
ESC101: Fundamentals of  Computing 

Multidimensional arrays 
 

Nisheeth 
 



Multi-dimensional Array: Example 
• Marks of all ESC101 students in various labs/quizzes/exams 

 
 
 
 
 
 

• Can think of it as several 1D arrays (each row or each column above is a 
1D array) 

• A 2D array is equivalent to a matrix (rows and columns) 
• Can also have 3D or higher-dimensional arrays 

Student 1 

Student 2 

Student 3 

Student 499 

Student 500 

Lab1 Lab2 Lab3 Exam2 Exam1 



Multi-dimensional Array in C 

mat is a 5 X 6 matrix of doubles (or ints or floats). It has 5 
rows, each row has 6 columns, each entry is of the type double 
(or int or float in the other two examples).  
 
   2.1   1.0 -0.11 -0.87 31.5 11.4 

 -3.2  -2.5 1.678  4.5 0.001 1.89 

7.889 3.333 0.667  1.1 1.0 -1.0 

-4.56 -21.5 1.0e7 -1.0e-9 1.0e-15 -5.78 

45.7 26.9 -0.001 1000.09 1.0e15 1.0 

Declaration of 
a 2D array: 

double  mat[5][6];     int mat[5][6];     float mat[5][6];     

3 



Declaration of Multi-dimensional Array 

type array_name[size1][size2]; 
 
 
type array_name[size1][size2][size3]; 
 
 
type array_name[size1][size2][size3]… [sizeN] 

number of rows number of columns 

Size of dimension 1 Size of dimension 2 Size of dimension 3 

Size of dimension 1 Size of dimension 2 Size of dimension 2 

Size of dimension N 

Two-dim array 

Three-dim array 

N-dim array 



Accessing Elements of a 2D Array (Printing) 
• (i,j)th member of mat: mat[i][j] (mathematics: mat(i,j)). 
• The row and column index start at 0 (not 1). 
• The following program prints the input matrix mat[5][6]. 
 
 
 
int i,j; 
    for (i=0; i < 5; i=i+1) { 
      for (j=0; j < 6; j = j+1) { 
    printf(“%f ”, mat[i][j]);     
      } 
      printf(“\n”);   
    } 
  

/* prints the ith row i = 0..4. */ 

/* prints a newline after each row */ 

/* In each row, prints each of 
the six columns  j=0..5 */ 



Accessing Element of a 2D Array (Reading) 
• Code for reading the matrix mat[5][6] from the terminal. 
• The address of the i,j th matrix element is &mat[i][j]. 
• This works without parentheses since the array indexing 

operator [] has higher precedence than &. 
 
 
 

int i,j; 
   for (i=0; i < 5; i=i+1) { 
     for (j=0; j < 6; j = j+1) { 
    scanf(“%f ”, &mat[i][j]);     
       } 
    } 
 

/* read the ith row i = 0..4. */ 

scanf with %f option will skip over whitespace.  

So it really doesn’t matter whether the entire input 
is given in 5 rows of 6 doubles in a row or all 30 
doubles  in a single line, etc.. 

/* In each row, read each 
of the six columns j=0..5 */ 



int i,j; 
   for (i=0; i < 5; i=i+1) { 
     for (j=0; j < 6; j = j+1) { 
    scanf(“%f ”, &mat[i][j]);     
       } 
    } 

/* read the ith row i = 0..4. */ 
/* In each row, read each 
of the six columns j=0..5 */ 

Could I change declaration to 
mat[6][5]? Would it mean the same? 
Or mat[10][3]?  

That would NOT be correct. It 
would change the way elements 
of mat are addressed. We will 
discuss this in detail later. 

7 

Accessing Element of a 2D Array (Reading) 



Multi-dimensional Array 
  Easy to think of it as an array of arrays 
  It means: An array in which each element is another array 
  Can think of the 2D array below as containing 5 1D arrays  

  2.1   1.0 -0.11 -0.87 31.5 11.4 

 -3.2  -2.5 1.678  4.5 0.001 1.89 

7.889 3.333 0.667  1.1 1.0 -1.0 

-4.56 -21.5 1.0e7 -1.0e-9 1.0e-15 -5.78 

45.7 26.9 -0.001 1000.09 1.0e15 1.0 

Array 1 
Array 2 
Array 3 
Array 4 
Array 5 



Multi-dimensional Array: Declaration 
  We declare any multi-dimensional array as follows 
 
  Some examples 
 
 
    

type array_name[size1][size2]…[sizeK]; 

int arr[500][24]; int arr[500][24][10];  

