Pointers and Memory Allocation

(Continued)

ESC101: Fundamentals of Computing
Nisheeth

So far about pointers..

What is a pointer - An address in memory

How to declare a pointer variable - type * ptrName;
Every pointer variable has a data type

type * (not type) Is data type of above pointer ptrName
After declaration, can use *ptrName to dereference
Pointer arithmetic. Can add/subtract to go forward/back
Pointers and arrays (array name is pointer to first element)
Pointers and strings (string name is pointer to first char)
Memory allocation functions (malloc, calloc, realloc)

Reminder: Some basics about arrays and pointers

Consider an array int arr[6] ={2,4,1,3,5,7}

arr (name of the array) is the same as &arr[0]
Address of the I-th element is arr+i or &arr|i]
Value of the I-th element is *(arr+i) or arr]i]

All of the above is true for any type of array

String’s name Is the pointer to the first character of string
(so string pointer is of type char *)

String’s name Is used directly by scanf to read the full string
String’s name Is used directly by printf to print the full string

Pointers and strings: A simple example

char str[] ="Array name is a pointer”;
char *ptr = str + 6; /*initialize*/

printf("%s",ptr);
str[O] str[D] str[10] str[15]
N i 'y’ n’ et T ‘a’ B
Er_ ptr I 'l TN 'r | "\Of _
str[l1é str[23]

ptr points to str[6]. printf prints
the string starting from str[6].

|

Output

name is a pointer

Back to memory allocation related functions

malloc calloc

free

realloc

malloc: Example

/ A pointer to float (or several floats)
float *f;

f= (float *) mallocflo * siz:of(floa}')):

|
Size big enougs\‘ro hold 10 floats.

Explicit type Note the use of sizeof to keep it
casting to convey machine independent

user's intent _
malloc evaluates its arguments at

runtime to allocate (reserve) space.
Returns a void * pointer to first
address of allocated space.

malloc: Example

Key Point: The size argument can be a variable
or non-constant expression

After memory float *f. int n;

IS G”OCGTCd, “woy g .
pointer scanf("7%d"”, &n);

variable f= (float *) malloc(n * sizeof(float)):
behaves as if
it is an array!'—"f[0] = 0.52;
scanf("7%f", &f[3]); //Overflow if n<=3
/ printf("%F", *f + f10])

This is because, in C, f[i] simply means *(f+i).

calloc

Similar to malloc except for zero initialization

Syntax is slightly different from malloc

float *f;
f= (float *) calloc(10, sizeof(float));

How many
elements?

Size of each
element

Memory leaks uon

Situation where memory allocated earlier rr oooosjololelelslelols

ptr[0] 000005
becomes unusable and blocked ® 000006
000007
000008

ptr[1] 000009
000010
000011
000012

ptr[2] 000013
000014
000015
000016

ptr[0] 000017

ptr will take 8 bytes to store — 000018

. 000019
sorry for not drawing accurately 000020

ptr[1] 000021
000022
000023

-

S

If you keep losing memory like this,
soon your program may crash!

000000

fre = 000001

000002
000003
r BICG|B|G 2|0 |G|k
Used to deallocate (fee) memory e o o T

allocated using malloc/calloc/realloc strl0] 000006

str[1] 000007
str[2] 000008
ptr[0] 000009
000010
000011
000012

ptr[1] 000013
000014
000015
000016

ptr[2] 000017
000018
000019
Don’t use freed MmMaoamanr/ Nnr froo mMmaoamanvr\s 000020

twice or free no | always free all memory when a program ;
S . ends. You only have to worry about freeing 5
arrays will cau memory that you asked to be allocated

free(str); // runtime error

Library analogy for malloc/free

malloc/calloc is like borrowing a book from library

If that book unavailable, cannot use it (NULL pointer)
1000+ students in Y19 but only 50 copies of Thomas' Calculus

free Is like returning a book so others can use it after you

If you keep issuing books without returning, eventually
library will stop Issuing books to you and impose a fine

Cannot use a book after returning it (cannot use an array
variable after it has been freed)

Cannot return a book you do not have (cannot free
memory that has been already freed)

Of course, If you re-issue a book you can return it again

” | realize that. That is why | will But | had so much
realloq copy those 100 elements to the C precious data stored

new array of 200 elements © :
(@O)0) = - ~my o s D elenen:

= | will also free the old 100 200 You are the best Mr C
" 77" Y elements — you don't have

Int *ptl' = (int’ to write free() for them (A bit system-dependent. If
: : Insufficient memory, Prutor

Can use re. If insufficient memory, | will j orograms will simply crash
not free old memory but

It *tmp = (Ir just return NULL pointer izeof(Int));

if(tmp != NULL) ptr = tmp;

Don’t use realloc to resize of non-malloc arrays
int ¢[100];

int *ptr = (int*)realloc(c, 200 * sizeof(int)); // Runtime error
Use realloc only to resize of calloc/malloc-ed arrays

getline (reading string of any length)
Read a single line of text from input (i.e. till \n") Migle=ieiile]a¥:

Uses realloc-like methods to expand array sl ©

Needs a malloc-ed arrey+forthic ronced
Pointer to a pointer simply stores

Intlen=11;// | only EXPE(the address of a pointer variable ered

char *str = | printf("%Id",*ptrstr) will print address of first char in str
: printf("%c",**ptrstr) will print the first char in str @
geﬂlﬂe(&SU printf("%s",*ptrstr) will print entire string str

If user iInput doesn’t fit inside original array, str will contain
pointer to expanded array, len will be length of new array

char **ptrstr = &str; | .
_ WARNING: len may be larger than length of input + 1
getllne(ptrstr, &Ien, SI(Get actual length of input using strlen() from string.h

	ESC101: Fundamentals of Computing
	So far about pointers..
	Reminder: Some basics about arrays and pointers
	Pointers and strings: A simple example
	Back to memory allocation related functions
	malloc: Example
	malloc: Example
	calloc
	Memory leaks
	free
	Library analogy for malloc/free
	realloc – revised allocation
	getline (reading string of any length)

