
ESC101: Fundamentals of Computing

Data Types in C
(a deeper dive)

 Nisheeth

Mixing Types in C Expressions
 We can have C expression with variables/constants of several types
 Certain rules exist that decide the type of the final value computed
 Demotion and Promotion are two common rules

 During demotion/promotion, the RHS value doesn’t change, only the

data type of the RHS value changes to the data type of LHS variable

2

• int a = 2/3; // a will be 0 (no demotion/promotion)
• float a = 2/3; // a will be 0.0 (RHS is int with value 0, promoted to float with value 0.0)
• int a = 2/3.0; // a will be 0 (RHS is float with value 0.66, becomes int with value 0)
• float a = 2/3.0; // a will be 0.66 (RHS is float with value 0.66, no demotion/promotion)
• int a = 9/2; // a will be 4 (RHS is int with value 4, no demotion/promotion)
• float a = 9/2; // a will be 4.0 (RHS is int with value 4, becomes float with value 4.0)

Type Casting or Typecasting
 Converting values of one type to other.
 Example: int to float and float to int (also applies to other types)

 Conversion can be implicit or explicit. Typecasting is the explicit way

 int k =5;
 float x = k; // good implicit conversion, x gets 5.0
 float y = k/10; // poor implicit conversion, y gets 0.0
 float z = ((float) k)/10; // Explicit conversion by typecasting, z gets 0.5
 float z = k/10.0; // this works too (explicit without typecasting), z gets 0.5

Also remember: When
assigning values, I always

compute the RHS first

3

Automatic (compiler) By us

Typecasting: An Example Program

 #include <stdio.h>
 int main(){
 int total = 100, marks = 50;
 float percentage;
 percentage = (marks/total)*100;
 printf("%.2f",percentage);
 return 0;
 }

 #include <stdio.h>
 int main(){
 int total = 100, marks=50;
 float percentage;
 percentage = (float)marks/total*100;
 printf("%.2f",percentage);
 return 0;
 }

0.00 50.00

Typecasting
makes it

50.0/100 which
equals 0.5 Equals 0

4

Typecasting is Nice. But Take Care..
 #include <stdio.h>
 int main(){

 float x; int y;
 x = 5.67;
 y = (int) x; // typecast (convert) float to int
 printf(“%d”,y);
 return 0;

 }

 #include <stdio.h>
 int main(){

 float x; int y;
 x = 1.0e50; // 10^50
 y = (int) x; // typecast (convert) float to int
 printf(“%d”,y);
 return 0;

 }
5 -2147483648

Are you
kidding?

Unexpected!

No. 1.0e50 is too big to be
cast as an int (or even

long – try yourself)

Reverse typecasting error can happen too:
Sometimes converting a smaller data type
(say int) to larger data type (say float) can
also give unexpected results (more on this

later in the semester)

Expected
conversion

5

ESC101: Fundamentals
of Computing

 Very good friends since both store integers
 Can add/subtract/multiply/divide/remainder two ints,
two longs, as well as an int and a long
 In fact, even if we try to print an int using %ld or print a
long using %d, Prutor will only warn us, not throw an error
(but results at run-time may be unexpected sometimes)

long can store much
larger integers than int

So I don’t have to be
careful about anything?

long can store smaller
integers too

int and long

ESC101: Fundamentals
of Computing

 #include <stdio.h>
 int main(){
 int a = 2000000000;
 long b = a + a;
 printf("%ld",b);
 }

a b

20000
00000

40000
00000

02949
67296
-

Too big I will do
my best but there

will be errors

 #include <stdio.h>
 int main(){
 int a = 2000000000;
 long b = (long)a + (long)a;
 printf("%ld",b);
 }

a b

20000
00000
20000
00000
20000
00000

40000
00000
40000
00000

Dotted line means
I create these

variables myself

Thankfully, we now
know typecasting. It
can save us here.

