
ESC101: Fundamentals of Computing

Programs with Loops: The for
Loop)

 Nisheeth

Announcements

2

 Major Quiz 1 this Wednesday, Jan 29, 12pm-1pm, L-20

 Don’t be late. Don’t be absent

 Must carry your Student ID

 No material allowed except one haA4 sheet of paper
 Answers to be written on question paper itself (just like minor

quizzes)
 Have to write name and roll number on both sides of each sheet
 Any sheet missing both details will not be graded

 Carry pencil, eraser, sharpener, pen
 Must write final answers using pen

Bitwise Operators (not in Major Quiz 1)

3

Operation C Code a b c d e f

BITWISE
AND

c = a & b 0000 1111 0000 1111 1111 1111

BITWISE
OR

d = a | b 0101 1100 0100 1101 1001 1010

BITWISE
XOR

e = a ^ b 1010 1110 1010 1110 0100 0101

BITWISE
COMPLEMENT

f = ~a 1001 0111 0001 1111 1110 0110

Bitwise AND Operator &
• The output of bitwise AND is 1 if the corresponding bits of two

operands are both 1. If either bit of an operand is 0, the result of
corresponding bit is evaluated to 0

• In C Programming, bitwise AND operator is denoted by &

4

12 = 00001100 (In Binary)
25 = 00011001 (In Binary)
Bitwise AND of 12 and 25
 0000 1100
& 0001 1001

 0000 1000 = 8 (In decimal)

#include <stdio.h>
int main(){
 int a = 12, b = 25;
 printf("Output = %d", a & b);
 return 0;
}

Bitwise OR Operator |
• The output of bitwise OR is 1 if at least one of the corresponding

bit of two operands is 1
• In C Programming, bitwise OR operator is denoted by |

5

12 = 00001100 (In Binary)
25 = 00011001 (In Binary)
Bitwise OR of 12 and 25
 0000 1100
| 0001 1001

 00011101 = 29 (In decimal)

#include <stdio.h>
int main(){
 int a = 12, b = 25;
 printf("Output = %d", a | b);
 return 0;
}

Bitwise XOR Operator ^
• The result of bitwise XOR operator is 1 if the corresponding bits of

two operands are opposite i.e. one is 1 and the other is 0
• In C Programming, bitwise XOR operator is denoted by ^

6

12 = 00001100 (In Binary)
25 = 00011001 (In Binary)
Bitwise XOR of 12 and 25
 00001100
^ 00011001

 00010101 = 21 (In decimal)

#include <stdio.h>
int main(){
 int a = 12, b = 25;
 printf("Output = %d", a^b);
 return 0;
}

Bitwise Complement Operator ~
• A unary operator that simply flips each bit of the input
• In C Programming, bitwise complement operator is denoted by ~

7

12 = 0000 0000 0000 0000 0000 0000 0000 1100
Bitwise complement of 12
~ 0000 0000 0000 0000 0000 0000 0000 1100

 1111 1111 1111 1111 1111 1111 1111
0011
= -13 (decimal)

#include <stdio.h>
int main(){
 int a = 12;
 printf("Output = %d", ~a);
 return 0;
}

Right Shift Operator >>
• Right shift operator shifts all bits towards right by a certain number

of locations
• Bits that “fall off” from the right most end are lost
• Blank spaces in the leftmost positions are filled with sign bits
• 212 = 0000 0000 0000 0000 0000 0000 1101 0100
• 212 >> 0 = 0000 0000 0000 0000 0000 0000 1101 0100
• 212 >> 4 = 0000 0000 0000 0000 0000 0000 0000 1101
• 212 >> 6 = 0000 0000 0000 0000 0000 0000 0000 0011
• 212 >> 3 = 0000 0000 0000 0000 0000 0000 0001 1010
• Right shift by k is equivalent to integer division with 2k

8

Left Shift Operator <<
• Left shift operator shifts all bits towards left by a certain number of

locations
• Bits that “fall off” from the left most end are lost
• Blank spaces in the right positions are filled with 0s
• 212 = 0000 0000 0000 0000 0000 0000 1101 0100
• 212 << 0 = 0000 0000 0000 0000 0000 0000 1101 0100
• 212 << 4 = 0000 0000 0000 0000 0000 1101 0100 0000
• 212 << 6 = 0000 0000 0000 0000 0011 0101 0000 0000
• 212 << 28 = 0100 0000 0000 0000 0000 0000 0000 0000
• Left shift by k is equivalent to integer multiplication with 2k

