Multidimensional arrays

ESC101: Fundamentals of Computing
Nisheeth

Multi-dimensional Array: Example
Marks of all ESC101 students in various labs/quizzes/exams

Labl Lab2 Lab3 e e
Student1 e
Student2
Student3

student 400 NN - o

et Pt ~ (eachro

1D array)

A 2D array is equivalent to a matrix (rows and columns)
Can also have 3D or higher-dimensional arrays

Exam1 Exam?2

Multi-dimensional Array in C

Declaration of
a 2D array:

double mat[5][6];

int mat[5][6]:

float mat[5][6];

mat is a 5 X 6 matrix of doubles (or ints or floats). It has 5
rows, each row has 6 columns, each entry is of the type double
(or int or float in the other two examples).

2.1 1.0 -0.11 -0.87 315 11.4
-3.2 -2.5 | 1.678 4.5 0.001 | 1.89
7.889 | 3.333 | 0.667 1.1 1.0 -1.0
-456 | -21.5 | 1.0e7 | -1.0e-9 |{1.0e-15| -5.78
45.7 26.9 | -0.001 | 1000.09 | 1.0e15 | 1.0

Declaration of Multi-dimensional Array

number of columns

number of rows
=V
Two-dim array type array_name|sizel][size2];

Size of dimension 1

Size of dimension 2

Size of dimension 3

Three-dim array type array_name|[sizel][size2][size3];

Size of dimension 1

Size of dimension 2

N

N-dim array type array_name(sizel][size2

Size of dimension 2

V.

V-

[size3]... [sizeN]

=

Size of dimension N

Accessing Elements of a 2D Array (Printing)

(i.j)th member of mat: mat[il[j] (mathematics: mat(i,j)).
The row and column index start at O (not 1).
The following program prints the input matrix mat[5][6].

int i,j; ‘

for (i=0; i < 5; izi+1){ /* prints the ith row i = 0..4. */
for (j=0: j < 6. j = j*1) { /* In each row, prints each of
printf("%f “, mat{ilLjl); the six columns j=0..5 */

}

printf("\n"); /* prints a newline after each row */

}

Accessing Flement of a 2D Arrav (Reading)

* Code for reading the matrix mat[5][6] from the terminal.
e The address of the i,j th matrix element is &mat[i][j].

« This works without parentheses since the array indexing
operator [] has higher precedence than &.

int i,j;
for (i=0; i < B; i=i+1) { |/* read the ith row i = 0..4. */
for (j=0:; j < 6. j = j*1){ |/* In each row, read each
scanf("%f “, &mat[ilLjl) of the six columns j=0..5 */

} | scanf with %f option will skip over whitespace.

}

So it really doesn't matter whether the entire input
is given in 5 rows of 6 doubles in a row or all 30
doubles in a single line, efc..

Accessing Element of a 2D Array (Reading)
int i,j:
for (i=0; i < 5; i=i+1) { |/* read the ithrow i = 0..4. */
for (j=0. j < 6. j = j*+1){ /* In each row, read each
scanf("%f “, &mat[ilj1): of the six columns j=0..5 */

}
}

Could I change declaration to
mat[6][D]? Would it mean the same?
Or mat[10][3]?

® 4 That would NOT be correct. It
would change the way elements

of mat are addressed. We will
discuss this in detail later.

Multi-dimensional Array

= Easy to think of it as an array of arrays
" |t means: An array in which each element is another array

" Can think of the 2D array below as containing 5 1D arrays

Array 1 Do)
Array 2 D)
Array 3)

2.1 1.0 -0.11 -0.87 31.5 11.4

-3.2 -2.5 | 1.678 4.5 0.001 | 1.89
7.889 | 3.333 | 0.667 1.1 1.0 -1.0
-4.56 | -21.5 | 1.0e7 | -1.0e-9 |1.0e-15| -5.78
45.7 26.9 | -0.001 | 1000.09 | 1.0e15 | 1.0

