
ESC101: Fundamentals of Computing

Pointers and Memory Allocation

Nisheeth

ESC101: Fundamentals
of Computing

Pointers
 A pointer refers to an address in memory (2^64 – 1 possible addresses)
 Syntax for declaration: type *ptr; // ptr is pointer to a variable with
data type “type” (examples: int *ptr, char *ptr)
Can declare pointer and regular variables on same line

 Dereferencing a pointer gives the value stored at that address
 Dereferencing is done using * operator
 If ptr is a pointer to a variable i then *ptr means i
 For arrays, the name itself is the pointer and points to first element

char a, b, *x, *y;
x = &a, y = &b;

int a, b, *x, *y;
x = &a, y = &b;

float a, b, *x, *y;
x = &a, y = &b;

The pointer itself takes
8 bytes in memory

ESC101: Fundamentals
of Computing

Operator Name Symbol/Sign Associativity
Brackets (array subscript), Post

increment/decrement
(), [] ++, -- Left

Unary negation, Pre-
increment/decrement, NOT,

(de)reference, sizeof

-, ++, --, !, *, &,
sizeof

Right

Multiplication/division/ remainder *, /, % Left
Addition/subtraction +, - Left

Relational <, <=, >, >= Left
Relational ==, != Left

AND && Left
OR || Left

Ternary Conditional ? : Right
Assignment, Compound

assignment
=, +=, -=, *=, /=,

%=
Right

HIGH
PRECEDENCE

LOW
PRECEDENCE

Be careful, * can act as
multiplication operator as

well as dereference operator

int a = 10;
int *ptr = &a;
printf("%d", 3**ptr);

30

ESC101: Fundamentals
of Computing

Pointer Arithmetic
Can take a pointer variable add and subtract integers
Result depends on the type of the pointer
 Pointers to int advance by 4 upon adding 1 or doing ++
 Pointers to int go back by 4 upon subtracting 1 or doing --
 Pointers to char advance by 1 upon adding 1 or doing ++
 Pointers to char go back by 1 upon subtracting 1 or doing --
 Pointers to double advance by 8 upon adding 1 or doing ++
 Pointers to double go back by 8 upon subtracting 1 or doing --

 Note: Can’t increment/decrement an array pointer (more
on this later)

ESC101: Fundamentals
of Computing

Pointers and Arrays
 Array names are pointers to first element of the array
 Warning: consecutive addresses only assured in arrays

 a, b need not be placed side-by-side (i.e. 4 bytes apart) but arr[0],
arr[1] will always be 4 bytes apart (int takes 4 bytes)
 Pointer arithmetic often used to traverse (go back and
forth in) arrays and calculate offsets
 and both give value of the 3rd element in arr
 Warning: arr++ will give error, ptr++ will move pointer to arr[1]

int arr[10]
int a, b, *ptr = arr;

arr[2] *(arr+2)

The array name will always
point to the first element of the

array. Cannot change that!

To do fancy pointer arithmetic,
we should create a fresh
pointer variable e.g. ptr

ESC101: Fundamentals
of Computing

Pointers and Arrays

a a[0] a[1] a[2] a[3] a[4] a[5]

22 55
000023

000023

000027 000031 000035 000039 000043

11 33 44 66

int a[6] = {11,22,33,44,55,66};
int *ptr = a;

ptr 000023

ptr += 2;
*ptr += 2;

35

printf("%d",ptr-a);

2 But the address
difference is 31-23 = 8

Yes, but since this
is int type, I treat
4 bytes as a unit

Mr C also disallows
subtraction of pointers

of different types
Yes, I will give an error
if you, for e.g. subtract

char* from int* 000031
If we really want to

subtract a char* from
int*, do a typecast!

ESC101: Fundamentals
of Computing

Pointers and Strings
 Pointers are invaluable in managing strings
 Most library functions we use for strings (printf, scanf, strlen,
strcat, strstr, strchr) operate with pointers
 Really do not care whether the pointer is to beginning of
the string or in the middle of the string
 Start processing from the location given pointer “points”

char mind[] = "blown";

char str[] = "Hello World";
char *ptr = str;
printf("%s\n%s", str, ++ptr);

Hello World
ello World

ESC101: Fundamentals
of Computing

Variable-length arrays
 So far we have always used arrays with constant length

 Waste of space – often allocate much more to be “safe”
 Also need to remember how much of array actually used
 Rest of the array may be filled with junk (not always zeros)
 In strings NULL character does this job
 For other types of arrays, need to do this ourselves

 Lets us learn ways for on-demand memory allocation
 The secret behind getline and other modern functions
 Need to include stdlib.h for these functions
 malloc(), calloc(), realloc(), free()

int c[10];

ESC101: Fundamentals
of Computing

malloc – memory allocation
 We tell malloc how many bytes are required
 malloc allocates those many consecutive bytes
 Returns the address of (a pointer to) the first byte
 Warning: allocated bytes filled with garbage
 Warning: if insufficient memory, NULL pointer returned
 malloc has no idea if we are allocating an array of floats
or chars – returns a void* pointer – typecast it yourself
 The allocated memory can be used safely as an array
 See example in accompanying code

ESC101: Fundamentals
of Computing

calloc – contiguous allocation
 A helpful version of malloc that initializes memory to 0
 However, slower than malloc since time spent initializing
 Use this if you actually want zero initialization
 Syntax a bit different – instead of total number of bytes, we
need to send it two things

 length of array (number of elements in the array)
 number of bytes per element

 Sends back a NULL pointer if insufficient memory – careful!
 Need to typecast the pointer returned by calloc too!
 See example in accompanying code

ESC101: Fundamentals
of Computing

realloc – revised allocation
 If you malloc-ed an array of 100 elements and suddenly
find that you need an array of 200 elements

 Can use realloc to revise that allocation to 200 elements

 Don’t use realloc to increase size of non-malloc arrays

 Use realloc only to increase size of calloc/malloc-ed arrays

int *ptr = (int*)malloc(100 * sizeof(int));

I realize that. That is why I will
copy those 100 elements to the
new array of 200 elements

int *tmp = (int*)realloc(ptr, 200 * sizeof(int));
if(tmp != NULL) ptr = tmp;

But what if I had
precious data stored

in those 100 elements

You are the best Mr C

int c[100];
int *ptr = (int*)realloc(c, 200 * sizeof(int)); // Runtime error

I will also free the old 100
elements – you don’t have

to write free() for them

	ESC101: Fundamentals of Computing
	Pointers
	Slide Number 3
	Pointer Arithmetic
	Pointers and Arrays
	Pointers and Arrays
	Pointers and Strings
	Variable-length arrays
	malloc – memory allocation
	calloc – contiguous allocation
	realloc – revised allocation

