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CS771: Intro to ML 

Building intuition for EM: a case study 

Let events be “grades in a class” 
 w1 = Gets an A  P(A) = ½ 
 w2 = Gets a   B  P(B) = μ 
 w3 = Gets a   C  P(C) = 2μ 
 w4 = Gets a   D  P(D) = ½-3μ 
    (Note  0 ≤ μ ≤1/6) 
Assume we want to estimate μ from data.  In a given class there were 
    a   A’s 
    b   B’s 
    c   C’s 
    d   D’s 
 
What’s the maximum likelihood estimate of μ given a,b,c,d ? 
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Max likelihood solution 
P(A) = ½    P(B) = μ    P(C) = 2μ    P(D) = ½-3μ 
P( a,b,c,d | μ) = K(½)a(μ)b(2μ)c(½-3μ)d 
log P( a,b,c,d | μ) = log K + alog ½ + blog μ + clog 2μ + dlog (½-3μ) 
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Same Problem with Hidden Information 
Someone tells us that 
Number of High grades (A’s + B’s) = h 
Number of C’s                                 = c 
Number of D’s                                 = d 
What is the max. like estimate of μ now? 

REMEMBER 
P(A) = ½ 
P(B) = μ 
P(C) = 2μ 
P(D) = ½-3μ 
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Same Problem with Hidden Information 
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Someone tells us that 
Number of High grades (A’s + B’s) = h 
Number of C’s                                 = c 
Number of D’s                                 = d 
What is the max. like estimate of μ now? 
We can answer this question circularly: 

EXPECTATION 

MAXIMIZATION 

If we know the value of μ we could compute the expected value of a and b 

If we know the expected values of a and b we could compute the 
maximum likelihood value of μ 

REMEMBER 
P(A) = ½ 
P(B) = μ 
P(C) = 2μ 
P(D) = ½-3μ 

Since the ratio a:b should be the same as the ratio ½ : µ 
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EM for our problem 
We begin with a guess for μ 

We iterate between EXPECTATION and MAXIMIZATION to improve our estimates of  μ and a and b. 

 

Define    μ(t)  the estimate of μ on the t’th iteration 

               b(t)  the estimate of b on t’th iteration 

 

REMEMBER 
P(A) = ½ 
P(B) = μ 
P(C) = 2μ 
P(D) = ½-3μ 
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EM Convergence 
• Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration 

[NOT OBVIOUS] 

• But it can never exceed 1    [OBVIOUS] 

So it must therefore converge   [OBVIOUS] 

t μ(t) b(t) 
0 0 0 
1 0.0833 2.857 
2 0.0937 3.158 
3 0.0947 3.185 
4 0.0948 3.187 
5 0.0948 3.187 
6 0.0948 3.187 

In our example, suppose we had 
 h = 20 
 c = 10 
 d = 10 
         μ(0) = 0 

Convergence is generally linear: error decreases by a constant factor 
each time step. 
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ALT-OPT/EM for Gaussian Mixture Model 

8 
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MLE for Gaussian Discriminant Analysis 9 

See here for a derivation of the MLE for GDA 

https://towardsdatascience.com/gaussian-discriminant-analysis-an-example-of-generative-learning-algorithms-2e336ba7aa5c
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Observations on the GDA objective function 10 

multinoulli Gaussian 

Also, due to the form of the likelihood 
(Gaussian) and prior (multinoulli), the MLE 
problem had a nice separable structure after 
taking the log 

In general, in models with probability distributions from the 
exponential family, the MLE problem will usually have a 
simple analytic form 

The form of this expression is important; will 
encounter this in GMM too 



CS771: Intro to ML 

Need for EM/ALT-OPT: Two Equivalent Perspectives 11 

1. Consider an LVM with latent variables and parameters. Trying to estimate parameters without also 
estimating the latent variables (by marginalizing them) is difficult 

 

 

 

 

 

2. Consider a complex prob. density (without any latent vars) for which MLE is hard 

 
 

A Gaussian Mixture Model (GMM) 

MLE for GMM with cluster ids 
marginalized/summed/integrated out 

This issue not just 
for MLE for GMM 
but MLE for other 
LVMs too 
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MLE for GMM 12 

Will soon see how to get 
these guesses 

Similar to Approach 1 but maximizes 
an expectation The expectation is w.r.t a distribution of Z which we will see shortly 

In form of a probability distribution instead of a 
singe “optimal” guess  
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ALT-OPT for GMM 13 

Does that matter? Should we worry that 
we aren’t solving the actual problem 
anymore?  

Not really; will see the 
justification soon  
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Expectation-Maximization (EM) for GMM 14 
.. which we maximized in 
ALT-OPT Expectation of CLL 

Why w.r.t. this distribution? Will 
see justification in a bit 

Needed to get the expected CLL 
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EM for GMM (Contd) 15 

M-step: 

Soft K-means, which are more of a heuristic to get soft-
clustering,  also gave us probabilities but didn’t account 
for cluster shapes or fraction of points in each cluster 

Accounts for cluster shapes (since each 
cluster is a Gaussian 

Accounts for fraction of points in 
each cluster 
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EM for GMM in action 

Note: Just like with k-means, cluster initialization matters. EM only finds local optima. 
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