
ESC101: Fundamentals of Computing

Operators (Continued),
Programs with Branching Structure

 Nisheeth

Recap: Operators
 Looked at various operators in C, their precedence and associativity

2

Operators Description Associativity

unary + -, ++, --,
type, sizeof

Unary plus/minus Right to left

* / % Arithmetic: Multiply, divide, remainder Left to right

+ - Arithmetic: Add, subtract Left to right

< > >= <= Relational operators Left to right

== != Relational operators Left to right

&& AND Left to right

|| OR Left to right

= Assignment Right to left LOW

HIGH

Note: Precedence of brackets () is above every other operator

Note: This list
doesn’t include
some other
operators that we
have not yet seen

Pr
ec

ed
en

ce

Also see: https://en.cppreference.com/w/c/language/operator_precedence

Order of evaluation if several operators
are present in an expression

Order of evaluation if there are several
operators of equal precedence level

https://en.cppreference.com/w/c/language/operator_precedence

Plan for today
 Logical Operators (started but wasn’t finished last time)
 The Conditional Operator (didn’t see last time)
 Start discussing conditional statements (if, if-else, etc) to write C

programs that have a branching structure and help us make choices in
our programs

3

Logical Operators

Logical Op Function Allowed Operand Types
&& Logical AND char, int, float, double
|| Logical OR char, int, float, double
! Logical NOT char, int, float, double

4

 There are 3 logical operators in C: AND (&&), OR (||), NOT (!)

 Operands can be variables/constants (or expressions in general)
 Expression-1 && Expression-2 (result = 1 only when both expr. are non-zero)
 Expression-1 || Expression-2 (result = 1 if at least one of them is non-zero)
 !Expression (negates the result of an expression: 0 to 1 or non-zero to 0)

Logical Operators: Some Examples
Result Remark

2 && 3 1
2 || 0 1

‘A’ && ‘0’ 1 ASCII value of ‘0’≠0
‘A’ && 0 0

‘A’ && ‘b’ 1
! 0.0 1 0.0 == 0 is guaranteed

! 10.05 0 Any real ≠ 0.0
(2<5) && (6>5) 1 AND operating on 2 expressions

5

Logical Operators: Truth Table
E1 E2 E1 && E2 E1 || E2
0 0 0 0
0 Non-0 0 1

Non-0 0 0 1
Non-0 Non-0 1 1

E !E
0 1

Non-0 0

“E” for
expression

6

Logical Operators: Precedence and Associativity
 NOT has same precedence as unary operators (thus very high precedence)
 AND and OR have lower precedence than relational operators
 OR has lower precedence than AND (important)
 Associativity for logical operators is left to right

 1 && 0 || 1 || 0

0 || 1 || 0 1 || 0 1

2 == 2 && 3 == 1 || 1==1 || 5==4

7

The Conditional Operator
 The conditional operator is of the form

 Meaning: Evaluate expression 1, if it is true (non-zero), evaluate expression 2,

otherwise evaluate expression 3
 The operator generates the value of expression 2 or expression 3
 Often, we assign the result to another variable (a = exp1 ? exp2 : exp3)
 Data type of generated value ? Whichever of exp2 or exp3 is of higher type

 Precedence of cond. operator is just above assignment operators
 Associativity of cond. operator is right to left

8

Expression 1 ? Expression 2 : Expression 3

A question being
asked here

The Conditional Operator: Some Examples
 a = (i>0) ? 100 : 10; /* a will be 100 or 10 depending on i */

 a = (i>0)? 10.0 : 5; /* RHS result will be a float */

 A sophisticated example (expression 1 consisting of multiple operators)
 c += (a>0 && a<=10) ? ++a : a/b;
 The above will first evaluate a>0 && a<=10 and then choose ++a or a/b
 Result from RHS will be added to c (c = c + result)

9

Now our table is..