9

Example use of bitwise operators
• Can use “masks” to extract certain bits of a number
• Suppose I want to look at the last 6 bits of a number a
• Create a mask with only last bits set to 1 and take & with a

10

int a = 427;
int p = 1;
int q = p << 6;
int m = q – 1;
int r = a & m;
printf("%d", r); // 43

a = 0000 0000 0000 0000 0000 0001 1010 1011
p = 0000 0000 0000 0000 0000 0000 0000 0001
q = 0000 0000 0000 0000 0000 0000 0100 0000
m = 0000 0000 0000 0000 0000 0000 0011 1111
r = 0000 0000 0000 0000 0000 0000 0010 1011

Precedence Table with Bitwise Operators

11

Operators Description Associativity
unary + -, ++, --, type,
sizeof, ~

Unary plus/minus, increment/decrement, typecast,
sizeof, bitwise complement

Right to left

* / % Arithmetic: Multiply, divide, remainder Left to right

+ - Arithmetic: Add, subtract Left to right

<< >> Bitwise left-shift, bitwise right shift Left to right

< > >= <= Relational operators Left to right

== != Relational operators Left to right

& Bitwise AND Left to right

^ Bitwise XOR Left to right

LOW

HIGH
Pr

ec
ed

en
ce

&& Logical AND Left to right

|| Logical Or Left to right

? : Conditional Right to left

= Assignment Right to left

| Bitwise OR Left to right

? : Conditional Right to left

|| Logical OR Left to right

= Assignment Right to left

Programs with
Loops

12

ESC101:
Fundamentals of

Computing

Printing the multiplication table of
2 13

printf(“2 x 1 = 2\n”);
printf(“2 x 2 = 4\n”);
printf(“2 x 3 = 6\n”);
printf(“2 x 4 = 8\n”);
printf(“2 x 5 = 10\n”);
printf(“2 x 6 = 12\n”);
printf(“2 x 7 = 14\n”);
printf(“2 x 8 = 16\n”);
printf(“2 x 9 = 18\n”);
printf(“2 x 10 = 20\n”);

2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
2 x 6 = 12
2 x 7 = 14
2 x 8 = 16
2 x 9 = 18
2 x 10 = 20

int a = 2, b = 1;
printf(“%d x %d = %d\n”, a, b, a*b);
b++;
printf(“%d x %d = %d\n”, a, b, a*b);
b++;
printf(“%d x %d = %d\n”, a, b, a*b);
b++;
printf(“%d x %d = %d\n”, a, b, a*b);
b++;
…

My new program now has exact same
statements repeated multiple times
printf(“%d x %d = %d\n”, a, b, a*b); b++;

You don’t have to repeat them multiple
times if you put them in a “loop”

ESC101:
Fundamentals of

Computing

Printing the multiplication table of
2 14
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
2 x 6 = 12
2 x 7 = 14
2 x 8 = 16
2 x 9 = 18
2 x 10 = 20

int a = 2, b;
for(b = 1; b <= 10; b++){
 printf(“%d x %d = %d\n”, a, b,
a*b);
}Try this out on Prutor

Exer: table of 3
Exer: table of 2 from 10 to 20

 What does this code mean?
1. Let a = 2, b be integer variables
2. First set b = 1
3. Then check if b <= 10 or not

1. If true, execute printf, execute b++
(or ++b or b=b+1), go to step 3

2. If false (i.e. b > 10), stop looping

++b or b = b + 1
is also fine here

Each run of the loop
is called an
“iteration”

This for loop
program runs for 10

iterations

ESC101:
Fundamentals of

Computing

Does My Problem Need Loops?
 Read the problem carefully and identify some tasks
that have to be repeated again and again
 Use this variable that is changing as the loop counter

15

Yes, but we could write the same code
printf(“%d x %d = %d\n”, a, b, a*b);
to do all the tasks by simply changing

the value of variable b again and again

Very Good!