I often create such
variables but you

never get to know

These variables
help me carry out

your requests nicely
-294967296 4000000000

02949
67296
-

Often, you don’t have
control over the kind of data

you receive. Typecasting
helps convert data to a form

your like to work with

Why not just define a
long variable? No

need for typecasting!
int and long

I should try this too:
long b = 2*(long)a;

long b = (long)a + a;

ESC101: Fundamentals
of Computing

 What if we have mixed types in a formula?

 Can typecast int to long

 Can typecast long to int

int a = 2;
long c, b = 5;

b = (long) a;

a = (int) b;

c = a * b;
Hmm … An int being multiplied to a long.
Let me take care to convert the int to a
long before performing the operation

a b c

2 5 2 10 10
In general, we should typecast weaker types
like int into more powerful types like long and

float that can store larger numbers

Be careful! If b was storing
a very large integer that

won’t fit into int, this
typecast will cause errors

Mixed Type Operations (Already Saw Some Cases)

Arithmetic on char data type
 Recall that each char is associated with an integer value
 Example: char ‘A’ to ’Z’ are associated with integers 65 to 90
 Refer to the ASCII table shown in last lecture’s slides
 Note: signed char range is -128 to 127, unsigned char range is 0 to 255
 #include <stdio.h>

 int main(){
 int x = ‘B’ - ‘A’ + 2;
 printf(“x = %d\n”, a);
 char y = 68;
 printf(“y = %c”,y);
 return 0;

 }

3

D

 #include <stdio.h>
 int main(){

 char x = 128;
 printf(“x = %d\n”, x);
 char y = -130;
 printf(“y = %d\n”,y);
 return 0;

 }

-128

126

First number from
the negative side

Second number from
the positive side

128 and -130 are out of the range
of signed char

What if x
and y are
unsigned

char ?

Try in
Prutor and

see yourself

Note: When printing a char using printf,
the quote symbols ‘ ‘ are not shown

Note: When giving char
input for scanf, we don’t

type the quote symbols ‘ ‘

9

Arithmetic on char data type: More Examples

printf("%d\n", 'A');
printf("%d\n", '7');
printf("%c\n", 70);
printf("%c\n", 321);

Output:
65
55
F

 Keep in mind that char and int are inter-convertible

321 is out of range of signed char
(and even unsigned char)

Try in Prutor and
see what happens

So if you want, I can
use/print a char as int and

int as char (within char
limits of course)

printf("%c\n", ‘C’+5);
printf("%c\n", ‘D’ - ‘A’ +
‘a’);
printf("%d\n", ‘3’ + 2);

Output:
H
d
53

* and / are also valid but
should avoid with char

10

Representing Negative Integers
• Mainly three ways
• - Signed Magnitude
• - One’s Complement
• - Two’s Complement (used in modern computers)

• The Signed Magnitude approach is straightforward: To represent –

x, take binary representation of x and make the left-most bit 1. So -
7 (7 in binary = 111) will be

1 0 0 0 1 1 1 0 0 (-7 in signed magnitude)

Position reserved
as sign bit

One’s Complement
• The one’s complement of a binary number is simply the bitwise

complement of that binary number
• A long time ago (25-30 years ago) one’s complement used to be

used to represent negative numbers
• 35 as a 4 byte int is represented as

0000 0000 0000 0000 0000 0000 0010 0011
• So, in those old computers, -35 used to be represented as

1111 1111 1111 1111 1111 1111 1101 1100
• Note that b + ~b = 11111111 11111111 11111111 11111111
• Used no more. These days, computers use two’s complement to

represent negative integers

Largest positive integer is 01111111 11111111 11111111 11111111
Smallest negative integer is 1000000 00000000 00000000 00000000

Weird thing – negative 0
11111111 11111111 11111111 11111111

If we have n bits, then using one’s complement, we can
represent numbers between –(2n-1 – 1) and +(2n-1 – 1)