10

Operators Description Associativity

(unary) + -, ! Unary plus/minus, logical NOT Right to left

* / % Multiply, divide, remainder Left to right

+ - Add, subtract Left to right

< > >= <= Relational operators Left to right

== != Equal, not equal Left to right

&& Logical And Left to right

|| Logical Or Left to right

? : Conditional Right to left

= Assignment Right to left
LOW

HIGH

Pr
ec

ed
en

ce

Note: Precedence of brackets () is above every other operator

Whenever unsure, use brackets to
ensure the expression does what

YOU want

Note: Ensure Your Expressions Say What You Mean

11

0 <= 10 <= 4

(0 <= 10) <= 4

1 <= 4

1 /* True */

0 <= 10 && 10 <= 4

(0 <= 10) && (10 <= 4)

(1) && (10 <= 4)

1 && (0)

0 /*False*/

Some Useful Tips on using correct Data Types
 Double and float are both happy with %f for printf
 However, in scanf, double insists on %lf (%f gives junk)
 Don’t use a float/double for long integers

 Choice between float or double: If you don’t want your digits after decimal
to be rounded off, use double instead of float

When you say long a = 3213213210,
since the number is within range of long,
I will preserve every digit of it carefully

When you say float a = 3213213210,
I will store 3213213184.00

The number is like 3.2 x 109 and my
error was just 26. Don’t blame me!

Why? What
would be the

problem?

Range of float is
larger. What if I

store it as a float?

12

Precision

• There are infinite real numbers between any two real numbers
• We can represent only 232 numbers in 32 bits
• So we can store only a vanishingly small number of decimal

numbers precisely
• All others are approximated to 8 (float) or 16 (double) decimal

places

13

 Programs with Conditional Statements

If condition true
 do abc
Otherwise
 do xyz

But didn’t you just
teach me about

conditional
operators ?

Yes, but they are usually for small
expressions. For more complex

programs, I have some something
different (and better) for you  14

Branching using if statement
 int main(){
 int salary, loan = 0; // 0 means not approved, 1 means approved (initialize with
0)
 float interest_rate;

 scanf(“%d”,& salary);
 if (salary >= 400000) {
 loan = 1; // 1 means loan approved

 interest_rate = 10.0;
 }
 // other stuff in the program..
 }

Braces required only when there are multiple

statements within the if block

Will execute this block of code only if the
condition (salary > 400000) is true (1)

Testing condition is an expression
that gives 0 or 1 value

15

Branching using if-else statement
 int main(){

 int salary, loan_amount;

 float interest_rate;

 scanf(“%d”,& salary);

 if (salary > 400000) {

 loan_amount = 1000000;

 interest_rate = 10.0;

printf(“Congratulations! Your loan amount is %d, interest rate is %d”,loan_amount,interest_rate);

 }

else {

printf(“Sorry! Your loan cannot be approved”);

 }

 // do other stuff in the program

 }

The if block (can have one or
more statements)

The else block (can have one
or more statements)

16

Various ways of using if and else

 if (condition-1) {
 }
 else if (condition-2) {
 }
 else {
 }

 if (condition-1) {
 }
 else if (condition-2) {
 }
 else if (condition-3) {
 }

 else if (condition-N) {
 }
 else {
 }

 if (condition) {
 }
 else {
 }

 if (condition) {
 } if (condition-1) {

 if (condition-2) {
 }
 else {
 }

 }
 else {
 if (condition-3) {
 }
 else {
 }

 }

“nested” if

Note: Each else must have a matching
if (also, number of if must be equal to

or more than number of else) 17

• If you do not put curly braces, Mr. C will try to put them for you
(and maybe in a way that you don’t want him to)

 if((a != 0) && (b != 0))
 if(a * b >= 0)
 printf(“Positive product”);
 else
 printf(“One number is zero”);

 if((a != 0) && (b != 0)){
 if(a * b >= 0){
 printf(“Positive product”);
 }else{
 printf(“One number is zero”);
 }
 }

If you do not put brackets, I
will match else to closest if

I will not care how you did indentation

Be Careful with Braces when using if-else

18

If you write like this…. Mr. C will treat it like this internally

But that is not
what I meant

	ESC101: Fundamentals of Computing
	Recap: Operators
	Plan for today
	Logical Operators
	Logical Operators: Some Examples
	Logical Operators: Truth Table
	Logical Operators: Precedence and Associativity
	The Conditional Operator
	The Conditional Operator: Some Examples
	Now our table is..
	Note: Ensure Your Expressions Say What You Mean
	Some Useful Tips on using correct Data Types
	Precision
	 Programs with Conditional Statements
	Branching using if statement
	Branching using if-else statement
	Various ways of using if and else
	Be Careful with Braces when using if-else

