
ESC101: Fundamentals of Computing

More about structures

 Nisheeth

Passing Struct to Functions

• When a struct is passed directly, it is passed by copying its
contents
– Any changes made inside the called function are lost on return
– This is same as that for simple variables

• When a struct is passed using pointer
– Change made to the contents using pointer dereference are visible

outside the called function

2

Functions Returning Structures
struct point {
 int x; int y;
};

struct point make_pt (int x, int y) {
 struct point temp;
 temp.x = x;
 temp.y = y;
 return temp; }

void print_pt (struct point pt) {
 printf(“%d %d\n”, pt.x, pt.y); }

int main() {
 int x, y;
 struct point pt;
 scanf(“%d%d”, &x,&y);
 pt = make_pt(x,y);
 print_pt (pt);
 return 0; } 3

Functions Returning Structures
struct point {
 int x; int y;
};

void make_pt(int x, int y, struct point *temp) {
 temp->x = x;
 temp->y = y;
}

void print_pt(struct point *pt) {
 printf("%d %d\n", pt->x, pt->y);
}

int main() {
 int x, y;
 struct point pt;
 scanf("%d%d", &x,&y);
 make_pt(x,y, &pt);
 print_pt(&pt);
 return 0;
}

4

Even though not
returning anything,
make_pt is still able
to do the job using
pointers

Dynamic Allocation of Struct
• Similar to other data types
• sizeof(…) works for struct-s too

struct point* pts;
int i;
pts = (struct point*) malloc(6 * sizeof(struct point));
for (i = 0; i < 6; i++)
 pts[i] = make_point(i, i);

x

y

pts x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]

0

0

1

1

2

2

3

3

4

4

5

5

5

Self-Referential Structures

A field within a structure can even be a pointer to another variable of that structure type

Note: Invalid to have a structure with a field that is another variable of that structure type

Self-referential structures can useful in many programs, such as linked lists and trees
(will look at linked-lists in later lectures)

struct Node{
 float x;
 struct Node *next; // The next node in the list
};

6

Structures: Storage in memory

7

struct student
{
 int id1;
 int id2;
 char a;
 char b;
 float percentage;
};

int main()
{
 int i;
 struct student record1 = {1, 2, 'A', 'B', 90.5};

 printf("size of structure in bytes : %d\n", sizeof(record1));

 printf("\nAddress of id1 = %u", &record1.id1);
 printf("\nAddress of id2 = %u", &record1.id2);
 printf("\nAddress of a = %u", &record1.a);
 printf("\nAddress of b = %u", &record1.b);
 printf("\nAddress of percentage = %u",&record1.percentage);

 return 0;
}

size of structure in bytes : 16
Address of id1 = 675376768
Address of id2 = 675376772
Address of a = 675376776
Address of b = 675376777
Address of percentage = 675376780

 To align the data in memory, one or
more empty bytes (addresses) are

inserted (“structure padding”)

 Note: fields may be stored starting
with the lowest address (as shown

below) or highest address

Can avoid it by explicitly telling Mr. C
not to do padding

(using #pragma pack(1))

(Re)defining a Type - typedef
• When using a structure data type, it gets a bit cumbersome to write

struct followed by the structure name every time.

• Alternatively, we can use the typedef command to set an alias (or

shortcut).

struct point {
 int x; int y;
};
typedef struct point Point;
struct rect {
 Point leftbot;
 Point righttop;
};

typedef struct point {
 int x; int y;
} Point;

• We can also merge struct
definition and typedef:

8

More on typedef
• typedef may be used to rename any type

– Convenience in naming
– Clarifies purpose of the type (typedef char* string;)
– Cleaner, more readable code

• Syntax
typedef Existing-Type NewName;

– Existing type is a base type or compound type
– NewName must be an identifier (same rules as

variable/function name)

9

More on typedef
typedef char* String;
// String: a new name to char pointer

typedef unsigned int size_t; // Improved
 //Readability

typedef struct point* PointPtr;

typedef long long int int64;

10

Bit Fields

// a struct to store date
struct date {
 unsigned int d;
 unsigned int m;
 unsigned int y;
};

Sometimes, not all fields in a struct need the same amount of
storage even if they are of the same data type

In the above, d ranges from 1-31, m ranges from 1-12, and y is a 4 digit integer
But the above will use 4 bytes for each of them. Wasteful.

11

Bit Fields

// a struct to store date
struct date {
 unsigned int d : 5; // d will now use only 5 bits
 unsigned int m : 4; // m will now use only 4 bits
 unsigned int y; // y will use all 4 bytes (as an unsigned int)
};

The idea of bit fields is to specify how many bits we want to
use for storing each field. The definition looks like this

Total storage required will be 8 bytes, not 4 bytes + 9 bits?
4 bytes for y + a total of 4 bytes for d and m (even though d and m together
need only 9 bits, one full unsigned int will be allotted to store them)

Still saved 4
bytes 

12

Bit Fields

4 bytes (32 bits) 4 bytes (32 bits)
 to store y

5 bits (d) 4 bits (m) 23 bits
 (unassigned)

// a struct to store date
struct date {
 unsigned int d : 5; // d will now use only 5 bits
 unsigned int m : 4; // m will now use only 4 bits
 unsigned int y; // y will use all 4 bytes (as an unsigned int)
};

13

Important note: Can’t get the address of individual fields if using bit fields. Can only get the address
(pointer) of the whole structure variable and then access each field using that pointer

Enumerated Type

• Collecting data about bank accounts
– Need a variable for account type: Checking, Saving, …

• Dealing with the color of a traffic light
– A variable that can hold only three values: red, yellow, green

• One option is to use numbers (0,1,2,3,…) but numbers not very meaningful

• Enumerated type provides a better way of storing such information

14

Enumerated Types
• Enumerated type allows us to create our own symbolic name for

a list of related things.
– The key word for an enumerated type is enum.

• Here is the C statement to create an enumerated type to represent
various “account types”

• In the above, savings means 0, current means 1, fixDeposit means
2, and so on (the first symbolic name maps to 0 by default).
Internally, each possible value will be an integer

enum account_type {savings, current, fixedDeposit, minor};

15

Example: Enumerated Types
• Account type via Enumerated Types

• The default values (0,1,2,…) can be changed, e.g.,
 enum account_type { savings = 2, current = 1, fixedDeposit = 3, minor = 6 };

enum account_type { savings, current, fixedDeposit, minor };

enum account_type a;
a = current;

if (a==savings)
 printf(“Savings account\n”);

if (a==current)
 printf(“Current account\n”);

Enumerated
types provide a
symbol to
represent one
state out of
several constant
states.

16

Can use typedef here as well to shorten it 

	ESC101: Fundamentals of Computing
	Passing Struct to Functions
	Slide Number 3
	Slide Number 4
	Dynamic Allocation of Struct
	Self-Referential Structures
	Slide Number 7
	(Re)defining a Type - typedef
	More on typedef
	More on typedef
	Bit Fields
	Bit Fields
	Bit Fields
	Enumerated Type
	Enumerated Types
	Example: Enumerated Types