The first bit acts as a sign bit – if the first bit is 1, it is treated as a
negative number, if the first bit is 0, it is treated as a positive number

Two’s Complement
• Two’s complement of an n-bit binary number is the number which when

added to this number, gives 2n

• 2n =1 0 0 0 0 0 0 0 …… 0 (1 followed by n zero bits)
• This means two’s complement of b is 2n – b
• Recall that b + ~b = all ones = 2n – 1 i.e. two’s complement of b is 2n – b =

~b + 1
• So a way of calculating two’s complement – take the one’s complement

and add 1 to the binary string
• These days two’s complement of an integer n represents its negative (that

is –n)
• So for any integer n, one’s complement of n will be -(n+1)

Two’s Complement

If we have n bits, then using two’s complement, we can
represent numbers between –2n-1 and +(2n-1 – 1)

The first bit acts as a sign bit – if the first bit is 1, it is treated as a
negative number, if the first bit is 0, it is treated as a positive number

Largest positive number is 01111111 11111111 11111111 11111111
Smallest negative number is 1000000 00000000 00000000 00000000

11111111 11111111 11111111 11111111 now represents -1

Floating Point Representation
 Have to represent three things

 sign
 Exponent
Number

 Assign some bits of memory for each

 1 bit for sign
m for exponent
 n for mantissa

Conceptual Example
• Consider a 4 bit memory

– What can you assign with unsigned int?
• 0,1,.....15

– What can you assign with signed int?
• Use twos complement notation
• -8,-7,.... ,7

– What can you assign with float?

s e m m

(-1)s * 1.m* 2e-0

1.0, 1.1, 1.2, 1.3
2.0, 2.2, 2.4, 2.6

-1.0, -1.1, -1.2, -1.3
-2.0, -2.2, -2.4, -2.6

This m is the decimal equivalent of 2 bits m m

IEEE 754 Floating Point Representation

Single-precision (float)

This is what you’re using when you are invoking float

Practical demonstration

• 12.375 = 12 + 0.375
• In binary = 1100 + .011 = 1100.011
• In IEEE notation = 1.100011 x 23
• So, the bias is 3, which means the exponent must be 127+3 =

130, which in binary format is 10000010
• So, the number, in IEEE single precision format will be

– 0 – 10000010 - 10001100000000000000000

19

ESC101: Fundamentals
of Computing

 A really nice library of lots of mathematical functions
 abs(x): absolute value of integer x
 fabs(x): absolute value of x if x is float or double
 ceil(x): ceiling function (smallest integer greater than x)
 floor(x): floor function (largest integer smaller than x)
 log(x): logarithm of x (do not give negative value of x)
 pow(x,y): x to the power y (both doubles – typecast if int)
 sqrt(x): square root of double x (typecast if not double)
 cos(x), sin(x), tan(x) etc are also present – explore!

math.h

ESC101: Fundamentals
of Computing

 We have seen quite a few math operators till now
 +, -, *, /, %

 All take two numbers and give one number as answer
 Called binary operators for this reason. Binary = two

 Many unary operators also exist
 Have seen two till now:
 Unary negation int a = -21; b = -a;
 Typecasting c = (int) a;

 Will see several more operators in the next class
 Also will start expanding our programming power
 Conditional statements and relational operators

Operators

	ESC101: Fundamentals of Computing
	Mixing Types in C Expressions
	Type Casting or Typecasting
	Typecasting: An Example Program
	Typecasting is Nice. But Take Care..
	int and long
	int and long
	Mixed Type Operations (Already Saw Some Cases)
	Arithmetic on char data type
	Arithmetic on char data type: More Examples
	Representing Negative Integers
	One’s Complement
	Two’s Complement
	Two’s Complement
	Floating Point Representation
	Conceptual Example
	IEEE 754 Floating Point Representation
	Single-precision (float)
	Practical demonstration
	math.h
	Operators

