
ESC101: Fundamentals of Computing

Arrays (Contd.)

 Nisheeth

Recap: Arrays
 A collection of elements all of which have the same data type

 Each array element is accessed using the array index (integer-valued)
 For the above example, marks[0], marks[2], marks[499], marks[int_expr] where

int_expr is integer-valued expression such that 0 <= int_expr <= 499
2

float marks[500];

marks[0] marks[1] marks[2] marks[499]

Recap: Array: Declaration and Initialization
 Can be initialized at time of declaration itself

 Can be partly initialized as well

 Over initialization may crash

 Better way to initialize is the following

Warning: uninitialized arrays contain garbage, not zeros

int a[6] = {3,7,6,2,1,0};

int a[6] = {3,7,6};

a 3 7 6 2 1 0

a 3 7 6

int a[6] = {1,2,3,4,5,6,7,8,9};

int a[] = {1,2,3,4,5,6,7,8,9};

I will figure out how
much space needed No need to specify

the array size during
declaration

3

Array: Declaration and Initialization
 Can declare the array first and initialize its elements later
 The later initialization can be done using user-provided values (e.g.,

using scanf), or some expression, or using some fixed values

int i,tmp,a[5];
for(i=0;i<5;i++){
 scanf(“%d”,&tmp);
 a[i] = tmp;
}

Read a use-
provided value

Assign the read
value to the ith
element of the
array

4

Can I run the
loop as
for(i=1;i<=5;i++)?

Yes, if you use
a[i-1] = tmp; in
loop’s body

Array: Declaration and Initialization
 Can declare the array first and initialize its elements later
 The later initialization can be done using user-provided values (e.g.,

using scanf), or some expression, or using some fixed value

int i,a[5];
for(i=0;i<5;i++){
 scanf(“%d”,&a[i]);
}

Directly read a user
provided value into the
ith element of the array
(the tmp variable is not
needed)

Note: &a[i] is evaluated
as &(a[i]) since [] has
higher precedence than &

A shortcut for
reading user
provided
values

5

Operator Name Symbol/Sign Associativity
Brackets, array subscript, Post

increment/decrement
(), [] ++, -- Left

Unary negation, Pre
increment/decrement, NOT

-, ++, --, ! Right

Multiplication/division/
remainder

*, /, % Left

Addition/subtraction +, - Left
Relational <, <=, >, >= Left
Relational ==, != Left

AND && Left
OR || Left

Conditional ? : Right
Assignment, Compound

assignment
=, +=, -=, *=, /=,

%=
Right

6

Array: Declaration and Initialization
 Can declare the array first and initialize its elements later
 The later initialization can be done using user-provided values (e.g.,

using scanf), or some expression, or using some fixed value

int i,a[5];
for(i=0;i<5;i++){
 a[i] = i+1;
}

Assign a value of
expression i+1 to
the ith element of
the array

7

1 2 3 4 5
a[0] a[1] a[2] a[3] a[4]

Array: Declaration and Initialization
 Can declare the array first and initialize its elements later
 The later initialization can be done using user-provided values (e.g.,

using scanf), or some expression, or using some fixed value

Assign a fixed
(constant) value 10
to the ith element of
the array

int i,a[5];
for(i=0;i<5;i++){
 a[i] = 10;
}

8

10 10 10 10 10
a[0] a[1] a[2] a[3] a[4]

Tracing the execution of an array based program
include <stdio.h>
int main () {
 int a[5];
 int i;

 for (i=0; i < 5; i= i+1) {
 a[i] = i+1;
 }
 return 0;
}

a[0] a[1] a[2] a[3] a[4]

i

Let us trace the
execution of the program.

0

Statement becomes a[0] =0+1;
Statement becomes a[1] =1+1;
Statement becomes a[2] =2+1;

1

1

2

2 3

3

Statement becomes a[3] = 3+1;
Statement becomes a[4] = 4+1;

4

4

5

5

9

Arrays: Some Example Programs
 Create an integer array of size 100
 Initialize elements with even index as 0
 Initialize elements with odd index as 1

int i,a[100];
for(i=0; i<100; i=i+1){
 if(i%2==0) a[i] = 0;
 else a[i] = 1;
}

Method 1

10

Arrays: Some Example Programs
 Create an integer array of size 100
 Initialize elements with even index as 0
 Initialize elements with odd index as 1

int i,a[100];
for(i=0; i<100; i=i+2){
 a[i] = 0;
 a[i+1] = 1;
}

Method 2,
without if-else

Incrementing the
loop counter by 2

This for loop will run
50 times. Each
iteration will assign
values to 2 elements,
one at odd index,
one at even index

11

Arrays: Some Example Programs
 Check whether a sequence of numbers is a palindrome sequence

11

Greek origin word:
palin = again,
dromos = direction

Palindrome: Forward and
Reverse gives the same
sequence

Some palindromes:
1 2 3 4 5 4 3 2 1
1 2 3 3 2 1

Some non-palindromes:
1 2 3 4 5
1 2 3 3 4 1
9 0 4 0 8

int main(){
 int a[100], temp, len = 0, i, flag = 1;

 while(1){
 scanf("%d", &temp);
 if(temp == -1)
 break;
 a[len++] = temp;
 }

 for(i = 0; i < len; i++)
 if(a[i] != a[len-i-1])
 flag = 0;
 if(flag) printf("YES");
 else printf("NO");

 return 0;
}

The while(1) loop keeps reading numbers
until user enters -1, store each number as
an element of the array named a

After the while(1) loop exits, len is the
size of the array (indices are 0 to len-1)

This line does a[len] = temp;
and then increments len

a[0] a[1] a[2] a[len-1] a[len-2]

Compares a[0] with a[len-1], then a[1]
with a[len-2], and so on. If any pair does
not match, set flag variable to 0

flag = 1 assumes that sequence is
palindrome (set 0 if later found otherwise)

Let’s specify a maximum
sequence size

Arrays: Some Example Programs
#include <stdio.h>
int main() {
 char s[100];
 int count = 0;
 int ch;
 int i;

 return 0;
}

ch = getchar();
while (ch != EOF && count < 100) {
 s[count] = ch;
 count = count + 1;
 ch = getchar();
}
i = count-1;
while (i >=0) {
 putchar(s[i]);
 i=i-1;
}

/*print_in_reverse */

/*read_into_array */

/* the array of 100 char */
/* counts number of input chars read */
/* current character read */
/* index for printing array backwards */

Read until user has
entered 100 chars or
the end-of-file (EOF)
special character
has been read.

Now print the characters
in reverse order

getchar() returns a
single character

entered by the user

putchar() prints a single character

13

ESC101: Fundamentals
of Computing

 Functions and arrays
 Passing by value
 Passing by reference

Next Class

	ESC101: Fundamentals of Computing
	Recap: Arrays
	Recap: Array: Declaration and Initialization
	Array: Declaration and Initialization
	Array: Declaration and Initialization
	Slide Number 6
	Array: Declaration and Initialization
	Array: Declaration and Initialization
	Tracing the execution of an array based program
	Arrays: Some Example Programs
	Arrays: Some Example Programs
	Arrays: Some Example Programs
	Arrays: Some Example Programs
	Next Class

