
ESC101: Fundamentals of Computing

Arrays and functions

 Nisheeth

Mid-sem Lab Exam: February 15 (Saturday)
 Morning exam

 10:00 AM - 12:30 PM – starts 10:00 AM sharp

 CC-01: A9, {A14 even roll numbers}
 CC-02: A7, A10, A11
 CC-03: A12
 MATH-LINUX: A8, {A14 odd roll numbers}

 Afternoon exam
 12:45 PM – 3:15 PM – starts 12:45 PM sharp

 CC-01: A1, {A2 even roll numbers}
 CC-02: A4, A5, A6
 CC-03: A3
 MATH-LINUX: A13, {A2 odd roll numbers}

2

Mid-sem Lab Exam: February 15 (Saturday)
 Go see your room during this week’s lab
 Be there 15 minutes before your exam time
 No entry for candidates arriving later than 09:45 for morning exam and 12:30 pm for the

afternoon exam
 Cannot switch to another session (morning to afternoon or vice-versa)
• Syllabus – till functions (no arrays)
• Open handwritten notes – However, NO printouts, photocopies, slides, websites,

mobile phone or tablet
• POSSESSING ANY OF THESE WILL BE CONSIDERED CHEATING
• Prutor CodeBook will be unavailable during lab exam
• Exam will be like labs - marks for passing test cases
• Marks for writing clean indented code, proper variable names, a few comments –

illegible code = poor marks
 3

Recap: Passing by value
// swapping a and b
void swap(int a, int b){
 int temp;
 temp = a;
 a = b;
 b = temp;
 printf("a=%d b=%d\n", a, b);
}
int main(){
 int a=10, b=15;
 printf("a=%d b=%d\n", a, b);
 swap(a, b);
 printf("a=%d b=%d\n", a, b);
 return 0;
}

What is the output of the
program?
(fill the blanks)

OUTPUT

a=___ b=___

a=___ b=___

a=___ b=___

10

15

10 15

10

15

Today, we will look at parameter passing
more carefully. Pay attention!

1. Create new variables (boxes) for each of the formal parameters allocated on a fresh stack area
created for this function call.

2. Copy values from actual parameters to the newly created formal parameters.
3. Create new variables (boxes) for each local variable in the called procedure. Initialize them as given.

Basic steps:

Recap: Parameter passing

Values and addresses

• Pointers are special variables that store memory addresses
• We will cover pointers in much greater depth soon

Argument passing by value and reference

7

#include <stdio.h>

long sum(long a, long b){
 printf("%ld\t%ld\n", &a, &b);
 printf("%ld\t%ld\n", a, b);
 return a+b;
}
int main(){
 long a=2,b=3;
 printf("%ld\t%ld\n", a, b);
 printf("%ld\t%ld\n", &a, &b);
 printf("%ld\n",sum(a,b));
 printf("%ld\n",sum(&a,&b));
 return 0;
}

2 3
140732008792672 140732008792664

140732008792616 140732008792608
2 3
5
140732008792616 140732008792608

140732008792672 140732008792664
281464017585336

Output:

Passing by reference

• Telling compiler you will be passing a memory address, not a
value

• Pass address using reference operator (&) during function call
– So far, we have thought of variables x as values
– More accurate to think of x as ‘the value stored at x’
– &x is the memory address of x

Passing arrays by value

• Can pass array elements to
functions
– Treated like normal variables

• This is passing an array by value
• We are passing the values stored

in the array to a function
• What else could we be passing?

9

#include <stdio.h>
void shift(char ch) {
 printf("%c ", ch+4);
 }

int main() {
 char arr[] = {'a', 'b', 'c'};
 for (int x=0; x<3; x++) {
 shift (arr[x]);
 }
 return 0;
 }

Passing arrays by reference
Write a function that reads input into an array of characters
 until EOF is seen or array is full.
int read_into_array
 (char t[], int size);
/* returns number of chars
 read */

int main() {
 char s[100];
 read_into_array(s,100);
 /* process */
}

int read_into_array
 (char t[], int size) {
 int ch;
 int count = 0;
 ch = getchar();
 while (count < size
 && ch != EOF) {
 t[count] = ch;
 count = count + 1;
 ch = getchar();
 }
 return count;
}

read_into_array:
• array t (arg.)
• size of the array (arg.)
• reads the input in array

But what’s the point of this code? Counting inputs?

int main() {
 char s[10];
 read_into_array(s,10);
 …

int read_into_array
 (char t[], int size) {
 int ch;
 int count = 0;
 /* … */
}

The stack
of main
just prior
to call

s[0] s[1] s[2] s[9] s

The value of this box is the address of the first
element of the array.

s is an array. It is a
variable and it has a box.

Array variables
store address!!

Create new variables (boxes) for
each of the formal parameters
allocated on a fresh stack created
for this function call.

int main() {
 char s[10];
 read_into_array(s,10);
 …

int read_into_array
 (char t[], int size) {
 int ch;
 int count = 0;
 /* … */
}

Copy values from actual parameters to the newly created
formal parameters.

s[0] s[1] s[2] s[9] s

t size

10

Parameter Passing: Arrays

s[0] s[1] s[2] s[9] s

t size

t copies the value in s, so t
points to the same address
as s.

10

s and t are the same array now,
with two different names!

s[0] and t[0] refer to the same variable.

Implications of copying content of array variable during
parameter passing

The value of s is copied into t.
Value in the box of t
 =
Value in the box of s.

s[0] s[1] s[2] s[9]
s

t size 10
An array (s) is identified with a box whose
value is the address of the first element of
the array.

They both now contain the address
of the first element of the array.

1. In the computer, an address is simply the value of a
memory location.

2. The value in the box for s would be the memory
location of s[0].

int main() {
 char s[10];
 read_into_array(s,10);
 …

int read_into_array
 (char t[], int size) {
 int ch;
 int count = 0;
 ch = getchar();

 while (count < size
 && ch != EOF) {
 t[count] = ch;
 count = count + 1;
 ch = getchar();
 } return count;
}

Input WIN<eof>

s

t

ch

‘W’ ‘I’ ‘N’ EOF

s[0]
s[1]

s[2]

s[3]

s[9]

main

‘W’

‘I’

‘N’

size
10

0
count

return
addr

main.3

return
value

3

1 2 3

read_into_array

s t

ch
EOF

s[0]
s[1]

s[2]

s[3]

s[9]

main

‘W’

‘I’

‘N’

size
10

3
count

addr
main.3

value

3

State of memory just prior to
returning from the call
read_into_array()

s

s[0]
s[1]

s[2]

s[3]

s[9]

main

‘W’

‘I’

‘N’

State of memory just after returning from the call
read_into_array().

All local variables allocated for read_into_array() on
stack may be assumed to be erased/de-allocated.

Only the stack for main() remains, that is, all local
variables for main() remain.

Behold !!

The array s[] of main() has
changed!

THIS DID NOT HAPPEN BEFORE!
WHAT DID WE DO DIFFERENTLY?

Ans: we passed the array s[] by reference

ESC101: Fundamentals
of Computing

 After the mid-sem
 We will talk about arrays and functions some more

Next Class

	ESC101: Fundamentals of Computing
	Mid-sem Lab Exam: February 15 (Saturday)
	Mid-sem Lab Exam: February 15 (Saturday)
	Recap: Passing by value
	Recap: Parameter passing
	Values and addresses
	Argument passing by value and reference
	Passing by reference
	Passing arrays by value
	Passing arrays by reference
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Next Class

