
ESC101: Fundamentals of Computing

Programs with Loops,
The while and do-while Loops

 Nisheeth

Announcements

2

 Major Quiz 1 tomorrow (L-20, 12:00-12:50). Instructions already shared

 Must write your name on answer sheets (minor/major quizzes/exams)

 Your responsibility. If you miss, it makes it very hard/impossible for us to locate it

ESC101: Fundamentals
of Computing

Recap: for Loop
General form of the for loop
for(init_expr; stopping_expr; update_expr){
 statement1;
 statement2;
 ...
}
statement3;
statement4;
...

 What this piece of code means?

1. First do what is told in initialization expression
2. Then check the stopping expression
3. If stopping expression is true
 Execute all statements inside braces
 Execute update expression
 Go back to step 2
 Else stop looping and execute rest of code

Brackets essential if you want me
to do many things while looping

Initialization
expression is

executed only once

ESC101: Fundamentals
of Computing

1. Evaluate init_expr; i.e., i=1;
2. Evaluate test_expr i.e., i<=4 TRUE
3. Enter body of loop and execute.
4. Execute update_expr; i=i+1; i is 2
5. Evaluate test_expr i<=4: TRUE
6. Enter body of loop and execute.
7. Execute i=i+1; i is 3
8. Evaluate test_expr i<=4: TRUE

int i;
float rsum = 0.0; // sum of reciprocals

for (i=1; i<=4; i=i+1) {
 rsum = rsum + (1.0/i);
}

printf(“sum of reciprocals is %f”, rsum);

i rsum
0.0 1.0 1 2 1.5 3 1.833333.. 4 2.0833333.. 5

9. Enter body of loop and execute.
10. Execute i=i+1; i is 4
11. Evaluate test_expr i<=4: TRUE
12. Enter body of loop and execute.
13. Execute i=i+1; i is 5
14. Evaluate test_expr i<=4: FALSE
15. Exit loop & jump to printf

sum of reciprocals is 2.083333

rsum = 1 + 1/2 + 1/3 + 1/4

ESC101: Fundamentals
of Computing

The for Loop: More on its syntax..

for (i=1;i <= 10; i+=2)

for (i=-5,i <= 10; i++) for (i=10;i >= 0; i--)

for (i=1;i <= 10; i++){
 for(j=1; j<= i; j++){
 }
}

for (i=1;i <= 64; i*=2)

Many forms possible for the init/stopping/update expressions. Some
examples:

for (i=1,j=2;i <= 10 && j <= 20; i++,j=j+2)

Multiple loop counter variables
for the init/ stopping/update
expressions

Inner loop’s counter can
depend on outer loop
counter’s current value

Learn more by
practicing 

init_expr can also be
before the start of for loop
update_expr can also be
inside the body of for loop

ESC101: Fundamentals
of Computing

The while loop
General form of a while loop
while(stopping_expr){
 statement1;
 statement2;
 ...
}
statement3;
statement4;
...

 What this piece of code does?

1. First check the stopping expression
2. If stopping expression is true
 Execute all statements inside braces
 Go back to step 2
 Else stop looping and execute rest of code

Brackets essential if you want me
to do many things while looping

So what is the difference
between for and while?

In general not much – it is a matter
of style. Often we use while when
we don’t exactly know how many

iterations will loop run (but usually it
can be done with for loop too)

ESC101: Fundamentals
of Computing

The while loop in action..
 int a;
 scanf(“%d”, &a); /* read into a */
 while (a != -1) {
 scanf(“%d”, &a); /*read into a inside loop*/
 }

INPUT
4
15
-5
-1
-3

?? 4 15 -5 -1 Trace of memory
location a

• One scanf is executed every time body of the
loop is executed.

• Every scanf execution reads one integer.

ESC101: Fundamentals
of Computing

The do-while loop
 General form of a do-while loop
 do{
 statement1;
 statement2;
 ...
}while(stopping_expr);
statement3;
statement4;
...

 What this piece of code does?

1. First execute statements inside braces
2. Then check stopping criterion
2. If stopping expression is true
 Execute all statements inside braces
 Go back to step 2
 Else stop looping, execute rest of code

Brackets essential if you want me
to do many things while looping

Notice additional
semi-colon

Yet another minor
quiz question

When to use
do-while instead

of while?

ESC101: Fundamentals
of Computing

The use of do-while
 The do-while loop is executed at least once
 Example: read integers till you read the number -1 and …

int num, sum = 0;
scanf(“%d”, &num);
while(num != -1){
 sum += num;
 scanf(“%d”, &num);
}
printf("%d",sum);

int num, sum = 0;
do{
 scanf(“%d”, &num);
 if(num != -1)
 sum += num;
}while(num != -1);
printf("%d",sum);

Notice proper indentation
for while and do-while loops

while and do-while equally powerful,
sometimes one looks prettier, easier

to read than the other

10

 Some more examples, tips, and
 guidelines on using loops

ESC101: Fundamentals
of Computing

Properly Divide Task into Subtasks
 Consider printing the pattern shown on right
 Step 1: Divide problem into smaller tasks that are
very similar and have to be repeated

 Often, more than one way may seem possible. Not all may be implementable
 For this problem, column-wise printing will be hard. But row-wise printing seems
like an implementable idea. Row i can be printed using the following for loop

