
ESC101: Fundamentals of Computing

Expressions and Operators in C

Nisheeth

Announcements
 Section number confusion?
 It seems Pingala shows a changed section number for some students
 Continue with same section number that you are using right now. We will

reconcile with pingala this week

 Week-2 lab graded
 Apply for regrading only if
 Your output is almost exactly what is expected in the test cases, but for some reason the

test cases are not passing
 You made a small mistake, fixing which would make your code work. Specify the small

mistake in the regrading request, TAs are not obliged to look for it

 Minor Quiz 1 will be graded soon (this week)

2

Arithmetic on char data type
 Each char is associated with an integer value (its ASCII code)
 Example: char ‘A’ to ’Z’ are associated with integers 65 to 90
 Refer to the ASCII table for the code (int) of each char (no need to remember

by heart). signed char range: -128 to 127, unsigned char range is 0 to 255
 #include <stdio.h>

 int main(){

 int x = ‘B’ - ‘A’ + 2;

 printf(“x = %d\n”, a);

 char y = 68;

 printf(“y = %c”,y);

 printf(“y = %d”,y);

 return 0;

 }

3

D

 #include <stdio.h>
 int main(){

 char x = 128;
 printf(“x = %d\n”, x);
 char y = -130;
 printf(“y = %d\n”,y);
 return 0;

 }

-128

126

First number from
the negative side

Second number from
the positive side

128 and -130 are out of the range
of signed char

What if x
and y are
unsigned

char ?

Try in
Prutor and

see yourself

Note: When printing a char using printf,
the quote symbols ‘ ‘ are not shown

Note: When giving char
input for scanf, we don’t

type the quote symbols ‘ ‘

68
3

ESC101: Fundamentals
of Computing

Expressions in C
 We use math formulae all the time in physics, chem, math
 a = b / 5
 x = y * y + z * z
 x = (int)(pow((double)y, 2.0) + pow((double)z, 2.0))

 Mr C calls these formulae expressions
 x = y * y + z * z is an expression for Mr C
 y * y + z * z is also an expression for Mr C
 y * y is also an expression for Mr C
 z * z is also an expression for Mr C

pow is a function in math.h
(power function)

x = y*y + z*z (= y2 + z2)

Oh! So two expressions
can be added together to
get another expression!

So is z an
expression? Yes, take two expressions and do

operations like addition, multiplication,
or assignment (=) with them and a

new expression will emerge

It sure
is!

So is 5 an
expression?

It sure
is!

Expressions and Operators
 Expressions in C consist of one or more variables/constants
 An expression contains one or more operators, such as
 c = a + b - 2;
 Operators in C can be one of the following type
 Arithmetic
 Unary
 Relational and logical
 Assignment
 Conditional

5

Yes.
But I will tell you

some other
interesting things
about them and
other operators

I think I have
already seen/used

Arithmetic and
Assignment
operators in

previous
lectures/labs!

Arithmetic operators
 Already seen. Operate on int, float, double (and char)

 Op Meaning Example Remarks

+ Addition 9+2 is 11
9.1+2.0 is 11.1

- Subtraction 9-2 is 7
9.1-2.0 is 7.1

* Multiplication 9*2 is 18
9.1*2.0 is 18.2

/ Division 9/2 is 4 Integer division
9.1/2.0 is 4.55 Real division

% Remainder 9%2 is 1 Only for int
6

Unary operators

Operator
- Negative of an expression

++/-- Increment/decrement a variable

sizeof Output memory box size for a variable

type (examples: int, float, double, etc) Type-casting

7

Unary Operators - Negative
 Operators that take only one argument (or operand)
 -5
 -b

 Observe that – is both an arithmetic and unary operator
 Meaning depends on context
 This is called overloading

8

Unary operators – increment and decrement
 Increment (++) increases a variable by 1
 Decrement (--) decreases a variable by 1
 ++variable is the pre-increment operator

Means increment, then use
 variable++ is the post-increment operator

Means use, then increment
 Likewise, the -- can be pre/post decrement

int main(){
 char a = ‘A’; float b = 3.31;
 printf("%c\t%f\n",++a,b++);
 printf("%c\t%f",--a,b--);
 return 0;
}

B 3.31
A 4.31

Work with all
data types

9

Note: The variable’s
value will change for

the rest of the
program

Unary operators - sizeof

 Syntax
 sizeof var
 sizeof(type)

 Returns size of the operand in bytes
 sizeof(char) will return 1
 sizeof(float) will (mostly) return 4

 Very useful when you are porting programs across computers

10

Unary operators - typecast

 Syntax
 (type) var, for example – (int) a, (float) a, etc

 We have already seen this
 What will be the output of this program?

int main(){
 double a = 67.2;
 printf("size is %d\n", sizeof a);
 printf("size is %d\n", sizeof((char) a));
 printf("%c", (char) a);
 return 0;
}

Size is 8
Size is 1
C

11

Precedence Rules for Unary Operators
 Precedence rules tell us the order in which the operators will be

applied in any C expression
 Unary ops are above arithmetic ops, only below brackets
 If a is 1 and b is 2, what will a + -b be evaluated as?

