Latent Variable Models

CS771: Introduction to Machine Learning
Nisheeth

Coin toss example

- Say you toss a coin N times
- You want to figure out its bias
- Bayesian approach
 - Find the generative model
 - Each toss ~ Bern(θ)
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- Draw the generative model in plate notation

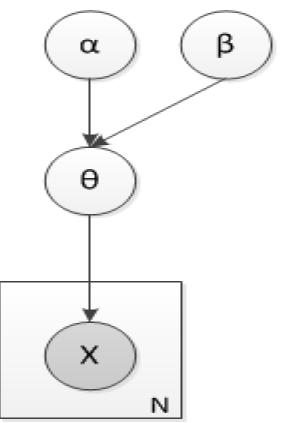


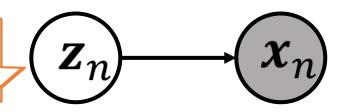
Plate notation

- Random variables as circles
- Parameters, fixed values as squares
- Repetitions of conditional probability structures as rectangular 'plates'
- Switch conditioning as squiggles
- Random variables observed in practice are shaded

Generative Models with Latent Variables

- Have already looked at generative models for supervised learning
- Generative models are even more common/popular for unsupervised learning, e.g.,
 - Clustering
 - Dimensionality Reduction
 - Probability density estimation

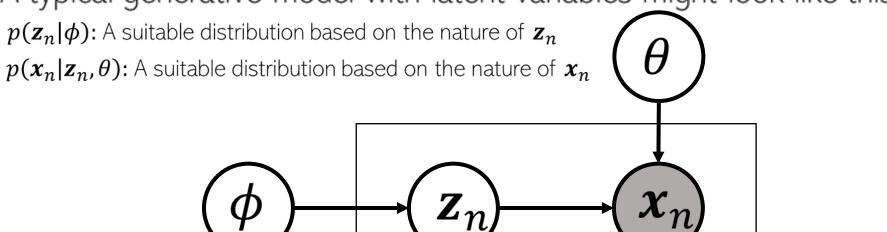
Latent variable z_n usually encodes some latent properties of the observation $oldsymbol{x}_n$



- In such models, each data point is associated with a latent variable
 - ullet Clustering: The cluster id $oldsymbol{z}_n$ (discrete, or a K-dim one-hot rep, or a vector of cluster membership probabilities)
 - lacktriangle Dimensionality reduction: The low-dim representation $oldsymbol{z}_n \in \mathbb{R}^K$
- These latent variables will be treated as random variables, not just fixed unknowns
- Will therefore assume a suitable prior distribution on these and estimate their posterior
 - If we only need a point estimate (MLE/MAP) of these latent variables, that can be done too

