
ESC101: Fundamentals of Computing

Functions

Nisheeth

Announcements

• Hope you enjoyed the exam
• Upcoming exams

– Lab mid sem exam on 15th Feb 1000 - 1600
– Theory mid sem exam on 21st Feb 1800-2000

• Lessons from MQ1
– Be on time
– Bring ID
– Write roll numbers on every answer sheet

2

We have seen functions before

• main() is a special function. Execution of program starts
from the beginning of main()

• scanf(…), printf(…) are standard input-output library
functions

• sqrt(…), pow(…) are math functions in math.h

Writing our own functions..

int main () {
 int x;
 int a,b;
 scanf(“%d%d”,&a,&b);
 x = max(a, b);
 printf(“%d”,x);
 return 0;
}

int max (int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

int main () {
 int x;
 int a,b;
 scanf(“%d%d”,&a,&b);
 if(a>b)
 x = a;
 else
 x = b;
 printf(“%d”,x);
 return 0;
}

We or someone else
may have already
written this “max”

function and tested
well (so very little
chance of error)

A standard program for max of two numbers

A program with
our own function

int main () {
 int x;
 x = max(6, 4);
 printf(“%d”,x);
 return 0;
}

int max (int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

Return Type

Function Name

2 arguments
a and b,
both of type int.
(formal args)

Body of the
function, enclosed
inside { and }
(mandatory)
returns an int.

Call to the function.
Actual args are 6 and 4.

5

The Anatomy of a C Function
How we must speak to the compiler

• int isUpperAlpha(char x){
• int a = (x >= 'A') && (x <= 'Z');
• return a;
• }

How we usually speak to a human

• isUpperAlpha is a function that
takes in a character (let us call that
character x) as input and gives an
integer as output

• Upon receiving input, please create
an integer variable a and store 1 in
a if input is upper case alphabet
else store 0 in a

• Please output the value of a to
whomever used this function

 Name of function: isUpperAlpha
 Arguments: one character
 Return type: integer

Inputs to a function are called its arguments
A function returns its output

A function may have many
inputs but only one output

So I cant write a function
that returns 2 integers –
say x and y coordinates?

Yes you can! But you have to
be a bit clever about doing so

Programmers often call the process of giving inputs
to a function as passing arguments to the function

We will teach you 3 ways to return more
than one output in this course

Why use functions?

• Break up complex problem into small sub-problems.

• Solve each of the sub-problems separately as a function, and
combine them together in another function.

• The main tool in C for modular programming.

Functions help us write compact code
int main(){
 int a, b, c, m;

 /* code to read
 * a, b, c */

 if (a>b){
 if (a>c) m = a;
 else m = c;
 }
 else{
 if (b>c) m = b;
 else m = c;
 }

 /* print or use m */

 return 0;
}

int max(int a, int b){
 if (a>b)
 return a;
 else
 return b;
}

int main() {
 int a, b, c, m;

 /* code to read
 * a, b, c */

 m = max(a, b);
 m = max(m, c);
 /* print or use m */

 return 0;
}

Example : Maximum of 3 numbers

This code
can scale
easily to
handle
large
number
of inputs
(e.g.: max
 of 100
numbers!)

Other benefits of writing functions
• Code Reuse: Allows us to reuse a piece of code as many times as we want,

without having to write it.
– Think of the printf function!

• Procedural Abstraction: Different pieces of your algorithm can be
implemented using different functions.

• Distribution of Tasks: A large project can be broken into components and
distributed to multiple people.

• Easier to debug: If your task is divided into smaller subtasks, it is easier to
find errors.

• Easier to understand: Code is better organized and hence easier for an
outsider to understand it.

Other benefits of writing functions
• Allows you to think very clearly
• E.g. if you want to do something if the integer n is a prime number

or if it is divisible by 11

• Write the body of the if condition without worrying about
primality testing etc and then define the functions later 

• You can break your code into chunks – called modules
• Each module handled using a separate function

if(isPrime(n) || isDivby11(n)){
 …
}

E.g. in this case, primality testing
is one module, checking for

divisibility by 11 is another module
Writing code that has modules is a
type of modular programming – it

is the the industry standard!