The tasks may be slightly
different from each other

int a = 2, b;
for(b = 1; b <= 10; b++){
 printf(“%d x %d = %d\n”,
a, b, a*b);
} Yes, in the multiplication table example,

the tasks were slightly different. First print
2 x 1 = 2, then print 2 x 2 = 4 etc etc.

ESC101:
Fundamentals of

Computing

Syntax and Flow of the for loop
General form of the for loop

16
for(init_expr; stopping_expr; update_expr){
 statement1;
 statement2;
 ...
}
statement3;
statement4;
...

 What does this piece of code
mean?

1. First do as specified in initialization
expression
2. Then check the stopping expression
3. If stopping expression is true
 Execute all statements inside braces
 Execute update expression
 Go back to step 2
 Else stop looping and execute rest of code

Brackets essential if you want me
to do many things while looping

Initialization
expression is

executed only once

ESC101:
Fundamentals of

Computing

Syntax of the for loop

 The entire for loop is considered one statement
 Can also put inside for loop: printf statements, if-else/switch
statements, another for loop statement (nested for loop)
 Usually init_expr, stopping_expr, update_expr involve
the same variable, e.g. b in multiplication table
example
 Lovingly called variable of the loop/loop counter

17
for(init_expr; stopping_expr; update_expr){
 statement1;
 statement2;
 }

ESC101:
Fundamentals of

Computing

Syntax of the for loop

 stopping_expr must give true/false value
 Usually done by making stopping_expr a relational expression
 Warning: you can say b * 2 in stopping_expr but dangerous
 init_expr and update_expr can be anything you want

 init_expr and update_expr can even be empty

18
for(init_expr; stopping_expr; update_expr){
 statement1;
 statement2;
 }

for(;stopping_expr;){ ... }

Mr C considers 0 to be FALSE and 1
(or anything non-zero) to be TRUE

All expressions generate values,
even assignment/relational ones

Yes, you can write the init_expr
before the loop and the

update_expr inside the loop

ESC101:
Fundamentals of

Computing

Some common errors in loops
 Initialization: forget to do it or did wrong initialization
 Update: Forget to do update step or wrong update
step
 Termination: wrong or missing termination
 for(b=1;b<10;b++){…} not same as
for(b=1;b<=10;b++){…}
 Infinite loop: The loop goes on forever. Never
terminates.

 for(b=2;b>=1,b++){…}
 Prutor will give “TLE” error (time limit exceeded error)

19

ESC101:
Fundamentals of

Computing

 Example: Find the smallest
number 20

int main(){
 int total_num,curr_num,i;
 int min = INT_MAX; // initialize min as a very large integer
 scanf(“%d”,total_num); // read total number of inputs
 for(i = 1; i <= total_num; i++){
 scanf(“%d\n”,&curr_num); // read a number (each on a new line)
 if(curr_num <= min){
 min = curr_num;
 }
 }
printf(“Smallest number = %d”, min);
return 0;
}

Note: Need limit.h for INT_MAX

ESC101:
Fundamentals of

Computing

 Example: Print tables of 2 to 1021
int main(){
int i,j,val;
for(i = 2; i <= 10; i++){
 for(j=1; j <= 10; j++){
 val = i*j;
 if(val < 10)
 printf("0%d\t",val); // prefix 0 if value < 10
 else
 printf("%d\t",val);
 }
 printf("\n"); // start a new line
}
return 0;
}

Example of nested
for loop (for loop
inside a for loop)

ESC101:
Fundamentals of

Computing

Use of break/continue in loops 22
int main(){
 int i, curr_num, sum = 0; // no numbers seen yet. Sum initialized to 0
 for(i = 1; i <= 10; i++){ // loop will run (a maximum of) 10 times
 scanf(“%d\n”,&curr_num); // read a number
 if(curr_num == 0) break; // if input equals 0, quit the loop
 else if (curr_num < 0) continue; // if input < 0, skip and go to next iteration of for
loop
 else sum = sum + curr_num; // if input > 0, add it to the sum
 }
 printf(“Sum = %d”, sum); // print the sum of inputs that were > 0
 return 0;
}

Use break;
 to exit the loop

Use continue; to skip
the current iteration
and go to next one

Program to read 10 numbers and compute sum of those that are > 0. Stop reading if user enters 0

For nested loops,
break
and continue
only break from
and skip the loop
in
which they are
used

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

