More about Functions

ESC101: Fundamentals of Computing
Nisheeth

/’ int“ max [int a, int b) {|
if (3/> D)

2 ar unTenTs
Return Type return a; a ang b,
/ else both of type inft.
return b; (formal args)

Function Name ! A\

int main () { Body of the
int x; function, enclosed
inside { and }

X =lmax(6, 4);

T (mandatory)
o .
prchntf(O/OM —refurns an int.
return O;

[\
! Call to the function.
Actual args are 6 and 4.

For functions that do not need to return anything

l.e. void return type, you can either say return; or -
. else not write return at all inside the function body
May write re in which case the entire body will get executed (ONn
When Mr C (his dream world clone actually) sees a return

statement, he immediately generates the output and function
execution stops there.

The dream ends and the original Mr C takes over

If you return a float/double value from a function with int return
type, automatic typecasting will take place.

Be careful to not make typecasting mistakes

main() is also a function
with return type int

t main() is like a reserved function name.

e The value thatis re | |
, Cannot name your function main
variable of that sameuatatype

* You can freely use returned values in expressions
— Be careful of type though

int sum(int x, int y){ int main(){ | Can even use within printf |
return X + y; printf("%d", sum(Z5=7~-sum(5,6));
} return O; ‘

}

Function and Expression
A function call is an expression. Can be used anywhere an

expression can be used subject to type restrictions

Example below: assume we have already written the max and min
functions for two integer arguments

printf(“%d”, max(5,3)); prints 5

max(5,3) — min(5,3) evaluates to 2

max(x, max(y, z)) ==z checks if z is max
of X, VY, Z

if (max(a, b)) printf(*y”); | Prints Y if max of
a and b is not O.

N eStEd FU N Ctio N #include<stdio.h>

: : : . int min(int, int); //declarati
Not just main function but other functions o mm('.n n)_// cCiaration
int max(int, int); //of max, min
can also call each other

int max(int a, int b) {
return (a>b)?a:b;

}

A declaration or definition (or both) must
be visible before the call

// this “cryptic” min, uses max :-)
int min(int a, int b) {

Help compiler detect any inconsistencies in
P P Y return a + b —max(a, b);

function use }

int main() {

Compiler warning, if both (decl & def) are orintf(“%d”, min(6, 4));

missing }

Inception

Once upon a time, Chuang Chou dreamed that he
was a butterfly, a butterfly flitting about happily
enjoying himself. He didn't know that he was Chou.
Suddenly he awoke and was palpably Chou. He
didn't know whether he were Chou who had

dreamed of being a butterfly, or a butterfly who was
dreaming that he was Chou.

(Zhuangzi)

izquotes.com

Inception -
|
int inc(int a){ l 3 | db .
return a+1; _ _: c?u?ecl) Wgﬁé! Inc()
} a
int sum(int a, int b){
int c =inc(a) + b; T]
} return c; 7 / : E
int main(void){ a b C S

inta=2,b=4,c;
printf("%d", c); 2 4 7

return O;

} a b C

Same function called repeatedly

- L Hello
int inc(int a){ ' I .
turn a+1; : 5 | adain
| e S I Goodbye
again
int sum(int a, int b){ d
int c =inc(a) + ————————
inc(b); | :I
return c; 2 4 8 : ::
} P S
int main(void){ d b C
inta=2,b=4,c;
c =sum(a, b); 8
printf("%d", c); 2 4
return O;
} a b ¢

The 6 Basic Rules of Functions

RULE 1: When we give a variable as input, the value stored
iInside that variable gets passed as an argument

RULE 2: When we give an expression as input, the value
generated by that expression gets passed as argument

RULE 3: In case of a mismatch b/w type of arg promised
and type of arg passed, typecasting will be attempted

WARNING: may cause loss of information or unexpected behavior

" Yes, you may have multiple return However, verify that the float
statements but the dream world clone will (returned is not negative

die the moment any one of them is seen e -
RUITF ~i1 Values passeq 10 | However, verify that the int @ ™5N

m inside that function gives an index within bounds “
J

that value inside the func However, verify that the ginal value
| Careful, all return statements must || address returned isn't NULL | addre

return only one value, and that too _
Rl of the type promised in the function | function can be used fr

-I: hh-l- P P PR TGy An...lﬁl | P, I,-.AA
any Way _value_s ort Remember, Mr C terminates a function
If function is returning a flc

. _ ~ the moment any return statement is seen
If function is returnlng an I reeSiiec i useitas air airay miuacA

RULE 6: All clones share the memory address space
Let us look at this rule more closely

RULE 6: the address rule oo

000002
000003

We have seen that the clones do not care o

000005

what names other clones have given to 000006
000007

variables — all passed values are copied 2 000008
000009

However, all clones see and work with the oo

000011

same shared memory 000012

000013

Consider an address 000008 — no matter 000014

000015

which clone tries to read from, or write to, 000016
. o 0T o Il all do so from the %%
Memory location ' | also see 55 000018

OOOQO8 stores at memory | too see 55 at || Guys, | am changing the value -
the integer 55 | location 00008 f location 000008 at location 000008 to 55

Jl\rll\-ll‘- | 9 -_—— i

e 000022

m - - - E

82

Passing simple variables/expressions

This Is the case when the input to the function is either a
variable (Rule 1) or an expression (Rule 2)

Rule 4 (fresh variables) will always apply no matter what is passed as input
Books, websites often call this technique pass-by-value

Int neg(int a){ | |
return -a; | -8 :
} | S ——
Int main(void){ d
inta=2;
printf("%d", neg(a));
printf("%d", neg(4*2); 2
return 0;

! d

summary

We have seen how normal variables (int, float, char) can
be passed to functions (rule 1) and how expressions of
these (rule 2) can be passed to functions

Sometimes called pass-by-value

We have not yet seen how pointers (rule 1) and
expressions that generate addresses (rule 2) can be
passed to functions

Sometimes called pass-by-pointer or pass-by-reference
We will see this later

Remember - rule 4 always applies, no matter what!
Wil see pass-by-array later

Next Class..

Static and global variables

Macros

	ESC101: Fundamentals of Computing
	Slide Number 2
	More on Return
	More on Return
	Function and Expression
	Nested Function Calls
	Inception
	Inception
	Same function called repeatedly
	The 6 Basic Rules of Functions
	The 6 Basic Rules of Functions
	RULE 6: the address rule
	Passing simple variables/expressions
	Summary
	Next Class..

