Dimensionality Reduction (contd.)

CS771: Introduction to Machine Learning
Nisheeth

Principal Component Analysis: Recap

- Center the data (subtract the mean $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}$ from each data point)
- Compute the $D \times D$ covariance matrix \mathbf{S} using the centered data matrix \mathbf{X} as

$$
\left.\mathbf{S}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{X} \quad \text { (Assuming } \mathbf{X} \text { is arranged as } N \times D\right)
$$

- Do an eigendecomposition of the covariance matrix \mathbf{S} (many methods exist)
- Take top $K<D$ leading eigvectors $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K}\right\}$ with eigvalues $\left\{\boldsymbol{\lambda}_{1}, \lambda_{2}, \ldots, \lambda_{K}\right\}$
- The K-dimensional projection/embedding of each input is

$$
\boldsymbol{z}_{n} \approx \mathbf{W}_{K}^{\top} \boldsymbol{x}_{n}\left\{\begin{array}{l}
\mathbf{W}_{\mathrm{K}}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mathrm{K}}\right] \text { is the } \\
\text { "projection matrix" of size } D \times K
\end{array}\right.
$$

Note: Can decide how many
eigvecs to use based on how
much variance we want to
campure (recall that each λ_{k}
gives the variance in the
$k^{\text {th }}$ direction (and their sum is
the total variance)

Eigendecomposition refresher

- Recall that matrices are essentially instructions for transforming vectors
- Consider diagonal matrices $\quad M=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]$

Visuals for these slides borrowed from this tutorial. Highly recommended.

Symmetric matrices are special

- Consider the symmetric matrix $\quad M=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
- It has the following effect

- What is it doing?
- Not clear

Symmetric matrices behave like diagonal matrices

- Consider the same operation on a coordinate system rotated by 45 degrees

- We see that the effect of the symmetric matrix M on this coordinate frame is the same as the effect of a diagonal matrix on the conventional coordinate frame

A simple eigendecomposition

- From $12^{\text {th }}$ class linear algebra

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
(2-\lambda)(2-\lambda)-1 & =0 \\
\lambda^{2}-4 \lambda+3 & =0 \\
\lambda & =\{3,1\}
\end{aligned}
$$

- With eigenvectors $\mathrm{x} 1=\{1,1\}$ and $\mathrm{x} 2=\{-1,1\}$
- What does this mean?

Eigendecomposition to information compression

- The eigendecomposition of M found the vectors we could use to form a coordinate basis
- In which the matrix operation M on a vector would correspond to a simple scaling operation on the same vector
- $M x=\lambda x$
- Important: each eigenvalue is simply performing a scaling operation in the new coordinate basis. The bigger the eigenvalue, the bigger the transformation
- If we choose to not use some of the eigenvalues, this is equivalent to not using some information in the original matrix
- By selecting to ignore smaller eigenvalues, we compress information about a matrix by looking only at the most important scale transformations that matter
- Pro-tip, for symmetric positive definite matrices, eigendecomposition is the same as singular value decomposition (SVD)

An eigendecomposition application: PCA

- Center the data (subtract the mean $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}$ from each data point)
- Compute the $D \times D$ covariance matrix \mathbf{S} using the centered data matrix \mathbf{X} as

$$
\left.\mathbf{S}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{X} \quad \text { (Assuming } \mathbf{X} \text { is arranged as } N \times D\right)
$$

- Do an eigendecomposition of the covariance matrix \mathbf{S} (many methods exist)
- Take top $K<D$ leading eigvectors $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K}\right\}$ with eigvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{K}\right\}$
- The K-dimensional projection/embedding of each input is

$$
\boldsymbol{z}_{n} \approx \mathbf{W}_{K}^{\top} \boldsymbol{x}_{n}\left\{\begin{array}{l}
\mathbf{W}_{\mathrm{K}}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K}\right] \text { is the } \\
\text { "projection matrix" of size } D \times K
\end{array}\right.
$$

Singular Value Decomposition (SVD)

- Any matrix \mathbf{X} of size $N \times D$ can be represented as the following decomposition

$$
\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\top}=\sum_{k=1}^{\min \{N, D\}} \lambda_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{\top}
$$

$$
\text { Diagonal matrix. If } N>D \text {, last } D-N \text { rows are all }
$$

- $\mathbf{U}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{N}\right]$ is $N \times N$ matrix of left singular vectors, each $\boldsymbol{u}_{n} \in \mathbb{R}^{N}$
- \mathbf{U} is also orthonormal
- $\mathbf{V}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}\right]$ is $D \times D$ matrix of right singular vectors, each $\boldsymbol{v}_{d} \in \mathbb{R}^{D}$
- \mathbf{V} is also orthonormal
- Λ is $N \times D$ with only $\min (N, D)$ diagonal entries - singular values
- Note: If \mathbf{X} is symmetric then it is known as eigenvalue decomposition $(\mathbf{U}=\mathbf{V})$