ESC101: Fundamentals
of Computing

int main () {
 int x;
 x = max(6, 4);
 printf(“%d”,x);
 return 0;
}

int max (int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

Return Type

Function Name

2 arguments
a and b,
both of type int.
(formal args)

Body of the
function, enclosed
inside { and }
(mandatory)
returns an int.

Call to the function.
Actual args are 6 and 4.

11

ESC101: Fundamentals
of Computing

Function Terminology
 Function Name: must be a valid identifier abc, a124, _ab1. Ideally,
should reflect what the function does

 Arguments: can be int, long, float, double, char
 Can also have pointers and even arrays as input – soon!

 Return type: what does the function return

 When you use a function, we say you have called that function. If
the function outputs something, we say the function returned that
output back to you

Same rule as variable names

ESC101: Fundamentals
of Computing

Function Practice Exercises
 Define a function to input two integers, output their max
 Define a function to print Hello World
 Define a function to output 1 if input is prime else 0
 Define a function to input two integers and print Hello
World if their max is prime
 Define a function to print the max of 3 numbers
 Define a function to input a character, output its upper
case version if lower case else output the character itself

ESC101: Fundamentals
of Computing

Function Declaration?
We declare variables before using them. For example
 int x; x = 2;
Do we have to declare functions before using them?
Not necessary. Optional in modern C
If you do, here is what a function’s declaration looks like

return_type function_name (comma_separated_list_of_args);

int max(int a, int b);
int max(int x, int y);
int max(int , int);

All 3 declarations are equivalent.
Variable names don’t matter, and
are optional. Note the semi-colon

Header files usually
contains function
declarations

Position of declaration must be before the first call to the
function in the code, and also not inside any function

Also known as function “prototype”

ESC101: Fundamentals
of Computing

#include <stdio.h>

 int checkPrimeNumber(int n);

 int main() {
 int n1, n2, i, flag;
 printf("Enter two positive integers: ");
 scanf("%d %d", &n1, &n2);
 printf("Prime numbers between %d and %d are: ", n1, n2);

 for(i=n1+1; i<n2; ++i) {
 // i is a prime number, flag will be equal to 1
 flag = checkPrimeNumber(i);
 if(flag == 1)
 printf("%d ",i);
 }
 return 0;
 }

// user-defined function to check prime number
int checkPrimeNumber(int n) {
 int j, flag = 1;
 for(j=2; j <= n/2; ++j) {
 if (n%j == 0) {
 flag =0;
 break;
 }
 }
 return flag;
}

Prototype

Function call

Definition

ESC101: Fundamentals
of Computing

“Position” of a Function
 If not declared already, the called function must be defined before where it is called. Can
define it below the calling function only if the called function’s return type is int (else compiler
assumes int return type and will complain if it finds some other return type)

int main () {
 int x;
 x = max(6, 4);
 printf(“%d”,x);
 return 0;
}

int max (int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

int main () {
 int x;
 x = max(6, 4);
 printf(“%d”,x);
 return 0;
}
int max (int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

ESC101: Fundamentals
of Computing

Arguments and Return types
 You can define a function that takes
in no input and gives no output
 Even void print(){ … } works

 You can define a function that takes
inputs but gives no output

 You can define a function that takes
no input but gives an output
 Even char getFirstAlpha(){ … } works

void print(void){
 printf("Hello World");
}

void sum(int a, int b){
 printf("Sum %d", a+b);
}

char getFirstAlpha(void){
 return 'A';
}

ESC101: Fundamentals
of Computing

More on Arguments
 Argument name can be any valid variable name

 Can reuse a variable name even if this
 name used in main or another function

 Calling a function is like creating a clone
 of Mr C. This clone starts afresh, with any
 inputs you have given. The clone forgets
all old variable names and values

