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Backpropagation 2 

Reuse already calculated gradients 
computed by the previous layer 

Start taking the derivatives of the loss 
function w.r.t. params of the last layer and 
then proceed backwards 

Can reuse previous derivative computations 
due to the recursive nature of the neural net 
architecture 
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Backpropagation through an example 3 
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Backpropagation 
 Backprop iterates between a forward pass and a backward pass 

 

 

 

 

 

 

 

 

 

 Software frameworks such as Tensorflow and PyTorch support this already so you don’t need to implement 
it by hand (so no worries of computing derivatives etc) 
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Forward Pass 
Backward Pass 

Computes loss using current values 
of the parameters 

Computes the gradient of the loss, 
starting with params in the last layer 
and going backwards 

Using computational graphs 
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Neural Nets: Some Aspects 
 Much of the magic lies in the hidden layers 

 

 Hidden layers learn and detect good features 

 

 Need to consider a few aspects 
 Number of hidden layers, number of units in each hidden layer 

 Why bother about many hidden layers and not use a single very wide hidden 
layer (recall Hornik’s universal function approximator theorem)? 

 Complex networks (several, very wide hidden layers) or simpler networks (few, 
moderately wide hidden layers)? 

 Aren’t deep neural network prone to overfitting (since they contain a huge 
number of parameters)? 
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Choosing the right NN architecture is important 
and a research area in itself. Neural Architecture 
Search (NAS) is an automated technique to do 
this 
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Representational Power of Neural Nets 6 

K = 3 K = 6 K = 20 
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Preventing Overfitting in Neural Nets 7 

Single Hidden Layer NN with K = 20 hidden units and L2 regularization 

Various other tricks, such as weight 
sharing across different hidden units of 
the same layer (used in convolutional 
neural nets or CNN) 

Fig courtesy: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (Srivastava et al, 2014)  
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Wide or Deep? 
 While very wide single hidden layer can approx. any function, often we prefer many, less wide, hidden 

layers 

 

 

 

 

 

 

 

 

 Higher layers help learn more directly useful/interpretable features (also useful for compressing data using a 
small number of features) 
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Conv nets basics 

Image patch Filter Convolution 

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 
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Discriminability from diverse filtering 
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A typical convnet: AlexNet 
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Superhuman object recognition in images 
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But deep networks are fickle 
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Do imagenet classifiers generalize to imagenet? (link) 

http://proceedings.mlr.press/v97/recht19a.html
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… and brittle 

https://arxiv.org/pdf/1811.11553.pdf 
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… and stupid 
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… beyond belief 

• Untransformed images are 
classified with 98% and 100% 
accuracy 

• Transformed image accuracy 
drops enormously  

• Human performance is 
unaffected 

• Humans know when they are 
going to have trouble 
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Using a Pre-trained Network 
 A deep NN already trained in some “generic” data can be useful for other tasks, e.g., 
 Feature extraction: Use a pre-trained net, remove the output layer, and use the rest of the network as a feature extractor for a 

related dataset 

 

 

 

 

 

 

 

 

 

 Fine-tuning: Use a pre-trained net, use its weights as initialization to train a deep net for a new but related task (useful when 
we don’t have much training data for the new task) 
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This part of a pre-trained net can be used as 
a feature extractor on some new task 

Many packages, like Tensorflow and 
PyTorch provide such pre-trained module 
ready to be used 

Sometimes also known as “transfer learning” in 
the context of neural nets 
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Deep Neural Nets: Some Comments 
 Highly effective in learning good feature rep. from data in an “end-to-end” manner 

 

 The objective functions of these models are highly non-convex 
 But fast and robust non-convex opt algos exist for learning such deep networks 

 

 Training these models is computationally very expensive 
 But GPUs can help to speed up many of the computations 

 

 Also useful for unsupervised learning problems (will see some examples) 
 Autoencoders for dimensionality reduction 

 Deep generative models for generating data and (unsupervisedly) learning features – examples include generative 
adversarial networks (GAN) and variational auto-encoders (VAE) 
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