
ESC101: Fundamentals of Computing

Recursion

Nisheeth

ESC101: Fundamentals
of Computing

Recursion
 Process of solving a problem using solutions to “smaller”
versions of the same problem!
 You have already encountered recursion in mathematics
 Factorial function is defined in terms of factorial itself!

 Proof by induction is basically a recursive proof
 Claim: 1 + 2 + 3 + … + n = n(n+1)/2
 Proof: Base case: for n = 1 true by inspection
 Inductive case: (1 + … + n) = (1 + … + n-1) + n = (n-1)n/2 + n = n(n+1)/2

 Notice that we need a base case and recursive case
 In case of factorial, fac(0) was the base case.
 This is true when writing recursive functions in C language as well

We used the proof for the
case n-1 to prove the case n

ESC101: Fundamentals
of Computing

Mutual Recursion

Even(n) = (n == 0) || Odd(n-1)
Odd(n) = (n != 0) && Even(n-1)

Two functions calling each other in a recursive fashion

Note: The above example is not the most efficient way
to check if a number of even or add but just an illustration
of mutual recursion

ESC101: Fundamentals
of Computing

About Recursion
 Recursion can allow us to write very elegant code
 Very easy to understand what is going on by just reading function definition
 Sometimes you can just “copy” the function definition into code
 Careful: do not forget to write down the base case
 Will go into something like an infinite loop if you forget the base case
 May end up exceeding time and memory limits on Prutor
 Will get a TLE/runtime error message on Prutor
 Careful: problems that can be solved using recursion can
always be solved using loops too

 Fundamental result in computer science: Church-Turing thesis
 Disadvantage: loop solutions sometimes very difficult to write and read
 Advantage: loop solutions can be much faster (at least in compiled

languages like C) than the recursion solution

fac(n) = n*fac(n-1);

ESC101: Fundamentals
of Computing

Recognizing Recursion
 Sometimes it is very easy to see that the problem can be
solved using recursion – example factorial, Fibonacci
 Sometimes it is harder to see that recursion can be used to
solve the problem – example gcd, partition
 No small set of golden rules on how to find out when and if
a problem can be solved using recursion
 Need to look at the problem carefully and see if it can be
solved using smaller versions of the same problem
 Will see some examples of this in ESC101. More examples in
advanced courses e.g. ESO207, CS345

ESC101: Fundamentals
of Computing

Example 1: Factorial
int fact(int a){
 if(a == 0) return 1;
 return a * fact(a - 1);
}
int main(){
 printf("%d", fact(1+1));
}

main()
fact()

a

fact()

fact()

a

a

2 2
1 1

0 0 1 1

2 2
2

1 1

ESC101: Fundamentals
of Computing

Example 1: Factorial
int fact(int a){
 if(a == 0) return 1;
 return a * fact(a - 1);
}
int main(){
 printf("%d", fact(2*3));
}

main()

720

fact(6) fact(5) fact(4)

fact(3) fact(2) fact(1)

fact(0) = 1

= 6 * fact(5) = 5 * fact(4) = 4 * fact(3)

= 3 * fact(2) = 2 * fact(1) = 1 * fact(0) 1 = 1 1 = 2 2 = 6

6 = 24 24 = 120 120 = 720

See how many
clones got created!

Creating each clone
takes time and memory

This is why recursive
programs can be a bit

slower – be careful

ESC101: Fundamentals
of Computing

Factorial: The Flow
long int factorial(int n){
 if(n==0)
 return 1;
 else
 return(n*factorial(n-1));
}

F(5)

main()

F(4)

F(3)

F(2)

F(1)

F(0)

F(5)

F(4)

F(3)

F(2)

F(1)

main()

1

2

6

24

120

1

Values returned in
reverse order

Presenter
Presentation Notes
This is called digging into the recursion well.

ESC101: Fundamentals
of Computing

Example 2: Fibonacci Numbers
 There are two base cases for Fibonacci numbers
 The first Fibonacci number is defined to be 0
 The second Fibonacci number is defined to be 1

 Recursive case: for n > 2, n-th Fibonacci number is the sum
of the previous two Fibonacci numbers

int fib(int n){
 if(n == 1) return 0;
 if(n == 2) return 1;
 return fib(n-1) + fib(n-2);
}
int main(){
 printf("%d", fib(5));
}

fib(5)

fib(4) fib(3)

fib(2) fib(2) fib(1) fib(3)

fib(2) fib(1)

Explosion
of clones!

