Dimensionality Reduction: Principal Component Analysis

CS771: Introduction to Machine Learning Nisheeth

K-means loss function: recap

• Remember the matrix factorization view of the k-means loss function?

 $L(\mu, \mathbf{X}, \mathbf{Z}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_{n} - \mu_{k}||^{2}$ $= \underbrace{||\mathbf{X} - \mathbf{Z}\mu||_{F}^{2}}_{\text{matrix factorization view}} \mathbb{X} \mathbb{Z} \approx \mathbb{K} \underbrace{\mathbf{Z}}_{\text{Row } k \text{ is } \mu_{k}}^{D}$ • We approximated an N x D matrix with

- An NxK matrix and a
- KXD matrix
- This could be storage efficient if K is much smaller than D

 $\mathbf{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]$ denotes a length *K* one-hot

Row n is \boldsymbol{z}_n

(one-hot vector)

CS771: Intro to ML

encoding of \pmb{x}_n

Dimensionality Reduction

- A broad class of techniques
- Goal is to compress the original representation of the inputs For example, f can be modeled
- Example: Approximate each input $x_n \in \mathbb{R}^D$, n = 1, 2, ..., N as a linear combination of $K < \min\{D, N\}$ "basis" vectors $w_1, w_2, ..., w_K$, each also $\in \mathbb{R}^D$

Note: These "basis" vectors need not necessarily be linearly independent. But for some dim. red. techniques, e.g., classic principal component analysis (PCA), they are

- \blacksquare We have represented each $x_n \in \mathbb{R}^D$ by a K-dim vector z_n (a new feat. rep)
- To store N such inputs $\{x_n\}_{n=1}^N$, we need to keep W and $\{z_n\}_{n=1}^N$
 - Originally we required $N \times D$ storage, now $N \times K + D \times K = (N + D) \times K$ storage
 - If $K \ll \min\{D, N\}$, this yields substantial storage saving, hence good compression

CS771: Intro to ML

Can think of W as a linear mapping that transforms low-dim \mathbf{z}_n to high-dim \mathbf{x}_n

Some dim-red techniques assume a nonlinear

mapping function f such that $\mathbf{x}_n = f(\mathbf{z}_n)$

 $\boldsymbol{x}_{n} \approx \sum_{k=1}^{K} z_{nk} \boldsymbol{w}_{k} = \mathbf{W} \boldsymbol{z}_{n} \quad \mathbf{w}_{k} = [z_{n1}, z_{n2}, \dots, z_{nK}] \text{ is } K \times 1$

Dimensionality Reduction

Each "basis" image is like a "template" that captures the common properties of face images in Dim-red for face images the dataset K=4 "basis" face images w, w w ູ W w * Kx1 + 0.0461 * = 0.9571* -0.1945* E. DXK Dx1 A face image *z*_{n2} Z_{n3} Z_{n4} Z_{n1} w_4 W_3 $\boldsymbol{x}_n \in \mathbb{R}^D$

• In this example, $\mathbf{z}_n \in \mathbb{R}^K$ (K = 4) is a low-dim feature rep. for $\mathbf{x}_n \in \mathbb{R}^D$

- Essentially, each face image in the dataset now represented by just 4 real numbers ③
- Different dim-red algos differ in terms of how the basis vectors are defined/learned
 - .. And in general, how the function f in the mapping $x_n = f(z_n)$ is defined

Like 4 new features

CS771: Intro to ML

Principal Component Analysis (PCA)

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning directions (co-ordinate axes) that capture maximum variance in data

 e_2

 W_1

3W2

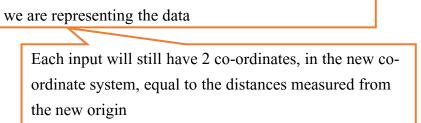
 e_1, e_2 : Standard co-ordinate axis ($x = [x_1, x_2]$) w_1, w_2 : New co-ordinate axis ($z = [z_1, z_2]$)

To reduce dimension, can only keep the co-ordinates of those directions that have largest variances (e.g., in this example, if we want to reduce to one-dim, we can keep the co-ordinate z_1 of each point along w_1 and throw away z_2). We won't lose much information

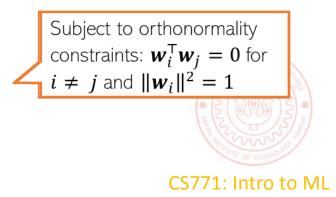
Learning projection directions that result in smallest reconstruction error

$$\operatorname{argmin}_{W,Z} \sum_{n=1}^{N} \|\boldsymbol{x}_n - \boldsymbol{W}\boldsymbol{z}_n\|^2 = \operatorname{argmin}_{W,Z} \|\boldsymbol{X} - \boldsymbol{Z}\boldsymbol{W}\|^2$$

