
ESC101: Fundamentals of Computing

scanf (continued) and
Data Types in C

 Nisheeth

How does scanf work ?
HOW WE MUST SPEAK TO MR. COMPILER HOW WE USUALLY SPEAK TO A HUMAN

 scanf(“%d%d”, &a, &b); Please read one integer. Ignore all
whitespace (spaces,tabs,newlines)
after that till I write another integer.
Read that second integer too.

 Store value of the first integer in a
and value of second integer in b.

Remember Mr. C likes to be told beforehand what all we
are going to ask him to do!

Scanf follows this exact same rule while telling Mr. C how to read

Format string tells
me how you will
write things, and

then I am told
where to store

what I have read

Format string

How does scanf work ?
 Be a bit careful since Mr C is a bit careless in this matter
 He treats all whitespace characters the same when
integers are being input
 scanf will never print anything

 Use printf to print and scanf to read
 Try out what happens with the following

scanf(“Hello %d”,&a);

Hmm … you are going
to write the English

word Hello followed by
space followed by an
integer. I will store the

value of that integer in a

scanf(“%d,%d”,&a,&b);
scanf(“%d\n%d”,&a,&b); scanf(“%d\t%d”,&a,&b);

scanf(“\“%d%d\“”,&a,&b);
scanf(“%d %d”,&a,&b); scanf(“%dHello%d”,&a,&b);

My advice to you is to
take input one at a time in
the beginning  Try out
acrobatics in free time

Commenting
 Very important programming practice

 int main(){
 int a; // My first int
 int b; // The other int
 // Assign them values
 a = 5, b = 4;
 a + b;
 return 0;
 }

 int main(){
 int a; /* My first int */
 int b; /* The other int */
 /* Assign them values */
 a = 5, b = 4;
 a + b;
 return 0;
 }

 int main(){
 int a; // My first int
 int b; // The other int
 /* Assign them values */
 a = 5, b = 4;
 a + b;
 return 0;
 }

So I can mix
and match?

Yes. In fact /* */ is used
to comment several

lines at once – shortcut!

Just be a bit careful.
Some compilers don’t

understand // comments
4

More on Comments
 Use comments to describe why you
defined each variable and what
each step of your code is doing

 You will thank yourself for doing this when you
are looking at your own code before the end
sem exams

 Your team members in your
company/research group will also thank you

 Multiline comments very handy. No
need to write // on every line

 int main(){
 int a; // My first int
 int b; // The other int
 /* Assign them values
 so that I can add
 them later on */
 a = 5, b = 4;
 a + b;
 return 0;
 }

5

A Useful Tip While Problem-Solving
 Comments can be also used to identify where is error
 Mr C will tell you (compile) where he thinks the error is
 Commenting out lines can also help identify the error

 int main(){
 int a, b;
 c = a + b;
 a = 5;
 b = 4;
 return 0;
 }

 int main(){
 int a, b, c;
 c = a + b;
 a = 5;
 b = 4;
 return 0;
 }

 int main(){
 int a, b;
 // c = a + b;
 a = 5;
 b = 4;
 return 0;
 }

Error! Okay!

Aha! I forgot
to declare c

Okay!

6

A Useful Tip While Solving Problems

I have no idea
what is going
wrong here!

Try breaking up
the problem into
smaller pieces

Print your solutions to
each one of these pieces
to see where going wrong

7

A Useful Tip While Solving Problems

Equals 0

A Useful Tip While Solving Problems

Replace this part by (2*x*x*x)/3

Basic Data Types in C
 Int: %d specifier
 Integers like 156, -3, etc

 float (short form of “floating point number”) and double: %f specifier
 Real numbers like 3.14, 2.0, -1.3, etc
 double is like float but has larger range

 char (short form of “character”): %c specifier
 Single letter (a-z or A-Z), single digit, or single special character
 A char is always enclosed in inverted single commas
 Some examples: ‘a’, ‘A’, ‘2’, ‘$’, ‘=‘

 These basic data types can also be used with a modifier
 Modifiers change the normal behaviour of a data type (e.g., its range of values) and

memory storage space required (more on next slides)

Type Modifiers in C
 signed (used with int, float/double, char)
 signed means the data type can have positive and negative values
 int, float/double, char are signed by default (no need to write ‘signed’)

 unsigned (used with int, char)
 unsigned means the data type can have only take positive values

 short (used with int)
 short means it uses only half of the memory size of a normal int

 long (used with int)
 long means it uses twice the memory size of a normal int
 Can store a larger range of values of that type

