Expectation Maximization

CS771: Introduction to Machine Learning
Nisheeth



Let events be “grades in a class”

w, = Getsan A P(A)="%
w,=Getsa B P(B) =
wy;=Getsa C P(C)=2u
w,=Getsa D P(D) = 2-3u

(Note 0 < u <1/6)

Assume we want to estimate u from data. In a given class there were
a As
b B’s
c C’s
d D’s

What’s the maximum likelihood estimate of u given a,b,c,d ?



P(A)=% P(B)=un P(C)=2u P(D)=%-3u
P(a,b,cd | p)=K(%) (1) (2u)(%-3p)°

log P(a,b,c,d | 1) =log K+ alog % + blog u + clog 2u + dlog (%5-3)
oLogP

FOR MAX LIKE un, SET > O
L
oLogP b . 2c 3d -
o nw 2un 1/2—3n
Gives max like u = b+c
6(b+c+d)
So if class got A B C
14 6

Max like 1 -1
10



Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s =C

Number of D’s =d
What is the max. like estimate of pu now?

REMEMBER
P(A) =%
P(B) =
P(C) =2u
P(D) = ¥5-3u




REMEMBER
Someone tells us that P(A) =%
; ’ e\ = P(B) =1
Number of High grades (A’s + B’s) = h P(C) = 20
Number of C’s =C P(D) = %-3u

Number of D’s

=d

What is the max. like estimate of pu now?
We can answer this question circularly:

EXPECTATION
If we know the value of p we could compute the expected value of a and b
Since the ratio a:b should be the same as theratio % : i> a = % h b — H h
1o+m o+n

MAXIMIZATION

If we know the expected values of a and b we could compute the
maximum likelihood value of pu b+cC

" “6(brc+d)



REMEMBER
EM for our problem -
i [ P(C)=2

We begin with a guess for p - yigu

We iterate between EXPECTATION and MAXIMIZATION to improve our estimates of pand a and b.

Define p(t) the estimate of p on the t'th iteration
b(t) the estimate of b on t’th iteration

1(0) = initial guess

(Hh
o0 729 el
%—I—u(t) [ H ] P

b(t)+c
50(1)+c+d)

— max like est of p given b(t)

p(t+1) =




e Convergence proof based on fact that Prob(data | n) must increase or remain same between each iteration
[NOT OBVIOUS]

e Butit can never exceed 1 [osvious]

So it must therefore converge [osvious]

In our example, suppose we had t H(t) b(t)
h=20 0o |lo 0
c=10
d=10 1 | 0.0833 2.857
Ku(0) =0 2 | 0.0937 3.158
3 | 0.0947 3.185
4 | 0.0948 3.187
Convergence is generally linear: error decreases by a constant factor
each time step. 5 | 0.0948 3.187
6 | 0.0948 3.187




ALT-OPT/EM for Gaussian Mixture Model



MLE for Gaussian Discriminant Analysis

» Assume a K class generative classification model with Gaussian class-conditionals

= Assume class k = 1,2, ..., K is modeled by a Gaussian with mean u;, and cov matrix X,
= Can assume label y,, to be one-hot and then y,,;, = 1if y,, = k, and y,,, = 0, o/w

= Assuming class prior as p(y,, = k) = 1y, the model has params © = {my, tx, 21} K_4
= Given training data {x,,, ¥,} N_4. the MLE solution will be

N
l E y :Nn Same as £ where Ny is # of training ex. for which y,, = k
N =1 nk : N

ﬁ.k —_
1\ .
A — 1 N
Hi A n=13’nkxn Same as N_k2n=yn=k Xn
S 1 N 5 Y 1
X = N, n=13’nk (Xn—Hlk) (Xn—Hk) =7 Same as N—kZﬂ:yfk(xn—ﬁk)(xn—ﬁk)T

See here for a derivation of the MLE for GDA


https://towardsdatascience.com/gaussian-discriminant-analysis-an-example-of-generative-learning-algorithms-2e336ba7aa5c

Observations on the GDA objective function

= Here is a formal derivation of the MLE solution for © = {my, tx, 2k} k=1

® = argmaxg p(X,y|0) = argmaxe [1N—12(Xm Ynl0) mumou Gaussian
/

argmadxe Hg:l P(Vnl0) p(xp|yn, ©)

In general, in models with probability distributions from the

exponential family, the MLE problem will usually have a

simple analytic form _ N K ynk K _ y
— ¥ = argmaxg [In=1[Tk=17;™ [Tg=1pCenlyn = k, )7k