Low-Rank Approximation via SVD

- If we just use the top $K<\min \{N, D\}$ singular values, we get a rank- K SVD

- Above SVD approx. can be shown to minimize the reconstruction error $\|\boldsymbol{X}-\widehat{\boldsymbol{X}}\|$
- Fact: SVD gives the best rank- K approximation of a matrix
- PCA is done by doing SVD on the covariance matrix \mathbf{S} (left and right singular vectors are the same and become eigenvectors, singular values become eigenvalues)

Dim-Red as Matrix Factorization

- If we don't care about the orthonormality constraints, then dim-red can also be achieved by solving a matrix factorization problem on the data matrix \mathbf{X}

$$
\{\hat{\mathbf{Z}}, \widehat{\mathbf{W}}\}=\operatorname{argmin}_{\mathbf{Z}, \mathbf{W}}\|\mathbf{X}-\mathbf{Z} \mathbf{W}\|^{2}
$$

- Can solve such problems using ALT-OPT
- Can impose various constraints on \mathbf{Z} and \mathbf{W} (e.q., sparsity, non-neqativity, etc)

Can impose various constraints on \mathbf{Z} and \mathbf{W} (e.q., sparsity, non-neqativity, etc $)_{\text {CS771: Intro to ML }}$

Supervised Dimensionality Reduction

- Maximum variance directions may not be aligned with class separation directions

Projecting along this will give a one dimensional embedding of each point with both classes
overlapping with each other

- Be careful when using PCA for supervised learning problems
- A better option would be to project such that
- Points within the same class are close (low intra-class variance)
- Points from different classes are well separated (the class means are far apart)

Supervised Dimensionality Reduction

- Many techniques. A simple yet popular one is Fisher Discriminant Analysis, also known

- For simplicity, assume two classes (can be generalized for more than 2 classes too)
- Suppose a projection direction \boldsymbol{u}. After projection the means of the two classes are

$$
\mu_{1}=\frac{1}{N_{1}} \sum_{n: y_{n}=1} \boldsymbol{u}^{\top} \boldsymbol{x}_{n}, \quad \mu_{2}=\frac{1}{N_{2}} \sum_{n: y_{n}=2} \boldsymbol{u}^{\top} \boldsymbol{x}_{n}
$$

- Total variance of the points after projection will be $s_{1}^{2}+s_{2}^{2}$ where

$$
s_{1}^{2}=\frac{1}{N_{1}} \sum_{n: y_{n}=1}\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{n}-\mu_{1}\right)^{2}, \quad s_{2}^{2}=\frac{1}{N_{2}} \sum_{n: y_{n}=2}\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{n}-\mu_{2}\right)^{2}
$$

- Fisher discriminant analysis finds the optimal projection direction by solving

| The solution to this problem involves solving an
 eigendecomposition problem that involves within class
 covariance matrices and between class covariance
 matrices | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\arg \max$ | $\left(\mu_{1}-\mu_{2}\right)^{2}$ | Push the means far
 apart |
| Make each class tightly packed
 after projection (small variance) | | |

Dimensionality Reduction given Pairwise Distances between points

Dim. Reduction by Preserving Pairwise Distances

- PCA/SVD etc assume we are given points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$ as vectors (e.g., in D dim)
- Often the data is given in form of distances $d_{i j}$ between points $(i, j=1,2, \ldots, N)$
- Would like to project data such that pairwise distances between points are preserved

$$
\hat{\mathbf{Z}}=\arg \min _{\mathbf{Z}} \mathcal{L}(\mathbf{Z})=\arg \min _{\mathbf{Z}} \sum_{i, j=1}^{N}\left(d_{i j}-\left\|\boldsymbol{z}_{i}-\boldsymbol{z}_{j}\right\|\right)^{2}<\begin{aligned}
& \mathbf{z}_{i} \text { and } \boldsymbol{z}_{j} \text { denote low-dim } \\
& \text { embeddings/projections of } \\
& \text { points } \text { and } j
\end{aligned}
$$

- Basically, if $d_{i j}$ is large (resp. small), would like $\left\|\boldsymbol{z}_{i}-\boldsymbol{z}_{\boldsymbol{j}}\right\|$ to be large (resp. small)
- Multi-dimensional Scaling (MDS) is one such algorithm
- Note: If $d_{i j}$ is the Euclidean distance, MDS is equivalent to PCA
- The above approach tries to preserve all pairwise distances
- Can try to preserve pairwise distances only between close-by points (i.e.. b/w nearest neighbors). It helps achieve non-linear dim red. Alaos like Isomap and locallv linear embeddina (LLEEs do this to

MDS: An Example

- Result of applying MDS (with $K=2$) on pairwise distances between some US cities

- MDS produces a 2D embedding such that geographically close cities are also close in embedding space