 Can repeat the above for i = 1 to i = 10 using an outer loop

1
1 2
1 2 3
1 2 3 4
...
1 2 3 4 ... 10

for(j = 1; j <= i; j++)
 printf(“%d ”, j);
printf(“\n”);

for(i=1;i<=10;i++){
 for(j = 1; j <= i; j++)
 printf(“%d ”, j);
 printf(“\n”);
}

Example of
nested for

ESC101: Fundamentals
of Computing

Order of statements is important

ESC101: Fundamentals
of Computing

Order of statements is important

ESC101: Fundamentals
of Computing

Order of statements is important
int main(){
 int n, i; float r, a, term;
 // Reading inputs from the user
 scanf("%f", &r);
 scanf("%f", &a);
 scanf("%d", &n);
 term = a;
 for (i=1; i<=n; i=i+1) {
 term = term * r;
 printf("%f\n", term);
 }
 return 0;
}

ESC101: Fundamentals
of Computing

The break keyword
 Allows us to stop executing a loop and exit immediately
 Even if the stopping condition is still true
 Can be used inside a for loop, while loop, do-while loop

 When to use break
 Avoid if possible
 Can make code error-prone and hard to read
 Used when one stopping condition not enough
 Or sometimes to make code more elegant
 Allows us to avoid specifying a stopping condition
 Note: Here, the else not even needed since
Mr C. neglects all remaining statements in
loop body upon encountering break;

int num, sum = 0;
while(1){
 scanf(“%d”, &num);
 if(num == -1) break;
 else sum += num;
}
printf("%d",sum);

int num, sum = 0;
while(1){
 scanf(“%d”,
&num);
 if(num == -1)
break;
 sum += num;
}
printf("%d",sum);

If we did not have
break, infinite loop!

ESC101: Fundamentals
of Computing

A fancy for loop using break

for(init_expr; stop_expr; upd_expr){
 statement1;
 statement2;
 ...
}
statement3;
statement4;

init_expr;
for(;;){
 if(!(stop_expr)) break;
 statement1;
 statement2;
 ...
 upd_expr;
}
statement3;
statement4;

If we did not have break this would have
been an infinite loop since no stop_expr

Remember, the order is
stop_expr  body 

update  stop_expr  …

ESC101: Fundamentals
of Computing

The continue keyword
 Allows us to skip the rest of the
statements in body of the loop
 Upon encountering continue, Mr
C thinks that body of loop is over
 Loop not exited (unlike break)
 If we say continue in for loop, update_expr

evaluated, then stop condition checked
 If we say continue in while or do-while

loop, then stop condition checked
 In all cases, rest of body not executed

 Read 100 integers and print sum
of only positive numbers

int sum = 0, i, num;
for(i = 1; i <= 100; i++){
 scanf("%d", &num);
 if (num < 0){
 continue;
 }
 sum += num;
}

ESC101: Fundamentals
of Computing

Careful using break, continue
 If there are nested loops, a break inside the inner loop will
apply only to the inner loop, same with continue
 Be careful not to create an infinite loop using continue if
you bypass any update steps.

for (i = 0; i < 100; i++){
 for (j = 0; j < 100; j++){
 if (…) break;
 }
 statement1;
}
statement2

int i = 0, sum = 0, num;
while (i < 100){
 scanf(“%d”, &num);
 if (num < 0) continue;
 sum += num;
 i++;
}

int i = 0, sum = 0, num;
while (i < 100){
 i++;
 scanf(“%d”, &num);
 if (num < 0) continue;
 sum += num;
}

for (i = 0; i < 100; i++){
 for (j = 0; j < 100; j++){
 if (…) continue;
 }
 statement1;
}
statement2

If we have a sequence of 100000 negative
numbers, it will read all of them even though
we wanted to read only first 100 numbers –
continue statement skipping counter update

Much better, always
updates counter whether
skipping the sum+=num

step using continue or not

ESC101: Fundamentals
of Computing

Careful using break, continue
 Excessive use of break and continue can make your
program error-prone, and hard for you to correct
 If you have 10 break statements inside the same loop
body, you will have a hard time figuring out which one
caused your loop to end
 If you have 10 continue statements inside the same loop
body, you will have a hard time figuring out why body
statements are not getting executed.
 Should not misuse break, continue - used in moderation
these can result in nice, beautiful code
 We will see some elegant alternatives to break, continue

ESC101: Fundamentals
of Computing

Break and Continue: Summary
 Break helps us exit loop immediately
 In for loops, even update_expr or stop_expr not checked – just exit
 In while, do-while loops, even stop_expr not checked – just exit
 Continue helps us skip the rest of the body of loop
 In for loops, after Mr C receives a continue statement, he evaluates the

update_expr (if it’s inside for() part), then checks the stop_expr and so on
…

 In while loops, after Mr C receives a continue statement, he checks the
stop_expr

 Loop not exited just because of continue, stop_expr still controls exit
 Warning: Break legal only in body of loops and switch
 Illegal inside body of if, if-else statements
 Warning: Continue legal only in body of loops
 Illegal inside body of if, if-else, switch statements

	ESC101: Fundamentals of Computing
	Announcements
	Recap: for Loop
	Slide Number 4
	The for Loop: More on its syntax..
	The while loop
	The while loop in action..
	The do-while loop
	The use of do-while
	Slide Number 10
	Properly Divide Task into Subtasks
	Order of statements is important
	Order of statements is important
	Order of statements is important
	The break keyword
	A fancy for loop using break
	The continue keyword
	Careful using break, continue
	Careful using break, continue
	Break and Continue: Summary

