
ESC101: Fundamentals of  Computing 

More about Functions 

 Nisheeth 
 



int main () {   
      int x;  
      x = max(6, 4); 
      printf(“%d”,x); 
      return 0; 
} 

int  max (int a, int b) { 
   if (a > b)  
       return a; 
  else  
       return b;  
} 

Return Type 

  

Function Name 

 

2 arguments 
a and b,  
both of type int. 
(formal args) 

Body of the  
function, enclosed  
inside { and }  
(mandatory) 
returns an int. 

 

Call to the function. 
Actual args are 6 and 4. 

 

2 



More on Return 
• May write return statement many times inside a function 
• When Mr C (his dream world clone actually) sees a return 

statement, he immediately generates the output and function 
execution stops there. 

• The dream ends and the original Mr C takes over  
 

• If you return a float/double value from a function with int return 
type, automatic typecasting will take place. 
 

• Be careful to not make typecasting mistakes 

For functions that do not need to return anything 
i.e. void return type, you can either say return; or 
else not write return at all inside the function body 

in which case the entire body will get executed 



More on Return 
• The value that is returned can be used safely just as a normal 

variable of that same data type 
• You can freely use returned values in expressions 

– Be careful of type though 

int sum(int x, int y){ 
    return x + y; 
} 

int main(){ 
    printf("%d", sum(3,4) - sum(5,6)); 
    return 0; 
} 

main() is also a function 
with return type int 

main() is like a reserved function name. 
Cannot name your function main 

Can even use within printf 



Function and Expression 
A function call is an expression. Can be used anywhere an 
expression can be used subject to type restrictions 
 
Example below: assume we have already written the max and min 
functions for two integer arguments 
 printf(“%d”, max(5,3)); 

max(5,3) – min(5,3) 
max(x, max(y, z)) == z 
 
if (max(a, b)) printf(“Y”);   

prints 5 
evaluates to 2 
checks if z is max 
of x, y, z 
prints Y if max of 
a and b is not 0. 



Nested Function Calls 
Not just main function but other functions 
can also call each other 
 
A declaration or definition (or both) must 
be visible before the call 
 
Help compiler detect any inconsistencies in 
function use 
 
Compiler warning, if both (decl & def) are 
missing 

 

#include<stdio.h> 
int min(int, int); //declaration  
int max(int, int); //of max, min 
 
int max(int a, int b) { 
   return (a > b) ? a : b; 
} 
 
// this “cryptic” min, uses max :-)  
int min(int a, int b) { 
   return a + b – max (a, b); 
} 
 
int main() {  
  printf(“%d”, min(6, 4)); 
} 



Inception 

7 



ESC101: Fundamentals 
of Computing 

Inception 
int inc(int a){ 
    return a+1; 
} 
int sum(int a, int b){ 
    int c = inc(a) + b; 
    return c; 
} 
int main(void){ 
    int a = 2, b = 4, c; 
    c = sum(a, b); 
    printf("%d", c); 
    return 0; 
} a 

2 
c b 

4 

a 

2 

b c 

4 

7 

3 
a 

2 

3 Goodbye, 
cruel world! 

7 

7 

inc() 

sum() 

main() 



ESC101: Fundamentals 
of Computing 

Same function called repeatedly 
int inc(int a){ 
    return a+1; 
} 
int sum(int a, int b){ 
    int c = inc(a) + 
inc(b); 
    return c; 
} 
int main(void){ 
    int a = 2, b = 4, c; 
    c = sum(a, b); 
    printf("%d", c); 
    return 0; 
} a 

2 
c b 

4 

a 

2 

b c 

4 

8 

a 

2 

3 

8 

8 

3 5 5 

4 

Hello 
again  

Goodbye 
again 

inc() 

sum() 

main() 



ESC101: Fundamentals 
of Computing 

The 6 Basic Rules of Functions 
 RULE 1: When we give a variable as input, the value stored 
inside that variable gets passed as an argument 
  
