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K-means loss function: recap

Zy = [Zp1, Zn2s ) Znk )
denotes a length K one-hot
encoding of x,

e Remember the matrix factorization view of the k-means loss function?
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matrix factorization view
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e We approximated an N x D matrix with Rowk s i
* An NxK matrix and a Rown is z,
* KXD matrix (one-hot vector)

e This could be storage efficient if K is much smaller than D



transforms low-dim z,, to high-dim x,,

DlmenSIOnallty RedUCtlon Can think of W as a linear mapping that !!

) j 3 2
- A erad C‘B_SS Of tEChﬂlques Some dim-red techniques assume a nonlinear e« /
mapping function f such that x,, = f(2,)

» Goal is to compress the original representation of the inputs

For example, f can be modeled
by a kernel or a deep neural net

= Example: Approximate each input x,, € R?, n = 1,2, ..., N as a linear
combination of K < min{D, N} “basis” vectors wy, W, ..., Wg, €ach also € RP

Note: These “basis” vectors need not necessarily be K 2:! W= [wl’ W2, ..., Wg ] isD X K
linearly independent. But for some dim. red. techniques, X n ~ Zn k W k = WZ n

e.g., classic principal component analysis (PCA), they k=1 ﬁ:i Z, = [an, Zn2y ey Z‘nK] isK X1
are

= We have represented each x,, € RP by a K-dim vector z,, (a new feat. rep)

= To store N such inputs {x,,}5_,, we need to keep W and {z,,})1_4
= Originally we required N x D storage, now N X K + D x K = (N + D) %X K storage
= If K < min{D, N}, this yields substantial storage saving, hence good compression



Dimensionality Reduction

Each “basis” image is like a “template” that

captures the common properties of face images in

= Dim-red for face images

the dataset

=4 “basis” face images

A face image
, € RP

ﬂgﬁ?i'

Zna Wy

= |n this example, z,, € RX (K = 4) is a low-dim feature rep. for x,, € R? ; feres

= Essentially, each face image in the dataset now represented by just 4 real numbers ©

» Different dim-red algos differ in terms of how the basis vectors are defined/learned
= . And in general, how the function f in the mapping x, = f(z,) is defined



Principal Component Analysis (PCA)

" A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
" Can be seen as

" Learning directions (co-ordinate axes) that capture maximum variance in data

82 A
13 PCA is essentially doing a change of axes in which
e,, e,: Standard co-ordinate axis (x = [x1,x,]) | . wy 2 we are representing the data
) Wy N
Wy, Wy: New co-ordinate axis (Z — [er ZZ]) . Q//L 7 Each input will still have 2 co-ordinates, in the new co-
_.—Z 2 8 o2 ordinate system, equal to the distances measured from
: : . o s AR (\ L
To reduce dimension, can only keep the co-ordinates of ) @;je*@ the new origin
those directions that have largest variances (e.g., in this | .

example, if we want to reduce to one-dim, we can keep
the co-ordinate z; of each point along wy and throw
away z, ). We won't lose much information

> €1

W o6 4 -z 0 2 4 6 &8 10 v

" Learning projection directions that result in smallest reconstruction error Subject to orthonormality

N , , constraints: wj w; = 0 for
argmin X, — Wz = argmin |[(X — ZW i # jand |[wi|l* =1
ain ) llxn — Wz,? = argmin IX — zw| l

" PCA also assumes that the projection directions are orthonormal



Principal Component Analysis: the algorithm

= Center the data (subtract the mean u = %Zﬁf:l X,, from each data point)

= Compute the D X D covariance matrix S using the centered data matrix X as

S = — XTX (Assuming X is arranged as N X D)

N

* Do an eigendecomposition of the covariance matrix S (many methods exist)
» Take top K < D leading eigvectors {wq, W, ..., Wk } with eigvalues {14, 45, ..., Ax }

= The K-dimensional projection/embedding of each input is

Note: Can decide how many
eigvecs to use based on how

ZTl ~ WI}- xnﬁi Wk = [Wq, W, ..., Wk] is the much variance we want to

“projection matrix” of size D x K campure (recall that each Ay
gives the variance in the

k" direction (and their sum is
the total variance)




Understanding PCA: The variance
oerspective




Solving PCA by Finding Max. Variance Directions
= Consider projecting an input x,, € R? along a direction w, € RP

= Projection/embedding of x,, (red points below) will be w{ x,, (green pts below)

Mean of projections of all inputs:

1oN B g
N &n= 1 W1 Xy = w1( Yn=1Xn) = Wil
S is the D X D cov matrix of the data:
. [ M S = — xn — xn — T
Variance of the projections: NZM( w X = 1)
_N

1 N T T 1 N
NZ (wix, —w; ﬂ)z = Nz {Wl (xn—ﬂ)}z =W SW1
n=1 n=1

= \Want w; such that variance w{ Sw; is maximized For already centered data, pt = 0 and

S = _Zn 1 X Xy = _XXT
argmax w{ Sw, s.t. wiw; =1
Wi

Need this constraint otherwise the objective’s

max will be infinity




" " " Vari long th
Max. Variance Direction | jecedenste Note Totl varance o
/ the data is equal to the

sum of eigenvalues of

= Qur objective function was argmax w{ Swy st. wiw; =1 |sic 2,1
Wi

= Can construct a Lagrangian for this problem

PCA would keep the top
K < D such directions
of largest variances

argmax wi{ Sw; + A, (1-w{w;)

