Expectation Maximization

CS771: Introduction to Machine Learning Nisheeth

Building intuition for EM: a case study

Let events be "grades in a class"

$w_1 = Gets an A$	P(A) = ½
$w_2 = Gets a B$	P(B) = μ
w ₃ = Gets a C	P(C) = 2µ
w_4 = Gets a D	P(D) = ½−3µ

(Note $0 \le \mu \le 1/6$)

Assume we want to estimate μ from data. In a given class there were a A's b B's c C's d D's

What's the maximum likelihood estimate of μ given a,b,c,d?

Max likelihood solution

 $P(A) = \frac{1}{2}$ $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2}-3\mu$

 $P(a,b,c,d \mid \mu) = K(\frac{1}{2})^{a}(\mu)^{b}(2\mu)^{c}(\frac{1}{2}-3\mu)^{d}$

 $\log P(a, b, c, d \mid \mu) = \log K + a \log \frac{1}{2} + b \log \mu + c \log 2\mu + d \log (\frac{1}{2} - 3\mu)$

FOR MAX LIKE μ , SET $\frac{\partial \text{LogP}}{\partial \mu} = 0$ $\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$ Gives max like $\mu = \frac{b+c}{6(b+c+d)}$ So if class got С Α В D 14 9 10 6 Max like $\mu = \frac{1}{10}$

Same Problem with Hidden Information

Someone tells us that Number of High grades (A's + B's) = hNumber of C's = cNumber of D's = dWhat is the max. like estimate of μ now?

REMEMBER	
P(A) = ½	
P(B) = μ	
P(C) = 2μ	
P(D) = ½-3µ	

Same Problem with Hidden Information

Someone tells us that Number of High grades (A's + B's) = hNumber of C's = cNumber of D's = dWhat is the max. like estimate of μ now? We can answer this question circularly:

REMEMBER	
P(A) = ½	
P(B) = μ	
P(C) = 2μ	
P(D) = ½-3µ	

EXPECTATION If we know the value of μ we could compute the expected value of a and b

Since the ratio a:b should be the same as the ratio $\frac{1}{2}$: μ

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

 $a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu}h$ $b = \frac{\mu}{\frac{1}{2} + \mu}h$

Copyright © 2001, 2004, Andrew W. Moore

EM for our problem

We begin with a guess for $\boldsymbol{\mu}$

We iterate between EXPECTATION and MAXIMIZATION to improve our estimates of μ and a and b.

Define $\mu(t)$ the estimate of μ on the t'th iteration

b(t) the estimate of *b* on t'th iteration

 $\mu(0) = initial guess$

$$b(t) = \frac{\mu(t)h}{\frac{1}{2} + \mu(t)} = E[b \mid \mu(t)]$$
$$\mu(t+1) = \frac{b(t) + c}{6(b(t) + c + d)}$$
$$= \max \text{ like est of } \mu \text{ given } b(t)$$

REMEMBER	
P(A) = ½	
P(B) = μ	
P(C) = 2µ	
P(D) = ½−3µ	

E -step

M -step

EM Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration
 [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

ALT-OPT/EM for Gaussian Mixture Model

MLE for Gaussian Discriminant Analysis

- Assume a K class generative classification model with Gaussian class-conditionals
- Assume class $k=1,2,\ldots,K$ is modeled by a Gaussian with mean μ_k and cov matrix Σ_k
- Can assume label y_n to be one-hot and then $y_{nk} = 1$ if $y_n = k$, and $y_{nk} = 0$, o/w
- Assuming class prior as $p(y_n = k) = \pi_k$, the model has params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$
- Given training data $\{x_n, y_n\}_{n=1}^N$, the MLE solution will be

$$\hat{\pi}_{k} = \frac{1}{N} \sum_{n=1}^{N} y_{nk}$$
Same as $\frac{N_{k}}{N}$ where N_{k} is $\#$ of training ex. for which $y_{n} = k$

$$\hat{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} y_{nk} \mathbf{x}_{n}$$
Same as $\frac{1}{N_{k}} \sum_{n:y_{n}=k}^{N} \mathbf{x}_{n}$

$$\hat{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} y_{nk} (\mathbf{x}_{n} - \hat{\mu}_{k}) (\mathbf{x}_{n} - \hat{\mu}_{k})^{\mathsf{T}}$$
Same as $\frac{1}{N_{k}} \sum_{n:y_{n}=k}^{N} (\mathbf{x}_{n} - \hat{\mu}_{k}) (\mathbf{x}_{n} - \hat{\mu}_{k})^{\mathsf{T}}$

