Expectation Maximization

CS771: Introduction to Machine Learning
Nisheeth

Building intuition for EM: a case study

Let events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an A } & P(A)=1 / 2 \\
w_{2}=\text { Gets a } & B \\
w_{3}=\text { Gets a } & C \\
w_{4}=\text { Gets a } & D
\end{array}
$$

Assume we want to estimate μ from data. In a given class there were
b B's
c C's
d D's
What's the maximum likelihood estimate of μ given a, b, c, d ?

Max likelihood solution

$$
P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu
$$

$$
P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}
$$

$\log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)$
FOR MAX LIKE μ, SET $\frac{\partial \operatorname{LogP}}{\partial \mu}=0$
$\frac{\partial \log P}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0$
Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got

A	B	C	D
14	6	9	10

Max like $\mu=\frac{1}{10}$

Same Problem with Hidden Information

```
Someone tells us that
Number of High grades (A's + B's) = h
Number of C's =c
Number of D's =d
What is the max. like estimate of }\mu\mathrm{ now?
```


Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's + B's) $=h$
Number of C's
$=c$
Number of D's

$$
=d
$$

What is the max. like estimate of μ now?
We can answer this question circularly:

EXPECTATION

```
REMEMBER
P(A) = 1/2
P(B)=\mu
P(C) = 2\mu
P(D) = 1/2-3\mu
```

If we know the value of μ we could compute the expected value of a and b

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

EM for our problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMIZATION to improve our estimates of μ and a and b.

Define $\mu(\mathrm{t})$ the estimate of μ on the t^{\prime} th iteration
$\mathrm{b}(\mathrm{t})$ the estimate of b on t^{\prime} th iteration
$\mu(0)=$ initial guess

$$
\begin{aligned}
b(t) & =\frac{\mu(\mathrm{t}) h}{1 / 2+\mu(t)}=\mathrm{E}[b \mid \mu(t)] \\
\mu(t+1) & =\frac{b(t)+c}{6(b(t)+c+d)}
\end{aligned}
$$

E-step
$=\max$ like est of μ given $b(t)$

EM Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example, suppose we had	t	$\mu(\mathrm{t})$	$b(t)$
$\mathrm{h}=20$	0	0	0
$\mathrm{c}=10$	1	0.0833	2.857
$d=10$	1	0.0833	2.857
$\mu(0)=0$	2	0.0937	3.158
	3	0.0947	3.185
	4	0.0948	3.187
Convergence is generally linear: error decreases by a constant factor each time step.	5	0.0948	3.187
	6	0.0948	3.187

[^0]ALT-OPT/EM for Gaussian Mixture Model

MLE for Gaussian Discriminant Analysis

- Assume a K class generative classification model with Gaussian class-conditionals
- Assume class $k=1,2, \ldots, K$ is modeled by a Gaussian with mean μ_{k} and cov matrix Σ_{k}
- Can assume label y_{n} to be one-hot and then $y_{n k}=1$ if $y_{n}=k$, and $y_{n k}=0$, o/w
- Assuming class prior as $p\left(y_{n}=k\right)=\pi_{k}$, the model has params $\Theta=\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}{ }_{k=1}^{K}$
- Given training data $\left\{\boldsymbol{x}_{n}, y_{n}\right\}_{n=1}^{N}$, the MLE solution will be

$$
\begin{aligned}
& \hat{\pi}_{k}=\frac{1}{N} \sum_{n=1}^{N} y_{n k} \text { Same as } \frac{N_{k}}{N} \text { where } N_{k} \text { is \# of training ex. for which } y_{n}=k \\
& \hat{\mu}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} y_{n k} \boldsymbol{x}_{n} \text { Same as } \frac{1}{N_{k}} \sum_{n: y_{n}=k}^{N} \boldsymbol{x}_{n} \\
& \hat{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} y_{n k}\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)^{\top} \text { Same as } \frac{1}{N_{k}} \sum_{n: y_{n}=k}^{N}\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)^{\top}
\end{aligned}
$$

