
ESC101: Fundamentals of Computing

Composite Data Types:

Structures

Nisheeth

Composite Data
 Case 1: A geometry package – we want to define a variable for a two-

dimensiona point to store its x coordinate and y coordinate.
 Case 2: Student data – Name and Roll Number
 First strategy: Array of size 2?

 Will work for case 1 but not for case 2 since we can not mix TYPES
 Another strategy: Use two variables,
 int point_x , point_y ; char *name; int roll_num;

 No way to indicate that both variables are part of the same “big” variable
 We need to be very careful about variable names.

 Is there any better way ?

2

Structures

Defines a structure named point
containing two integer variables (fields),
called x and y.

struct point {
 int x;
 int y;
};

struct point pt;
struct point pt; defines a variable pt to
be of type struct point.

x

y

pt
memory depiction of pt

• A structure is a collection of variables under a common name.
• The variables can be of different types (including arrays, pointers or structures

themselves!).
• Each variable within a structure is called a field.

3

name of this
structure

Structures
• The x field of pt is accessed as pt.x.
• Field pt.x is an int and can be used as any other int.
• Similarly the y field of pt is accessed as pt.y

4

pt.x = 0;
pt.y = 1;

struct point {
 int x;
 int y;
};

struct point pt;

memory depiction of pt x

y

pt

1

0

struct point {
 int x; int y;
}

struct point pt1,pt2;
struct point pts[6];

struct point is a type.
It can be used just like int,
char etc..

We can even define an
array of struct point

x

y

pts

x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]

For now, define structs in the
beginning of the file, after #include.

Structures

5

6

x

y

pts

x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]

int i;
for (i=0; i < 6; i=i+1) {
 pts[i].x = i;
 pts[i].y = i;
}

Read pts[i].x as (pts[i]).x
The . and [] operators have same
precedence. Associativity: left-right.

Structures
struct point {
 int x; int y;
};
struct point pts[6];
int i;
for (i=0; i < 6; i=i+1) {
 pts[i].x = i;
 pts[i].y = i;
}

x

y

pts x

y

x

y

x

y

x

y

x

y

pts[0] pts[1] pts[2] pts[3] pts[4] pts[5]

0

0

1

1

2

2

3

3

4

4

5

5

State of memory after the code
executes.

7

 Reading structures (scanf ?) struct point {
 int x; int y;
};
int main() {
 int x, y;
 struct point pt;
 scanf(“%d%d”, &(pt.x),&(pt.y));
 return 0;
}

1. You can not read a structure directly using scanf!

2. Read individual fields using scanf (note the &).

3. A better way is to define our own functions to read structures
 to avoid cluttering the code!

8

 Functions returning structures struct point {
 int x; int y;
};

struct point make_pt(int x, int y) {
 struct point temp;
 temp.x = x;
 temp.y = y;
 return temp;
}
int main() {
 int x, y;
 struct point pt;
 scanf(“%d%d”, &x,&y);
 pt = make_pt(x,y);
 return 0;
}

make_pt(x,y):
creates a struct point with

coordinates (x,y), and
returns a struct point.

Functions can return
structures just like int, char,
int *, etc..

struct can be passed as
arguments (pass by value).

Given int coordinates x,y, make_pt(x,y) creates and returns a
struct point with these coordinates. 9

 Functions with structures as parameters

include <stdio.h>
include <math.h>
struct point {
 int x; int y;
};
double norm2(struct point p) {
 return sqrt (p.x*p.x + p.y*p.y);
}
int main() {
 int x, y;
 struct point pt;
 scanf(“%d%d”, &x,&y);
 pt = make_point(x,y);
 printf(“distance from origin
 is %f ”, norm2(pt));
 return 0;
}

The norm2 or Euclidean norm
of point (x,y) is

22 yx +

norm2(struct point p) returns
Euclidean norm of point p.

10

 Structures inside structures

struct point {
 int x; int y;
};

1. Recall, a structure definition defines a type.
2. Once a type is defined, it can be used in the

definition of new types.
3. struct point is used to define struct rect. Each

struct rect has two instances of struct point. struct rect {
 struct point leftbot;
 struct point righttop;
};
struct rect r;

x

y

x

y

leftbot righttop r r is a variable of type struct rect. It has
two struct point structures as fields.

So how do we refer to
the x of leftbot point
structure of r?

11

struct point {
 int x;
 int y;
};
struct rect {
 struct point leftbot;
 struct point righttop;
};
int main() {
 struct rect r;
 r.leftbot.x = 0;
 r.leftbot.y = 0;
 r.righttop.x = 1;
 r.righttop.y = 1;
 return 0;
}

x

y

x

y

leftbot righttop

0

0

1

1

r

r.leftbot.y

r.leftbot.x

r.righttop.y

r.righttop.x

Addressing nested fields
unambiguously

12

 Initializing structures
struct point {
 int x; int y;
};

1. Initializing structures is very similar
to initializing arrays.

2. Enclose the values of all the fields
in braces.

3. Values of different fields are
separated by commas.

struct rect {
 struct point leftbot;
 struct point righttop;
};
struct point p = {0,0};
struct point q = {1,1};
struct rect r = {{0,0}, {1,1}};

p (0,0)

(1,1)
q

r

13

 Assigning structure variables

x

y

x

y

leftbot righttop

1. We can assign a structure variable to
another structure variable

2. The statement s=r; does this
3. Structures are assignable variables,

unlike arrays!