Two-dim array  
(dim1 = 500, dim2 = 24) 

Can think of it as 500 one-
dim arrays of size 24 each 

Three-dim array  
(dim1 = 500, dim2 = 24, dim3 = 10) 
Can think of it as 500 two-dim 
arrays of size 24x10 each 

500 
24 

24 10 

500 

int arr[][24]; 

IMPORTANT: No need to specify 
the size of the first dimension 
(number of rows in 2D arrays). 
Must specify the sizes of the 

remaining dimensions (columns 
in case of the 2D array) 



Accessing Elements of a Multi-dim Array 
Keep in mind this basic picture of a 2D array whose name is a  
and which has 3 rows and 4 columns 

For a 2D array, a[i][j] gives the element at row i and column j (i, j start with 0) 
Likewise, for 3D array, a[i][j][k] gives the element at index i in dim 1,  
index j in dim 2 and index k in dim 3 and column j (i, j, and k start with 0) 
Elements of higher-dimensional (>3) arrays are also accessed in a similar 
manner 



Multi-dimensional Array: Initialization 
  Declaration + init. of a 2D (3 rows, 4 columns) array of integers 

 
 

 
 
  Values given row-wise (comma separated, row-1, row-2, so on) 
  Values in each row must be enclosed in curly braces {} 
  Can also initialize like this 

int a[3][4] = {   
   {-2, 1, 4, 3} ,   /*  row 0 */ 
   {-3 5, 7, -5} ,   /*  row 1 */ 
   {8, 2, 10, 6}   /*  row 2 */ 
}; 

int a[][4]   = {-2, 1, 4, 3, -3, 5, 7, -5, 8, 2, 10, 6}; 

int a[3][4] = {-2, 1, 4, 3, -3, 5, 7, -5, 8, 2, 10, 6}; 

int a[][4] = {   
   {-2, 1, 4, 3} ,   /*  row 0 */ 
   {-3, 5, 7, -5} ,   /*  row 1 */ 
   {8, 2, 10, 6}   /*  row 2 */ 
}; 

Both these are correct but 
less common ways (may 
also be a bit confusing) 

Need not specify no. of rows Must specify no. of columns 

If want to initialize later (not with 
declaration), then must do it 

one element at a time  



Multi-dim. Array: Storage in Memory 

  Let’s look at a simple example of a 2D array’s storage 
 
 
 

 
  First all the element of the first row are stored sequentially 
  Then all the elements of the next row.. 
  Then all the elements of the row after.. 
  .. And so on.. 

-2 1 4 3 0 5 7 -5 8 2 10 6 

This example is for 2D arrays. But 
3D arrays are also stored similarly 
(all rows of a its first 2D array one 
by one, then repeat the same for 

the third dimension  

Row 1 Row 2 Row 3 

Basically, the 2D array is 
“flattened” row-wise and 
then stored in memory 

int a[3][4] = {   
   {-2, 1, 4, 3} ,   /*  row 0 */ 
   {0, 5, 7, -5} ,   /*  row 1 */ 
   {8, 2, 10, 6}   /*  row 2 */ 
}; 

More on storage of 
arrays/multi-dim arrays 
when we study pointers 



Why Number of Columns Required? 
  The memory of a computer is in form of a 1D array! 
 
  As we saw, 2D (or >2D) arrays are “flattened” into 1D 
  Row-Major order is a common way to flatten(used in C) 

 
 

 
 

  In case of 2D arrays, knowledge of number of columns is required to figure out 
where the next row starts. 

 
    

0,0 0,1 0,2 0,3 0,4 

1,0 1,1 1,2 1,3 1,4 

2,0 2,1 2,2 2,3 2,4 mat[3][5] 

0,0 0,1 0,2 0,3 0,4 1,0 1,1 1,2 1,3 1,4 2,0 2,1 2,2 2,3 2,4 

Tip 1: For 2D array mat[M][N], mat[i][j] is stored in memory at 
location i*N + j from start of mat (note: 0 <= i <= M, 0 <= j <= N) 
 
Tip 2: For K-D array arr[N1][N2]…[NK], arr[i1][i2]…[iK] will be stored 
at the following location from start of arr 
i K  +  N K * ( i K - 1  +  N K - 1 * ( i K - 2  +  (  …  +  N 2 * i 1 )  …  ) )  

row,column 
index 



12 13 14 15 

16 17 18 19 

20 21 22 23 

A look at 3D arrays..  
  Declaration + init. of a 3D (dims = 2, 3, 4) array of integers 

 
 
 
 
