Dimensionality Reduction (contd.)

CS771: Introduction to Machine Learning
Nisheeth

Principal Component Analysis: Recap

= Center the data (subtract the mean u = %ZL:{ X,, from each data point)

= Compute the D X D covariance matrix S using the centered data matrix X as

S = — XTX (Assuming X is arranged as N X D)

N

* Do an eigendecomposition of the covariance matrix S (many methods exist)
» Take top K < D leading eigvectors {wq, W, ..., Wk } with eigvalues {14, 45, ..., Ax }

= The K-dimensional projection/embedding of each input is

Note: Can decide how many
eigvecs to use based on how

ZTl ~ WI}- xnﬁi Wk = [Wq, W, ..., Wk] is the much variance we want to

“projection matrix” of size D x K campure (recall that each Ay
gives the variance in the

k" direction (and their sum is
the total variance)

Eigendecomposition refresher

e Recall that matrices are essentially instructions for transforming
vectors

. . . 3 0
e Consider diagonal matrices M = [u J

Visuals for these slides borrowed from this tutorial. Highly recommended.

http://www.ams.org/publicoutreach/feature-column/fcarc-svd

Symmetric matrices are special

21

* Consider the symmetric matrix w7 |
* |t has the following effect

[] Mz éz

* What is it doing?
* Not clear

Symmetric matrices behave like diagonal
matrices

e Consider the same operation on a coordinate system rotated by 45 degrees
SRR T

e We see that the effect of the symmetric matrix M on this coordinate frame
is the same as the effect of a diagonal matrix on the conventional
coordinate frame

* From 12t class linear algebra

det(A— \I) =0

2—N2—-)N)—1=0

M 4N +3=0
A=1{3,1}

* With eigenvectors x1 ={1,1} and x2 = {-1,1}
 What does this mean?

Eigendecomposition to information
compression

* The eigendecomposition of M found the vectors we could use to form a
coordinate basis

* |n which the matrix operation M on a vector would correspond to a simple scaling operation
on the same vector

e Mx = AX

* Important: each eigenvalue is simply performing a scaling operation in the new
coordinate basis. The bigger the eigenvalue, the bigger the transformation

* If we choose to not use some of the eigenvalues, this is equivalent to not using
some information in the original matrix

e By selecting to ignore smaller eigenvalues, we compress information about a
matrix by looking only at the most important scale transformations that matter

e Pro-tip, for symmetric positive definite matrices, eigendecomposition is the same
as singular value decomposition (SVD)

An eigendecomposition application: PCA

= Center the data (subtract the mean u = %ELI X,, from each data point)

= Compute the D X D covariance matrix S using the centered data matrix X as

S = — XTX (Assuming X is arranged as N X D)

N

* Do an eigendecomposition of the covariance matrix S (many methods exist)
» Take top K < D leading eigvectors {wq, W, ..., Wk } with eigvalues {14, 45, ..., Ax }

= The K-dimensional projection/embedding of each input is

“projection matrix” of size D X K

Z, =~ WI-{F xnﬁi Wi = [wy,wy, ..., wglis the

Singular Value Decomposition (SVD)

= Any matrix X of size N X D can be represented as the following decomposition

D N D
min{N,D}
X =UAV' = Z Akuk ‘U;(r
~ N k=1
Dlagonal matrix. If N > D, last D — N rows are all

zeros: if D > N, last D — N columns are all zeros

* U = [uy,u,, ..., uy] is N X N matrix of left singular vectors, each u,, € R
= U is also orthonormal

= [v4, V5, ..., ¥y] is D X D matrix of right singular vectors, each v4; € RP
= V is also orthonormal

* Ais N X D with only min(N, D) diagonal entries - singular values
= Note: If X is symmetric then it is known as eigenvalue decomposition (U = V)

The wikipedia article on this is a star. Highly recommended.

https://en.wikipedia.org/wiki/Singular_value_decomposition

Low-Rank Approximation via SVD

= [f we just use the top K < min{N, D} singular values, we get a rank-K SVD

D

K

Uy

X ~ X Z)\kukvk = UxAkV i
=1

= Above SVD approx. can be shown to minimize the reconstruction error ||X - X H
= Fact: SVD gives the best rank-K approximation of a matrix

= PCA is done by doing SVD on the covariance matrix S (left and right singular vectors
are the same and become eigenvectors, singular values become eigenvalues)