PCA also assumes that the projection directions are orthonormal



PCA is essentially doing a change of axes in which



Principal Component Analysis: the algorithm

- Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ from each data point)
- Compute the $D \times D$ covariance matrix **S** using the centered data matrix **X** as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X} \qquad \text{(Assuming } \mathbf{X} \text{ is arranged as } N \times D\text{)}$$

- Do an eigendecomposition of the covariance matrix ${f S}$ (many methods exist)
- Take top K < D leading eigvectors $\{w_1, w_2, \dots, w_K\}$ with eigvalues $\{\lambda_1, \lambda_2, \dots, \lambda_K\}$
- The K-dimensional projection/embedding of each input is

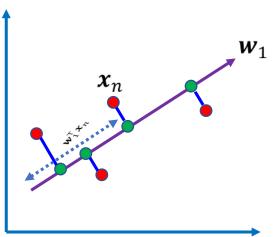
$$\boldsymbol{z}_n \approx \boldsymbol{W}_K^{\mathsf{T}} \boldsymbol{x}_n < \boldsymbol{W}_K = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K] \text{ is the } \\ \text{"projection matrix" of size } \boldsymbol{D} \times \boldsymbol{K}$$

Note: Can decide how many eigvecs to use based on how much variance we want to campure (recall that each λ_k gives the variance in the k^{th} direction (and their sum is the total variance)

Understanding PCA: The variance perspective

Solving PCA by Finding Max. Variance Directions

- Consider projecting an input $x_n \in \mathbb{R}^D$ along a direction $w_1 \in \mathbb{R}^D$
- Projection/embedding of x_n (red points below) will be $w_1^T x_n$ (green pts below)



Mean of projections of all inputs:

$$\frac{1}{N}\sum_{n=1}^{N} w_{1}^{\mathsf{T}} x_{n} = w_{1}^{\mathsf{T}} (\frac{1}{N}\sum_{n=1}^{N} x_{n}) = w_{1}^{\mathsf{T}} \mu$$

$$\frac{1}{N}\sum_{n=1}^{N} w_{1}^{\mathsf{T}} x_{n} = w_{1}^{\mathsf{T}} (\frac{1}{N}\sum_{n=1}^{N} x_{n}) = w_{1}^{\mathsf{T}} \mu$$

$$S \text{ is the } D \times D \text{ cov matrix of the data:}$$

$$S = \frac{1}{N}\sum_{n=1}^{N} (x_{n} - \mu)(x_{n} - \mu)^{\mathsf{T}}$$

$$\frac{1}{N}\sum_{n=1}^{N} (w_{1}^{\mathsf{T}} x_{n} - w_{1}^{\mathsf{T}} \mu)^{2} = \frac{1}{N}\sum_{n=1}^{N} \{w_{1}^{\mathsf{T}} (x_{n} - \mu)\}^{2} = w_{1}^{\mathsf{T}} S w_{1}$$

$$Want w_{1} \text{ such that variance } w_{1}^{\mathsf{T}} S w_{1} \text{ is maximized}$$

$$\arg\max_{w_{1}} w_{1}^{\mathsf{T}} S w_{1} \text{ s.t. } w_{1}^{\mathsf{T}} w_{1} = 1$$
Need this constraint otherwise the objective's max will be infinity
$$C5771: \text{ Intro to ML}$$

Max. Variance Direction

- Our objective function was $\underset{w_1}{\operatorname{argmax}} w_1^{\mathsf{T}} S w_1$ s.t. $w_1^{\mathsf{T}} w_1 = 1$
- Can construct a Lagrangian for this problem

sum of eigenvalues of \boldsymbol{S} , i.e., $\sum_{d=1}^{D} \lambda_d$

Note: Total variance of

the data is equal to the

PCA would keep the top K < D such directions of largest variances

Note: In general, \boldsymbol{S} will have \boldsymbol{D} eigvecs

• Therefore w_1 is an eigenvector of the cov matrix S with eigenvalue λ_1

• Taking derivative w.r.t. w_1 and setting to zero gives $Sw_1 = \lambda_1 w_1$

- Claim: w_1 is the eigenvector of S with largest eigenvalue λ_1 . Note that

$$\boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{S} \boldsymbol{w}_1 = \lambda_1 \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{w}_1 = \lambda_1$$

 $\operatorname{argmax} \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{S} \boldsymbol{w}_1 + \lambda_1 (1 - \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{w}_1)$

Variance along the

direction w_1

- Thus variance $w_1^T S w_1$ will be max. if λ_1 is the largest eigenvalue (and w_1 is the corresponding top eigenvector; also known as the first Principal Component)
- Other large variance directions can also be found likewise (with each being orthogonal to all others) using the eigendecomposition of cov matrix S (this is PCA) CS771: Intro to ML

