Data Types in C (a deeper dive)

ESC101: Fundamentals of Computing
Nisheeth

Mixing Types in C Expressions

- We can have C expression with variables/constants of several types
- Certain rules exist that decide the type of the final value computed
- Demotion and Promotion are two common rules
- int a = 2/3; // a will be 0 (no demotion/promotion)
- float a $=2 / 3$; // a will be 0.0 (RHS is int with value 0 , promoted to float with value 0.0)
- int a = 2/3.0; // a will be 0 (RHS is float with value 0.66 , becomes int with value 0)
- float $a=2 / 3.0 ; \quad / /$ a will be 0.66 (RHS is float with value 0.66 , no demotion/promotion)
- int a = 9/2; // a will be 4 (RHS is int with value 4, no demotion/promotion)
- float $a=9 / 2 ; \quad / /$ a will be 4.0 (RHS is int with value 4, becomes float with value 4.0)
- During demotion/promotion, the RHS value doesn't change, only the data type of the RHS value changes to the data type of LHS variable

Type Casting or Typecasting

- Converting values of one type to other.

Also remember: When assigning values, I always compute the RHS first

- Example: int to float and float to int (also applies to other types)
- Conversion can be implicit or explicit. Typecasting is the explicit way
- int $\mathrm{k}=5$;
- float $\mathrm{x}=\mathrm{k} ; \quad / /$ good implicit conversion, x gets 5.0
- float $\mathrm{y}=\mathrm{k} / 10 ; \quad / /$ poor implicit conversion, y gets 0.0
- float $z=(($ float $) \mathrm{k}) / 10 ; / /$ Explicit conversion by typecasting, z gets 0.5
- float $\mathrm{z}=\mathrm{k} / 10.0 ; \quad / /$ this works too (explicit without typecasting), z gets 0.5

Typecasting: An Example Program

Typecasting is Nice. But Take Care..

Reverse typecasting error can happen too: Sometimes converting a smaller data type (say int) to larger data type (say float) can also give unexpected results (more on this later in the semester)

No. 1.0e50 is too big to be cast as an int (or even long - try yourself)
\#include <stdio.h>
int main()\{
float x; int y;
$x=1.0 \mathrm{e} 50 ; / / 10 \wedge 50$
$y=$ (int) x; // typecast (convert) float to int
printf("\%d",y);
return 0;
\}

Are you kidding?
Unexpected!

int and long

Very good friends since both store integers
Can add/subtract/multiply/divide/remainder two ints, two longs, as well as an int and a long
In fact, even if we try to print an int using \%ld or print a long using \%d, Prutor will only wam us, not throw an error (but results at run-time may be unexpected sometimes)

int and long

Why not just define a long variable? No

Often, you don't have control over the kind of data you receive. Typecasting helps convert data to a form your like to work with
your requests nicely
need for typecasting!

Dotted line Thankfully, we......

 I create tl know typecasting. It variables r can save us here.

I should try this too:
long $b=2 *($ long $)$;
long $b=$ (long) $a+a$;
©

b = (long)a + (long)a; pintif("\%ld",b); 100000

a
b

Mixed Type Operations (Already Saw Some Cases)

 What if we ha Hmm ... An int being multiplied to a long. $\mathrm{c}=\mathrm{a}$ * b ; Let me take care to convert the int to a long before performing the operation © int $\mathrm{a}=2$; long $c, b=5$; Can typecast int to long b = (long) a;Can typecast long to int $\mathrm{a}=$ (int) b ;

Be careful! If b was storing a very large integer that won't fit into int, this typecast will cause errors

In general, we should typecast weaker types like int into more powerful types like long and float that can store larger numbers
a
b

Arithmetic on char data type

- Recall that each char is associated with an integer value

Note: When giving char input for scanf, we don't

- Example: char ' A ' to ' Z ' are associated with integers 65 to 90 type the quote symbols'"
- Refer to the ASCII table shown in last lecture's slides
- Note: signed char range is -128 to 127 , unsigned char range is 0 to 255

Try in Prutor and see yourself
First number from the negative side

Arithmetic on char data type: More Examples

- Keep in mind that char and int are inter-convertible


```
    Output:
6 5
55
F
```

321 is out of range of signed char (and even unsigned char)printf("\% $\backslash \backslash n ", ~ ‘ C '+5) ; ~$ printf("\%c\n", 'D' - 'A' + 'a');
printf("\%d\n", '3’ + 2);

Representing Negative Integers

- Mainly three ways
- - Signed Magnitude
- - One's Complement
- - Two's Complement (used in modern computers)
- The Signed Magnitude approach is straightforward: To represent x , take binary representation of x and make the left-most bit 1 . So 7 (7 in binary = 111) will be