11

Various C Data Types without/with Modifiers

12

int (signed int)
%d

unsigned int
%u

short int (short)
%d

long int (long)
%ld

float
%f

double
%lf

long double
%Lf

char
%c

unsigned char
%u

short unsigned
%u

long unsigned
%lu

Yes, multiple modifiers
also allowed

• Can store integers between -2,147,483,648 and 2,147,483,647

 #include <stdio.h>
 int main(){
 int a;
 scanf(“%d”, &a);
 printf(“My first int %d”, a);
 return 0;
 }

%d

Integer arithmetic applies to
integers +, -, /, *, %, ()
Have worked with them a lot
so far

a

Range: -2^31 to (2^31)-1

signed int uses 32 bits
(4 bytes, 8 bits = 1 byte)
on recent compilers)

int

Printing well-formatted outputs using printf
 When printing an int value, place a number between % and d (say %5d)

which will specify number of columns to use for displaying that value

int x = 2345, y=123;
printf("%d\n",x); //Usual (and left aligned)

printf("%6d\n",x); //Display using 6 columns (right aligned)

printf("%6d\n",y);

printf("%2d\n",x); //Less columns than digits, same as %d

Output
2345
 2345
 123
2345

14

Note: So far, we have only seen how to print integers.
We will see how to print other types of variables later today

• Really long – can store integers between
• -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807

 #include <stdio.h>
 int main(){
 long a; //long int also
 scanf(“%ld”, &a);
 printf(“My first long int %ld”, a);
 return 0;
 }

%ld

Integer arithmetic applies to long
int as well +, -, /, *, %, ()
Try them out on Prutor
How does long work with int int +
long, int * long?
Will see in next class…

a

Range: -2^63 to (2^63)-1

 long int uses 64 bits
 on recent compilers

long int (usually written just long)

• int, long allow us to store, do math formulae with integers
• float allows us to store, do math formulae with reals

 #include <stdio.h>
 int main(){
 float a;
 scanf(“%f”, &a);
 printf(“My first real %f”, a);
 return 0;
 }

%f

Very large range ± 3.4e+38
Arithmetic operations apply
to float as well +, -, /, *, ()
Try them out on Prutor

What happened to
remainder %? Did you ever do

remainders with real
numbers in school?

I remember. Remainders
make sense for integers,

not for real numbers

a

float uses 32 bits (4 bytes).
Why this range for double?

Will see reason later

float

• Both %f and %lf work for float and double
• For long double, %Lf needed
• Can use %e if want answer in exponential notation

printf revisit: Printing of float/double

 #include <stdio.h>
 int main(){
 double a = 123.4567;
 printf(“Value of a = %f”, a);
 return 0;
 }

 #include <stdio.h>
 int main(){
 double a = 123.4567;
 printf(“Value of a = %e”, a);
 return 0;
 }

Value of a = 1.234567e+02 Value of a = 123.456700

Too many decimal digits
being printed. Can I just

print one or two?

Yes. Use %0.2f to print
2 decimal places

Value of a = 123.46

%0.2f”, a); %0.2e”, a);

Value of a = 1.23e+02

Be careful, I am rounding while giving
answer correct to 2 decimal places

123.4567  123.46
1.234567  1.23

Oh right. The usual
rules of rounding apply

here too. 1.5644 will
become 1.56 if rounded
to 2 places but 1.5654

will become 1.57

Correct!

Great. So can you also
help me control the format

in which float/double is
displayed on screen?

Sure. Just like I did it for
integer display. See next

slide 

17

printf revisit: Controlled printing of float/double
 Already saw how to use printf for well-formatted int display
 Can also control how to display a float/double using printf
 Can do it using “%a.bf ” specifier where a and b are numbers
 Here a is the total field width (number of columns) in which the float will be

displayed, b is the number of digits printed after decimal

float pi = 3.141592;
printf("%f\n",pi); //Usual

printf("%6.2f\n", pi); //2 decimal

printf("%0.4f\n",pi); //4 decimal
 // Note rounding off!

