
ESC101: Fundamentals of Computing

Expressions and Operators in C

Nisheeth

Announcements
 Section number confusion?
 It seems Pingala shows a changed section number for some students
 Continue with same section number that you are using right now. We will

reconcile with pingala this week

 Week-2 lab graded
 Apply for regrading only if
 Your output is almost exactly what is expected in the test cases, but for some reason the

test cases are not passing
 You made a small mistake, fixing which would make your code work. Specify the small

mistake in the regrading request, TAs are not obliged to look for it

 Minor Quiz 1 will be graded soon (this week)

2

Arithmetic on char data type
 Each char is associated with an integer value (its ASCII code)
 Example: char ‘A’ to ’Z’ are associated with integers 65 to 90
 Refer to the ASCII table for the code (int) of each char (no need to remember

by heart). signed char range: -128 to 127, unsigned char range is 0 to 255
 #include <stdio.h>

 int main(){

 int x = ‘B’ - ‘A’ + 2;

 printf(“x = %d\n”, a);

 char y = 68;

 printf(“y = %c”,y);

 printf(“y = %d”,y);

 return 0;

 }

3

D

 #include <stdio.h>
 int main(){

 char x = 128;
 printf(“x = %d\n”, x);
 char y = -130;
 printf(“y = %d\n”,y);
 return 0;

 }

-128

126

First number from
the negative side

Second number from
the positive side

128 and -130 are out of the range
of signed char

What if x
and y are
unsigned

char ?

Try in
Prutor and

see yourself

Note: When printing a char using printf,
the quote symbols ‘ ‘ are not shown

Note: When giving char
input for scanf, we don’t

type the quote symbols ‘ ‘

68
3

ESC101: Fundamentals
of Computing

Expressions in C
 We use math formulae all the time in physics, chem, math
 a = b / 5
 x = y * y + z * z
 x = (int)(pow((double)y, 2.0) + pow((double)z, 2.0))

 Mr C calls these formulae expressions
 x = y * y + z * z is an expression for Mr C
 y * y + z * z is also an expression for Mr C
 y * y is also an expression for Mr C
 z * z is also an expression for Mr C

pow is a function in math.h
(power function)

x = y*y + z*z (= y2 + z2)

Oh! So two expressions
can be added together to
get another expression!

So is z an
expression? Yes, take two expressions and do

operations like addition, multiplication,
or assignment (=) with them and a

new expression will emerge

It sure
is!

So is 5 an
expression?

It sure
is!

Expressions and Operators
 Expressions in C consist of one or more variables/constants
 An expression contains one or more operators, such as
 c = a + b - 2;
 Operators in C can be one of the following type
 Arithmetic
 Unary
 Relational and logical
 Assignment
 Conditional

5

Yes.
But I will tell you

some other
interesting things
about them and
other operators

I think I have
already seen/used

Arithmetic and
Assignment
operators in

previous
lectures/labs!

Arithmetic operators
 Already seen. Operate on int, float, double (and char)

 Op Meaning Example Remarks

+ Addition 9+2 is 11
9.1+2.0 is 11.1

- Subtraction 9-2 is 7
9.1-2.0 is 7.1

* Multiplication 9*2 is 18
9.1*2.0 is 18.2

/ Division 9/2 is 4 Integer division
9.1/2.0 is 4.55 Real division

% Remainder 9%2 is 1 Only for int
6

Unary operators

Operator
- Negative of an expression

++/-- Increment/decrement a variable

sizeof Output memory box size for a variable

type (examples: int, float, double, etc) Type-casting

7

Unary Operators - Negative
 Operators that take only one argument (or operand)
 -5
 -b

 Observe that – is both an arithmetic and unary operator
 Meaning depends on context
 This is called overloading

8

Unary operators – increment and decrement
 Increment (++) increases a variable by 1
 Decrement (--) decreases a variable by 1
 ++variable is the pre-increment operator

Means increment, then use
 variable++ is the post-increment operator

Means use, then increment
 Likewise, the -- can be pre/post decrement

int main(){
 char a = ‘A’; float b = 3.31;
 printf("%c\t%f\n",++a,b++);
 printf("%c\t%f",--a,b--);
 return 0;
}

B 3.31
A 4.31

Work with all
data types

9

Note: The variable’s
value will change for

the rest of the
program

Unary operators - sizeof

 Syntax
 sizeof var
 sizeof(type)

 Returns size of the operand in bytes
 sizeof(char) will return 1
 sizeof(float) will (mostly) return 4

 Very useful when you are porting programs across computers

10

Unary operators - typecast

 Syntax
 (type) var, for example – (int) a, (float) a, etc

 We have already seen this
 What will be the output of this program?

int main(){
 double a = 67.2;
 printf("size is %d\n", sizeof a);
 printf("size is %d\n", sizeof((char) a));
 printf("%c", (char) a);
 return 0;
}

Size is 8
Size is 1
C

11

Precedence Rules for Unary Operators
 Precedence rules tell us the order in which the operators will be

applied in any C expression
 Unary ops are above arithmetic ops, only below brackets
 If a is 1 and b is 2, what will a + -b be evaluated as?