See <u>here</u> for a derivation of the MLE for GDA

Observations on the GDA objective function

• Here is a formal derivation of the MLE solution for $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

 $\widehat{\Theta} = \operatorname{argmax}_{\Theta} p(\mathbf{X}, \mathbf{y} | \Theta) = \operatorname{argmax}_{\Theta} \prod_{n=1}^{N} p(\mathbf{x}_n, y_n | \Theta)_{\text{multinoulli}}$ Gaussian = $\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} p(y_n | \Theta) p(x_n | y_n, \Theta)$ In general, in models with probability distributions from the exponential family, the MLE problem will usually have a simple analytic form = $\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{y_{nk}} \prod_{k=1}^{K} p(x_{n} | y_{n} = k, \Theta)^{y_{nk}}$ Also, due to the form of the likelihood $= \operatorname{argmax}_{\Theta} \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_{k} p(x_{n} | y_{n} = k, \Theta)]^{y_{nk}}$ (Gaussian) and prior (multinoulli), the MLE problem had a nice separable structure after taking the log $= \operatorname{argmax}_{\Theta} \log \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k p(x_n | y_n = k, \Theta)]^{y_{nk}}$ Can see that, when estimating the parameters of the k^{th} Gaussian (π_k, μ_k, Σ_k) , we only will only need training examples from the k^{th} class, $= \operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} [\log \pi_k + \log \mathcal{N}(\boldsymbol{x}_n | \mu_k, \boldsymbol{\Sigma}_k)]$ i.e., examples for which $y_{nk} = 1$ The form of this expression is important; will encounter this in GMM too CS771: Intro to ML

Need for EM/ALT-OPT: Two Equivalent Perspectives

1. Consider an LVM with latent variables and parameters. Trying to estimate parameters without also estimating the latent variables (by marginalizing them) is difficult

$$p(\boldsymbol{x}_{n}|\boldsymbol{\Theta}) = \sum_{k=1}^{K} p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} = k | \boldsymbol{\Theta}) = \sum_{k=1}^{K} p(\boldsymbol{z}_{n} = k | \boldsymbol{\phi}) p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n} = k, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$\text{A Gaussian Mixture Model (GMM)}$$

$$\text{A Gaussian Mix$$

2. Consider a complex prob. density (without any latent vars) for which MLE is hard

Directly defining a probability density as a mixture of Gaussians (x_n is generated by the k^{th} Gaussian with probability π_k) without any reference to any latent variable whatsoever (we didn't define it as an LVM)

Can now apply ALT-OPT/EM to estimate parameters

 Θ + we get the latent variables z_n as a "by-product"

(though we may not be interested in learning z_n 's if

our goal is just density estimation, not clustering)

$$p(\boldsymbol{x}_n|\boldsymbol{\Theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \boldsymbol{\Sigma}_k)$$

Even though we didn't need the artificially

introduced z_n 's, their presence and doing ALT-

OPT/EM made our job of estimating Θ easier!

