Recursion

ESC101: Fundamentals of Computing
Nisheeth

Recursion

Process of solving a problem using solutions to "sma ller" versions of the same problem!
You have already encountered recursion in mathematics
Factorial function is defined in terms of factorial itself!

$$
\operatorname{fac}(0)=1 \text { and } \operatorname{fac}(n)=n \cdot \operatorname{fac}(n-1) \text {, for } n>0
$$

Proof by induction is basically a recurs We used the proof for the Claim: $1+2+3+\ldots+n=n(n+1) / 2$ case $n-1$ to prove the case n Proof. Base case: forn $=1$ true by inspection Inductive case: $(1+\ldots+n)=(1+\ldots+n-1)+n=(n-1) n / 2+n=n(n+1) / 2$
Notice that we need a base case and recursive case
In case of factorial, fac (0) wasthe base case.
This is true when writing recursive functions in C la nguage as well

Mutual Recursion

Two functions calling each other in a recursive fashion

$$
\begin{aligned}
& \operatorname{Even}(n)=(n==0) \| \operatorname{Odd}(n-1) \\
& \operatorname{Odd}(n)=(n!=0) \& \& \operatorname{Even}(n-1)
\end{aligned}
$$

Note: The above example is not the most efficient way to check if a number of even or add but just an illustration of mutual recursion

About Recursion

$$
\operatorname{fac}(n)=n * f a c(n-1) ;
$$

Recursion can allow us to write venvalyant code Very easy to understand what is going ulloy just reading function definition Sometimes you can just "copy" the function definition into code ©
Careful: do not forget to write down the base case
Will go into something like an infinite loop if you forget the base case May end up exceeding time a nd memory limits on Prutor Will get a TLE/runtime error message on Prutor
Careful: problemsthat can be solved using recursion can always be solved using loops too

Funda mental result in computer science: Church-Turing thesis Disadvantage: loop solutions sometimes very diffic ult to write and read Advantage: loop solutions can be much faster (at least in compiled languageslike C) than the recursion solution

Recognizing Recursion

Sometimes it is very easy to see that the problem can be solved using recursion - example factorial, Fibonacci
Sometimes it is harder to see that recursion can be used to solve the problem - example gcd, partition No small set of golden rules on how to find out when and if a problem can be solved using recursion Need to look at the problem carefully and see if it can be solved using smaller versions of the same problem
Will see some examples of this in ESC 101. More exa mples in advanced coursese.g. ESO 207, CS345

Example 1: Factorial

See how many clones got created!

int fact(int a) \{

if(a == 0) return 1;
return a * fact(a-1);
int main()\{
printf("\%d", fact(2*3)); \}

Factorial: The Flow

```
long int factorial(int n){
    if(n==0)
        return 1;
    else
        return(n*factorial(n-1));
}
```

main()

Attack of the Clones

fib(1) calculated 3 times fib(2) calculated 5 times fib(3) calculated 3 times fib(4) calculated 2 times

Recursion vs Iteration

Write a function to compute the n-th Fibonacci number

```
int fib(int n)
{
    int first = 0, second = 1;
    int next, c;
    if ( }n<=1\mathrm{ )
        return n;
    for (c = 1;c<n;c++ ){
        next = first + second;
        first = second;
        second = next;
    }
    return next;
}
```

The recursive program is closer to the definition and easier to read.

Space complexity of recursion

Every time a recursive function makes a call to itself Another call to the function is placed in program memory This memory space can no longer be allocated elsewhere
The a mount of memory needed to execute a program is called its space complexity
Iterative programs' space complexity is relatively easy to a nalyse

It does not change asa function of the inputs (mostly)
Not so for recursive programs
Space complexity is a function of the maximum depth of the recursion that will be needed
Is input-dependent
Have to be careful about memory limitations when using recursive algorithms

Greatest common divisor

Sometimes recursion can make code faster too
One of the fastest algorithms for computing gcd is called the Euclid's algorithm and it defines gcd recursively!

Theorem 1. Suppose $a \geq b>0$ are two numbers.
Then we always have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.
Note that since a \%b is always less than b, this indeed defines gcd in terms of gcd on "smaller" inputs What is the base case here?
When b dividesa i.e. when $a \% b=0$, then we have $g c d(a, b)=b \odot$

GCD using Recursion

int gcd(int a, int b) \{ if(a < b) return $\operatorname{gcd}(b, a)$;
 if(a \% b == 0)
 return b;
 return gcd(b, a \% b);
 \}

Partitions

Partitions of a number are the different ways in which we can write the number as a sum of smaller numbers For example, the partitions of 4 are $1+1+1+1$ $1+1+2$ $1+3$
$2+2$
4

Note that these are all the partitions of 3

Easy way of ensuring this - make sure that numbers are writing in increasing order so that $3+1$ is disqualified

We can generate partitionsof. using partitions of n-1
Need to be a bit careful to ensure that we do not repeat partitionsi.e. we do not write both $1+3$ and $3+1$ since they a re the same partition

Code for partitioning

```
4
```

partition(str, 4, 0, 1)
partition(str, 4, 0, 1)
Output:
Output:
1+1+1+1
1+1+1+1
1+1+2
1+1+2
1+3
1+3
$2+2$
$2+2$
$2+2$
4
4
In increasing order, to avoid repeats

void partition(char *str, int n, int next, int min)\{

if($n==0$) $\{$
str[next] = ' $\backslash 0$ '; printf("\%s\n", str); return;
\}
int i;
if(next)
str[next++] = '+';
for($\mathrm{i}=\min ; \mathrm{i}<=\mathrm{n}$; $\mathrm{i}++$) $\{$
str[next] = '0' +i ;
partition(str, $n-i, n e x t+1, i) ;$