 What about this program?

int main(){
 int a = 1; int b = 2;
 printf("%d", a + - + - b);
 return 0;
}

3

12

-1

Bracket has
the highest
precedence

Note +x is x

Associativity Rules for Unary Operators
 Associativity rules tell us how the operators of same precedence are

grouped (e.g., a+b+c will be evaluated as (a+b)+c, not a+(b+c))
 For unary operators, the associativity is from right to left
 Important to remember this
 Most other operators’ associativity is left to right (e.g., + operator)

 What will this program print?

int main(){
 int a = 1;
 printf("%d", - ++a);
 return 0;
}

-2

13

Relational Operators
 Compare two quantities

 Work on int, char, float, double…

Operator Function
> Strictly greater than

>= Greater than or equal to
< Strictly less than

<= Less than or equal to
== Equal to
!= Not equal to

14

Result is

0 or 1

1 means
condition

true, 0
means
false

Relational Operators: Some Examples
Rel. Expr. Result Remark

3>2 1
3>3 0

‘z’ > ‘a’ 1 ASCII values used for char
2 == 3 0

‘A’ <= 65 1 'A' has ASCII value 65
‘A’ == ‘a’ 0 Different ASCII values

(‘a’ – 32) == ‘A’ 1
5 != 10 1
1.0 == 1 AVOID May give unexpected result due to

approximation

Avoid mixing int and float values while comparing.
Comparison with floats is not exact! 15

int a; int b; int c;
int cEven; // count of even inputs
scanf(“%d%d%d”, &a,&b,&c); // input a,b,c

// (x%2 == 0) evaluates to 1 if x is Even,
// 0 if x is Odd
cEven = (a%2 == 0) + (b%2 == 0) + (c%2 == 0);
printf(“Even=%d\nOdd=%d”, cEven, 3-cEven);

Relational Operators: Another Example
 Problem: Input 3 positive integers. Print the count of inputs that

are even and odd.
 Do not use if-then-else

INPUT
10
5
3

OUTPUT
Even=1
Odd=2

16

Assignment Operator

• Basic assignment (variable = expression)

Variant Meaning

Var += a Var = Var + a

Var -= a Var = Var – a

Var *=a Var = Var *a

Var /=a Var = Var/a

Var %=a Var = Var%a

17

Precedence of Assign Operators

 Always the last to be evaluated
 x *= -2 *(y+z)/3
 x = x*(-2*(y+z)/3)

 Seldom need to worry about it

18

Operator Precedence

 Example: a + b – c * d % e /f

Operators Description Associativity

(unary) + - Unary plus/minus Right to left

* / % Multiply, divide, remainder Left to right

+ - Add, subtract Left to right

< > >= <= less, greater comparison Left to right

== != Equal, not equal Left to right

= Assignment Right to left
LOW

HIGH

 (a+b) - (((c *d) % e) / f)

Earlier the ASCII table.
Now this table? Have to

memorize this??

No.
Write it in
your
notebook

19

Logical Operators

Logical Op Function Allowed Types

&& Logical AND char, int, float, double
|| Logical OR char, int, float, double
! Logical NOT char, int, float, double

 Remember
 value 0 represents false.
 any other value represents true.

Compiler returns 1 by default

20

Logical Operators: Truth Table
E1 E2 E1 && E2 E1 || E2
0 0 0 0
0 Non-0 0 1

Non-0 0 0 1
Non-0 Non-0 1 1

E !E
0 1

Non-0 0

“E” for
expression

21

Logical Operators: Some Examples
Expr Result Remark

2 && 3 1
2 || 0 1

‘A’ && ‘0’ 1 ASCII value of ‘0’≠0
‘A’ && 0 0

‘A’ && ‘b’ 1
! 0.0 1 0.0 == 0 is guaranteed

! 10.05 0 Any real ≠ 0.0
(2<5) && (6>5) 1 Compound expr

22

Logical Operators: Precedence and Associativity

 NOT has same precedence as equality operator
 AND and OR are lower than relational operators
 OR has lower precedence than AND
 Associativity goes left to right

 1 && 0 || 1 || 0

0 || 1 || 0 1 || 0 1

2 == 2 && 3 == 1 || 1==1 || 5==4

23

Operator Precedence for various operators

24

Operators Description Associativity

unary + unary - Unary plus/minus Right to left

* / % Multiply, divide, remainder Left to right

+ - Add, subtract Left to right

< > >= <= Relational operators Left to right

== != Equal, not equal Left to right

&& And Left to right

|| Or Left to right

= Assignment Right to left

I
N
C
R
E
A
S
I
N
G

LOW

HIGH

Note: Precedence of brackets () are above every other operator
Note: This list
doesn’t include
some other
operators that we
have not yet seen

	ESC101: Fundamentals of Computing
	Announcements
	Arithmetic on char data type
	Expressions in C
	Expressions and Operators
	Arithmetic operators
	Unary operators
	Unary Operators - Negative
	Unary operators – increment and decrement
	Unary operators - sizeof
	Unary operators - typecast
	Precedence Rules for Unary Operators
	Associativity Rules for Unary Operators
	Relational Operators
	Relational Operators: Some Examples
	Relational Operators: Another Example
	Assignment Operator
	Precedence of Assign Operators
	Operator Precedence
	Logical Operators
	Logical Operators: Truth Table
	Logical Operators: Some Examples
	Logical Operators: Precedence and Associativity
	Operator Precedence for various operators