Dim-Red as Matrix Factorization

= |f we don't care about the orthonormality constraints, then dim-red can also be
achieved by solving a matrix factorization problem on the data matrix X

D K D
K W

Matrix containing the
low-dim rep of X

7 YA — 1 —_— 2 If K < min{D, N}, such a
{Z’ w} o argmlnzrw ‘ ‘ X Zw H factorization gives a low-rank ﬂ
approximation of the data matrix X L~ /
= Can solve such problems using ALT-OPT &'
» Can impose various constraints on Z and W (e.q., sparsity, non-negativity, etc)...,,

Supervised Dimensionality Reduction

" Maximum variance directions may not be aligned with class separation directions

T Direction that preserves class Projecting along this will give a one dimensional
Projecting along this will give a one dimensional f separation embedding of each point with both classes
embedding of each point with both classes still ® [) () o ® [® (] ° overlapping with each other
having a good separation (] .. ¢ ° [) [[V
[o @® Max variance direction
(given by PCA)
. 0° L%
® o0 o® %o
o O o o ©®
o ® o "y

" Be careful when using PCA for supervised learning problems

" A better option would be to project such that

" Points within the same class are close (low intra-class variance)

" Points from different classes are well separated (the class means are far apart)

Supervised Dimensionality Reduction

= Many techniques. A simple yet popular one is Fisher Discriminant Analysis, also known
aS Linear— Discrimlnant Analysis (FDA Or LDA)ﬁ This LDA should not be confused with another very popular ML technique for finding

topics in text data (Latent Dirichlet Allocation)

* For simplicity, assume two classes (can be generalized for more than 2 classes too)

= Suppose a projection direction u. After projection the means of the two classes are

L T 1 T .
M1 = ﬁl Z u Xp, M= ﬁz Z u X, Herfa we considered
n:y,=1 n:y,=2 projection to one
: : . . : dimension but can
= Total variance of the points after projection will be s + $5 Where | pe generalized to P
) 1 ,) 1 - , projection to K dim | iy /
Sl:ﬁ Z(U X”_ﬂl): 52=F2 Z(u Xn—j,Lz) &
n:yn=1 n:yp=

= Fisher discriminant analysis finds the optimal projection direction by solving

Push the means far

()=
eigendecomposition problem that involves within class a rg max I-L]' IJQ apart
covariance matrices and between class covariance u 5]2-) —|— 522 ﬁ

The solution to this problem involves solving an

Make each class tightly packed

matrices o .
after projection (small variance)

Dimensionality Reduction given
Pairwise Distances between points

Dim. Reduction by Preserving Pairwise Distances

= PCA/SVD etc assume we are given points X4, X, ..., Xy as vectors (e.g., in D dim)
= Often the data is given in form of distances d;; between points (i,j = 1,2, ..., N)

= Would like to project data such that pairwise distances between points are preserved

A N Z z; and z; denote low-dim
Z — arg mzin E(Z) = arg mzin Z (d{l — Hzf — Zj‘ ’)2 embeddings/projections of

points i and j

ij=1
= Basically, if d;; is large (resp. small), would like ||z; — z;|| to be large (resp. small)
» Multi-dimensional Scaling (MDS) is one such algorithm

* Note: If d;; is the Euclidean distance, MDS is equivalent to PCA

» The above approach tries to preserve all pairwise distances

= Can try to preserve pairwise distances only between close-by points (i.e.. b/w nearest neighbors).
It helps achieve non-linear dim red. Alaos like Isomap and locallv linear embeddina (LLE) do this

MDS: An Example

= Result of applying MDS (with K = 2) on pairwise distances between some US cities

1500 +
1000 +
Seattle
° Boston
500 + -
o Chicago e NYC
= “ 8 :
o X Denver Washington
San Francisco , o = . . : :
£y . ' = ' , y
-2000 -1500 -1000 -500 4] 502 1000 1500 2000 2500
| & Atlanta
os Angeles 500 - .
New Orleans °
Miami
-1000 —+

Dim1

= MDS produces a 2D embedding such that geographically close cities are also close in
embedding space

Nonlinear Dimensionality Reduction

Beyond Linear Projections

" Consider the swiss-roll dataset (points lying close to a manifold)

Relative positions of points

destroyed after the projection

PCA (Linear Projection) sk

> |

" Linear projection methods (e.g., PCA) can’t capture intrinsic nonlinearities

" Maximum variance directions may not be the most interesting ones

Nonlinear Dimensionality Reduction

" We want to a learn nonlinear low-dim projection

" Some ways of doing this

" Nonlinearize a linear dimensionality reduction method. E.g.:
" Cluster data and apply linear PCA within each cluster (mixture of PCA)
® Kernel PCA (nonlinear PCA)
" Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,
® Locally Linear Embedding (LLE), Isomap
® Maximum Variance Unfolding

® Laplacian Eigenmap, and others such as SNE/tSNE, etc.

