
ESC101: Fundamentals of Computing

Introduction to Pointers

Nisheeth

ESC101: Fundamentals
of Computing

The sizeof various variable types
 8 bits make a byte
 char takes 1 byte = 8 bits
 Max value in a char is 127 = 2(8 – 1)-1

 int/float takes 4 bytes = 32 bits
 Max value in int is 2,147,483,647

equal to 2(32 – 1)-1 – verify

 long/double takes 8 bytes = 64 bits
 Max value in long is 9,223,372,036,854,775,807

equal to 2(64 – 1)-1 – verify

=

=

=

Why is max value for all these
variables always 2(k – 1)-1 and not 2k -1

when there are k bits getting used?

Because, for signed
variables, one bit is

reserved for storing the sign

ESC101: Fundamentals
of Computing

How Mr C stores variables
 He has a very long chain of bytes
 Each byte has a non-negative "address”
 Each address (which is also a number) is stored
 using 8 bytes (=64 bits)
 Some addresses are reserved for Mr. C
 Others can be used by us for variables, e.g.,

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020

…

char c; // stored at 000004
int a; // stored at 000005
double d; // stored at 000009

So there can be a total 264-1
possible addresses in memory

ESC101: Fundamentals
of Computing

Controlling/managing memory

ESC101: Fundamentals
of Computing

Pointers
 A pointer is just an address and needs 8 bytes to store

 Pointers enable us to store/manage memory addresses

 In some sense Mr C manages a ridiculously huge array!

 Pointers can allow us to write very beautiful code but it is
a very powerful tool – misuse it and you may suffer 

ESC101: Fundamentals
of Computing

Our first pointer
HOW WE SPEAK TO MR. COMPILER

 #include <stdio.h>
 int main(){
 int a = 42;
 int *ptr;
 ptr = &a;
 printf("%d", *ptr);
 return 0;
 }

HOW WE USUALLY SPEAK TO A HUMAN

 a is an int variable, value 42
 ptr is a pointer that will store
address to an int variable
 Please store address of a in ptr
 Please print the value of the int
stored at the address in ptr

a ptr

42 000023
000023 000027

Whew!
Lets begin.

int *ptr;
means ptr
is a pointer

to an
integer

a is stored at internal
location 000023

int takes 4 bytes
to store

Can also have pointes to
char, long, float, double

All these envelope-like
boxes take 8 bytes

42

ESC101: Fundamentals
of Computing

Pointers with printf and scanf
 Pointers contain addresses, so to print the address itself,
use the %ld format since addresses are 8 byte long
 To print value at an address given by a pointer, first
dereference the pointer using * operator

 Scanf requires the address of the variable where input is
to be stored. Can pass it the referenced address

 or else pass it a pointer

printf("%d", *ptr);

scanf("%d", &a);

scanf("%d", ptr);

ESC101: Fundamentals
of Computing

Pointers
 Can have pointers to a char variable, int variable, long
variable, float variable, double variable
 Can have pointers to arrays of all kinds of variables
 All pointers stored internally as 8 byte non-negative integers
 NULL pointer – one that stores address 00000000
 Named constant NULL can be used to check if a pointer is NULL
 Do not confuse with NULL character '\0' – that has a valid ASCII value 0
 NULL character is actually used to indicate that string is over
 WARNING: NULL pointers may be returned by some string.h functions e.g. strstr

 Do not try to read from/write to address 00000000
 Reserved by Mr C or else the operating system
 Doing so will cause a segfault and crash your program/even your computer

ESC101: Fundamentals
of Computing

Pointers and Arrays
int a[6] = {3,7,6,2,1,0};

How many boxes in memory will be created for the above
declaration + initialization? SEVEN

 3 7 6 2 1 0
a[0] a[1] a[2] a[3] a[4] a[5] a

000017 000025 000029 000033 000037 000041 000045

000025

Name of box

Address of box

In case of arrays, the name of the array is the pointer to the first element of the array
Also note that a and a[0] need not be at adjacent addresses in memory (but often are)

ESC101: Fundamentals
of Computing

Pointers and Arrays
 If we declare an array, a sequence of
addresses get allocated

 Names c and a are actually pointers, c stores
the address of c[0], a stores address of a[0]
 c[0] is stored at address 000005, c[1] at
address 000006, c[2] at 000007 and so on
 a[0] is stored at address 000011, a[1] at
address 000015 (int takes 4 bytes), a[2] at
address 000019, and so on

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023

…

char c[5];
int a[3];

c
c[0]
c[1]
c[2]
c[3]
c[4]

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 1

Note: Though figure shows them as taking one byte,
actually, being pointers (addresses), c and a each

would take 8 bytes to store

a
a[0]

a[1]

a[2]

c is pointer, the whole c[5] denotes the array
 a is pointer, the whole a[3] denotes the array

	ESC101: Fundamentals of Computing
	The sizeof various variable types
	How Mr C stores variables
	Controlling/managing memory
	Pointers
	Our first pointer
	Pointers with printf and scanf
	Pointers
	Pointers and Arrays
	Pointers and Arrays

