
ESC101: Fundamentals of Computing

Pointers and Memory Allocation
(Continued)

 Nisheeth

ESC101: Fundamentals
of Computing

So far about pointers..
 What is a pointer - An address in memory
 How to declare a pointer variable - type * ptrName;
 Every pointer variable has a data type
 type * (not type) is data type of above pointer ptrName
 After declaration, can use *ptrName to dereference
 Pointer arithmetic. Can add/subtract to go forward/back
 Pointers and arrays (array name is pointer to first element)
 Pointers and strings (string name is pointer to first char)
 Memory allocation functions (malloc, calloc, realloc)

ESC101: Fundamentals
of Computing

Reminder: Some basics about arrays and pointers
 Consider an array int arr[6] = {2,4,1,3,5,7};
 arr (name of the array) is the same as &arr[0]
 Address of the i-th element is arr+i or &arr[i]
 Value of the i-th element is *(arr+i) or arr[i]
 All of the above is true for any type of array
 String’s name is the pointer to the first character of string
(so string pointer is of type char *)
 String’s name is used directly by scanf to read the full string
 String’s name is used directly by printf to print the full string

Without &

ESC101: Fundamentals
of Computing

Pointers and strings: A simple example
char str[] =“Array name is a pointer”;
char *ptr = str + 6; /*initialize*/
printf(“%s”,ptr);

ptr points to str[6]. printf prints
the string starting from str[6].

name is a pointer

str[0] str[5] str[10]

‘ ’ ‘a’

str[15]

‘A’ ‘r’ ‘r’ ‘a’ ‘y’ ‘a’ ‘n’

str
ptr

‘i’ ‘s’ ‘e’ ‘ ’ ‘ ’ ‘m’

‘n’ ‘t’ ‘e’ ‘r’ ‘\0’

str[23] str[16]

Output

‘p’ ‘o’ ‘i’

ESC101: Fundamentals
of Computing

Back to memory allocation related functions

malloc calloc

realloc

free

ESC101: Fundamentals
of Computing

malloc: Example

float *f;
f= (float *) malloc(10 * sizeof(float));

A pointer to float (or several floats)

Size big enough to hold 10 floats.

Note the use of sizeof to keep it
machine independent

malloc evaluates its arguments at
runtime to allocate (reserve) space.
Returns a void * pointer to first
address of allocated space.

Explicit type
casting to convey
user’s intent

ESC101: Fundamentals
of Computing

malloc: Example

float *f; int n;
scanf(“%d”, &n);
f= (float *) malloc(n * sizeof(float));

f[0] = 0.52;
scanf(“%f”, &f[3]); //Overflow if n<=3
printf(“%f”, *f + f[0]);

Key Point: The size argument can be a variable
or non-constant expression!

After memory
is allocated,
pointer
variable
behaves as if
it is an array!

This is because, in C, f[i] simply means *(f+i).

ESC101: Fundamentals
of Computing

calloc
Similar to malloc except for zero initialization

Syntax is slightly different from malloc

float *f;
f= (float *) calloc(10, sizeof(float));

How many
elements?

Size of each
element

ESC101: Fundamentals
of Computing

Memory leaks
 Situation where memory allocated earlier
becomes unusable and blocked

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023

…

* * * * * * * *

int *ptr; // may contain a junk address now
ptr = (int*)malloc(3 * sizeof(int));
…
ptr = (int*)malloc(2 * sizeof(int));

ptr
ptr[0]

ptr[1]

ptr[2]

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

ptr will take 8 bytes to store –
sorry for not drawing accurately

ptr[0]

ptr[1]

If you keep losing memory like this,
soon your program may crash!

ESC101: Fundamentals
of Computing

free
 Used to deallocate (fee) memory
allocated using malloc/calloc/realloc

 Don’t use freed memory or free memory
twice or free non-malloc/calloc/realloc-ed
arrays – will cause segfault or runtime error!

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023

…

* * * * * * * *

int *ptr; // may contain a junk address now
char str[3];
ptr = (int*)malloc(3 * sizeof(int));
free(ptr);
printf("%d", ptr[1]);

ptr

ptr[0]

ptr[1]

ptr[2]

0 0 0 0 0 1 1 0
str[0]
str[1]
str[2]

0 0 0 0 1 0 0 1

free(str); // runtime error

str

I always free all memory when a program
ends. You only have to worry about freeing

memory that you asked to be allocated

ESC101: Fundamentals
of Computing

Library analogy for malloc/free
 malloc/calloc is like borrowing a book from library
 If that book unavailable, cannot use it (NULL pointer)
 1000+ students in Y19 but only 50 copies of Thomas' Calculus
 free is like returning a book so others can use it after you
 If you keep issuing books without returning, eventually
library will stop issuing books to you and impose a fine
 Cannot use a book after returning it (cannot use an array
variable after it has been freed)
 Cannot return a book you do not have (cannot free
memory that has been already freed)
 Of course, if you re-issue a book you can return it again

ESC101: Fundamentals
of Computing

realloc – revised allocation
 If you malloc-ed an array of 100 elements and suddenly
find that you need an array of 200 elements

 Can use realloc to revise that allocation to 200 elements

 Don’t use realloc to resize of non-malloc arrays

 Use realloc only to resize of calloc/malloc-ed arrays

int *ptr = (int*)malloc(100 * sizeof(int));

I realize that. That is why I will
copy those 100 elements to the
new array of 200 elements

int *tmp = (int*)realloc(ptr, 200 * sizeof(int));
if(tmp != NULL) ptr = tmp;

But I had so much
precious data stored

in those 100 elements

You are the best Mr C

int c[100];
int *ptr = (int*)realloc(c, 200 * sizeof(int)); // Runtime error

I will also free the old 100
elements – you don’t have

to write free() for them

If insufficient memory, I will
not free old memory but
just return NULL pointer

A bit system-dependent. If
insufficient memory, Prutor
programs will simply crash

ESC101: Fundamentals
of Computing

getline (reading string of any length)
 Read a single line of text from input (i.e. till '\n')
 Uses realloc-like methods to expand array size
 Needs a malloc-ed array for this reason

 If user input doesn’t fit inside original array, str will contain
pointer to expanded array, len will be length of new array

int len = 11; // I only expect 10 characters to be entered
char *str = (char*)malloc(len * sizeof(char));
getline(&str, &len, stdin);

char **ptrstr = &str;
getline(ptrstr, &len, stdin); // Alternate way to use getline

Pointer to a pointer simply stores
the address of a pointer variable

printf("%ld",*ptrstr) will print address of first char in str
printf("%c",**ptrstr) will print the first char in str

printf("%s",*ptrstr) will print entire string str

WARNING: len may be larger than length of input + 1
Get actual length of input using strlen() from string.h

Inception?

	ESC101: Fundamentals of Computing
	So far about pointers..
	Reminder: Some basics about arrays and pointers
	Pointers and strings: A simple example
	Back to memory allocation related functions
	malloc: Example
	malloc: Example
	calloc
	Memory leaks
	free
	Library analogy for malloc/free
	realloc – revised allocation
	getline (reading string of any length)

