
Deep Learning (contd.)

CS771: Introduction to Machine Learning
Nisheeth

CS771: Intro to ML

Backpropagation 2

Reuse already calculated gradients
computed by the previous layer

Start taking the derivatives of the loss
function w.r.t. params of the last layer and
then proceed backwards

Can reuse previous derivative computations
due to the recursive nature of the neural net
architecture

CS771: Intro to ML

Backpropagation through an example 3

CS771: Intro to ML

Backpropagation
 Backprop iterates between a forward pass and a backward pass

 Software frameworks such as Tensorflow and PyTorch support this already so you don’t need to implement
it by hand (so no worries of computing derivatives etc)

4

Forward Pass
Backward Pass

Computes loss using current values
of the parameters

Computes the gradient of the loss,
starting with params in the last layer
and going backwards

Using computational graphs

CS771: Intro to ML

Neural Nets: Some Aspects
 Much of the magic lies in the hidden layers

 Hidden layers learn and detect good features

 Need to consider a few aspects
 Number of hidden layers, number of units in each hidden layer

 Why bother about many hidden layers and not use a single very wide hidden
layer (recall Hornik’s universal function approximator theorem)?

 Complex networks (several, very wide hidden layers) or simpler networks (few,
moderately wide hidden layers)?

 Aren’t deep neural network prone to overfitting (since they contain a huge
number of parameters)?

5

Choosing the right NN architecture is important
and a research area in itself. Neural Architecture
Search (NAS) is an automated technique to do
this

CS771: Intro to ML

Representational Power of Neural Nets 6

K = 3 K = 6 K = 20

CS771: Intro to ML

Preventing Overfitting in Neural Nets 7

Single Hidden Layer NN with K = 20 hidden units and L2 regularization

Various other tricks, such as weight
sharing across different hidden units of
the same layer (used in convolutional
neural nets or CNN)

Fig courtesy: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (Srivastava et al, 2014)

CS771: Intro to ML

Wide or Deep?
 While very wide single hidden layer can approx. any function, often we prefer many, less wide, hidden

layers

 Higher layers help learn more directly useful/interpretable features (also useful for compressing data using a
small number of features)

8

CS771: Intro to ML

Conv nets basics

Image patch Filter Convolution

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

CS771: Intro to ML

Discriminability from diverse filtering

CS771: Intro to ML

A typical convnet: AlexNet

11

CS771: Intro to ML

Superhuman object recognition in images

12

CS771: Intro to ML

But deep networks are fickle

13

Do imagenet classifiers generalize to imagenet? (link)

http://proceedings.mlr.press/v97/recht19a.html

CS771: Intro to ML

… and brittle

https://arxiv.org/pdf/1811.11553.pdf

CS771: Intro to ML

… and stupid

CS771: Intro to ML

… beyond belief

• Untransformed images are
classified with 98% and 100%
accuracy

• Transformed image accuracy
drops enormously

• Human performance is
unaffected

• Humans know when they are
going to have trouble

CS771: Intro to ML

Using a Pre-trained Network
 A deep NN already trained in some “generic” data can be useful for other tasks, e.g.,
 Feature extraction: Use a pre-trained net, remove the output layer, and use the rest of the network as a feature extractor for a

related dataset

 Fine-tuning: Use a pre-trained net, use its weights as initialization to train a deep net for a new but related task (useful when
we don’t have much training data for the new task)

17

This part of a pre-trained net can be used as
a feature extractor on some new task

Many packages, like Tensorflow and
PyTorch provide such pre-trained module
ready to be used

Sometimes also known as “transfer learning” in
the context of neural nets

CS771: Intro to ML

Deep Neural Nets: Some Comments
 Highly effective in learning good feature rep. from data in an “end-to-end” manner

 The objective functions of these models are highly non-convex
 But fast and robust non-convex opt algos exist for learning such deep networks

 Training these models is computationally very expensive
 But GPUs can help to speed up many of the computations

 Also useful for unsupervised learning problems (will see some examples)
 Autoencoders for dimensionality reduction

 Deep generative models for generating data and (unsupervisedly) learning features – examples include generative
adversarial networks (GAN) and variational auto-encoders (VAE)

18

	Deep Learning (contd.)
	Backpropagation
	Backpropagation through an example
	Backpropagation
	Neural Nets: Some Aspects
	Representational Power of Neural Nets
	Preventing Overfitting in Neural Nets
	Wide or Deep?
	Slide Number 9
	Slide Number 10
	A typical convnet: AlexNet
	Superhuman object recognition in images
	But deep networks are fickle
	… and brittle
	… and stupid
	… beyond belief
	Using a Pre-trained Network
	Deep Neural Nets: Some Comments