Will see more about this “cloning” behaviour later

int max(int a1, int b1) {
 int m1 = 0;
 if (a1 > b1) m1 = a1;
 else m1 = b1;
 return m1;
}

int min(int a2, int b2) {
 int m2 = 0;
 if (a2 < b2) m2 = a2;
 else m2 = b2;
 return m2;
}

int main() { … }

int max(int a, int b) {
 int m = 0;
 if (a > b) m = a;
 else m = b;
 return m;
}

int min(int a, int b) {
 int m = 0;
 if (a < b) m = a;
 else m = b;
 return m;
}

int main() { … }

sc
o

p
e

o
f

 m
1

,
a1

,
b

1

sc
o

p
e

o
f

 m
2

,
a2

,
b

2

Another type of scope rule for variables. Not
“block” based but function based

ESC101: Fundamentals
of Computing

More on Arguments
 If you have promised to give a function two integers,
please give it two integers

 If you give it only one or three integers, compilation error

 If you give it two floats or else one char and one int,
automatic typecasting will take place

 Be careful to not make typecasting errors

ESC101: Fundamentals
of Computing

More on Return
 May write return statement many times inside a function
 When Mr C (his clone actually) sees a return statement,
he immediately generates the output and function
execution stops there.
 The clone dies and the original Mr C takes over 

 If you return a float/double value from a function with int
return type, automatic typecasting will take place.

 Be careful to not make typecasting mistakes

For functions that do not need to return anything
i.e. void return type, you can either say return; or
else not write return at all inside the function body

in which case the entire body will get executed

ESC101: Fundamentals
of Computing

More on Return
 The value that is returned can be used safely just as a
normal variable of that same data type
 You can freely use returned values in expressions
 Be careful of type though

int sum(int x, int y){
 return x + y;
}

int main(){
 printf("%d", sum(3,4) - sum(5,6));
 return 0;
}

main() is also a function
with return type int

main() is like a reserved function name.
Cannot name your function main

Can even use within printf

ESC101: Fundamentals
of Computing

Function and Expression
A function call is an expression. Can be used anywhere
an expression can be used subject to type restrictions

Example below: assume we have already written the
max and min functions for two integer arguments

printf(“%d”, max(5,3));
max(5,3) – min(5,3)
max(x, max(y, z)) == z

if (max(a, b)) printf(“Y”);

prints 5
evaluates to 2
checks if z is max
of x, y, z
prints Y if max of
a and b is not 0.

ESC101: Fundamentals
of Computing

Nested Function Calls
Not just main function but other
functions can also call each other

A declaration or definition (or both)
must be visible before the call

Help compiler detect any
inconsistencies in function use

Compiler warning, if both (decl &
def) are missing

#include<stdio.h>
int min(int, int); //declaration
int max(int, int); //of max, min

int max(int a, int b) {
 return (a > b) ? a : b;
}

// this “cryptic” min, uses max :-)
int min(int a, int b) {
 return a + b – max (a, b);
}

int main() {
 printf(“%d”, min(6, 4));
}

ESC101: Fundamentals
of Computing

Benefits of writing functions
 Functions allow you to reuse code
 Some one wrote functions like sqrt(), abs() in math.h that
we are able to use again and again
 printf() and scanf() are also functions. Think of how much
we use them in every single program
 We are reusing code that some helpful C expert wrote in
the printf(), scanf(), sqrt(), abs() and other functions
 If some piece of code keeps getting used in your program
again and again – put it inside a function!
 We reused code in today’s codes – didn’t have to rewrite
code – may make mistakes if you write same code again

	ESC101: Fundamentals of Computing
	Announcements
	We have seen functions before
	Writing our own functions..
	Slide Number 5
	The Anatomy of a C Function
	Why use functions?
	Functions help us write compact code
	Other benefits of writing functions
	Other benefits of writing functions
	Slide Number 11
	Function Terminology
	Function Practice Exercises
	Function Declaration?
	Slide Number 15
	“Position” of a Function
	Arguments and Return types
	More on Arguments
	More on Arguments
	More on Return
	More on Return
	Function and Expression
	Nested Function Calls
	Benefits of writing functions