 RULE 2: When we give an expression as input, the value 
generated by that expression gets passed as argument 
  
 RULE 3: In case of a mismatch b/w type of arg promised 
and type of arg passed, typecasting will be attempted 

 WARNING: may cause loss of information or unexpected behavior 



ESC101: Fundamentals 
of Computing 

The 6 Basic Rules of Functions 
 RULE 4: All values passed to a function get stored in a fresh 
variable inside that function 

 Modifying that value inside the function will NOT change the original value  
 Does not matter whether the value passed is char or long or an address 

 

 RULE 5: Value returned by a function can be used freely in 
any way values of that data-type could have been used 

 If function is returning a float, feel free to take square root with it 
 If function is returning an int, feel fee to use it as an array index 

  
 RULE 6: All clones share the memory address space 
 Let us look at this rule more closely 

However, verify that the float 
returned is not negative 

However, verify that the 
address returned isn’t NULL 

However, verify that the int 
gives an index within bounds 

Remember, Mr C terminates a function 
the moment any return statement is seen 

Yes, you may have multiple return 
statements but the dream world clone will 
die the moment any one of them is seen 

Careful, all return statements must 
return only one value, and that too 
of the type promised in the function 



ESC101: Fundamentals 
of Computing 

RULE 6: the address rule 
 We have seen that the clones do not care 
what names other clones have given to 
variables – all passed values are copied 
 However, all clones see and work with the 
same shared memory 
 Consider an address 000008 – no matter 
which clone tries to read from, or write to, 
address 000008, they will all do so from the 
exact same address 
 Will exploit this feature very soon! 

000000 
000001 
000002 
000003 
000004 
000005 
000006 
000007 
000008 
000009 
000010 
000011 
000012 
000013 
000014 
000015 
000016 
000017 
000018 
000019 
000020 
000021 
000022 
000023 

… 

a 

42 

Memory location 
000008 stores 
the integer 42 

I also see 42 
at memory 

location 00008 
I too see 42 at 

location 000008 
Guys, I am changing the value 

at location 000008 to 55 

Memory location 
000008 stores 
the integer 55 

I also see 55 
at memory 

location 00008 
I too see 55 at 

location 000008 

55 



ESC101: Fundamentals 
of Computing 

Passing simple variables/expressions 
 This is the case when the input to the function is either a 
variable (Rule 1) or an expression (Rule 2) 

 Rule 4 (fresh variables) will always apply no matter what is passed as input 
 Books, websites often call this technique pass-by-value 

int neg(int a){ 
    return -a; 
} 
int main(void){ 
    int a = 2; 
    printf("%d", neg(a)); 
    printf("%d", neg(4*2); 
    return 0; 
} 

main() 
a 
2 

neg() 
a 

2 

-2 -2 

-2-8 

8 8 

-8 -8 



ESC101: Fundamentals 
of Computing 

Summary 
 We have seen how normal variables (int, float, char) can 
be passed to functions (rule 1) and how expressions of 
these (rule 2) can be passed to functions 

 Sometimes called pass-by-value 

 We have not yet seen how pointers (rule 1) and 
expressions that generate addresses (rule 2) can be 
passed to functions 

 Sometimes called pass-by-pointer or pass-by-reference 
 We will see this later 

 Remember - rule 4 always applies, no matter what! 
 Will see pass-by-array later 



ESC101: Fundamentals 
of Computing 

Next Class.. 
  
Static and global variables  
  
 Macros 


	ESC101: Fundamentals of Computing
	Slide Number 2
	More on Return
	More on Return
	Function and Expression
	Nested Function Calls
	Inception
	Inception
	Same function called repeatedly
	The 6 Basic Rules of Functions
	The 6 Basic Rules of Functions
	RULE 6: the address rule
	Passing simple variables/expressions
	Summary
	Next Class..