Also, due to the form of the likelihood B

(Gaussian) and prior (multinoulli), the MLE

N K
problem had a nice separable structure after = ar gm aX@ n n [7’[ kp ( xn | yn = k , @) ] Yy nk
n=1 k=1

taking the log

Can see that, when estimating the
parameters of the k" Gaussian
(TTk, Uk Z1)» we only will only need
training examples from the k™ class,
i.e., examples for which y,,, =1

N K
argmaxo log | [ | | _ [mpCenlyn = b ©)17
n= =

N K
= argmaxg z - 1ynk [log ) + log NV (x| tp, Zx) ]
n= =

The form of this expression is important; will
encounter this in GMM too




Need for EM/ALT-OPT: Two Equivalent Perspectives

1. Consider an LVM with latent variables and parameters. Trying to estimate parameters without also

estimating the latent variables (by marginalizing them) is difficult

K
p(x,|0) = Z p(xp, z, = k|O) = Zk=1p(zn = kl(}b)p(xnlzn =k,0) =

k=1

MLE for GMM with cluster ids N K
marginalized/summed/integrated out @ MLE — argmax log T k‘N (x n | U k> E k)
© Zn=1 Zk=1

A Gaussian Mixture Model (GMM)

TN (X | e 210)

K ZK - =2

the my, g, Zx due to “log of sum’”.

k=1 This issue not just
Can't get closed form expressions for | | forMLE for GMM
but MLE for other

. LVMs t
Have to use gradient based methods ‘rl S

by making guesses about the values of z,,'s

EM/ALT-OPT will help us “simulate” this condition

L If we knew the z,,’s, the problem will be much simpler; just like
"’ MLE for generative classification with Gaussian class-conditional

of the z,,'sreq

Since no marginalization

uired

2. Consider a complex prob. density (without any latent vars) for which MLE is hard

Directly defining a probability density as a mixture of
p(xal®) = )

Gaussians (x,, is generated by the k™ Gaussian with
probability ;) without any reference to any latent
variable whatsoever (we didn't define it as an LVM)

Can now apply ALT-OPT/EM to estimate parameters
© + we get the latent variables z,, as a "by-product”

hard (as we already saw above). However, we can

TN (X | g, 2

point x,,, denoting which Gaussian generated x.,,

K MLE for the params © of this distribution will again be

k=1 artificially introduce a latent variable z,, with each data

(though we may not be interested in learning z,,'s if

our goal is just density estimation, not clustering)

Also in any LVM, given 0, a
— — you can always estimate - 4 /
!Even though we dld'ﬂ t need the arhﬂo:ally z,'s. Likewise, given z,,, you
introduced z,,’s, thglr presence ar?d doing ALT— can always estimate 8 ,
OPT/EM made our job of estimating © easier!




MLE for GMM

» Already saw that MLE is hard for GMM
N K
Oyrp = argmax log p(X|0) = argmgxz _1logzk_1ﬂkN (7 | i)

; " Will soon see how to get
= [wo possible ways to solve this MLE problem  these uesses g

1. If someone gave us optimal “point” guesses Z,'s of cluster ids z,'s, we could do MLE for the
parameters just like we did for generative classification with Gaussian class-conditionals

Oyrg = argmax log p(X,Z |®) = argmaxg z z an [log ), + log V' (x,, |tk Zi)]

In form of a probability distribution instead of a

singe “optimal” guess

2. Alternatively, if someone gave a “probabilistic” guess of z,'s, we can do MLE for ® as follows

N K
Op.p = argmax E[log p(X, Z|0)] = argmaxg y 1Zk 1E[an][10g T+ log NV (xp [ g, 2|
n= =

Similar to Approach 1 but maximizes

/ . . . . . . .
an expectation ‘—I The expectation is w.r.t a distribution of Z which we will see shortly

= Approach 1 is ALT-OPT and Approach 2 is Expectation Maximization (“soft” ALT-OPT).

Rnth reainire alternatina hetween ectimatina Z and B 1intil converaence




ALT-OPT tor GMM

Keep in mind: In LVMs, assuming i.i.d. data, the quantity log p(X|0) = YN_, log p(x,, |0) is

N

called incomplete data log-likelihood (ILL)whereas log p(X, Z|0) = }.;,=,log p(x,,2,|0) is
called complete data log-likelihood (CLL). Goal is to maximize ILL but ALT-OPT maximizes CLL
(EM too will maximize the expectation of CLL). The latent vars z,'s “complete” the data x,, ©

= We will assume we have a “hard” (most probable) guess of z,, say Z,

®» Then ALT-OPT would look like this

= |nitialize ® = {7y, tx, Zi}K_4 as )