W1
» Taking derivative wr.t. wq and setting to zero gives Sw; = A,w;y Note: In general, S
will have D eigvecs
=

» Therefore wy is an eigenvector of the cov matrix § with eigenvalue 44

» Claim: wy is the eigenvector of § with largest eigenvalue 4. Note that
W;_I_SW]_ —_ /11W_1I_W1 —_ /11
= Thus variance w1 Sw; will be max. if A, is the largest eigenvalue (and wy is the
corresponding top eigenvector; also known as the first Principal Component)

= Other large variance directions can also be found likewise (with each being orthogonal
to all others) usina the eiaendecomposition of cov matrix § (this is PCA)



Understanding PCA: The reconstruction
nerspective




Alternate Basis and Reconstruction

= Representing a data point X, = [Xp1,Xn2, -»Xnp] | in the standard orthonormal

baSIS {E'l_. ez, L | ED} D
. e, is a vector of all zeros except a single 1 at
Xn = Xnd€d the d" position. Also, e, Te,r = 0ford # d

d=1

®» | et's represent the same data point in a new orthonormal basis {wy, w,, ..., wp}

Zna IS the prOJchon of x,, along the direction J Zy, = [Zy1,Zn2, o) Zyp) | denotes the
W, since z,,4 = de = x,Jw (verify) X, = ZnaWa co-ordinates of x,, in the new basis
d=1

= |gnoring directions along which projection z,4 is small, we can approximate x,, as

Note that ||, — Z§=1(deE)xn||2

K K K
~ v — — T —_ T is the reconstruction error on x,,.
Xn & Xpn = Z ZnaWa = Z (xnwd)wd - Z (ded)xn Would like it to minimize wirt.
d=1 d=1 d=1 Wi, W,, ..., W

= Now x, is represented by K < D dim. rep. z,, = [Zn1,Zn2, -, Zng] and (verify)

Wk = [wy,w,, ..., wk] is the

~ T
Also, x, = Wz, f? Zn = WK xnﬁ “projection matrix" of size D X K




Minimizing Reconstruction Error

= We plan to use only K directions [wq, w,, ..., W] so would like them to be such
that the tDtal FECOHSTFUC‘[IOH error |5 mlﬂlleEd Constant; doesn't

depend on the w,'s
N N K -
LWy W)= ) I =Fal?= ) b= Y (wawDi,

ﬁ Variance along wy

2 el
=C— YE_,w)Swy (verify)
= Fach optimal w, can be found by solving

argmin L(Wq, W5, ..., Wg) = argmax wjSwy
Wqa Wqa

* Thus minimizing the reconstruction error is equivalent to maximizing variance
* The K directions can be found by solving the eigendecomposition of S

= Note: Y¥X_, w)Sw, = trace( W SWy)
* Thus argmaxyy, trace( W SWy) s.t. orthonormality on columns of Wy, is the same as
solving the eigendec. of § (recall that Spectral Clustering also required solving this)



Principal Component Analysis

= Center the data (subtract the mean u = %ZL:{ X,, from each data point)

= Compute the D X D covariance matrix S using the centered data matrix X as

S = — XTX (Assuming X is arranged as N X D)

N

* Do an eigendecomposition of the covariance matrix S (many methods exist)
» Take top K < D leading eigvectors {wq, W, ..., Wk } with eigvalues {14, 45, ..., Ax }

= The K-dimensional projection/embedding of each input is

Note: Can decide how many
eigvecs to use based on how

ZTl ~ WI}- xnﬁi Wk = [Wq, W, ..., Wk] is the much variance we want to

“projection matrix” of size D x K campure (recall that each Ay
gives the variance in the

k" direction (and their sum is
the total variance)




Singular Value Decomposition (SVD)

= Any matrix X of size N X D can be represented as the following decomposition

D N D
min{N,D}
X =UAV' = Z Akuk ‘U;(r
~ N k=1
Dlagonal matrix. If N > D, last D — N rows are all

zeros: if D > N, last D — N columns are all zeros

* U = [uy,u,, ..., uy] is N X N matrix of left singular vectors, each u,, € R
= U is also orthonormal

= [v4, V5, ..., ¥y] is D X D matrix of right singular vectors, each v4; € RP
= V is also orthonormal

* Ais N X D with only min(N, D) diagonal entries - singular values
= Note: If X is symmetric then it is known as eigenvalue decomposition (U = V)



Low-Rank Approximation via SVD

= [f we just use the top K < min{N, D} singular values, we get a rank-K SVD

D

K

Uy

X ~ X Z)\kukvk = UxAkV i
=1

= Above SVD approx. can be shown to minimize the reconstruction error ||X - X H
= Fact: SVD gives the best rank-K approximation of a matrix

= PCA is done by doing SVD on the covariance matrix S (left and right singular vectors
are the same and become eigenvectors, singular values become eigenvalues)



Dim-Red as Matrix Factorization

= |f we don't care about the orthonormality constraints, then dim-red can also be
achieved by solving a matrix factorization problem on the data matrix X

D K D
K W

Matrix containing the
low-dim rep of X

7 YA — 1 —_— 2 If K < min{D, N}, such a
{Z’ w} o argmlnzrw ‘ ‘ X Zw H factorization gives a low-rank ﬂ
approximation of the data matrix X L~ /
= Can solve such problems using ALT-OPT &'
» Can impose various constraints on Z and W (e.q., sparsity, non-negativity, etc)...,, ... ..
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