E2]

Relative positions of points

preserved after the projection

Kernel PCA

» Recall PCA: Given N observations x, € R n=1,2,...,N,

D X D cov matrix

assuming centered data

M X M cov matrix assuming
centered data in the kernel-

D eigenvectors of S

N
1 e
ks—ﬁglxnxl Su; =\ \u; Vi=1,...,D
= Assume a kernel k with associated M dimensional nonlinear map ¢
M eigenvectors of C
LC—NZCE’JX” (xn)' Cv,=\v,Vi=1....M

induced feature space

» Would like to do it without computing € and the mappings ¢(x,)’s since M can be
very large (even infinite, €.g., when using an RBF kernel)

* Boils down to doing eigendecomposition of the N X N kernel matrix K (PRML 12.3)

= Can verify that each v; above can be written as a lin-comb of the inputs: v; =
= Can show that finding @; = [a;1, a;, .-,

N
n=1ainP(xy)

a;n] reduces to solving an eigendecomposition of K

» Note: Due to req. of centering, we work with a centered kernel matrix K = K - 1yK - Kiy + 1yKly

N X N matrix of all 1s

Several non-lin dim-red algos use

Locally Linear Embedding [s

I

preservation, but only local

» Basic idea: If two points are local neighbors in the original space then they should be
local neighbors in the projected space too

= Given N observations x,, € R?, n =1,2,...,N, LLE is formulated as

Solve this to learn weights W;; such that
each point x; can be written as a weighted
combination of its local neighbors in the

N (i) denotes the local
neighbors (a predefined number,
say K, of them) of point x;

original feature space

= For each point x,, € R? | LLE learns z,, € RK, n = 1,2, ..., N such that the same
neighborhood structure exists in low-dim SDAce too

Requires solving an j : 2 : 2
eigenvalue problem F Z T arg m I n |Z, Vt/U ZJ | |
JEN(i)

= Basically, if point x; can be reconstructed from its neighbors in the original space, the
same weights W;; should be able to reconstruct z; in the new space too

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000)

Thus very useful if we want to
S N E a n d t - S N E visualize some high-dim data in two

or three dims

P
= Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D

= SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)
= Uses the idea of preserving probabilistically defined neighborhoods
= SNE, for each point x;, defines the probability of a point x; being its neighbor as

Neighbor probability in the Neighbor probability in the

original space projected/embedding space

P'If exp(—||xi — xj||*/20?) 2“{ exp(—||zi — z;||?/207)
’ Zk;ﬁf exp(—||xi — x«||?/20?) ’ Zk.—,éi exp(—||zi — z«|[?/20?)

= SNE ensures that neighbourhood distributions in both spaces are as close as possible
= By minimizing their Kullback-Leibler divergence, summed over all points ?212?':1 KL(pjillgji)

= {-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to SNE
= | earns z;'s by minimizing symmetric KL divergence
= Uses Student-t distribution instead of Gaussian for defining g;;

SNE and t-SNE

" Especially useful for visualizing data by projecting into 2D or 3D

Lo~ EWNREO

Result of visualizing MNIST digits data in 2D (Figure from van der Maaten and Hinton, 2008)

	Dimensionality Reduction (contd.)
	Principal Component Analysis: Recap
	Eigendecomposition refresher
	Symmetric matrices are special
	Symmetric matrices behave like diagonal matrices
	A simple eigendecomposition
	Eigendecomposition to information compression
	An eigendecomposition application: PCA
	Singular Value Decomposition (SVD)
	Low-Rank Approximation via SVD
	Dim-Red as Matrix Factorization
	Supervised Dimensionality Reduction
	Supervised Dimensionality Reduction
	 Dimensionality Reduction given Pairwise Distances between points
	Dim. Reduction by Preserving Pairwise Distances
	MDS: An Example
	 Nonlinear Dimensionality Reduction
	Beyond Linear Projections
	Nonlinear Dimensionality Reduction
	Kernel PCA
	Locally Linear Embedding
	SNE and t-SNE
	SNE and t-SNE

