Deep Learning (contd.)

CS771: Introduction to Machine Learning
Nisheeth

Backpropagation

» Backpropagation = Gradient descent using chain rule of derivatives
ﬂy ay E.'x

= Chain rule of derivatives: Example, if y = f;(x) and x = f,(2) then = 37 3x 37

Start taking the derivatives of the loss

function w.r.t. params of the last layer and

then proceed backwards

Reuse already calculated gradients

computed by the previous layer

Can reuse previous derivative computations

due to the recursive nature of the neural net

architecture

0L 5£ 5hn1
8w11 Bhnl ﬁwll
0L : 0L i6hn
0wy 6’hn1 Owaq
oL 0L 5hn1
Owsq 5hn1 (91031

Backpropagation through an example

Consider a single hidden layer MLP @ To use gradient methods for W, v, we need gradients.
' ! @ Gradient of £ w.r.t. v is straightforward

e v K .
ove > (3’” - vkg(“’;"")) hok = > _ €nho
Vi n=1

k:]_ ﬂ:]_

@ Gradient of £ w.r.t. W requires chain rule

AL = L Ohy
: : : . Owagk = Ohpy Owyy
Assuming regression (o = identity), or =1)
the loss function for this model o = —(yn— > vkg8(W, xn))vk = —envi
nk L1
1 Y T 2
= . n — hn 8hn
£ 23 (y ’) . = g'(W:Xn)Xnd (note: hpx = g(w;rx,,))
O Wk
L K 2
= 3 > (y,, -> vkh,,k) @ Forward prop computes errors e, using current W, v.
n=1 k=1 Backprop updates NN params W, v using grad methods

N K 2
= > (y,, -> vkg(wfxn)) @ Backprop caches many of the calculations for reuse

Backpropagation

Computes loss using current values

" Backprop iterates between a forward pass and a backward pass of the parameters

V

Computes the gradient of the loss,

starting with params in the last layer y
and going backwards n

_

Backward Pass h
n]- Forward Pass

Using computational graphs

" Software frameworks such as Tensorflow and PyTorch support this already so you don’t need to implement
it by hand (so no worries of computing derivatives etc)

Neural Nets: Some Aspects

" Much of the magic lies in the hidden layers

" Hidden layers learn and detect good features

Choosing the right NN architecture is important
and a research area in itself. Neural Architecture

Search (NAS) is an automated technique to do

" Need to consider a few aspects this

® Number of hidden layers, number of units in each hidden layer

" Why bother about many hidden layers and not use a single very wide hidden
layer (recall Hornik’s universal function approximator theorem)?

" Complex networks (several, very wide hidden layers) or simpler networks (few,
I nl

moderately wide hidden layers)?

" Aren’t deep neural network prone to overfitting (since they contain a huge
number of parameters)?

Representational Power of Neural Nets

» Consider a single hidden layer neural net with K hidden nodes
K=23 K=6

= Recall that each hidden unit "adds” a function to the overall function
* Increasing K (number of hidden units) will result in a more complex function
= Very large K seems to overfit (see above fig). Should we instead prefer small K7

= No! It is better to use large K and regularize well. Reason/justification:
= Simple NN with small K will have a few local optima, some of which may be bad
= Complex NN with large K will have many local optimal, all equally good (theoretical results on this)

= We can also use multiple hidden layers (each sufficiently large) and regularize well

Various other tricks, such as weight

P reve ntl n g Ove rflttl n g I n N e u ra | N ets sharing across different hidden units of

the same layer (used in convolutional
neural nets or CNN)

* Neural nets can overfit. Many ways to avoid overfitting, such as

= Standard regularization on the weights, such as €, €, etc (£, reg. is also called weight decay)
Single Hidden Layer NN with K = 20 hidden units and L2 regularization

A =0.001 A=0.01 A=0.1

o| o

= Early stopping (traditionally used): Stop when validation error starts increasing
= Dropout: Randomly remove units (with some probability p € (0,1)) during training

w oW
Present with Always
probability p present

(a) At training time (b) At test time

(a) Standard Neural Net

Fig courtesy: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (Srivastava et al, 2014)

Wide or Deep?

" While very wide single hidden layer can approx. any function, often we prefer many, less wide, hidden
layers

3) _ 13 R e e
— ; \ - i
W — [wl wu} .%'T‘ .Q U
Even higher-level feature detectors U ey !Tl ! ’. a
(make classification easy) T = et e

WO =(w?,. ug)] : (L (LD K, =32

higher-level feature detectors
(e.g., parts of face)

Nl 0\ B B KU
1) _.(1) (1)) SRR
W -— wl ----- wloﬂl T=F Nt L .