Observations on the GDA objective function

- Here is a formal derivation of the MLE solution for $\Theta=\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}_{k=1}^{K}$

$$
\widehat{\Theta}=\operatorname{argmax}_{\Theta} p(\boldsymbol{X}, \boldsymbol{y} \mid \Theta)=\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, y_{n} \mid \Theta\right)_{\text {multinoulli }}
$$

In general, in models with probability distributions from the exponential family, the MLE problem will usually have a simple analytic form

$$
=\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} p\left(y_{n} \mid \Theta\right) p\left(x_{n} \mid y_{n}, \Theta\right)^{\top}
$$

$$
=\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{y_{n k}} \prod_{k=1}^{K} p\left(x_{n} \mid y_{n}=k, \Theta\right)^{y_{n k}}
$$

$$
=\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} \prod_{k=1}^{K}\left[\pi_{k} p\left(x_{n} \mid y_{n}=k, \Theta\right)\right]^{y_{n k}}
$$

$$
=\operatorname{argmax}_{\Theta} \log \prod_{n=1}^{N} \prod_{k=1}^{K}\left[\pi_{k} p\left(x_{n} \mid y_{n}=k, \Theta\right)\right]^{y_{n k}}
$$

$$
=\operatorname{argmax}_{\ominus}
$$

$$
\sum_{n=1}^{N} \sum_{k=1}^{K} y_{n k}\left[\log \pi_{k}+\log \mathcal{N}\left(x_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

Need for EM/ALT-OPT: Two Equivalent Perspectives

1. Consider an LVM with latent variables and parameters. Trying to estimate parameters without also estimating the latent variables (by marginalizing them) is difficult

$$
p\left(\boldsymbol{x}_{n} \mid \Theta\right)=\sum_{k=1}^{K} p\left(\boldsymbol{x}_{n}, z_{n}=k \mid \Theta\right)=\sum_{k=1}^{K} p\left(z_{n}=k \mid \phi\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=k, \theta\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{k}, \Sigma_{k}\right)
$$

Can't get closed form expressions for the $\pi_{k}, \mu_{k}, \Sigma_{k}$ due to "log of sum". Have to use gradient based methods

This issue not just for MLE for GMM but MLE for other LVMs too
2. Consider a complex prob. density (without any latent vars) for which MLE is hard

[^1]

MLE for GMM

- Already saw that MLE is hard for GMM

$$
\Theta_{M L E}=\underset{\Theta}{\operatorname{argmax}} \log p(X \mid \Theta)=\underset{\Theta}{\operatorname{argmax}} \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \Sigma_{k}\right)
$$

- Two possible ways to solve this MLE problem

Will soon see how to get these guesses

1. If someone gave us optimal "point" guesses \hat{z}_{n} 's of cluster ids z_{n} 's, we could do MLE for the parameters just like we did for generative classification with Gaussian class-conditionals

$$
\Theta_{M L E}=\underset{\Theta}{\operatorname{argmax}} \log p(\boldsymbol{X}, \widehat{\boldsymbol{Z}} \mid \Theta)=\operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \hat{z}_{n k}\left[\log \pi_{k}+\log \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

\qquad
2. Alternatively, if someone gave a "probabilistic" guess of z_{n} 's, we can do MLE for Θ as follows

- Approach 1 is ALT-OPT and Approach 2 is Expectation Maximization ("soft" ALT-OPT). Roth reas iire alternating hetween ectimating 7. and Θ ı ıntil ronvernence

