(ptr != NULL)
 str = ptr;

a

I only have enough space to
create a char array of length 3

So close! We did have space for 18
characters, just not contiguous space

Can’t we create a 3 length array
and link the two arrays together?

Yes, you can – using
structures and linked lists

No more memory left for me to
create a char array of length 18

ESC101: Fundamentals
of Computing

Linked Lists
 Allow for more efficient usage of
space
 ADVANTAGES
 Allow as many elements as you want
 Do not require contiguous space to be available

– pack things better
 Can expand without calling realloc
 Inserting in the middle very simple (we’ll see later)

 DISADVANTAGES
 No convenient “names” for elements
 Accessing n-th element slow – require going

through first n-1 elements
 Setting them up requires more work (basically

linking of many struct nodes)

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 8

0 0 0 0 0 0 1 6

0 0 0 0 0 0 1 4

0 0 0 0 0 0 0 0

ESC101: Fundamentals
of Computing

A Cartoon of Linked Lists
data ptr

0.0 NU
LL

1.0 NU
LL

2.0 NU
LL

-1.0 NU
LL

3.0 NU
LL

1.5 NU
LL

4.0 NU
LL

It seems we can only go
forward in this linked list

Yes, no way to
go backwards 

Fear not – a
simple solution

ESC101: Fundamentals
of Computing

Doubly Linked Lists

3.5 NU
LL

PR
EV

NE
XT

2.0 PR
EV

NE
XT

0.5 NU
LL

PR

EV

NE
XT

Allows traversal both ways.
However more code needed

 Linked List - more details..
• A linear, dynamic data structure, consisting of nodes. Each

node consists of two parts:
– a “data" component, and
– a “next" component, which is a pointer to the next node (the last

node points to nothing).

• Can use a structure with to create each node of a linked list

7

Linked List : A Self-referential structure

struct node {
 int data;
 struct node *next;
};

data

10

next

struct node

1. Defines struct node, used as a node (element) in the “linked list”.
2. Note that the field next is of type struct node *
3. next can’t be of type struct node,
 (since it will mean a recursive definition, of unknown or infinite size).

4 2 1 -2 NULL
head

The above list has only one link (pointer) from each node, hence it is a “singly linked list”.
8

Linked List

4 2 1 -2 NULL
head

1. The list is modeled by a variable (head): points to the
first node of the list.

2. head == NULL implies empty list.
3. The next field of the last node is NULL.
4. Name head is just a convention – can give any name to

the pointer to first node, but head is used most often.

next field == NULL pointer indicates the
last node of the list

List starts at node
pointed to by head

9

Displaying/Traversing a Linked List

void display_list(struct node *head)
{
 struct node *cur = head;
 while (cur != NULL) {
 printf("%d ", cur->data);
 cur = cur->next;
 }
 printf("\n");
}

4 2 1 -2 NULL
head

OUTPUT

4 2 1 -2

Can also use recursion
(try doing it using

recursion)

10

Creating a new node

struct node * make_node(int val) {
 struct node *nd;
 nd = (struct node *)calloc(1, sizeof(struct node));
 nd->data = val;
 nd->next = NULL;
 return nd;
}

/* Allocates new node pointer and sets the data field to val, next field is NULL */

11

Inserting at
the front of
the list.

1. Create a new node of type struct node. Data field
set to the value given.

2. “Add’’ to the front:
 its next pointer points to target of head.

3. Adjust head to newnode.

newnode
8

4 2 1 -2 NULL
head

Inserting a node at the front of a linked list

12

struct node *insert_front(int val, struct node *head)
{

struct node *newnode= make_node(val);
newnode->next = head;
head = newnode;
return head;

}
Inserts newnode at the head of the list (pointed by head).
Returns pointer to the head of new list.
Works even when list is empty, i.e. head == NULL

Inserting a node at the front of a linked list

13

4 2 1 -2

NULL

head

8

Let’s start with an empty list and insert in sequence -2, 1,2, 4 and 8, given
by user. Final list should be as above.

struct node *head = NULL;
int val; scanf (“%d”, &val);
while (val != -1) {
 insert_front (val, head);
 scanf (“%d”, &val);
}

Creates list in the reverse order: head points to the last element inserted.

INPUT: -2 1 2 4 8 -1

How to create list in the same order as input? Think

14

List
Insertion

5
Node to be

inserted
(given)

Given a node, insert it after a specified node
in the linked list.

If list is NULL
new list is:

head 5 NULL

If list is not NULL
new list is:

Generic Insertion in linked list

4 2 1 -2 NULL head

Suppose we want to insert Here

15

4 2 1 -2 N
U
L
L

head

Insertion of
node in list.

 pcurr: Pointer to node after which insertion to be made
 pnew: Pointer to new node to be inserted.

5

struct node *insert_after_node (struct node *pcurr, struct node *pnew) {
 if (pcurr != NULL) {
 // Order of next two statements is important
 pnew->next = pcurr->next;
 pcurr->next = pnew;
 return pcurr; // return the prev node
 }
 else return pnew; // return the new node itself
}

Given

pcurr

pnew

16

	ESC101: Fundamentals of Computing
	Are Arrays the Best?
	Realloc can fail!
	Linked Lists
	A Cartoon of Linked Lists
	Doubly Linked Lists
	 Linked List - more details..
	Slide Number 8
	Linked List
	Displaying/Traversing a Linked List
	Creating a new node
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