Understanding PCA: The reconstruction perspective

Alternate Basis and Reconstruction

• Representing a data point $x_n = [x_{n1}, x_{n2}, ..., x_{nD}]^{\mathsf{T}}$ in the standard orthonormal basis $\{e_1, e_2, ..., e_D\}$ $x_n = \sum_{d=1}^{D} x_{nd} e_d \bigwedge_{\substack{e_d \text{ is a vector of all zeros except a single 1 at the d^{th} \text{ position. Also, } e_d^{\mathsf{T}} e_{d'} = 0 \text{ for } d \neq d'}$

• Let's represent the same data point in a new orthonormal basis $\{w_1, w_2, ..., w_D\}$

$$z_{nd}$$
 is the projection of x_n along the direction
 w_d since $z_{nd} = w_d^T x_n = x_n^T w_d$ (verify)
 $x_n = \sum_{d=1}^{D} z_{nd} w_d$
 $z_n = [z_{n1}, z_{n2}, ..., z_{nD}]^T$ denotes the co-ordinates of x_n in the new basis

Ignoring directions along which projection z_{nd} is small, we can approximate x_n as

$$\boldsymbol{x}_{n} \approx \boldsymbol{\hat{x}}_{n} = \sum_{d=1}^{K} \boldsymbol{z}_{nd} \boldsymbol{w}_{d} = \sum_{d=1}^{K} (\boldsymbol{x}_{n}^{\mathsf{T}} \boldsymbol{w}_{d}) \boldsymbol{w}_{d} = \sum_{d=1}^{K} (\boldsymbol{w}_{d} \boldsymbol{w}_{d}^{\mathsf{T}}) \boldsymbol{x}_{n}^{\mathsf{T}} | \boldsymbol{x}_{n$$

• Now x_n is represented by K < D dim. rep. $z_n = [z_{n1}, z_{n2}, \dots, z_{nK}]$ and (verify)

Also,
$$\mathbf{x}_n \approx \mathbf{W}_K \mathbf{z}_n$$
 \succ $\mathbf{Z}_n \approx \mathbf{W}_K^\mathsf{T} \mathbf{x}_n$ $\overset{\mathbf{W}_K = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_K]}{\text{``projection matrix'' of size } D \times K}$

Minimizing Reconstruction Error

• We plan to use only K directions $[w_1, w_2, ..., w_K]$ so would like them to be such that the total reconstruction error is minimized
Constant; doesn't depend on the w_d 's

$$\mathcal{L}(\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K) = \sum_{n=1}^N \|\boldsymbol{x}_n - \widehat{\boldsymbol{x}}_n\|^2 = \sum_{n=1}^N \|\boldsymbol{x}_n - \sum_{d=1}^K (\boldsymbol{w}_d \boldsymbol{w}_d^{\mathsf{T}}) \boldsymbol{x}_n \|^2 = C - \sum_{d=1}^K \boldsymbol{w}_d^{\mathsf{T}} \mathbf{S} \boldsymbol{w}_d \text{ (verify)}$$
Variance along \boldsymbol{w}_d

Each optimal w_d can be found by solving

$$\operatorname{argmin}_{w_d} \mathcal{L}(w_1, w_2, \dots, w_K) = \operatorname{argmax}_{w_d} w_d^{\mathsf{T}} \mathbf{S} w_d$$

- Thus minimizing the reconstruction error is equivalent to maximizing variance
- The K directions can be found by solving the eigendecomposition of ${\bf S}$
- Note: $\sum_{d=1}^{K} w_d^{\mathsf{T}} \mathbf{S} w_d = \operatorname{trace}(\mathbf{W}_K^{\mathsf{T}} \mathbf{S} \mathbf{W}_K)$
 - Thus $\operatorname{argmax}_{W_K} \operatorname{trace}(W_K^{\mathsf{T}} S W_K)$ s.t. orthonormality on columns of W_k is the same as solving the eigendec. of S (recall that Spectral Clustering also required solving this)

CS771: Intro to ML

Principal Component Analysis

- Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ from each data point)
- Compute the $D \times D$ covariance matrix **S** using the centered data matrix **X** as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X} \qquad \text{(Assuming } \mathbf{X} \text{ is arranged as } N \times D\text{)}$$