Output

3.141592
 3.14
3.1416

18

• Double can also handle real numbers but very large ones
• Similar relation to float as long has to int

 #include <stdio.h>
 int main(){
 double a;
 scanf(“%f”, &a);
 printf(“My first real %f”, a);
 return 0;
 }

Very large range ± 1.79e+308
Arithmetic operations apply
to double as well +, -, /, *, ()
There is something called
long double as well
Use %Lf to work with long
doubles
Try these out on Prutor

a

%lf works
too!

double

• Basically, a char is a symbol
• Internally stored as an integer between -128 and 127 (if signed char) or

between 0 and 255 (if unsigned char)

 #include <stdio.h>
 int main(){
 char a = ‘p’;
 printf(“My first char %c\n”, a);
 printf(“ASCII value of %c is %d”,a,a);
 return 0;
 }

%c

Char constants enclosed in ‘ ’
Integer arithmetic applies to
char as well +, -, /, *, %, ()
Case sensitive ‘a’, ‘A’ different
Various usages (e.g., in arrays
of characters – strings), will see
more later

a
‘p’

char

This Will print the ASCII
value (integer) of this

character

\t

\n

Image courtesy wikipedia.org

American Standard Code
for Information Interchange

https://theasciicode.com.ar/

ASCII Table with Extended Characters

https://theasciicode.com.ar/

Mixing Types in C Expressions
 We can have C expression with variables/constants of several types
 Certain rules exist that decide the type of the final value computed
 Demotion and Promotion are two common rules

 During demotion/promotion, the RHS value doesn’t change, only the

data type of the RHS value changes to the data type of LHS variable

23

• int a = 2/3; // a will be 0 (no demotion/promotion)
• float a = 2/3; // a will be 0.0 (RHS is int with value 0, promoted to float with value 0.0)
• int a = 2/3.0; // a will be 0 (RHS is float with value 0.66, becomes int with value 0)
• float a = 2/3.0; // a will be 0.66 (RHS is float with value 0.66, no demotion/promotion)
• int a = 9/2; // a will be 4 (RHS is int with value 4, no demotion/promotion)
• float a = 9/2; // a will be 4.0 (RHS is int with value 4, becomes float with value 4.0)

Type Casting or Typecasting
 Converting values of one type to other.
 Example: int to float and float to int (also applies to other types)

 Conversion can be implicit or explicit. Typecasting is the explicit way

 int k =5;
 float x = k; // good implicit conversion, x gets 5.0
 float y = k/10; // poor implicit conversion, y gets 0.0
 float z = ((float) k)/10; // Explicit conversion by typecasting, z gets 0.5
 float z = k/10.0; // this works too (explicit without typecasting), z gets 0.5

Also remember: When
assigning values, I always

compute the RHS first

24

Automatic (compiler) By us

Typecasting: An Example Program

 #include <stdio.h>
 int main(){
 int total = 100, marks = 50;
 float percentage;
 percentage = (marks/total)*100;
 printf("%.2f",percentage);
 return 0;
 }

 #include <stdio.h>
 int main(){
 int total = 100, marks=50;
 float percentage;
 percentage = (float)marks/total*100;
 printf("%.2f",percentage);
 return 0;
 }

0.00 50.00

Typecasting
makes it

50.0/100 which
equals 0.5

Several other ways
also possible, e.g.,
proper bracketing.

Also, typecasting
just one variable
on RHS is enough

Equals 0

25

But be careful about which
one you are typecasting

Typecasting is Nice. But Take Care..
 #include <stdio.h>
 int main(){

 float x; int y;
 x = 5.67;
 y = (int) x; // typecast (convert) float to int
 printf(“%d”,y);
 return 0;

 }

 #include <stdio.h>
 int main(){

 float x; int y;
 x = 1.0e50; // 10^50
 y = (int) x; // typecast (convert) float to int
 printf(“%d”,y);
 return 0;

 }
5 -2147483648

Are you
kidding?

Unexpected!

No. 1.0e50 is too big to be
cast as an int (or even

long – try yourself)

Reverse typecasting error can happen too:
Sometimes converting a smaller data type
(say int) to larger data type (say float) can
also give unexpected results (more on this

later in the semester)

Expected
conversion

26

	ESC101: Fundamentals of Computing
	How does scanf work ?
	How does scanf work ?
	Commenting
	More on Comments
	A Useful Tip While Problem-Solving
	A Useful Tip While Solving Problems
	A Useful Tip While Solving Problems
	A Useful Tip While Solving Problems
	Basic Data Types in C
	Type Modifiers in C
	Various C Data Types without/with Modifiers
	int
	Printing well-formatted outputs using printf
	long int (usually written just long)
	float
	printf revisit: Printing of float/double
	printf revisit: Controlled printing of float/double
	double
	char
	Slide Number 21
	ASCII Table with Extended Characters
	Mixing Types in C Expressions
	Type Casting or Typecasting
	Typecasting: An Example Program
	Typecasting is Nice. But Take Care..

