VAEs and GANs

CS771: Introduction to Machine Learning
Nisheeth



Generative Models with Latent Variables

 We have already looked at latent variable models in this class

® Used for Latent variable z_n usually
. encodes some latent properties Z n
* Cluste rng of the observation x,,

 Dimensionality reduction

* Broadly, latent variable models approximate the distribution on X
p(X) =) p(X|z:0)p(2)

e Can apply this approximation in a variety of applications
e Such as generation of new examples



Example: Gaussian Mixture Model
p(X)~ > p(X[z:0)p(2)

o~ p(z) (categorical)

x|z ~ N(p", X7)

| We can sample X that looks like it was from p(X)

P(x) |

P(m)




e Data is encoded into a different representation
* New data is generated by sampling from the new representation
e GMMs are just one type of encoding-decoding scheme

= W) lossless encoding
no information is lost
encoder decoder when reducing the
e d number of dimensions
= W) lossyencoding

some information is lost
when reducing the
number of dimensions and
can't be recovered later

Image credit (link)


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Creating flexible encoders

Actually,
y = g(x)

Easy to encode this data distribution of
a random variable X with a bivariate

Gaussian
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What about the data distribution of

this random variable Y?



* Any distribution in d dimensions can be generated by taking a set of d
normally distributed random variables and mapping them through a
sufficiently complex function

e WWe use a neural network encoder to learn this function from data

neural network neural network

encoder decoder

loss = [[x-x|* = |[>x-d)[|* = [|x-d(e(x)) ] Image credit (link)


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

VAESs concept

Each dimension of z represents a data attribute

~ N(O.D) -~
o(z

|z ~ N(pu(z),0(z)) )

p(x)

We approximate complex p(x) as a Infinite Gaussian

composition of many simple z

Y4



* Brute force approximation of P(X)
e Sample a large number of z values
* Compute  p(x) ~ Ly P(X|2)
* Problem, when z is high dimensional, you’d need a very large n to
sample properly

e VAEs try to sample p(X]z) efficiently
e Key idea: the X = z mapping is sparse in a large enough neural network
e Corollary: most p(X|z) will be zero

e Rather than directly sample P(X]|z), we try and estimate Q(z|x) that
gives us the z that are most strongly connected with any given x

e \VVAEs assume Q are Gaussian



* We want to minimize
D [Q(2)[[P(2]X)] = Ezng [log Q(z) — log P(z] X)] .
 Which is equivalent to maximizing
log P(X) — D [Q(2)[|P(2|X)] = E.~g [log P(X|z)] — D [Q(2)[[P(2)].
e VAE assumes that we can define some Q(z|X) that maximizes
log P(X) — D [Q(z[X)||P(z| X)] = Ez~g [log P(X|z)] — D [Q(2]X)]|P(2)]

i

 The RHS is maximized using stochastic gradient descent, sampling a
single value of X and z from Q(z|X) and then calculating the gradient
of  1ogP(Xz) - D[Q(|X)|IP(2)].

See here for derivations and a more detailed explanation


https://arxiv.org/pdf/1606.05908.pdf

* Generate samples from a data distribution
* For any data
* Cool applications

decode

code

encode
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Samples from a VAE trained on MINIST

Samples from a VAE trained on a faces dataset



* People have mostly moved on from VAEs to use GANs for generating
synthetic high-dimensional data

* VAEs are theoretically complex
 Don’t generalize very well

e Are pragmatically under-constrained
e Reconstruction error need not be exactly correlated with realism
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* VAEs approximate P(X) using latent variables z, with the mapping
between X and z pushed through a NN function approximation that
ensures that the transformed data can be well represented by a
mixture of Gaussians

e But approximating P(X) directly is complicated, and approximating it
well in the space of an arbitrarily defined reconstruction error does
not generalize well in practice

 GANs go about approximating P(X) using an indirect approach



Adversarial training

* Two models are trained — a generator
and a discriminator

 The goal of the discriminator is to
correctly judge whether the data it is
seeing is real, or synthetic

* Objective function is to maximize
classification error

* The goal of the generator is to fool the
discriminator

* It does this by creating samples as close
to real data as possible

* Objectively tries to minimize
classification error

* No longer reliant on reconstruction
error for quality assessment
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Can be a convnet CS771: Intro to ML




Randomly sample a

vector
NN
“Tuning” the parameters of generator Generator
vl
The output be classified as “real” (as close {
to 1 as possible)

Generator + Discriminator = a
network *

Use gradient descent to find the parameters of

Discriminator
generator
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GAN outputs

e The latent space learned in
GANSs is very interesting

e People have showed that vector
additions and subtractions are
meaningful in this space

e Can control novel item
compositions almost at will

e A big ‘deepfakes’ industry is
growing up around this

For more details, see here
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Example of Vector Arithmetic on Points in the Latent Space for Generating Faces With a GAMN.
Taken from Unsupenvised Representation Learning with Deep Convolutional Generative Adversarial Metworks.



https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/

* In CS771, you have learned the basic elements of ML
e Representing data as multidimensional numerical representations

e Defining model classes based on different mathematical perspectives
on data

e Estimating model parameters in a variety of ways

* Defining learning objectives mathematically, and optimizing them
e Evaluating outcomes, to some degree

 What will you do with this knowledge?
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