Multi-dimensional Array: Declaration
" We declare any multi-dimensional array as follows

type array_name|sizel][size2]...[sizeK];

= Some examples
int arr[500][24]; int arr[500][24][10]; int arr[][24];

Three-dim array VBORTANT: N 7 y
(dim1 = 500, dim2 = 24, dim3 = 10) CPORTANES theted' o specify
Can think of it as 500 two-dim e size of the Tirst dimension

arrays of size 24x10 each (number of-rows |n'2D arrays).
Must specify the sizes of the

Two-dim array
(dim1 =500, dim2 = 24)

Can think of it as 500 one-
dim arrays of size 24 each

remaining dimensions (columns

in case of the 2D array)
500

24

Accessing Elements of a Multi-dim Array
Keep in mind this basic picture of a 2D array whose name is a

and which has 3 rows and 4 columns
Column0 Column1 Column?2
Rowo [x[0][0] [x[0I[1] [x[O][2] I
Row1 | X[11[0] | x[1][1]1 | x[11[2]
Row2 | X[2][0] _ x[2]1[1] | x[2][2]

For a 2D array, a[i][j] gives the element at row i and column j (i, j start with 0O)

Likewise, for 3D array, ali][j][k] gives the element at index iin dim 1,
index j in dim 2 and index k in dim 3 and column j (i, j, and k start with 0)

Elements of higher-dimensional (>3) arrays are also accessed in a similar
manner

Multi-dimensional Array: Initialization

® Declaration + init. of a 2D mns) array of intege
Need not specify no. of rows Must specify no. of columns

int a[3][4] = { int a[][4] = {
{-2,1,4,3}, /* row0 */ {-2,1,4,3}, /* row0 */
{-35,7,-5}, /* row1*/ {-3,5,7,-5}, /* row

{8,2,10,6} /* row2*/ [ifwantto initialize later (not with W

} declaration), then must do it
one element at a time

" Values given row-wise (comma separated, row-1, row-2, so on)
* Values in each row must be enclosed in curly braces {}

" (Can alsoinitialize like this)
. i Both these are correct but
Int a 3][4] = {'2; 1; 4; 3; '3; 5; 7; '5; 8; 2; 101 6}; less common ways (may

intal][4] ={2,1,4,63,-3,5,7,-5,8, 2, 10, 6};

also be a bit confusing)

Multi-dim. Array: Storage in Memory

More on storage of

= LetlolobH (4t a simple example of & T o
{-2, 1, 4, 3}, /* row 0 */ when we study pointers

{0,5,7,-5}, /* row1l*/
{8, 2,10, 6} /* row 2 */
b

= First all the element of the first row are stored sequgati B ——

= Then all the elements of the next row.. 3D arrays are also stored similarly
(all rows of a its first 2D array one

= Then all the elements of the row after.. by one, then repeat the same for
the third dimension
= . Andsoon..

Basically, the 2D array is
“flattened” row-wise and
then stored in memory

-2 1 4 3 0 5 7 -5 8 2 10 6

Row 1 . Row 2 B Row 3

Why Number of Columns Required?

" The memory of a computer is in form of a 1D array!

=" As we Saw, ZU (OT >ZUJ drTdys are TIaueneu mito I
"= Row-Major order is a common way to flatten(used in C)

row,column Tip 1: For 2D array mat[M][N], mat[i][j] is stored in memory at
index # location i*N + j from start of mat (note: 0 <=i <=M, 0 <=j <= N)

Tip 2: For K-D array arr[N,][N,]...[N.], arr[i;][i>]...[i] will be stored
at, at the following location from start of arr
af] o) [.
A) ’ e + Ny* (g + N "(ig + (oo + Np¥ig) o))

where the next row starts.

--- 10 |11 |12 14 21 22 23 24

int x[2][3][4] =

{

A look at 3D arrays..