Generative Models with Latent Variables

A typical generative model with latent variables might look like this



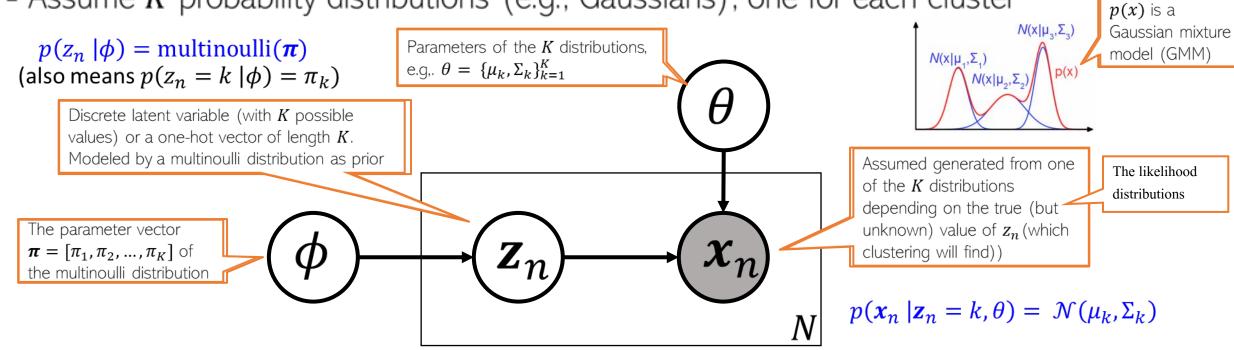
Need probability distributions on both

- ullet In this generative model, observations $oldsymbol{x}_n$ assumed generated via latent variables $oldsymbol{z}_n$
- The unknowns in such latent var models (LVMs) are of two types
 - Global variables: Shared by all data points (θ and ϕ in the above diagram)
 - Local variables: Specific to each data point (z_n 's in the above diagram)
- Note: Both global and local unknowns can be treated as r.v.'s

However, here we will only treat the local variables \mathbf{z}_n 's as random latent variable and regard $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$ as other unknown "parameters" of the model

An Example of a Generative LVM

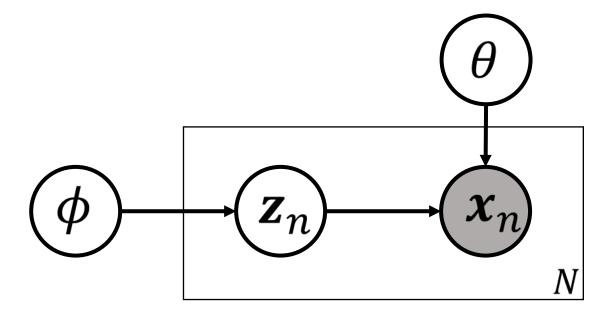
- Probabilistic Clustering can be formulated as a generative latent variable model
- \blacksquare Assume K probability distributions (e.g., Gaussians), one for each cluster



- ullet In any such LVM, ϕ denotes parameters of the prior distribution on $oldsymbol{z}_n$
- lacktriangle .. and heta denotes parameters of the likelihood distribution on x_n

Parameter Estimation for Generative LVM

So how do we estimate the parameters of a generative LVM, say prob. clustering?



- lacktriangle The guess about $oldsymbol{z}_n$ can be in one of the two forms
 - A "hard" guess a fixed value (some "optimal" value of the random variable z_n)
 - lacktriangle The "expected" value $\mathbb{E}[oldsymbol{z}_n]$ of the random variable $oldsymbol{z}_n$
- lacktriangle Using the hard guess of $oldsymbol{z}_n$ will result in an ALT-OPT like algorithm
- ullet Using the expected value of $oldsymbol{z}_n$ will give the so-called Expectation-Maximization (EM) algo-

EM is pretty much like ALT-OPT but with soft/expected values of the latent variables

Parameter Estimation for Generative LVM

- Can we estimate parameters $(\theta, \phi) = \Theta$ (say) of an LVM without estimating \mathbf{z}_n ?
- In principle yes, but it is harder

The discussion here is also true for MAP estimation of Θ

■ Given N observations x_n , n = 1,2,...,N, the MLE problem for Θ will be

$$\underset{\Theta}{\operatorname{argmax}} \sum_{n=1}^{N} \log p(\boldsymbol{x}_{n}|\Theta) = \underset{\Theta}{\operatorname{argmax}} \sum_{n=1}^{N} \log \sum_{\boldsymbol{z}_{n}} p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}|\Theta) = p(\boldsymbol{z}_{n}|\phi)p(\boldsymbol{x}_{n}|\boldsymbol{z}_{n},\theta)$$
After the summation/integral on the RHS

After the summation/integral on the RHS, $p(\mathbf{x}_n|\Theta)$ is no longer exp. family even if $p(z_n|\phi)$ and $p(x_n|z_n,\phi)$ are in exp-fam \otimes

Summing over all possible values \mathbf{z}_n can take (would be an integral instead of sum if \mathbf{z}_n is continuous

• For the probabilistic clustering model (GMM) we saw, $p(x_n|\Theta)$ will be

Convex combination (mixture) of K Gaussians. No longer an exp-family distribution

