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Recursion 
 Process of solving a problem using solutions to “smaller” 
versions of the same problem! 
 You have already encountered recursion in mathematics 
 Factorial function is defined in terms of factorial itself! 
  
 Proof by induction is basically a recursive proof 
 Claim: 1 + 2 + 3 + … + n = n(n+1)/2 
 Proof: Base case: for n = 1 true by inspection 
 Inductive case: (1 + … + n) = (1 + … + n-1) + n = (n-1)n/2 + n = n(n+1)/2 

 Notice that we need a base case and recursive case 
 In case of factorial, fac(0) was the base case. 
 This is true when writing recursive functions in C language as well 

We used the proof for the 
case n-1 to prove the case n 
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Mutual Recursion 

Even(n) = (n == 0) || Odd(n-1) 
Odd(n)  = (n != 0) && Even(n-1) 

Two functions calling each other in a recursive fashion 

Note: The above example is not the most efficient way  
to check if a number of even or add but just an illustration 
of mutual recursion 
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About Recursion 
 Recursion can allow us to write very elegant code 
 Very easy to understand what is going on by just reading function definition 
 Sometimes you can just “copy” the function definition into code  
 Careful: do not forget to write down the base case 
 Will go into something like an infinite loop if you forget the base case 
 May end up exceeding time and memory limits on Prutor 
 Will get a TLE/runtime error message on Prutor 
 Careful: problems that can be solved using recursion can 
always be solved using loops too 

 Fundamental result in computer science: Church-Turing thesis 
 Disadvantage: loop solutions sometimes very difficult to write and read 
 Advantage: loop solutions can be much faster (at least in compiled 

languages like C) than the recursion solution 

fac(n) = n*fac(n-1); 
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Recognizing Recursion 
 Sometimes it is very easy to see that the problem can be 
solved using recursion – example factorial, Fibonacci 
 Sometimes it is harder to see that recursion can be used to 
solve the problem – example gcd, partition 
 No small set of golden rules on how to find out when and if 
a problem can be solved using recursion  
 Need to look at the problem carefully and see if it can be 
solved using smaller versions of the same problem 
 Will see some examples of this in ESC101. More examples in 
advanced courses e.g. ESO207, CS345 
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Example 1: Factorial 
int fact(int a){ 
    if(a == 0) return 1; 
    return a * fact(a - 1); 
} 
int main(){ 
    printf("%d", fact(1+1)); 
} 

main() 
fact() 

a 

fact() 

fact() 

a 

a 

2 2 
1 1 

0 0 1 1 

2 2 
2 

1 1 
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Example 1: Factorial 
int fact(int a){ 
    if(a == 0) return 1; 
    return a * fact(a - 1); 
} 
int main(){ 
    printf("%d", fact(2*3)); 
} 

main() 

720 

fact(6) fact(5) fact(4) 

fact(3) fact(2) fact(1) 

fact(0) = 1 

= 6 * fact(5) = 5 * fact(4) = 4 * fact(3) 

= 3 * fact(2) = 2 * fact(1) = 1 * fact(0) 1 = 1 1 = 2 2 = 6 

6 = 24 24 = 120 120 = 720 

See how many 
clones got created! 

Creating each clone 
takes time and memory 

This is why recursive 
programs can be a bit 

slower – be careful 
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Factorial: The Flow 
long int factorial(int n){ 
    if(n==0) 
        return 1; 
    else  
        return(n*factorial(n-1)); 
} 

F(5) 

main() 

F(4) 

F(3) 

F(2) 

F(1) 

F(0) 

F(5) 

F(4) 

F(3) 

F(2) 

F(1) 

main() 

1 

2 

6 

24 

120 

1 

Values returned in 
reverse order 

Presenter
Presentation Notes
This is called digging into the recursion well. 
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Example 2: Fibonacci Numbers 
 There are two base cases for Fibonacci numbers 
 The first Fibonacci number is defined to be 0 
 The second Fibonacci number is defined to be 1 

 Recursive case: for n > 2, n-th Fibonacci number is  the sum 
of the previous two Fibonacci numbers 

int fib(int n){ 
    if(n == 1) return 0; 
    if(n == 2) return 1; 
    return fib(n-1) + fib(n-2); 
} 
int main(){ 
    printf("%d", fib(5)); 
} 

fib(5) 

fib(4) fib(3) 

fib(2) fib(2) fib(1) fib(3) 

fib(2) fib(1) 

Explosion 
of clones! 

