
ESC101: Fundamentals of Computing

Strings

 Nisheeth

ESC101: Fundamentals
of Computing

 Is this a correct initialization for an integer array?

 The values being assigned to an array’s elements are promoted/demoted
based on the data type of the array elements
 The above will therefore be equivalent to

An important point about array initialization

int a[] = {2,-1,’A’,2.15};

int a[] = {2,-1,65,2};

Yes

But it is okay to assign values of different data
types. I will convert all of them (if convertible)

into the same data type (that of array)

I told you that
array stores
values of the

same data type

Why?

ESC101: Fundamentals
of Computing

 Character array: Each element is a character

 String: A sequence of characters enclosed in double quotes “ “
 A string can be declared and initialized as

 Internally, a string is stored as a char array whose last element is ‘\0’

Character Arrays and Strings

char str[50] = {‘H’,’e’,’l’,’l’,’o’,’ ‘,‘W’,’o’,’r’,’l’,’d’};

char str[50] = "Hello World";

char str[50] = {‘H’,’e’,’l’,’l’,’o’,’ ‘,‘W’,’o’,’r’,’l’,’d’,’\0’};

The null character

Note that not all 50
elements were initialized
here (only first 11 were)

Equivalent to “Hello World”

ESC101: Fundamentals
of Computing

 Used to signal the end of a string (has ASCII code 0)
 Character arrays with a null character are treated as strings
 Mr. C will stop reading a character array after he sees \0

char str[50] = {‘H’,’e’,’l’,’\0’,’l’,’o’,’ ‘,‘W’,’o’,’r’,’l’,’d’};

printf("%s",str); Hmm … string is only till the \0. I will
consider anything after that as garbage

Hel

The null character \0

Note: We use %s
to print a string

ESC101: Fundamentals
of Computing

Different ways to declare/initialize a string
 Some valid ways to declare and initialize a string

char str[] = {‘H’,’e’,’l’,’l’,’o’,’ ‘,‘W’,’o’,’r’,’l’,’d’, ’\0’};

char str[] = "Hello World";
char str[50] = "Hello World"; You need not specify the size of

string. But if you specify the size,
it should be at least one more
than the length of the string

char str[50] = {‘H’,’e’,’l’,’l’,’o’,’ ‘,‘W’,’o’,’r’,’l’,’d’, ’\0’};

char str[12] = {‘H’,’e’,’l’,’l’,’o’,’ ‘,‘W’,’o’,’r’,’l’,’d’, ’\0’};

char str[12] = "Hello World";

Note that Hello World
has length 11, so size
12 is fine. Less than
that may cause issues

ESC101: Fundamentals
of Computing

 When we say
 Mr C will store a \0 after last character ‘e’

 Warning: uninitialized character arrays contain junk

char str[6] = "Nice";

str N i c e \0

char str = "A";
putchar(str);

$

Strings are character
arrays. “A” is a string.

‘A’ is a character

Somewhat like saying
int num = {3,2,1};

Mr. C and the null character

ESC101: Fundamentals
of Computing

 In fact when we read a string using gets or scanf, Mr C
yet again automatically puts a \0 at the end

str N i c e \0

So

char str[6] = "Nice";

scanf("%s",str);

S o \0

printf("%s",str);

We did not write
&str in scanf?

Will learn about
this in a few weeks

No, since str is
the whole array

The rest of the char
array is still there

Yes, I did not erase ‘e’ and
‘\0’ that were already there. I
just overwrote the first two

characters and then put a \0

Mr. C and the null character

So

Will see it
shortly

ESC101: Fundamentals
of Computing

 Can use them to perform usual operations on text such as
manipulation of words and sentences
 Very useful: Can also use strings to work with very big numbers
 char bigNum[] =
“13233999911222313958425063852184140252052582594368432539
26503698250925809808250286028529520”;
 In the big number above, what is the i-th digit (int) from left?
 bigNum[i-1] – ‘0’
 What is the i-th digit (int) from right?
 bigNum[len – i] – ‘0’
 Can use strings to write programs to do adding, multiplication,
etc for very big numbers

a char
Len is the size of the
string bigNum (can get it
using strlen function

a char

Strings/char arrays are very useful
Will see some functions today

ESC101: Fundamentals
of Computing

 Suppose we have two very big numbers
 Can represent them as strings
 char bigNum1[] = “9343253466545736093899875874787574868”;
 char bigNum2[] = “43353672368646348598659693634909807”;

9343253466545736093899875874787574868
+ 43353672368646348598659693634909807

sum_rightmost_digit = bigNum1[len1-1] – ‘0’ + bigNum2[len2-1] – ‘0’;
sum_second_digit_from_right = bigNum1[len1-2] – ‘0’ + bigNum2[len2-2] – ‘0’
 + carry digit (if any) from rightmost
Keep going right to left by repeating this procedure (and store result as a string)….