ALT-OPT for GMM

 Keep in mind: In LVMs, assuming i.i.d. data, the quantity $\log p(X \mid \Theta)=\sum_{n=1}^{N} \log p\left(x_{n} \mid \Theta\right)$ is called incomplete data log-likelihood (ILL) whereas $\log p(X, Z \mid \Theta)=\sum_{n=1}^{N} \log p\left(x_{n}, z_{n} \mid \Theta\right)$ is called complete data log-likelihood (CLL). Goal is to maximize ILL but ALT-OPT maximizes CLL (EM too will maximize the expectation of CLL). The latent vars z_{n} 's "complete" the data $x_{n} \odot$- We will assume we have a "hard" (most probable) guess of z_{n}, say \hat{z}_{n}
- Then ALT-OPT would look like this
- Initialize $\Theta=\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}_{k=1}^{K}$ as $\widehat{\Theta}$

Proportional to prior prob times likelihood, i.e.,
$p\left(z_{n}=k \mid \Theta\right) p\left(x_{n} \mid z_{n}=k, \Theta\right)=\pi_{k} \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{k}, \Sigma_{k}\right)$

- Repeat the following until convergence
- For each n, compute most probable value (our best guess) of z_{n} as

Posterior probability of point x_{n} belonging to cluster k

$$
\hat{z}_{n}=\operatorname{argmax}_{k=1,2, \ldots, K} p\left(z_{n}=k \mid \widehat{\Theta}, x_{n}\right)
$$

- Solve MLE problem for Θ using most probable z_{n} 's

Same objective

function as generative K-class classification

$$
\left.\widehat{\Theta}=\operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{k} \hat{Z}_{n k}\left[10 \log _{k}+10 \sigma\right] N\left(x_{n} \mid \mu_{k}, \sum_{k}\right)\right]
$$ with Gaussian classconditionals

$$
\text { Note: The objective function is } \sum_{n=1}^{N} \log p\left(x_{n}, \hat{z}_{n} \mid \Theta\right)=\sum_{n=1}^{N} \log p\left(\hat{\boldsymbol{z}}_{n} \mid \Theta\right)+\log p\left(\boldsymbol{x}_{n} \mid \hat{\boldsymbol{z}}_{n}, \Theta\right)
$$

$$
\begin{gathered}
\hat{\pi}_{k}=\frac{1}{N} \sum_{n=1}^{N} \hat{z}_{n k} \hat{\mu}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \hat{z}_{n k} \boldsymbol{x}_{n} \\
\hat{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \hat{z}_{n k}\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)^{\top}
\end{gathered}
$$

Does that matter? Should we worry that we aren't solving the actual problem anymore?

Not really; will see the justification soon -)

But wait! This is not the same as $\sum_{n=1}^{N} \log p\left(\boldsymbol{x}_{n} \mid \Theta\right)$ which was the original MLE objective for this LVM $)^{-}$

Expectation-Maximization (EM) for GMM

- EM finds $\Theta_{M L E}$ by maximizing $\mathbb{E}[\log p(\boldsymbol{X}, \boldsymbol{Z} \mid \Theta)]$ rather than $\log p(\boldsymbol{X}, \widehat{\boldsymbol{Z}} \mid \Theta)$
- Note: Expectation will be w.r.t. the conditional posterior distribution of \boldsymbol{Z}, i.e., $p(\boldsymbol{Z} \mid \boldsymbol{X}, \Theta)$
- The EM algorithm for GMM operates as follows

It is "conditional" posterior because it is also conditioned
on Θ, not just data X

Why w.r.t. this distribution? Will see justification in a bit

- Initialize $\Theta=\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}_{k=1}^{K}$ as $\widehat{\Theta}$
- Repeat until convergence

Needed to get the expected CLL
Requires knowing Θ

- Compute conditional posterior $\widehat{p(\boldsymbol{Z} \mid \boldsymbol{X}, \widehat{\Theta})}$. Since obs are i.i.d, compute separately for each n (and for $k=1,2, \ldots K$)
$\left.\begin{array}{l}\text { Same as } p\left(z_{n k}=1 \mid \boldsymbol{x}_{n}, \widehat{\Theta}\right) \text {, just a } \\ \text { different notation }\end{array}\right\} p\left(\mathbf{z}_{n}=k \mid \boldsymbol{x}_{n}, \widehat{\Theta}\right) \propto p\left(\boldsymbol{z}_{n}=k \mid \widehat{\Theta}\right) p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}=k, \widehat{\Theta}\right)=\hat{\pi}_{k} \mathcal{N}\left(x_{n} \mid \hat{\mu}_{k}, \widehat{\Sigma}_{k}\right)$
- Update Θ by maximizing the expected complete data log-likelihood