Wasted effort too! 
fib(1) calculated twice 

fib(2) calculated 3 times 
fib(3) calculated twice 

Imagine the number of clones to 
calculate fib(100). Challenge: 

don’t imagine – find out 

I could have easily solved 
this problem using a for loop 
– much faster and no clones 

That’s why we were warned. 
Recursion allows neat code but 

sometimes can be slower 
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Attack of the Clones 

fib(6) 

fib(5) 

fib(4) fib(3) 

fib(2) fib(2) fib(1) fib(3) 

fib(2) fib(1) 

fib(4) 

fib(2) fib(3) 

fib(2) fib(1) 

fib(1) calculated 3 times 
fib(2) calculated 5 times 
fib(3) calculated 3 times 
fib(4) calculated 2 times  

Presenter
Presentation Notes
This is not just inelegant, it has practical consequences. Each of the clones occupies some memory, so an exponential growth in the number of clones will cause an exponential growth in the amount of memory needed to run your program. 
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Recursion vs Iteration 

int fib(int n) 
{  
   int first = 0, second = 1; 
   int next, c;  
   if (n <= 1)  
       return n;   
   for ( c = 1; c < n ; c++ ) {  
       next = first + second;  
       first = second;  
       second = next;  
    }  
    return next;  
} 

int fib(int n)  
{  
   if ( n <= 1 )  
      return n;  
   else  
      return fib(n-1) + fib(n-2);  
}  

The recursive program is 
closer to the definition 

and easier to read. 

But very very 
inefficient 

Write a function to compute  
the n-th Fibonacci number 

Presenter
Presentation Notes
How do we define the inefficiency? See next slide for the explanation
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Space complexity of recursion 
 Every time a recursive function makes a call to itself 
 Another call to the function is placed in program memory 
 This memory space can no longer be allocated elsewhere 

 The amount of memory needed to execute a program is 
called its space complexity 
 Iterative programs’ space complexity is relatively easy to 
analyse 

 It does not change as a function of the inputs (mostly) 

 Not so for recursive programs 
 Space complexity is a function of the maximum depth of the recursion that will be 

needed 
 Is input-dependent 
 Have to be careful about memory limitations when using recursive algorithms 
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Greatest common divisor 
 Sometimes recursion can make code faster too 
 One of the fastest algorithms for computing gcd is called 
the Euclid’s algorithm and it defines gcd recursively! 
  
  
 Note that since a % b is always less than b, this indeed 
defines gcd in terms of gcd on “smaller” inputs 
 What is the base case here? 
 When b divides a i.e. when a % b = 0, then we have gcd(a, b) = b  
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GCD using Recursion 

int gcd(int a, int b){ 
    if(a < b)  
        return gcd(b, a); 
    if(a % b == 0)  
        return b; 
    return gcd(b, a % b); 
} 

The base case 

Convince yourself that this will work by calculating some of the outputs by hand.  
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Partitions 
 Partitions of a number are the different ways in which we 
can write the number as a sum of smaller numbers 
 For example, the partitions of 4 are 
 1 + 1 + 1 + 1 
 1 + 1 + 2 
 1 + 3 
 2 + 2 
 4 
 We can generate partitions of n using partitions of n-1 
 Need to be a bit careful to ensure that we do not repeat partitions i.e. we 

do not write both 1 + 3 and 3 + 1 since they are the same partition 

Note that these are 
all the partitions of 3 

Easy way of ensuring this – make sure 
that numbers are writing in increasing 

order so that 3 + 1 is disqualified  

Presenter
Presentation Notes
We will see how partitioning serves as a base for other more advanced algorithms a few lectures down the line.
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Code for partitioning 

void partition(char *str, int n, int next, int min){     
 if(n == 0){ 
         str[next] = '\0'; 
         printf("%s\n", str); 
          return;  
    }     
 int i; 
 if(next) 
         str[next++] = '+'; 
 for(i = min; i <= n; i++){ 
         str[next] = '0' + i; 
         partition(str, n - i, next + 1, i); 
  } 
} 

Base case is to terminate the 
string of numbers and print it 

Print ‘+’ after each number 

In increasing order, to avoid 
repeats 

Dig down into the recursion well until n-i becomes 0, at which point the 
base case will return 

partition(str, 4, 0, 1) 
Output: 
1+1+1+1 
1+1+2 
1+3 
2+2 
4 
 

Base case returns 
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