Now ignore carry
digit (if any) and add
‘0’ to get the char
version of result char ‘8’ char ‘7’

Suppose the sizes of the
strings are len1 and len2,
respectively (can get it
using strlen function

Can store the result in another
string/char array. Example:8+7 will
give 15, ignoring carry 1, we have 5.
To store 5 as a char, we can do ‘0’ + 5
which will give the character ‘5’

Example: Adding two VERY BIG numbers

Add these rightmost
digits first

Try writing the full
program as a practice

ESC101: Fundamentals
of Computing

 Use %s to read string from input
 No & needed since the whole char array is being read
 Mr C will automatically append a \0 at the end
 Drawback: stops reading the moment any whitespace
character is seen (\n, \t or space)
 Very Risky: if user enters more characters than size of char
array – segmentation fault!
 Caution: Prutor will give runtime error if user enters too
many more characters than space is available.
 gcc and other industrial compilers will also give segfaults

scanf("%s",str); scanf with Strings Will discuss the
reason in detail
when we study

Pointers

ESC101: Fundamentals
of Computing

#include <stdio.h>

int main() {
 char str1[20], str2[20];

 scanf("%s",str1);
 scanf("%s",str2);

 printf("%s + %s\n", str1, str2);

 return 0;
}

INPUT
IIT Kanpur

OUTPUT
IIT + Kanpur

INPUT
I am DON

OUTPUT
I + am

scanf with Strings: An Example
Read “I” as first
string, stopped
when saw white
space and read
“am” as second
string, stopped

again when saw
the next space

(“DON” ignored)

Not scared of you
DON. I won’t
read you

ESC101: Fundamentals
of Computing

 Shortcut to read a single line of input
read all characters till \n – but doesn’t store \n, throws it away
 No & needed since the whole char array is being read
 Mr C will automatically append a \0 at the end
 Advantage: does not stop reading on seeing space or \t
 Very Risky: if user enters many more characters than
space in char array – segmentation fault!
 Caution: Prutor will give runtime error if user enters too
many more characters than space is available.
 gcc and other industrial compilers will also give segfaults

gets(str);

gets is deprecated in Clang
Do not use it regularly!

When some code becomes buggy or old
or obsolete, it is declared as deprecated
by the experts who developed that code

No need for %s gets with Strings

ESC101: Fundamentals
of Computing

 A much safer version of gets
 Reads a single line of input into the character array i.e.
read all characters till \n – but doesn’t store \n, throws it away
 Mr C will automatically append a \0 at the end
 Advantage: If user enters more characters than length of
char array, automatically enlarges the char array to be
large enough to fit whatever user is entering
 All compilers Clang, gcc etc do the above for getline
 gets, scanf unsafe on gcc, but getline safe everywhere

Syntax? We will see it
when discussing Pointers

getline with Strings

ESC101: Fundamentals
of Computing

 String: Already saw that it is a character array ended with a
NULL character

 Substring: a contiguous subsequence of a string
 E.g. "Nice", "Nic", "ice", "ce", "c", "Ni" are substrings of the above string
 "Nce", "Nie", "ie", "Ne" NOT substrings (not contiguous) of above string
 "No", "\0o", "\0", “abs", NOT substrings (contain chars not present in string)
 Substrings need not contain the NULL character – WARNING!
 Be careful when printing substrings – segmentation fault or weird behavior

str N i c e \0 o

String and Substring

	ESC101: Fundamentals of Computing
	An important point about array initialization
	Character Arrays and Strings
	The null character \0
	Different ways to declare/initialize a string
	Mr. C and the null character
	Mr. C and the null character
	Strings/char arrays are very useful
	Example: Adding two VERY BIG numbers
	scanf with Strings
	scanf with Strings: An Example
	gets with Strings
	getline with Strings
	String and Substring