Solution has a similar form as ALT-OPT (or gen. class.), except we now have the expectation of $z_{n k}$ being used

$$
\widehat{\Theta}=\operatorname{argmax}_{\Theta} \mathbb{E}_{p(\boldsymbol{Z} \mid \boldsymbol{X}, \widehat{\Theta})}[\log p(\boldsymbol{X}, \boldsymbol{Z} \mid \Theta)]=\sum_{n=1}^{N} \mathbb{E}_{p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \widehat{\Theta}\right)}\left[\log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \Theta\right)\right]
$$

N_{k} : Effective number
of points in cluster k

$$
\hat{\pi}_{k}=\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[z_{n k}\right] \hat{\mu}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \mathbb{E}\left[z_{n k}\right] x_{n}
$$

$$
=\operatorname{argmax}_{\Theta} \mathbb{E}\left[\sum_{N}^{N} \sum_{n=1}^{K} z_{n k}\left[\log \pi_{k}+\log \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]\right]
$$

$$
\hat{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \mathbb{E}\left[z_{n k}\right]\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\hat{\mu}_{k}\right)^{\top}
$$

$$
=\operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}\left[z_{n k}\right]\left[\log \pi_{k}+\log \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

EM for GMM (Contd)

- The EM algo for GMM required $\mathbb{E}\left[z_{n k}\right]$. Note $z_{n k} \in\{0,1\}$

$$
\mathbb{E}\left[z_{n k}\right]=\gamma_{n k}=0 \times p\left(z_{n k}=0 \mid x_{n}, \widehat{\Theta}\right)+1 \times p\left(z_{n k}=1 \mid x_{n}, \widehat{\Theta}\right)=p\left(z_{n k}=1 \mid x_{n}, \widehat{\Theta}\right) \propto \hat{\pi}_{k} \mathcal{N}\left(x_{n} \mid \hat{\mu}_{k}, \widehat{\Sigma}_{k}\right)
$$

EM for Gaussian Mixture Model

(1) Initialize $\Theta=\left\{\pi_{k}, \mu_{k}, \Sigma_{k}\right\}_{k=1}^{K}$ as $\Theta^{(0)}$, set $t=1$
(2) E step: compute the expectation of each \boldsymbol{z}_{n} (we need it in M step)

(3) Given "responsibilities" $\gamma_{n k}=\mathbb{E}\left[z_{n k}\right]$, and $N_{k}=\sum_{n=1}^{N} \gamma_{n k}$. re-estimate Θ via MLE

$$
\begin{array}{rlr}
\boldsymbol{\mu}_{k}^{(t)} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{n k}^{(t)} \boldsymbol{x}_{n} & \begin{array}{l}
\text { Effective number of points } \\
\text { in the } k^{t h} \text { cluster }
\end{array} \\
\text { M-step: } \quad \boldsymbol{\Sigma}_{k}^{(t)} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{n k}^{(t)}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}^{(t)}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}^{(t)}\right)^{\top} \\
\pi_{k}^{(t)} & =\frac{N_{k}}{N}
\end{array}
$$

Set $t=t+1$ and go to step 2 if not yet converged

EM for GMM in action

(a)

(c)

(g)

(d)

(h)

(e)

(i)

Note: Just like with k-means, cluster initialization matters. EM only finds local optima.

[^0]: Copyright © 2001, 2004, Andrew W. Moore

[^1]: Can now apply ALT-OPT/EM to estimate parameters $\Theta+$ we get the latent variables z_{n} as a "by-product" (though we may not be interested in learning z_{n} 's if