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K p(\boldsymbol{x}_n, \boldsymbol{z}_n = k|\Theta) = \sum_{k=1}^K p(\boldsymbol{z}_n = k|\phi)p(\boldsymbol{x}_n|\boldsymbol{z}_n = k, \theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

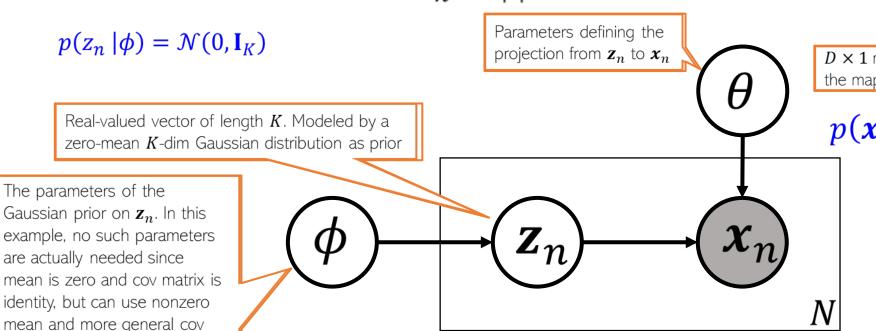
• MLE problem thus will be $\underset{\Theta}{\operatorname{argmax}} \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) < \underset{\text{simpler by using guesses of } z_n \text{ 's}}{\operatorname{gradient based methods but update the problem of the pr$

The log of sum doesn't give us a simple expression; MLE can still be done using gradient based methods but update will be complicated. ALT-OPT or EM make it

Another Example of a Gen. LVM

If the \mathbf{z}_n were known, it just becomes a probabilistic version of the multi-output regression problem where $\mathbf{z}_n \in \mathbb{R}^K$ are the observed input features and $x_n \in \mathbb{R}^K$ are the vector-valued outputs

- Probabilistic PCA (PPCA) is another example of a generative latent var model
- lacktriangle Assume a K-dim latent var $oldsymbol{z}_n$ mapped to a D-dim observation $oldsymbol{x}_n$ via a prob. mapping



 $_{ ext{the mapping}}^{ ext{D} imes 1 ext{ mean of the mapping}} \mu_n = W z_n$

 $p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{W}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}_n, \sigma^2 \mathbf{I}_D)$

 $D \times K$ mapping matrix

Probabilistic mapping means that will be not exactly but somewhere around the mean (in some sense, it is a noisy mapping):

$$x_n = Wz_n + \epsilon_n$$

Also, instead of a linear mapping Wz_n , the z_n to x_n mapping can be defined as a nonlinear mapping (variational autoencoders, kernel based latent variable models)

Added Gaussian noise just like probabilistic linear regression

■ PPCA has several benefits over PCA, some of which include

matrix for the Gaussian prior

- lacktriangle Can use suitable distributions for x_n to better capture properties of data
- Parameter estimation can be done faster without eigen-decomposition (using ALT-OPT/EM algos)

Generative Models and Generative Stories

- Data generation for a generative model can be imagined via a generative story
- This story is just our hypothesis of how "nature" generated the data
- For the Gaussian mixture model (GMM), the (somewhat boring) story is as follows
 - For each data point x_n with index n = 1, 2, ..., N
 - Generate its cluster assignment by drawing from prior $p(z_n|\phi)$

$$z_n \sim \text{multinoulli}(\pi)$$

• Assuming $z_n = k$, generate the data point x_n from $p(x_n|z_n,\theta)$

$$\boldsymbol{x}_n \sim \mathcal{N}(\mu_k, \Sigma_k)$$

- Can imagine a similar story for PPCA with z_n generated from $\mathcal{N}(0, \mathbf{I}_K)$ and then conditioned on z_n , the observation x_n generated from $p(x_n | z_n, W, \sigma^2) = \mathcal{N}(Wz_n, \sigma^2 \mathbf{I}_D)$
- For GMM/PPCA, the story is rather simplistic but for more sophisticated models, gives an easy way to understand/explain the model, and data generation process