Nonlinear Dimensionality Reduction

Beyond Linear Projections

- Consider the swiss-roll dataset (points lying close to a manifold)

- Linear projection methods (e.g., PCA) can't capture intrinsic nonlinearities
- Maximum variance directions may not be the most interesting ones

Nonlinear Dimensionality Reduction

- We want to a learn nonlinear low-dim projection

Relative positions of points
preserved after the projection

- Some ways of doing this
- Nonlinearize a linear dimensionality reduction method. E.g.:
- Cluster data and apply linear PCA within each cluster (mixture of PCA)
- Kernel PCA (nonlinear PCA)
- Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,
- Locally Linear Embedding (LLE), Isomap
- Maximum Variance Unfolding
- Laplacian Eigenmap, and others such as SNE/tSNE, etc.

Kernel PCA

- Recall PCA: Given N observations $\boldsymbol{x}_{n} \in \mathbb{R}^{D}, n=1,2, \ldots, N$,

$$
\begin{aligned}
& D \times D \text { cov matrix } \\
& \text { assuming centered data }
\end{aligned} \quad \mathbf{S}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\top} \quad \mathbf{S} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i} \forall i=1, \ldots, D
$$

- Assume a kernel k with associated M dimensional nonlinear map ϕ

| $M \times M$ cov matrix assuming
 centered data in the kernel-
 induced feature space |
| :--- | $\mathbf{C}=\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}_{n}\right) \phi\left(\boldsymbol{x}_{n}\right)^{\top} \quad \mathbf{C} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i} \forall i=1, \ldots, M$

- Would like to do it without computing \mathbf{C} and the mappings $\phi\left(\boldsymbol{x}_{n}\right)^{\prime} s$ since M can be very large (even infinite, e.g., when using an RBF kernel)
- Boils down to doing eigendecomposition of the $N \times N$ kernel matrix \mathbf{K} (PRML 12.3)
- Can verify that each \boldsymbol{v}_{i} above can be written as a lin-comb of the inputs: $\boldsymbol{v}_{i}=\sum_{n=1}^{N} a_{i n} \phi\left(\boldsymbol{x}_{n}\right)$
- Can show that finding $\boldsymbol{a}_{i}=\left[a_{i 1}, a_{i 2}, \ldots, a_{i N}\right]$ reduces to solving an eigendecomposition of \mathbf{K}
- Note: Due to req. of centering, we work with a centered kernel matrix $\widetilde{\mathbf{K}}=\mathrm{K}-1_{N} \mathrm{~K}-\mathrm{K} 1_{N}+1_{N} \mathrm{~K} 1_{N}$

Locally Linear Embedding

- Basic idea: If two points are local neighbors in the original space then they should be local neighbors in the projected space too
- Given N observations $\boldsymbol{x}_{n} \in \mathbb{R}^{D}, n=1,2, \ldots, N$, LLE is formulated as

Solve this to learn weights $W_{i j}$ such that each point x_{i} can be written as a weighted combination of its local neighbors in the original feature space

- For each point $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$, LLE learns $\boldsymbol{z}_{n} \in \mathbb{R}^{K}, n=1,2, \ldots, N$ such that the same neighborhood structure exists in low-dim space too
- Basically, if point $\boldsymbol{x}_{\boldsymbol{i}}$ can be reconstructed from its neighbors in the original space, the same weights $W_{i j}$ should be able to reconstruct \boldsymbol{z}_{i} in the new space too

SNE and t-SNE

- Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D
- SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)
- Uses the idea of preserving probabilistically defined neighborhoods
- SNE, for each point $\boldsymbol{x}_{\boldsymbol{i}}$, defines the probability of a point $\boldsymbol{x}_{\boldsymbol{j}}$ being its neighbor as

| Neighbor probability in the
 original space |
| :--- | :--- |
| {f727d3956-e8de-4c0a-8888-4aac18a668aa} Neighbor probability in the
 projected/embedding space }$\sum_{k \neq i} \exp \left(-\left\\|\boldsymbol{z}_{i}-\boldsymbol{z}_{j}\right\\|^{2} / 2 \sigma^{2}\right)$ |
| $\left.\boldsymbol{z}_{i}-\boldsymbol{z}_{k} \\|^{2} / 2 \sigma^{2}\right)$ |

- SNE ensures that neighbourhood distributions in both spaces are as close as possible
- By minimizing their Kullback-Leibler divergence, summed over all points $\sum_{i=1}^{N} \sum_{j=1}^{N} K L\left(p_{j \mid i}| | q_{j \mid i}\right)$
- t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to SNE
- Learns \boldsymbol{z}_{i} 's by minimizing symmetric KL divergence
- Uses Student-t distribution instead of Gaussian for defining $q_{j \mid i}$

SNE and t-SNE

- Especially useful for visualizing data by projecting into 2 D or 3 D

Result of visualizing MNIST digits data in 2D (Figure from van der Maaten and Hinton, 2008)