Low-level feature detectors
(e.g., detect edges)

" Higher layers help learn more directly useful/interpretable features (also useful for compressing data using a
small number of features)

Conv nets basics

1|11 oo 1/1(1 /0|0

0|11 1|0 1 1 o/1/1/1/0 4

0| 0|1 11 0|1 C.00,1. 1|1

o o 1 1 o 1 (1] 1 Q|01 (21|0

ol 1 1 ol o (111 (0O]0
| Convolved
Mage Feature

Image patch Filter Convolution

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Discriminability from diverse filtering

Operation Filter Convoalved
Image
o 0 O
ldentity o 1 O
i 0
1 0 -1
0 (1]
—1 O 1
0 1 o
Edge detection 1 —4 1
] 1 O
[—1 —1 —17]
—1 8 -1
| —1 1 -1 |
[0 1 07
Sharpan —1 5 —1
L O —1 0 |
1 1 -
Box blur 1 T 3 1
{normalized)]
1 1 1

Gaussian blur
| aporomxi mation)

2l
—

= ki =
b = B
= b=
| — |

A typical convnet: AlexNet

227 3
COMNY
11x11,
stride=4,
96 kernels
r"____________
11 (227-11)/4 +1
: =55
e
227

CONY
3x3,pad=1
384 kernels

—-

(13+21-3)1
+1 =13

384

Overlapping
Max POOL
3x3, g
stride=2

(55-3)/2 +1
=27

CONY
Ix3,pad=1
256 kernels

—_—

{13+2*1-3)1
+1 =13
13

256

CONV

5x5,pad=2

256 kernels
(27+2*2-5)/1
+1 =27

Overlapping
Max POOL

3x3,

stride=2

—_—

256

(13-3)/2 +1
=6

&

[

9216

Overlapping CONV

Max POOL
3x3, 256 3x3,pad=1
stride=2 384 kernels
(27-3)/2 +1 (13+2*1-3)/1
=13 13 +1 =13
13

Q
O
O
O

O
O

1000
Softmax

FC

O
e
O
.

4096

11
CS771: Intro to ML

Superhuman object recognition in images

28.2

l 152 layers ‘

\
\.
‘ 22 Iavers ‘ 19 [avers |
o)

357 I____I l 8 layers || Bla?ers ‘

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

12
CS771: Intro to ML

But deep networks are fickle

100 CIFAR-10 R ImageNet
X
— - 801
X -
o <70
3 o
9] M©
801 O 00U
e
2 ®
ey)
3 8501
= 701 =
@
. ' . < 40 ! . .
80 90 100 60 70 80
Original test accuracy (%) Original test accuracy (top-1, %)
— == |deal reproducibility Model accuracy = —— Linear fit

Do imagenet classifiers generalize to imagenet? (link)

http://proceedings.mlr.press/v97/recht19a.html

... and brittle

motor scooter 0.é9 parachute 1.0 bobsled 1.0 parachute 0.54

fire truék 07.99 school bﬁs 0.98 fireboat 0.98 bobsled 0;79

https://arxiv.org/pdf/1811.11553.pdf

... and stupid

Rotate Resize Blur Rainbow edge Charcoal
Simple
Transforms .-‘ '\ \ .
Edge white bg Sketch Black and white Inverse edge
Greyscale = 3
and outlines BN '\

Elue border

Borders

Shear Splice Mask Implode Wave Roll

e P 3 R KA

e Untransformed images are
classified with 98% and 100%

accuracy

* Transformed image accuracy
drops enormously

e Human performance is

unaffected

* Humans know when they are
going to have trouble

Scoring: Top label match

Original — |1 WA B
Roll —| AW B
Rotation — A B
~ | o .'-
Mask — e
Blue frame — = =2t
Leafy frame o ©~ A H
Shear o br_) H
Sketch — & H
] '.,_-7 ,a"' 1
Blur 4 cC ¢ b H
E - [
B Nature frame — '@y b H
oW .'\ N -_f' .':
§ Black and white — G2 b H
Splice — -‘:J H
P / !
Resize - oc’ b, H
Wood frame — G
Edge —| égi:/ b’ i
/AN C Clarifai !
Rainbow edge —| & WG G Google H
WA W IBM Watson
Wave — O A Amazon b H
W Inception A ~ !
Implode — /I b Inception B b H
White Edge —| @ H. Human b H
Charcoal — & CV b H
M T T T T]
0.0 02 0.4 0.6 038 1.0

Using a Pre-trained Network

" A deep NN already trained in some “generic” data can be useful for other tasks, e.g.,

" Feature extraction: Use a pre-trained net, remove the output layer, and use the rest of the network as a feature extractor for a
related dataset

This part of a pre-trained net can be used as

a feature extractor on some new task

Many packages, like Tensorflow and

PyTorch provide such pre-trained module

ready to be used

Sometimes also known as “transfer learning” in

the context of neural nets

L

" Fine-tuning: Use a pre-trained net, use its weights as initialization to train a deep net for a new but related task (useful when

we don’t have much training data for the new task)

Deep Neural Nets: Some Comments

" Highly effective in learning good feature rep. from data in an “end-to-end” manner

" The objective functions of these models are highly non-convex

" But fast and robust non-convex opt algos exist for learning such deep networks

" Training these models 1s computationally very expensive

" But GPUs can help to speed up many of the computations

" Also useful for unsupervised learning problems (will see some examples)

" Autoencoders for dimensionality reduction

" Deep generative models for generating data and (unsupervisedly) learning features — examples include generative

adversarial networks (GAN) and variational auto-encoders (VAE)

	Deep Learning (contd.)
	Backpropagation
	Backpropagation through an example
	Backpropagation
	Neural Nets: Some Aspects
	Representational Power of Neural Nets
	Preventing Overfitting in Neural Nets
	Wide or Deep?
	Slide Number 9
	Slide Number 10
	A typical convnet: AlexNet
	Superhuman object recognition in images
	But deep networks are fickle
	… and brittle
	… and stupid
	… beyond belief
	Using a Pre-trained Network
	Deep Neural Nets: Some Comments

