
ESC101: Fundamentals of Computing

Arrays as pointers

 Nisheeth

ESC101: Fundamentals
of Computing

Array of Pointers
 An array of (say char) pointers can be created in two ways

 - Use a static array declaration char *ptrArr[3]; and then
initialize each of the 3 pointers ptrArr[0], ptrArr[1], and ptrArr[2]
using malloc or as static arrays

 - Use a dynamic array declaration as a pointer to pointers
 char **ptrArr = (char **)malloc(3*sizeof(char *));
 and then initialize each of the 3 pointers ptrArr[0], ptrArr[1],
and ptrArr[2] using malloc or as static arrays

Name of array of pointers is
also a pointer of pointer

Just like name of
array is a pointer

Can use array of char
pointers to store many

(i.e., an array of) strings

ESC101: Fundamentals
of Computing

Array of Pointers  Arrays of Arrays
char **ptrArr = (char**)malloc(3*sizeof(char*));
for(i = 0; i < 3; i++)
 ptrArr[i] = (char*)malloc((i+1)*sizeof(char));
scanf("%c", &ptrArr[2][1]);
printf("%c", ptrArr[2][1]);
for(i = 0; i < 3; i++)
 free(ptrArr[i]);
free(ptrArr);

ptrArr

ptrArr[0]

ptrArr[1]

ptrArr[2]

ptrArr[0][0]

ptrArr[1][0] ptrArr[1][1]

ptrArr[2][0] ptrArr[2][1] ptrArr[2][2]
X

X

X

ESC101: Fundamentals
of Computing

Accessing Elements in Array of Pointers/Arrays
 Rest assured, the same rules apply as do with pointers

ptrArr[0], ptrArr[1], ptrArr[2] are all arrays of chars
 How to access individual elements of these arrays?
 Two ways to access index 2 element of str: str[2], *(str+2)

 Apply exact same rule : ptrArr[2][2], *(ptrArr[2]+2) both give
index 2 element of the array ptrArr[2]
 Note that ptrArr[1] does not have 3 elements so ptrArr[1][2]
may cause segfault!

char *ptrArr[3], str[3];
for(i = 0; i < 3; i++)
 ptrArr[i] = (char*)malloc((i+1)*sizeof(char));

ESC101: Fundamentals
of Computing

 Rest assured, the same rules apply as do with pointers

You can show-off your skills by cool array access tricks 
 Remember that str is a pointer to str[0]
 In the same way, ptrArr is also a pointer to ptrArr[0] (which is an array)

 str + 2 gives address of str[2]
 ptrArr + 2 also gives address of ptrArr[2] (pointers take 8 bytes) – same rules!

 We can access index 2 of the third array in many ways
ptrArr[2][2],*(ptrArr[2] + 2),*(*(ptrArr + 2) + 2),(*(ptrArr+2))[2]

char *ptrArr[3], str[3];
for(i = 0; i < 3; i++)
 ptrArr[i] = (char*)malloc((i+1)*sizeof(char));

However, I can write char* qtr = str;
qtr++; Now qtr points to str[1]

I can also write char** rtr = ptrArr;
rtr++; Now rtr points to ptrArr[1]

Just one potentially confusing notation in C
int *ptr[5]; is an array of 5 pointers to int but

int (*ptr)[5] is a single pointer to an array of 5 ints 

Don’t worry. we won’t ask
exam questions on int (*ptr)[5];

I will ask questions on pointers to
pointers, array of pointers, etc though

Accessing Elements in Array of Pointers/Arrays Don’t write ptrArr++ illegal!
Even str++ illegal!

Presenter
Presentation Notes
Just remember that arr[i] and *(arr+i) mean the same thing in C, and all these indexing methods will make sense

ESC101: Fundamentals
of Computing

2D Arrays: Revisited (Pointer’s view)

 Declares a matrix (2D array) with 3 rows 5 columns
 Rows numbered 0, 1, 2. Columns numbered 0, 1, 2, 3, 4
 Element at row-index i and column-index j is an int variable
 Can access it using several ways
mat[i][j],*(mat[i] + j),*(*(mat + i) + j),(*(mat + i))[j]
 Careful! **(mat + i +j) ≠ *(*(mat + i) + j) ≠ *(*mat + i + j)

int mat[3][5]; // note: 2D array name mat is also a pointer to pointer (int **)

This looks exactly like the way we access an
array of pointers/arrays – what is the difference?

Not that much actually – let me
show you the differences

ESC101: Fundamentals
of Computing

2D arrays vs Array of pointers
2D ARRAYS
 Number of elements in
each row is the same
 All elements of 2D array are
located contiguously in
memory
 Easier to initialize

 Very convenient 

ARRAY OF POINTERS

 Different arrays can have
different number of
elements – more flexibility
 Elements of a single array
are contiguous but different
arrays could be located far
off in memory
 Have to be initialized
element by element
 More power, responsibility

int mat[3][5] = { {1,2}, {3},
{4,5,6},{7,8,9,10,11},{-1,2,3,4}};

ESC101: Fundamentals
of Computing

Memory layout of 2D arrays

 Location of the str pointer not shown
 First all elements of row 0 stored in
continuous sequence
 Then without breaking sequence, all
elements of row 1 stored and so on

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023

…

char str[3][4] = {"Hi","Ok","Bye"}; str[0][0]
str[0][1]
str[0][2]
str[0][3]
str[1][0]
str[1][1]
str[1][2]
str[1][3]
str[2][0]
str[2][1]
str[2][2]
str[2][3]

char* ptr = *str; // ptr points to str[0][0]
ptr += 4; // ptr now points to str[1][0]
ptr += 4; // ptr now points to str[2][0]
ptr += 1; // ptr now points to str[2][1]

H
i

\0
\0
O
k
\0
\0
B
y
e
\0

ESC101: Fundamentals
of Computing

Layout of array of pointers

 Element within a single array always
stored in sequence
 Different arrays may be stored far
away from each other

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023

…

char **str = (char**)malloc(3*sizeof(char*));
str[0] = (char*)malloc(4*sizeof(char));
str[1] = (char*)malloc(4*sizeof(char));
str[2] = (char*)malloc(4*sizeof(char));

str[0][0]
str[0][1]
str[0][2]
str[0][3]

str
str[0]
str[1]
str[2]

0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 0

str[1][0]
str[1][1]
str[1][2]
str[1][3]

str[2][0]
str[2][1]
str[2][2]
str[2][3]

ESC101: Fundamentals
of Computing

Summary
 Arrays are just an application of pointers
 In any dimensions, one can access arbitrary array
elements with pointer math
 Dynamically allocated arrays of pointers are a much
more general data structure

 Multidimensional arrays emerge as a special case
 Other data structures also emerge as special cases, as we will see when

we discuss structures

 Whenever you get a problem where the size of the input
arrays are not fixed, you have to use dynamic allocation

Presenter
Presentation Notes
Practice array definition and initialization in both static and dynamic forms within the same program over and over again. That way, the connection between the two representations will become clear.

	ESC101: Fundamentals of Computing
	Array of Pointers
	Array of Pointers  Arrays of Arrays
	Accessing Elements in Array of Pointers/Arrays
	Accessing Elements in Array of Pointers/Arrays
	2D Arrays: Revisited (Pointer’s view)
	2D arrays vs Array of pointers
	Memory layout of 2D arrays
	Layout of array of pointers
	Summary