MLE for the params Θ of this distribution will again be hard (as we already saw above). However, we can artificially introduce a latent variable z_n with each data point x_n , denoting which Gaussian generated x_n

> Also in any LVM, given Θ , you can always estimate z_n 's. Likewise, given z_n , you can always estimate Θ

MLE for GMM

- Already saw that MLE is hard for GMM $\Theta_{MLE} = \arg\max_{\Theta} \log p(\boldsymbol{X}|\Theta) = \arg\max_{\Theta} \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ Will soon see how to get Two possible ways to solve this MLE problem these guesses If someone gave us optimal "point" guesses \hat{z}_n 's of cluster ids z_n 's, we could do MLE for the parameters just like we did for generative classification with Gaussian class-conditionals $\Theta_{MLE} = \operatorname{argmax}_{\Theta} \log p(\mathbf{X}, \widehat{\mathbf{Z}} \mid \Theta) = \operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \hat{z}_{nk} [\log \pi_{k} + \log \mathcal{N}(\mathbf{X}_{n} \mid \mu_{k}, \Sigma_{k})]$ In form of a probability distribution instead of a singe "optimal" guess Alternatively, if someone gave a "probabilistic" guess of z_n 's, we can do MLE for Θ as follows $\sum_{k=1}^{K} \mathbb{E}[z_{nk}][\log \pi_k + \log \mathcal{N}(\boldsymbol{x}_n | \mu_k, \boldsymbol{\Sigma}_k)]$ $\Theta_{MLE} = \operatorname{argmax}_{\Theta} \mathbb{E}[\log p(\boldsymbol{X}, \boldsymbol{Z} | \Theta)] = \operatorname{argmax}_{\Theta}$ Similar to Approach 1 but maximizes The expectation is w.r.t a distribution of Z which we will see shortly an expectation Approach 1 is ALT-OPT and Approach 2 is Expectation Maximization ("soft" ALT-OPT).
- Both require alternating between estimating Z and Θ until convergence

EM for GMM (Contd)

• The EM algo for GMM required $\mathbb{E}[z_{nk}]$. Note $z_{nk} \in \{0,1\}$

 $\mathbb{E}[z_{nk}] = \gamma_{nk} = 0 \times p(z_{nk} = 0 | x_n, \widehat{\Theta}) + 1 \times p(z_{nk} = 1 | x_n, \widehat{\Theta}) = p(z_{nk} = 1 | x_n, \widehat{\Theta}) \propto \widehat{\pi}_k \mathcal{N}(x_n | \hat{\mu}_k, \widehat{\Sigma}_k)$

EM for Gaussian Mixture Model

1 Initialize
$$\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$$
 as $\Theta^{(0)}$, set $t = 1$

E step: compute the expectation of each z_n (we need it in M step) 2 Accounts for fraction of points in Accounts for cluster shapes (since each

Ν

Soft K-means, which are clustering, also gave us for cluster shapes or frac

e more of a heuristic to get soft-
probabilities but didn't account
ction of points in each cluster
$$\mathbb{E}[z_{nk}^{(t)}] = \gamma_{nk}^{(t)} = \frac{\pi_{k}^{(t-1)}\mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{\ell}^{(t-1)}, \boldsymbol{\Sigma}_{\ell}^{(t-1)})}{\sum_{\ell=1}^{K} \pi_{\ell}^{(t-1)}\mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{\ell}^{(t-1)}, \boldsymbol{\Sigma}_{\ell}^{(t-1)})} \quad \forall n, k$$

$$\mathbb{E}[z_{nk}] = \gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}], \text{ and } N_{k} = \sum_{n=1}^{N} \gamma_{nk}, \text{ re-estimate } \Theta \text{ via MLE}$$

$$\mu_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \mathbf{x}_{n} \qquad \mathbb{E}[\text{fective number of points} \text{ in the } k^{th} \text{ cluster}$$

$$\mathbb{M}\text{-step:} \qquad \mathbf{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

$$\pi_{k}^{(t)} = \frac{N_{k}}{N_{k}}$$

• Set t = t + 1 and go to step 2 if not yet converged

Reason: $\sum_{k=1}^{K} \gamma_{nk} = 1$

Need to normalize: $\mathbb{E}[z_{nk}] = \frac{\widehat{\pi}_k \mathcal{N}(x_n | \widehat{\mu}_k, \widehat{\Sigma}_k)}{\sum_{\ell=1}^K \widehat{\pi}_\ell \mathcal{N}(x_n | \widehat{\mu}_\ell, \widehat{\Sigma}_\ell)}$

EM for GMM in action

Note: Just like with k-means, cluster initialization matters. EM only finds local optima.