 

int x[2][3][4] =  
 {  
   { {0,1,2,3}, {4,5,6,7}, {8,9,10,11} }, 
   { {12,13,14,15}, {16,17,18,19}, {20,21,22,23} } 
 }; 
Let us think of it as “array of arrays””: An array with 2 elements, each of  
which is a 3x4 array (and each of these 3x4 arrays can be thought of an  
array with 3 elements, each of which is a 1D 4 element array ) 

0 1 2 3 

4 5 6 7 

8 9 10 11 

int x[2][3][4] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}; 

Correct but less common way (may also be a bit confusing) 

Can leave blank 

Can leave blank 

Another 3D array 
example: pressure 

values at each 
(x,y,z) co-ordinate 

of a room 



Multi-dim. Array: Incomplete Initialization 
  Consider a 2D array. It is okay if the number of elements initialized in each 

row is less than the number of columns (can initialize them later or never) 
 
 
 
 
 
 

  If left uninitialized, the remaining unspecified values in each row will be set to 
0 (note: For 1D arrays too, the uninitialized elements are set to 0) 

 
 

int a[3][4] = {   
   {-2} ,               /*  row 0 */ 
   {-3, 5} ,          /*  row 1 */ 
   {8, 2, 10, 6}   /*  row 2 */ 
}; 

 -2   0   0   0 
 -3  5   0    0 
  8  2  10   6 



Array of Strings (= 2D Array of Char) 
  Another example of a multi-dimensional array 
 

 
 

const int num_cities = 4; 
const int name_length = 10;    
char city[num_cities][name_length] = { 
                                                                        {‘D’,’e’,’l’,’h’,’i’,’\0’}, 
                                                                        {‘M’,’u’,’m’,’b’,’a’,’i’,’\0’}, 
                                                                        {‘K’,’o’,’l’,’k’,’a’,’t’,’a’,’\0’}, 
                                                                        {‘C’,’h’,’e’,’n’,’n’,’a’,’i’,’\0’} 
                                                                    }; 

D e l h i \0 

M u m b a i \0 

K o l k a t a \0 

C h e n n a i \0 

city[0] 

city[1] 

String array shortcut to directly access a full 
string: city[0] is the first string, city[1] is the 

second string, and so on.. 
Array with 4 elements. Each 

element is a char array 



Array of Strings: Another Way 
  Array of strings can also be declared/initialized as 
 

 
 

const int name_length = 10;    
char city[][name_length] = { 
                                                                        {“Delhi”}, 
                                                                        {“Mumbai”}, 
                                                                        {“Kolkata”}, 
                                                                        {“Chennai”} 
                                                                    }; 

D e l h i \0 

M u m b a i \0 

K o l k a t a \0 

C h e n n a i \0 

city[0] 

city[1] 

String array shortcut to directly access a full 
string: city[0] is the first string, city[1] is the 

second string, and so on.. 

Recall that we can leave it 
blank Each row directly defined 

as a string instead of a 
char array ending with \0 

Array with 4 elements. Each 
element is a string 

These curly braces 
around each string are 

not needed 



Reading and Printing Array of Strings 
  Write a program that reads and displays the name of few cities of 

India 
 

 
 

 

int main(){ 
  const int ncity = 4; 
  const int lencity = 10; 
  char city[ncity][lencity]; 
  int i; 
  
  for (i=0; i<ncity; i++){ 
    scanf("%s", city[i]); 
  } 
 
  for (i=0; i<ncity; i++){ 
    printf("%d %s\n", i, city[i]); 
  } 
  return 0; 
} 

INPUT 
Delhi  
Mumbai  
Kolkata 
Chennai 

OUTPUT 
0 Delhi  
1 Mumbai  
2 Kolkata 
3 Chennai 

D e l h i \0 

M u m b a i \0 

K o l k a t a \0 

C h e n n a i \0 

city[0] 

city[1] 


	ESC101: Fundamentals of Computing
	Multi-dimensional Array: Example
	Multi-dimensional Array in C
	Declaration of Multi-dimensional Array
	Accessing Elements of a 2D Array (Printing)
	Accessing Element of a 2D Array (Reading)
	Accessing Element of a 2D Array (Reading)
	Multi-dimensional Array
	Multi-dimensional Array: Declaration
	Accessing Elements of a Multi-dim Array
	Multi-dimensional Array: Initialization
	Multi-dim. Array: Storage in Memory
	Why Number of Columns Required?
	A look at 3D arrays.. 
	Multi-dim. Array: Incomplete Initialization
	Array of Strings (= 2D Array of Char)
	Array of Strings: Another Way
	Reading and Printing Array of Strings