" Declaration + init. of a 3D (dims = 2, 3, 4) array of integers

12 13 14 15
Can leave blank 0 1 2 3 19
4 5 6 7 723
{ {01112;3}1 {415;6)7}/ {8;9;10;11} }; 8 9 10 11

{{12,13,14,15}, {16,17,18,19}, {20,21,22,23} }

5

Another 3D array
example: pressure
values at each
(x,y,z) co-ordinate
of a room

nn,

Let us think of it as “array of arrays””: An array with 2 elements, each of
which is a 3x4 array (and each of these 3x4 arrays can be thought of an
array with 3 elements, each of which is a 1D 4 element array ©)

Can leave blank

Correct but less common way (may also be a bit confusing)

int x[2][3][4]=1{0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};

Multi-dim. Array: Incomplete Initialization

" Consider a 2D array. It is okay if the number of elements initialized in each
row is less than the number of columns (can initialize them later or never)

int a[3][4] ={ 2000

{-2}, /* row 0 */
{-3, 5}, /* row 1 */ -350 O
{8, 2,10, 6} /* row 2 */ 22 10 6

b

= |f left uninitialized, the remaining unspecified values in each row will be set to
0 (note: For 1D arrays too, the uninitialized elements are set to 0)

Array of Strings (= 2D Array of Char)

" Another example of a multi-dimensional array

const int num__cities = 4;

const int name_length = 10;

char city[num_cities][name_length] = {

i {‘D’/e’/I'’h’/i’’\0’},

CIty[O] _}PEA z Irn E 3 i \O { MII 7)) Ilbll II'I I\OI}
city[1] K o I k a t a \0 IR EIVEIIN I INDY,
B T e e B e {Kolkat \0'},
\ { Cnhnennnnnan ”\O }
String array shortcut to directly access a full }’ =
string: city[0] is the first string, city[1] is the Array with 4 elements. Each
second string, and so on.. element is a char array

Array of Strings: Another Way

itjalized as
Each row directly defined

Je JJE 41U/ 1
Recall that we can leave it
blank

" Array of strings can alsg

const int name _lengt ™= as a string instead of a
char city[][name_length] = { char array ending with \0

“Delhi”},
e 1000 0 6 E,,M b}
W umbai”}

{”KOlkata” }, These curly braces

Kol katabo
.......... {”Che nna in} around each string are

not needed

5
String array shortcut to directly access a full & .

string: city[0] is the first string, city[1] is the
Array with 4 elements. Each

second string, and so on..
element is a string

Reading and Printing Array of Strings

= Write a program that reads and displays the name of few cities of
India

int main(){ INPU.T
const int ncity = 4; Delhi
const int lencity = 10; Mumbai
char city[ncity][lencity]; Kolkata
int 1; Chennai
i \0
for (i=0; i<ncity; i++){ city[0] PD e I h i
scanf("'%s", city[i1]); P M u mb a i \0
3 city[1] K o I k a t a \0
for (i:O; i<ncity; i++){ C h e n n a i \0
printf("%d %s\n", 1, city[i]); OUTPUT
L 0 Delhi
return O; 1 Mumbai
b 2 Kolkata

3 Chennai

	ESC101: Fundamentals of Computing
	Multi-dimensional Array: Example
	Multi-dimensional Array in C
	Declaration of Multi-dimensional Array
	Accessing Elements of a 2D Array (Printing)
	Accessing Element of a 2D Array (Reading)
	Accessing Element of a 2D Array (Reading)
	Multi-dimensional Array
	Multi-dimensional Array: Declaration
	Accessing Elements of a Multi-dim Array
	Multi-dimensional Array: Initialization
	Multi-dim. Array: Storage in Memory
	Why Number of Columns Required?
	A look at 3D arrays..
	Multi-dim. Array: Incomplete Initialization
	Array of Strings (= 2D Array of Char)
	Array of Strings: Another Way
	Reading and Printing Array of Strings