One's Comnlement

The first bit acts as a sign bit - if the first bit is 1, it is treated as a negative number, if the first bit is 0 , it is treated as a positive number

If we have n bits, then using one's complement, we can represent numbers between $-\left(2^{n-1}-1\right)$ and $+\left(2^{n-1}-1\right)$

Largest positive integer is 01111111111111111111111111111111 Smallest negative integer is 1000000000000000000000000000000

$$
\begin{aligned}
& \text { Weird thing - negative } 0 \text { :) } \\
& 11111111111111111111111111111111
\end{aligned}
$$

- Used no more. These days, computers use two's complement to represent negative integers

Two's Complement

- Two's complement of an n-bit binary number is the number which when added to this number, gives 2^{n}
- $\quad 2^{n}=10000000 \ldots . .0 \quad$ (1 followed by n zero bits)
- This means two's complement of b is $2^{n}-b$
- Recall that $b+\sim b=a l l$ ones $=2^{n}-1$ i.e. two's complement of b is $2^{n}-b=$ ~b +1
- So a way of calculating two's complement - take the one's complement and add 1 to the binary string
- These days two's complement of an integer n represents its negative (that is $-n$)
- So for any integer n, one's complement of n will be -($n+1$)

Two's Complement

The first bit acts as a sign bit - if the first bit is 1, it is treated as a negative number, if the first bit is 0 , it is treated as a positive number

Largest positive number is 01111111111111111111111111111111 Smallest negative number is 1000000000000000000000000000000 11111111111111111111111111111111 now represents -1

If we have n bits, then using two's complement, we can represent numbers between -2^{n-1} and $+\left(2^{n-1}-1\right)$

Floating Point Representation

- Have to represent three things
- sign
- Exponent
- Number
- Assign some bits of memory for each
- 1 bit for sign
- m for exponent
- n for mantissa

Conceptual Example

- Consider a 4 bit memory
- What can you assign with unsigned int?
- 0,1,..... 15
- What can you assign with signed int?
- Use twos complement notation
- -8,-7,.... ,7
- What can you assign with float?

s	e	m	m	1.0, 1.1, 1.2, 1.3
				2.0, 2.2, 2.4, 2.6
$\left.(-1)^{\mathrm{s}} * 1 . \mathrm{m}\right)^{2 \mathrm{e}-0}$				-1.0, -1.1, -1.2, -1.3
				-2.0, -2.2, -2.4, -2.6

This m is the decimal equivalent of 2 bits m m

IEEE 754 Floating Point Representation

IEEE 754 Floating Point Standard

s	$\mathrm{e}=$ exponent	$\mathrm{m}=$ mantissa
1 bit 8 bits	23 bits	
number $=(-1)^{\mathrm{s} *}(1 . \mathrm{m}){ }^{*} 2^{\mathrm{e}-127}$		

Single-precision (float)

| 0 | 01101000 | 10101010100001101000010 |
| :--- | :--- | :--- | :--- |

- Sign: $0=>$ posifive
- Exponent:

- Bias adjistm@nt: 104
- Significand:
$-1+1 \times 2^{-1}+0^{6} 2^{-2}+1 \times 2^{-3}+0{ }^{\frac{1}{2}} 2^{-4}+1 \mathrm{X}^{-5}+\ldots$
$=1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$
$=1.0+0.666115$
- Represents: $1.666115^{*} 2^{-23} \sim 1.986^{*} 10^{-7}$

This is what you're using when you are invoking float

Practical demonstration

- $12.375=12+0.375$
- In binary $=1100+.011=1100.011$
- In IEEE notation $=1.100011 \times 23$
- So, the bias is 3 , which means the exponent must be $127+3=$ 130, which in binary format is 10000010
- So, the number, in IEEE single precision format will be
- 0-10000010-100011000000000000000000

A really nice library of lots of mathematic al functions abs(x): absolute value of integer x
fabs(x): absolute value of x if x is float or double
ceil(x): ceiling function (sma llest integer greater than x) floor(x): floor function (largest integer smaller than x) $\log (x)$: loganthm of x (do not give negative value of x) pow(x, y): x to the powery (both doubles - typecast if int) sqit(x): square root of double x (typecast if not double) $\cos (x), \sin (x), \tan (x)$ etc are also present - explore!

We have seen quite a few math operators till now +, -, *, /, \%
All take two numbers and give one number as answer
Called binary operators for this reason. Binary =two
Many unary operators also exist Have seen two till now:
Unary negation int $\mathrm{a}=-21 ; \mathrm{b}=-\mathrm{a}$;
Typecasting $\mathrm{c}=$ (int) a ;
Will see several more operators in the next class
Also will start expanding our programming power
Conditional statements and relational operators

