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e Say you toss a coin N times
* You want to figure out its bias

e Bayesian approach
e Find the generative model
e Each toss ~ Bern(8)
e O~ Beta(a,P)

* Draw the generative model in
plate notation




* Random variables as circles
* Parameters, fixed values as squares

* Repetitions of conditional probability structures as rectangular
‘plates’

e Switch conditioning as squiggles
* Random variables observed in practice are shaded



Generative Models with Latent Variables

* Have already looked at generative models for supervised learning

» Generative models are even more common/popular for unsupervised learning, e.g.,

= Clustering

: . . , Latent variable z_n usually
. DImenSlGna“ty REdUCUDn encodes some latent properties Zn
* Probability density estimation of the observation Xn

= |n such models, each data point is associated with a latent variable
= Clustering: The cluster id z,, (discrete, or a K-dim one-hot rep, or a vector of cluster membership probabilities)
= Dimensionality reduction: The low-dim representation z,, € R

* These latent variables will be treated as random variables, not just fixed unknowns

= Will therefore assume a suitable prior distribution on these and estimate their posterior
= [f we only need a point estimate (MLE/MAP) of these latent variables, that can be done too



Generative Models with Latent Variables

= A typical generative model with latent variables might look like this

p(z,|¢): A suitable distribution based on the nature of z,
p(x,|z,,0): A suitable distribution based on the nature of x,

oi¥e

Need probability N

distributions on both

— <
* |n this generative model, observations x,, assumed generated via

* The unknowns in such latent var models (LVMs) are of two types

latent variables z,,

= Global variables: Shared by all data points (8 and ¢ in the above diagram)

= | ocal variables: Specific to each data point (z,'s in the above diagram)

= Note: Both global and local unknowns can be treated as r.v.'s

However, here we will only treat the
local variables z,,'s as random latent
variable and regard € and ¢ as other
unknown “parameters” of the model




An Example of a Generative LVM

* Probabilistic Clustering can be formulated as a generative latent variable model

* Assume K probability distributions (e.g., Gaussians), one for each cluster oy
_ _ — ‘ N(x|u,.Z,) Gaussian mixture
p(zn |¢) = mu]tlnou]h(n) Parameters of theII{( distributions, NG5} model (GMM)
(also means p(z, =k |¢p) = my) €9 0 = {e Zidi= Nxii, £ \PX
Discrete latent variable (with K possible .
values) or a one-hot vector of length K. ]
Modeled by a multinoulli distribution as prior Assumed generated from one J The likelihood
\ of the K distributions distributions
. depending on the true (butA
The parameter vector - unknown) value of z, (which
= [, 7y, ..., Mg ] Of n7 ¢ Zn | clustering will find))

the multinoulli distribution

N p(xn Izn = k, 9) = N(ukJZk)

* [n any such LVM, ¢ denotes parameters of the prior distribution on z,,
= .. and @ denotes parameters of the likelihood distribution on x;,



Parameter Estimation for Generative LVM

* 50 how do we estimate the parameters of a generative VM, say prob. clustering?

O—@

* The guess about Z,, can be in one of the two forms
= A "hard” guess — a fixed value (some "optimal” value of the random variable z,,)

N

» The “expected” value E|z,] of the random variable z,, EM is pretty much like ALT-OPT but

with soft/expected values of the latent

» Using the hard guess of z, will result in an ALT-OPT like algorithm s

=
» Using the expected value of z,, will give the so-called Expectation-Maximization (EM) algo



Parameter Estimation for Generative LVM

= Can we estimate parameters (8, ¢) = O (say) of an LVM without estimating z,,7

' ‘ oy The discussion here is also true
®* [n principle yes, but it is harder for MAP estimation of ©
w ] 7 ]
= Given N observations x,,n = 1,2, ..., N, the MLE problem for ® will be
Al h n Zn|0) = p(z, nlZn, 0
N N | Lo note that p(x,, 2,10) = p(zal$)p (s 2,,6)
argmaxz logp(x,|®) = argmax Z log Z p(xX,,,2,|0)
© n=1__<—_ © n=1 z
After the summation/integral on the RHS, h
p(x,|©) is no longer exp. family even if Summing over all possible values z,, can take (would
p(z,|¢) and p(x,|z,, ) are in exp-fam @ be an integral instead of sum if z, is continuous

Convex combination (mixture)

* For the probabilistic clustering model (GMM) we saw, p(x,|0©) will be | o X Gaussians. No longer an

exp-family distribution

K K K
p(xnle) = P(xn, Zn = k|®) = Zk—lp(zn = qub)p(xnlzn =k,0) = Z nkN(xnluk, zk)

k=1 k=1 The log of sum doesn't give us a simple

N expression; MLE can still be done using
gradient based methods but update will

simpler by using guesses of z,'s

K
| M LE prOblem thus W'“ be argm@ax Z log Z n'kN(xn “’l'kl Zk) be complicated. ALT-OPT or EM make it
n=1 k=1



Another Example of a Gen. LVM

* Probabilistic PCA (PPCA) is another example of a generative latent var mode

If the z,, were known, it just becomes a
probabilistic version of the multi-output

regression problem where z,, € RX are the
observed input features and x,, € RKare the

vector-valued outputs

= Assume a K-dim latent var z,, mapped to a D-dim observation x,, via a prob. mapping

P(zn |¢) = N(0,1g)

Real-valued vector of length K. Modeled by a
zero-mean K-dim Gaussian distribution as prior

Parameters defining the

projection from z,, to x,; \

D X K mapping matrix

D X 1 mean of

K X1

the mapping 117”71 —_ WZn

p(xn |Z‘n; W; 0-2) — N(I"TUGZID)

Gaussian prior on z,,. In this
example, no such parameters

The parameters of the \\

are actually needed since
mean is zero and cov matrix is
identity, but can use nonzero

mean and more general cov

Probabilistic mapping means that will be not
exactly but somewhere around the mean (in
some sense, it is a noisy mapping):

Also, instead of a linear mapping
Wz, . the z, to x, mapping

—
~
zn x, =Wz, + €,
_TT<< <<
N

matrix for the Gaussian prior

= PPCA has several benefits over PCA, some of which include  Lientrabie mocels

can be defined as a nonlinear
mapping (variational
autoencoders, kernel based

Added Gaussian
noise just like
probabilistic linear

regression

= Can use suitable distributions for x,, to better capture properties of data
= Parameter estimation can be done faster without eigen-decomposition (using ALT-OPT/EM algos)




Generative Models and Generative Stories

» Data generation for a generative model can be imagined via a generative story
= This story is just our hypothesis of how “nature” generated the data
» For the Gaussian mixture model (GMM), the (somewhat boring) story is as follows

" For each data point x,, with indexn = 1,2,...,N
= Generate its cluster assignment by drawing from prior p(z,,|®)
z, ~ multinoulli(7r)
= Assuming z, = k, generate the data point x,, from p(x,,|2,, 0)
Xn ~ N(ﬂkrzk)

= Can imagine a similar story for PPCA with z,, generated from N (0,Ix) and then
conditioned on z,,, the observation x,, generated from p(x,, |2,,, W,0%) = N (Wz,,5%1p)

» For GMM/PPCA, the story is rather simplistic but for more sophisticated models, gives
an easy way to understand/explain the model, and data generation process
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