r

 struct rect r,s;
 r.leftbot.x = 0;
 r.leftbot.y = 0;
 r.righttop.x = 1;
 r.righttop.y = 1;
 s=r;

x 0

0

1

1

x

y

x

y

leftbot righttop s

Before the assignment 14

 Assigning structure variables

x

y

x

y

leftbot righttop

1. We can assign a structure variable to
another structure variable

2. The statement s=r; does this.
3. Structures are assignable variables,

unlike arrays!

r

 struct rect r,s;
 r.leftbot.x = 0;
 r.leftbot.y = 0;
 r.righttop.x = 1;
 r.righttop.y = 1;
 s=r;

x 0

0

1

1

After the assignment

s

x

y

x

y

leftbot righttop

x 0

0

1

1

15

 Assigning structure variables

x

y

x

y

leftbot righttop

1. We can assign a structure variable to
another structure variable

2. The statement s=r; does this.
3. Structures are assignable variables,

unlike arrays!
4. Structure name is not a pointer, unlike

arrays.

r

 struct rect r,s;
 r.leftbot.x = 0;
 r.leftbot.y = 0;
 r.righttop.x = 1;
 r.righttop.y = 1;
 s=r;

x 0

0

1

1

After the assignment

s

x

y

x

y

leftbot righttop

x 0

0

1

1

16

 Passing structures..? struct rect { struct point leftbot;
 struct point righttop; };
int area(struct rect r) {
 return
 (r.righttop.x – r.leftbot.x) *
 (r.righttop.y – r.leftbot.y);
}
void fun() {
 int ar;
 struct rect r1 ={{0,0}, {1,1}};
 ar = area(r1);
}

x

y

x

y

leftbot righttop r Usually NO. E.g., to pass struct rect as
parameter, 4 integers are copied. This is
expensive.

But is it efficient to pass
structures or to return
structures?

We can pass structures as
parameters, and return
structures from functions,
like the basic types int,
char, double etc..

Same for returning structures

So what should
be done to pass
structures to
functions? 17

 Passing structures..? struct rect { struct point leftbot;
 struct point righttop;};
int area(struct rect *pr) {
 return
 ((*pr).righttop.x – (*pr).leftbot.x) *
 ((*pr).righttop.y – (*pr).leftbot.y);
}
void fun() {
 int ar;
 struct rect r ={{0,0}, {1,1}};
 ar = area (&r);
 }

Only one pointer instead of
large struct.

area() uses a pointer to
struct as a parameter,
instead of struct rect itself.

Instead of passing
structures, pass pointers to
structures.

Same for returning structures

18 Esc101, Structures

Structure Pointers struct point {
 int x; int y;
};
struct rect {
 struct point leftbot;
 struct point righttop;
};
struct rect *pr;

1. pr is pointer to struct rect.
2. To access a field of the struct

pointed to by struct rect, use
(*pr).leftbot

(*pr).righttop
3. Bracketing (*pr) is essential here. *

has lower precedence than .
4. To access the x field of leftbot, use

(*pr).leftbot.x

pr

x

y

x

y

leftbot righttop

0

0

1

1

(*pr).leftbot.y
(*pr).righttop.y

(*pr).righttop.x

Addressing fields
via the structure’s pointer

(*pr).leftbot.x

19

1. Shorthand: arrow operator(->) is
provided.

2. To access a field of the struct , use
pr->leftbot

3. -> is one operator. To access x field
of leftbot, pr->leftbot.x

4. -> and . have same precedence
and are left-associative. Equivalent
to (pr->leftbot).x

pr

x

y

x

y

leftbot righttop

0

0

1

1

pr->leftbot.y pr->righttop.y

Addressing fields via the pointer (shorthand)

pr->leftbot.x pr->righttop.x

pr->leftbot is equivalent
to (*pr).leftbot

20

Passing by value or reference

• When a struct is passed directly, it is passed by copying its
contents
– Any changes made inside the called function are lost on return
– This is same as that for simple variables

• When a struct is passed using pointer
– Change made to the contents using pointer dereference are visible

outside the called function

21 Esc101, Structures

Functions Returning Structures
struct point {
 int x; int y;
};

struct point make_pt (int x, int y) {
 struct point temp;
 temp.x = x;
 temp.y = y;
 return temp; }

void print_pt (struct point pt) {
 printf(“%d %d\n”, pt.x, pt.y); }

int main() {
 int x, y;
 struct point pt;
 scanf(“%d%d”, &x,&y);
 pt = make_pt(x,y);
 print_pt (pt);
 return 0; } 22

Functions Returning Structures
struct point {
 int x; int y;
};

void make_pt(int x, int y, struct point *temp) {
 temp->x = x;
 temp->y = y;
}

void print_pt(struct point *pt) {
 printf("%d %d\n", pt->x, pt->y);
}

int main() {
 int x, y;
 struct point pt;
 scanf("%d%d", &x,&y);
 make_pt(x,y, &pt);
 print_pt(&pt);
 return 0;
}

23

Even though not
returning anything,
make_pt is still able
to do the job using
pointers

	ESC101: Fundamentals of Computing
	Composite Data
	Slide Number 3
	Structures
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Passing by value or reference
	Slide Number 22
	Slide Number 23

