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Limitations of Linear Models

" Linear models: Output produced by taking a linear combination of input features
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Some monotonic function
(e.g., sigmoid)

" This basic architecture 1s classically also known as the “Perceptron” (not to be confused with the Perceptron
“algorithm”, which learns a linear classification model)

® This can’t however learn nonlinear functions or nonlinear decision boundaries



Limitations of Classic Non-Linear Models

" Non-linear models: kNN, kernel methods, generative classification, decision trees etc.

" All have their own disadvantages
" kNN and kernel methods are expensive to generate predictions from

" Kernel based and generative models particularize the decision boundary to a particular class of functions, e.g.

quadratic polynomials, gaussian functions etc.

" Decision trees require optimization over many arbitrary hyperparameters to generate good results, and are
(somewhat) expensive to generate predictions from

" Not a deal-breaker, most common competitor for deep learning over large datasets tends to be some decision-tree derivative

" In general, non-linear ML models are complicated beasts



Neural Networks: Multi-layer Perceptron (MLP)

" An MLP consists of an input layer, an output layer, and one or more hidden layers
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Illustration: Neural Net with One Hidden Layer
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* Finally, output is produced as y = o(sy)

= Unknowns (wq,w,, ..., Wk, V) learned by
minimizing some loss function, for example
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Will denote a linear

Neural Nets: A Compact Illustration @ J;‘;“;‘::z:iz:a‘;f:;‘:;i:ziitz:

result

= Note: Hidden layer pre-act a, and post-act h,,, will be shown together for brevity

Will directly show the
final output
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....................................... o, | Will combine pre-act and post-act and
directly show only h,,; to denote the
Single value computed by a hidden node

More succinctly.. Bt dek;g d)
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= Different layers may use different non-linear activations. Output layer may have none.



Activation Functions: Some Common Choices

sigmoid
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h ReLU when a is a
0
negative number
-1
-1 a 0 1

ReLU (Rectified Linear Unit): h = max(0, a)
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tanh (tan hyperbolic): h =
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tanh
Preferred more than sigmoid.
Helps keep the mean of the next
layer’s inputs close to zero (with
Z‘ sigmoid, it is close to 0.5)
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Leaky RelLU

ReLU and Leaky ReLU are

among the most popular ones
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Leaky ReLU: h = max(f3a, a)
where (3 is a small postive number



MLP Can Learn Nonlin. Fn: A Brief Justification

" An MLP can be seen as a composition of multiple linear models combined nonlinearly

High-score in the middle and low-score on

Score monotonically increases. One-
sided increase (not ideal for learning

nonlinear decision boundaries)

Obtained by composing the two one-
sided increasing score functions (using
vy = 1,and v, = -1 to "flip” the
second one before adding). This can
now learn nonlinear decision boundary

either of the two sides of it. Exactly what

we want for the given classification

problem
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A nonlinear classification
problem
Standard Single “Perceptron” Classifier (no hidden units) -« / a’/‘
nl
A single hidden layer MLP with sufficiently large number of A Multi-layer Perceptron Classifier
hidden units can approximate any function (Hornik, 1991) (one hidden layer with 2 units)
Capable of learning nonlinear boundaries




Examples of some basic NN/MLP architectures



Single Hidden Layer and Single Outputs

= One hidden layer with K nodes and a single output (e.g., scalar-valued regression or
binary classification)




Single Hidden Layer and Multiple Outputs

* One hidden layer with K nodes and a vector of C output (e.g., vector-valued
regression or multi-class classification or multi-label classification)
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Multiple Hidden Layers (One/Multiple Outputs)

" Most general case: Multiple hidden layers with (with same or different number of hidden nodes in each) and
a scalar or vector-valued output
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Neural Nets are Feature Learners

= Hidden layers can be seen as learning a feature rep. ¢(x,,) for each input x,,
Ynl @%2@ ...... InC C' output units
Yn = VT¢(:BR)

The last hidden

layer’s values

. Alearned mapping, unlike kernel methods where
(1§ the mapping was pre-defined by the choice of kernel :
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Kernel Methods vs Neural Nets

= Recall the prediction rule for a kernel method (e.g., kernel SVM)

N
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® This is analogous to a single hidden layer NN with fixed/pre-defined hidden nodes
{k(x,, x)}N_; and output weights {a,, })_4

kernel methods at test time since kernel
K methods need to store the training examples at
- h test time whereas neural nets do not
Yy = Vi M
k=1

® Here, the hy's are learned from data (possibly after multiple layers of nonlinear
transformations)

[ | The prediction rule ﬁ:}r a deep neural netWDrk Also note that neural nets are faster than &a /
| Y |

= Both kernel methods and deep NNs be seen as using nonlinear basis functions for
making predictions. Kernel methods use fixed basis functions (defined by the kernel)
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Feature Learned by a Neural Network

= Node values in each hidden layer tell us how much a “learned” feature is active in xy,
» Hidden layer weights are like pattern/feature-detector/filter

Even higher-level feature detectors | = :‘;
(make classification easy)

All the incoming weights (a vector) on this hidden node can be seen as

representing a pattern/feature-detector/filter
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template/pattern/feature-detector

higher-level feature detectors

(e.g. pars of face) All the incoming weights (a vector) on this hidden node can be seen as

representing a template/pattern/feature-detector

K, = 100 ~——

Here, wg(l))o denotes a D-dim

pattern/feature-detector/filter
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Low-level feature detectors
(e.q., detect edges)




Why Neural Networks Work Better: Another View

" Linear models tend to only learn the “average™ pattern

" Deep models can learn multiple patterns (each hidden node can learn one pattern)

" Thus deep models can learn to capture more subtle variations that a simpler linear model




	“Deep” Learning
	Limitations of Linear Models
	Limitations of Classic Non-Linear Models
	Neural Networks: Multi-layer Perceptron (MLP)
	Illustration: Neural Net with One Hidden Layer
	Neural Nets: A Compact Illustration
	Activation Functions: Some Common Choices
	MLP Can Learn Nonlin. Fn: A Brief Justification
	Examples of some basic NN/MLP architectures
	Single Hidden Layer and Single Outputs
	Single Hidden Layer and Multiple Outputs
	Multiple Hidden Layers (One/Multiple Outputs)
	Neural Nets are Feature Learners
	Kernel Methods vs Neural Nets
	Feature Learned by a Neural Network
	Why Neural Networks Work Better: Another View

