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X Z N 
K 

K 

• Remember the matrix factorization view of the k-means loss function? 
 
 
 
 
 
 
 

• We approximated an N x D matrix with  
• An NxK matrix and a 
• KXD matrix 

• This could be storage efficient if K is much smaller than D 
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Dimensionality Reduction 3 

  Note: These “basis” vectors need not necessarily be 
linearly independent. But for some dim. red. techniques, 
e.g., classic principal component analysis (PCA), they 
are 



CS771: Intro to ML 

Dimensionality Reduction 4 

K=4 “basis” face images 

Each “basis” image is like a “template” that 
captures the common properties of face images in 
the dataset 

+ 

Like 4 new features 
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Principal Component Analysis (PCA) 5 

 A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930) 

 Can be seen as 
 Learning directions (co-ordinate axes) that capture maximum variance in data 

 

 

 

 

 

 

 

 Learning projection directions that result in smallest reconstruction error 

 

 

 PCA also assumes that the projection directions are orthonormal 

 

PCA is essentially doing a change of axes in which 
we are representing the data 

Each input will still have 2 co-ordinates, in the new co-
ordinate system, equal to the distances measured from 
the new origin  
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Principal Component Analysis: the algorithm 6 
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Understanding PCA: The variance 
perspective 
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Solving PCA by Finding Max. Variance Directions 8 

Need this constraint otherwise the objective’s 
max will be infinity 
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Max. Variance Direction 9 
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Understanding PCA: The reconstruction 
perspective 

10 
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Alternate Basis and Reconstruction 11 
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Minimizing Reconstruction Error 12 
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Principal Component Analysis 13 
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Singular Value Decomposition (SVD) 14 
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Low-Rank Approximation via SVD 15 
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Dim-Red as Matrix Factorization 16 
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