 What about this program?

int main(){
 int a = 1; int b = 2;
 printf("%d", a + - + - b);
 return 0;
}

3

12

-1

Bracket has
the highest
precedence

Note +x is x

Associativity Rules for Unary Operators
 Associativity rules tell us how the operators of same precedence are

grouped (e.g., a+b+c will be evaluated as (a+b)+c, not a+(b+c))
 For unary operators, the associativity is from right to left
 Important to remember this
 Most other operators’ associativity is left to right (e.g., + operator)

 What will this program print?

int main(){
 int a = 1;
 printf("%d", - ++a);
 return 0;
}

-2

13

Relational Operators
 Compare two quantities

 Work on int, char, float, double…

Operator Function
> Strictly greater than

>= Greater than or equal to
< Strictly less than

<= Less than or equal to
== Equal to
!= Not equal to

14

Result is

0 or 1

1 means
condition

true, 0
means
false

Relational Operators: Some Examples
Rel. Expr. Result Remark

3>2 1
3>3 0

‘z’ > ‘a’ 1 ASCII values used for char
2 == 3 0

‘A’ <= 65 1 'A' has ASCII value 65
‘A’ == ‘a’ 0 Different ASCII values

(‘a’ – 32) == ‘A’ 1
5 != 10 1
1.0 == 1 AVOID May give unexpected result due to

approximation

Avoid mixing int and float values while comparing.
Comparison with floats is not exact! 15

int a; int b; int c;
int cEven; // count of even inputs
scanf(“%d%d%d”, &a,&b,&c); // input a,b,c

// (x%2 == 0) evaluates to 1 if x is Even,
// 0 if x is Odd
cEven = (a%2 == 0) + (b%2 == 0) + (c%2 == 0);
printf(“Even=%d\nOdd=%d”, cEven, 3-cEven);

Relational Operators: Another Example
 Problem: Input 3 positive integers. Print the count of inputs that

are even and odd.
 Do not use if-then-else

INPUT
10
5
3

OUTPUT
Even=1
Odd=2

16

Assignment Operator

• Basic assignment (variable = expression)

Variant Meaning

Var += a Var = Var + a

Var -= a Var = Var – a

Var *=a Var = Var *a

Var /=a Var = Var/a

Var %=a Var = Var%a

17

Precedence of Assign Operators

 Always the last to be evaluated
 x *= -2 *(y+z)/3
 x = x*(-2*(y+z)/3)

 Seldom need to worry about it

18

Operator Precedence

 Example: a + b – c * d % e /f

Operators Description Associativity

(unary) + - Unary plus/minus Right to left

* / % Multiply, divide, remainder Left to right

+ - Add, subtract Left to right

< > >= <= less, greater comparison Left to right

== != Equal, not equal Left to right

= Assignment Right to left
LOW

HIGH

 (a+b) - (((c *d) % e) / f)

Earlier the ASCII table.
Now this table? Have to

memorize this??

No.
Write it in
your
notebook

19

Logical Operators

Logical Op Function Allowed Types

&& Logical AND char, int, float, double
|| Logical OR char, int, float, double
! Logical NOT char, int, float, double

 Remember
 value 0 represents false.
 any other value represents true.

Compiler returns 1 by default

20

Logical Operators: Truth Table
E1 E2 E1 && E2 E1 || E2
0 0 0 0
0 Non-0 0 1

Non-0 0 0 1
Non-0 Non-0 1 1

E !E
0 1

Non-0 0

“E” for
expression

21

Logical Operators: Some Examples
Expr Result Remark

2 && 3 1
2 || 0 1

‘A’ && ‘0’ 1 ASCII value of ‘0’≠0
‘A’ && 0 0

‘A’ && ‘b’ 1
! 0.0 1 0.0 == 0 is guaranteed

! 10.05 0 Any real ≠ 0.0
(2<5) && (6>5) 1 Compound expr

22

Logical Operators: Precedence and Associativity

 NOT has same precedence as equality operator
 AND and OR are lower than relational operators
 OR has lower precedence than AND
 Associativity goes left to right

 1 && 0 || 1 || 0

0 || 1 || 0 1 || 0 1

2 == 2 && 3 == 1 || 1==1 || 5==4

23

Operator Precedence for various operators

24

Operators Description Associativity

unary + unary - Unary plus/minus Right to left

* / % Multiply, divide, remainder Left to right

+ - Add, subtract Left to right

< > >= <= Relational operators Left to right

== != Equal, not equal Left to right

&& And Left to right

|| Or Left to right

= Assignment Right to left

I
N
C
R
E
A
S
I
N
G

LOW

HIGH

Note: Precedence of brackets () are above every other operator
Note: This list
doesn’t include
some other
operators that we
have not yet seen

	ESC101: Fundamentals of Computing
	Announcements
	Arithmetic on char data type
	Expressions in C
	Expressions and Operators
	Arithmetic operators
	Unary operators
	Unary Operators - Negative
	Unary operators – increment and decrement
	Unary operators - sizeof
	Unary operators - typecast
	Precedence Rules for Unary Operators
	Associativity Rules for Unary Operators
	Relational Operators
	Relational Operators: Some Examples
	Relational Operators: Another Example
	Assignment Operator
	Precedence of Assign Operators
	Operator Precedence
	Logical Operators
	Logical Operators: Truth Table
	Logical Operators: Some Examples
	Logical Operators: Precedence and Associativity
	Operator Precedence for various operators