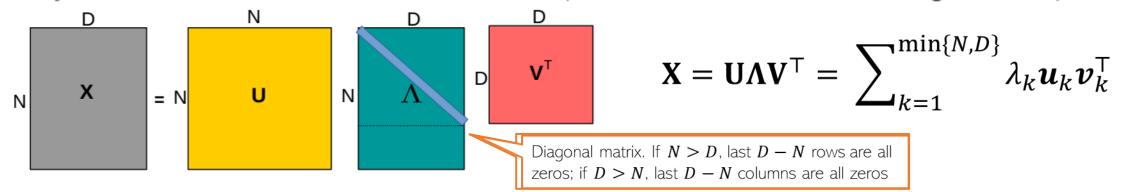
- Do an eigendecomposition of the covariance matrix ${f S}$ (many methods exist)
- Take top K < D leading eigvectors $\{w_1, w_2, \dots, w_K\}$ with eigvalues $\{\lambda_1, \lambda_2, \dots, \lambda_K\}$
- The K-dimensional projection/embedding of each input is

$$\boldsymbol{z}_n \approx \boldsymbol{W}_K^{\mathsf{T}} \boldsymbol{x}_n < \boldsymbol{W}_K = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K] \text{ is the } \\ \text{"projection matrix" of size } \boldsymbol{D} \times \boldsymbol{K}$$

Note: Can decide how many eigvecs to use based on how much variance we want to campure (recall that each λ_k gives the variance in the k^{th} direction (and their sum is the total variance)

Singular Value Decomposition (SVD)

• Any matrix **X** of size $N \times D$ can be represented as the following decomposition

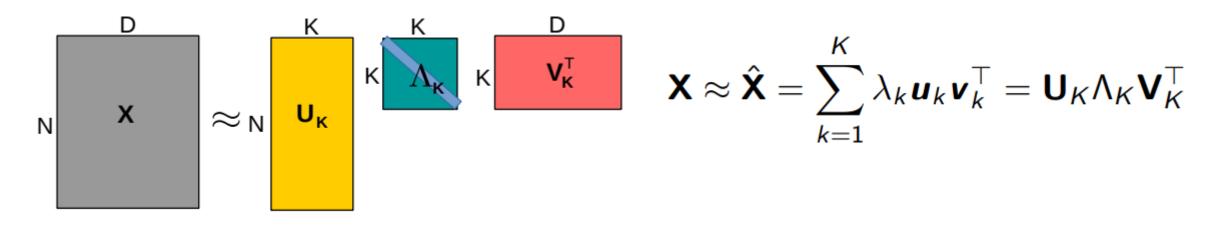


- $\mathbf{U} = [u_1, u_2, ..., u_N]$ is $N \times N$ matrix of left singular vectors, each $u_n \in \mathbb{R}^N$ ■ \mathbf{U} is also orthonormal
- $\mathbf{V} = [v_1, v_2, ..., v_N]$ is $D \times D$ matrix of right singular vectors, each $v_d \in \mathbb{R}^D$ ■ \mathbf{V} is also orthonormal
- Λ is $N \times D$ with only $\min(N, D)$ diagonal entries singular values
- Note: If **X** is symmetric then it is known as eigenvalue decomposition $(\mathbf{U} = \mathbf{V})$

CS771: Intro to ML

Low-Rank Approximation via SVD

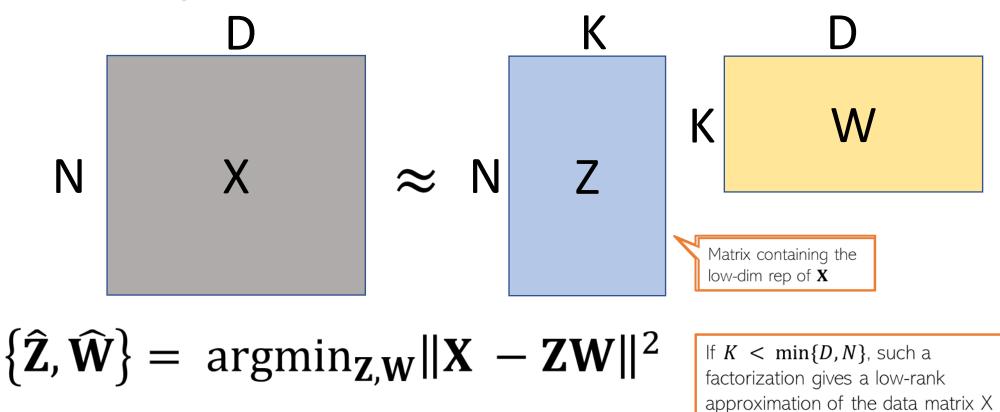
• If we just use the top $K < \min\{N, D\}$ singular values, we get a rank-K SVD



- Above SVD approx. can be shown to minimize the reconstruction error $\|X \widehat{X}\|$ Fact: SVD gives the best rank-*K* approximation of a matrix
- PCA is done by doing SVD on the covariance matrix S (left and right singular vectors are the same and become eigenvectors, singular values become eigenvalues)

Dim-Red as Matrix Factorization

 $\hfill\blacksquare$ If we don't care about the orthonormality constraints, then dim-red can also be achieved by solving a matrix factorization problem on the data matrix X



- Can solve such problems using ALT-OPT
- Can impose various constraints on Z and W(e.g., sparsity, non-negativity, etc)_{cs}