Proportional to prior prob times likelihood, i.e.,
p(Zn = kl@) p(xnlzn = k,@) — Ty N(xnI#szk)

= Repeat the following until convergence

= [For each n, compute most probable value (our best guess) of z,, as

Zp = argmaxg=17,. K P(Zn =K ‘@; xn)

= Solve

Same objective

. . ——
function as generative @
K-class classification

LE problem for ® using most probable z,,'s

= argmaxe Xn=1 Li=12nk[10g Tk + 10gNV (|11, 2y

with Gaussian class-
conditionals

o 4

g

Posterior probability of
point x,, belonging to
cluster k

Note: The objective functionis Y N_, log p(x,,2,|0) = XN_,log p(2,]|0) +log p(x,|2,, ©)

Ny, : Effective number
of points in cluster k

ﬁkz A

~ 1 N
5, = —Z 2
k Nk n=1 nk

: ZN
= ZAnkxn
Nk n=1

(xn _ﬁk)(xn_ﬁk)T

Does that matter? Should we worry that \\

we aren’t solving the actual problem l\k

anymore?

——
Not really; will see the

Justification soon ©

But wait! This is not the same as
>N _ log p(x, |®) which was
the original MLE objective for
this LVM ®

/



Expectation-Maximization (EM) for GMM P

! Expectation of CLL

ALT-OPT

= EM finds @z by maximizing E[log p(X, Z|©)] rather than log p(X,Z |©)
* Note: Expectation will be w.r.t. the conditional posterior distribution of Z, i.e., p(Z|X, ©)
— \\

* The EM algorithm for GMM operates as follows |, e it & aso conditioned Why w.r-. this distibution? Wil

= |nitialize © = {my, Uk, Zx Hheq @S O

= Repeat until convergence

It is “conditional” posterior

on ©, not just data X see justification in a bit
|

Needed to get the expected CLL

Requires knowing ©

——
= Compute conditional posterior p(Z]X, ). Since obs are i.i.d, compute separately foreach n (and fork = 1,2,..K)

Same as p(z,x = 1| x,,, 0), just a

different notation

§> p(z, = k|x,,0) « p(z, = k|®) p(x,|2, = k,0) = &N (x| 0., £k )

= Update @ by maximizing the expected complete data log-likelihood

Solution has a similar form as

ALT-OPT (or gen. class.), @ = argmaX@IEp(le,@) [log p(X,ZI@)] - Z

except we now have the

expeclationof z,; being used

—=

1 N
b Y. = ;).
N, : Effective number ﬁ> k

of points in cluster k

Zk=—

n=1

N
D Bl G =) eu )T

N
1 Ep(z,1%0,0) [log p(xy,2,10)]

n=

N K
Bz lx, = rBmaXe E [anlszl Znillog i + 108 N (it )]

N K
=argmaxe ) ) Elzylllogm+ log W (xaliue, %)
n: —




Reason: Y K1 Vnk = 1

EM for GMM (Contd)

= The EM algo for GMM required E[z,;]. Note Z,; € {0,1} [0 e Hamd = o vt

——

IE[an] =Yk = 0Xp(Zpx = 0]xy, @) + 1 X p(zZp = 1]xy, @) = PZnk = 1lxy, @) X ﬁ-kN(xnlﬁk’zk)

EM for Gaussian Mixture Model

Q |Initialize © = {7y, pu, Zk}ff:l as ©0) set t =1
@ E step: compute the expectation of each z, (we need it in M step)
Accounts for fraction of points in Accounts for cluster shapes (since each
Soft ijeans, which are more of z?heuristif: to get soft- each cluster ® j((—1 xn“-"k —1) z(f 1) cluster is a Gaussian
clustering, also gave us probabilities but didn’t account E[Z ] = "}‘ = [t 1) t-1) (t—1) Vn, k
for cluster shapes or fraction of points in each cluster —/- Z =1 Ty N (X nl Hy 3 z ? )
© Given “responsibilities” v,k = E[zx], andre—estimate © via MLE
N . .
1 ¢ Effective number of points
”'Ect) = N, Z 'Yfmk)x” W in the k" cluster
M-step:
-
5y = Z o 0 = 1) 00 — 117)
O &
N
©Q Set t =t + 1 and go to step 2 if not yet converged




EM for GMM in action

.« " . L=1 . " L=4 . ®
SO A A 5,
--:-t a . '.:nt - : .‘N% ) zﬂn .
c A O o a U
(a) (c) (d) (e)
L=86 . L=28 L=10 . L=12 .

Note: Just like with k-means, cluster initialization matters.

EM only finds local optima.
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