
ESC101: Fundamentals of Computing

Functions (wrapping up…)

 Nisheeth

 Flags NOT A KEYWORD –
they are a programming style
 As name suggests, they signal

important happenings
 Can be used to avoid using break
 Can also be used to avoid using

continue in loops
 Flags can be integer, long

variables – usually 0/1
 You can give your flag any legal,

sensible name you want

int num = 20;
int flag = 0; // Assume not div by 5
if(num %2 == 0){
 printf(“Even”);
 if(num % 5 == 0) flag = 1;
 if(flag)
 printf(“\nDivisible by 10”);
}

If you don’t initialize and
num is not multiple of 5, flag
may contain garbage value

CRITICAL: Always
initialize your flags

Could have also named this flag
isDivBy5 – more descriptive name

Loose end: Flags

Note: Could also avoid flag by using
if(num%5==0){printf(“Divisible by 10”);}

but using flag is a better practice in
larger programs 2

 Scope defines the regions in program where a variable is “visible”

 A pair of opening and closing curly braces creates a “block”
 Can re-declare a variable with same name if the name hasn’t been declared earlier in the

same block. This variable will be visible until this block ends

int main(){
 int a = 0;
 int b = 2;
 printf(“%d”,b);
 return 0;
}

int main(){

 int a = 0;

 int b = 2;

 if(a==0){

 int b = 1;

 printf(“%d”,b)

 }

 printf(“%d”,b)

 return 0;

}

Visible
everywhere in
the whole
block of the
program
within { and }

This b is a
different variable
than the outer b.
Visible only
within the green
region

This b is visible
only in the red
region

Scope rules for variables

Will print 1

Will print 2

ESC101: Fundamentals
of Computing

Global Variables
 Variable declared outside every function definition

 Can be accessed by all functions in the program that
follow the declaration

 Also called external variable

 What if a variable is declared inside a function that
has the same name as a global variable?

 The global variable is “shadowed” inside that particular function only.

ESC101: Fundamentals
of Computing

#include<stdio.h>
int g=10, h=20;

int add(){
 return g+h;
}

void fun1(){
 int g=200;
 printf("%d\n",g);
}

int main(){
 fun1();
 printf("%d %d %d\n",
 g, h, add());
 return 0;
}

1. The variable g and h have
been defined as global
variables.

2. The use of global variables
is normally discouraged.
Use local variables of
functions as much as
possible.

3. Global variables are useful
for defining constants that
are used by different
functions in the program.

200
10 20 30

ESC101: Fundamentals
of Computing

Constant Global Variables
const double PI = 3.14159;
double circum_of_circle(double r) {
 return 2 * PI * r; }
double area_of_circle (double r) {
 return PI * r * r;
}

defines PI to be of type double with value
3.14159. Qualified by const, which means that
PI is a constant. The value inside the box
associated with PI cannot be changed
anywhere.

ESC101: Fundamentals
of Computing

Static Variables
• We have seen two kinds of variables: local variables and global variables.
• There are static variables too.

int f () {
 int ncalls = 0;
 ncalls = ncalls + 1;
/* track the number of
times f() is called */
 … body of f() …
}

GOAL: count number of calls to f()
SOLUTION: define ncalls as a static variable

inside f().
It is created as an integer box the first time f() is

called.
Once created, it never gets destroyed, and

retains its value across invocations of f().
It is like a global variable, but visible only within

f().
Its value persists across different calls to the

function

• Use a local variable?
• gets destroyed every

time f returns
• Use a global variable?

• other functions can
change it! (dangerous)

int ncalls = 0;
int f () {
 ncalls = ncalls + 1;
/* track the number of
times f() is called */
 … body of f() …
}

int f () {
 static int ncalls = 0;
 ncalls = ncalls + 1;
/* track the number of
times f() is called */
 … body of f() …
}

ESC101: Fundamentals
of Computing

Macros in C
 Marcos are defined outside functions

 Macros are handled by the C pre-processor (not compiler)

 All marco statements begin with # (like #include)

 Can use macros to also define constants using #define, e.g.,
 #define PI 3.14159 (note that no “=“ between name and value)

 The macro maps an input sequence to an output sequence
before the program has compiled (PI mapped to 3.14159 in the
above example)

ESC101: Fundamentals
of Computing

Macros in C
 Object/constant-like macros
 #define BUFFER_SIZE 1024
 Pre-defined macros in C, e.g. __DATE__ , __TIME__ etc (note there

are two underscores each before and after)

 Function-like macros
 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
 x = min(a,b) will be expanded to
 x = ((a) < (b) ? (a) : (b))
 Before compilation

ESC101: Fundamentals
of Computing

Macros in C: Be Careful

 Macro is a simple copy-paste
 Without parentheses, can make operator precedence
betray your code’s logic

#define SQR(x) (x*x)

int main() {
 int a, b=3;
 a = SQR(b+5);
 printf("%d\n",a);
 return 0;
}

23

ESC101: Fundamentals
of Computing

Recursion in function use
 Process of solving a problem using solutions to “smaller”
versions of the same problem!
 You have already encountered recursion in mathematics
 Factorial function is defined in terms of factorial itself!

 Proof by induction is basically a recursive proof
 Claim: 1 + 2 + 3 + … + n = n(n+1)/2
 Proof: Base case: for n = 1 true by inspection
 Inductive case: (1 + … + n) = (1 + … + n-1) + n = (n-1)n/2 + n = n(n+1)/2

 Notice that we need a base case and recursive case
 In case of factorial, fac(0) was the base case.
 This is true when writing recursive functions in C language as well

We used the proof for the
case n-1 to prove the case n

ESC101: Fundamentals
of Computing

Factorial
int fact(int a){
 if(a == 0) return 1;
 return a * fact(a - 1);
}
int main(){
 printf("%d", fact(1+1));
}

main()
fact()

a

fact()

fact()

a

a

2 2
1 1

0 0 1 1

2 2
2

1 1

ESC101: Fundamentals
of Computing

Recap – 6 basic rules of C functions
 RULE 1: When we give a variable as input, the value stored inside
that variable gets passed as an argument
 RULE 2: When we give an expression as input, the value generated
by that expression gets passed as argument
 RULE 3: In case of a mismatch b/w type of arg promised and type
of arg passed, typecasting will be attempted
 RULE 4: All values passed to a function get stored in a fresh variable
inside that function (changes made to this variable won’t change
the original var regardless of whether it is a normal var or pointer)
 RULE 5: Value returned by a function can be used freely in any way
values of that data-type could have been used
 RULE 6: All clones share the memory address space

ESC101: Fundamentals
of Computing

Take home question
 What will the output of this code?

#include<stdio.h>
int recursive(int i) {
 static int count = 0;
 count = count + i;
 return count;
}

int main() {
 int i, j;
 for (i = 0; i <= 5; i++)
 j = recursive(i);
 printf("%d\n", j);
 return 0;
}

	ESC101: Fundamentals of Computing
	Loose end: Flags
	Scope rules for variables
	Global Variables
	Slide Number 5
	Constant Global Variables
	Static Variables
	Macros in C
	Macros in C
	Macros in C: Be Careful
	Recursion in function use
	Factorial
	Recap – 6 basic rules of C functions
	Take home question