Wasted effort too!
fib(1) calculated twice

fib(2) calculated 3 times
fib(3) calculated twice

Imagine the number of clones to
calculate fib(100). Challenge:

don’t imagine – find out

I could have easily solved
this problem using a for loop
– much faster and no clones

That’s why we were warned.
Recursion allows neat code but

sometimes can be slower

ESC101: Fundamentals
of Computing

Attack of the Clones

fib(6)

fib(5)

fib(4) fib(3)

fib(2) fib(2) fib(1) fib(3)

fib(2) fib(1)

fib(4)

fib(2) fib(3)

fib(2) fib(1)

fib(1) calculated 3 times
fib(2) calculated 5 times
fib(3) calculated 3 times
fib(4) calculated 2 times

Presenter
Presentation Notes
This is not just inelegant, it has practical consequences. Each of the clones occupies some memory, so an exponential growth in the number of clones will cause an exponential growth in the amount of memory needed to run your program.

ESC101: Fundamentals
of Computing

Recursion vs Iteration

int fib(int n)
{
 int first = 0, second = 1;
 int next, c;
 if (n <= 1)
 return n;
 for (c = 1; c < n ; c++) {
 next = first + second;
 first = second;
 second = next;
 }
 return next;
}

int fib(int n)
{
 if (n <= 1)
 return n;
 else
 return fib(n-1) + fib(n-2);
}

The recursive program is
closer to the definition

and easier to read.

But very very
inefficient

Write a function to compute
the n-th Fibonacci number

Presenter
Presentation Notes
How do we define the inefficiency? See next slide for the explanation

ESC101: Fundamentals
of Computing

Space complexity of recursion
 Every time a recursive function makes a call to itself
 Another call to the function is placed in program memory
 This memory space can no longer be allocated elsewhere

 The amount of memory needed to execute a program is
called its space complexity
 Iterative programs’ space complexity is relatively easy to
analyse

 It does not change as a function of the inputs (mostly)

 Not so for recursive programs
 Space complexity is a function of the maximum depth of the recursion that will be

needed
 Is input-dependent
 Have to be careful about memory limitations when using recursive algorithms

ESC101: Fundamentals
of Computing

Greatest common divisor
 Sometimes recursion can make code faster too
 One of the fastest algorithms for computing gcd is called
the Euclid’s algorithm and it defines gcd recursively!

 Note that since a % b is always less than b, this indeed
defines gcd in terms of gcd on “smaller” inputs
 What is the base case here?
 When b divides a i.e. when a % b = 0, then we have gcd(a, b) = b

ESC101: Fundamentals
of Computing

GCD using Recursion

int gcd(int a, int b){
 if(a < b)
 return gcd(b, a);
 if(a % b == 0)
 return b;
 return gcd(b, a % b);
}

The base case

Convince yourself that this will work by calculating some of the outputs by hand.

ESC101: Fundamentals
of Computing

Partitions
 Partitions of a number are the different ways in which we
can write the number as a sum of smaller numbers
 For example, the partitions of 4 are
 1 + 1 + 1 + 1
 1 + 1 + 2
 1 + 3
 2 + 2
 4
 We can generate partitions of n using partitions of n-1
 Need to be a bit careful to ensure that we do not repeat partitions i.e. we

do not write both 1 + 3 and 3 + 1 since they are the same partition

Note that these are
all the partitions of 3

Easy way of ensuring this – make sure
that numbers are writing in increasing

order so that 3 + 1 is disqualified

Presenter
Presentation Notes
We will see how partitioning serves as a base for other more advanced algorithms a few lectures down the line.

ESC101: Fundamentals
of Computing

Code for partitioning

void partition(char *str, int n, int next, int min){
 if(n == 0){
 str[next] = '\0';
 printf("%s\n", str);
 return;
 }
 int i;
 if(next)
 str[next++] = '+';
 for(i = min; i <= n; i++){
 str[next] = '0' + i;
 partition(str, n - i, next + 1, i);
 }
}

Base case is to terminate the
string of numbers and print it

Print ‘+’ after each number

In increasing order, to avoid
repeats

Dig down into the recursion well until n-i becomes 0, at which point the
base case will return

partition(str, 4, 0, 1)
Output:
1+1+1+1
1+1+2
1+3
2+2
4

Base case returns

	ESC101: Fundamentals of Computing
	Recursion
	Mutual Recursion
	About Recursion
	Recognizing Recursion
	Example 1: Factorial
	Example 1: Factorial
	Factorial: The Flow
	Example 2: Fibonacci Numbers
	Attack of the Clones
	Recursion vs Iteration
	Space complexity of recursion
	Greatest common divisor
	GCD using Recursion
	Partitions
	Code for partitioning

