Deep Learning (contd.)

CS771: Introduction to Machine Learning
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Backpropagation

» Backpropagation = Gradient descent using chain rule of derivatives
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= Chain rule of derivatives: Example, if y = f;(x) and x = f,(2) then = 37 3x 37

Start taking the derivatives of the loss

function w.r.t. params of the last layer and

then proceed backwards

Reuse already calculated gradients

computed by the previous layer

Can reuse previous derivative computations

due to the recursive nature of the neural net

architecture
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Backpropagation through an example

Consider a single hidden layer MLP @ To use gradient methods for W, v, we need gradients.
' ! @ Gradient of £ w.r.t. v is straightforward
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@ Gradient of £ w.r.t. W requires chain rule
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Backpropagation

Computes loss using current values

" Backprop iterates between a forward pass and a backward pass of the parameters

V

Computes the gradient of the loss,

starting with params in the last layer y
and going backwards n

_

Backward Pass h
n]- Forward Pass

Using computational graphs

" Software frameworks such as Tensorflow and PyTorch support this already so you don’t need to implement
it by hand (so no worries of computing derivatives etc)



Neural Nets: Some Aspects

" Much of the magic lies in the hidden layers

" Hidden layers learn and detect good features

Choosing the right NN architecture is important
and a research area in itself. Neural Architecture

Search (NAS) is an automated technique to do

" Need to consider a few aspects this

® Number of hidden layers, number of units in each hidden layer

" Why bother about many hidden layers and not use a single very wide hidden
layer (recall Hornik’s universal function approximator theorem)?

" Complex networks (several, very wide hidden layers) or simpler networks (few,
I nl

moderately wide hidden layers)?

" Aren’t deep neural network prone to overfitting (since they contain a huge
number of parameters)?



Representational Power of Neural Nets

» Consider a single hidden layer neural net with K hidden nodes
K=23 K=6

= Recall that each hidden unit "adds” a function to the overall function
* Increasing K (number of hidden units) will result in a more complex function
= Very large K seems to overfit (see above fig). Should we instead prefer small K7

= No! It is better to use large K and regularize well. Reason/justification:
= Simple NN with small K will have a few local optima, some of which may be bad
= Complex NN with large K will have many local optimal, all equally good (theoretical results on this)

= We can also use multiple hidden layers (each sufficiently large) and regularize well



Various other tricks, such as weight

P reve ntl n g Ove rflttl n g I n N e u ra | N ets sharing across different hidden units of

the same layer (used in convolutional
neural nets or CNN)

* Neural nets can overfit. Many ways to avoid overfitting, such as

= Standard regularization on the weights, such as €, €, etc (£, reg. is also called weight decay)
Single Hidden Layer NN with K = 20 hidden units and L2 regularization

A =0.001 A=0.01 A=0.1

o| o

= Early stopping (traditionally used): Stop when validation error starts increasing
= Dropout: Randomly remove units (with some probability p € (0,1)) during training

w oW
Present with Always
probability p present

(a) At training time (b) At test time

(a) Standard Neural Net

Fig courtesy: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (Srivastava et al, 2014)



Wide or Deep?

" While very wide single hidden layer can approx. any function, often we prefer many, less wide, hidden
layers
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(e.g., detect edges)

" Higher layers help learn more directly useful/interpretable features (also useful for compressing data using a
small number of features)



Conv nets basics
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https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/



Discriminability from diverse filtering
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A typical convnet: AlexNet
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Superhuman object recognition in images
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But deep networks are fickle
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Do imagenet classifiers generalize to imagenet? (link)


http://proceedings.mlr.press/v97/recht19a.html

... and brittle

motor scooter 0.é9 parachute 1.0 bobsled 1.0 parachute 0.54

fire truék 07.99 school bﬁs 0.98 fireboat 0.98 bobsled 0;79

https://arxiv.org/pdf/1811.11553.pdf



... and stupid
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e Untransformed images are
classified with 98% and 100%

accuracy

* Transformed image accuracy
drops enormously

e Human performance is

unaffected

* Humans know when they are
going to have trouble

Scoring: Top label match
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Using a Pre-trained Network

" A deep NN already trained in some “generic” data can be useful for other tasks, e.g.,

" Feature extraction: Use a pre-trained net, remove the output layer, and use the rest of the network as a feature extractor for a
related dataset

This part of a pre-trained net can be used as

a feature extractor on some new task

Many packages, like Tensorflow and

PyTorch provide such pre-trained module

ready to be used

Sometimes also known as “transfer learning” in

the context of neural nets

L

" Fine-tuning: Use a pre-trained net, use its weights as initialization to train a deep net for a new but related task (useful when

we don’t have much training data for the new task)



Deep Neural Nets: Some Comments

" Highly effective in learning good feature rep. from data in an “end-to-end” manner

" The objective functions of these models are highly non-convex

" But fast and robust non-convex opt algos exist for learning such deep networks

" Training these models 1s computationally very expensive

" But GPUs can help to speed up many of the computations

" Also useful for unsupervised learning problems (will see some examples)

" Autoencoders for dimensionality reduction

" Deep generative models for generating data and (unsupervisedly) learning features — examples include generative

adversarial networks (GAN) and variational auto-encoders (VAE)
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