K-means extensions and evaluating clusterings

CS771: Introduction to Machine Learning
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K-means algorithm: recap

= Notation: z,, € {1,2,...,K} or z,, is a K-dim one-hot vector
" (z,, =1 and z, = k mean the same)

K-means Algorithm

©Q Initialize K cluster means u1, ..., ux

©@ Forn=1,...,N, assign each point x, to the closest cluster

. 2
Zp = arg mmke{l,...,K}Hxn — pkl|
© Suppose Cx = {xn : z» = k}. Re-compute the means
Mk = mean(Ck), k = 1,...,K

@ Go to step 2 if not yet converged




K-means loss function: recap

Zy = [Zn1, Zn2) ) Znk)
denotes a length K one-hot

" et uq, Uy, ..., Uk be the K cluster centroids/means A encoding of .,
" let z,, €10, 1} be st. z,, = 1 if x,, belongs to cluster k, and O otherwise

= Define the distortion or "loss” for the cluster assignment of x,,

U1, X, 20) = Yzl X0 — py ||

= Total distortion over all points defines the K-means “loss function™ C

K
X 2) =3 zllen ml? = X Zul .%I e
\_-\,-_/
n=1 k=1 matrix factorization view )

Rownis z,

= The K-means problem is to minimize this objective wirt. pand Z ~ (Onehetvecton

= Alternating optimization on this loss would give the K-means (Lloyd's) algorithm we saw earlier!




K-means++

= K-means results can be sensitive to initialization
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» K-means++ (Arthur and Vassilvitskii, 2007/) an improvement over K-means

= Only difference is the way we initialize the cluster centers (rest of it is just K-means)
* Basic idea: Initialize cluster centers such that they are reasonably far from each other

= Note: In K-means++, the cluster centers are chosen to be K of the data points themselves



K-means++
s K-means++ works as follows

* Choose the first cluster mean uniformly randomly to be one of the data points

* The subsequent K — 1 cluster means are chosen as follows

1. For each unselected point x, compute its smallest distance D(x) from already initialized means

2. Select the next cluster mean unif. rand. to be one of the unselected points based on probability prop. to D (x)?

7

3. Repeat 1 and 2 until the K — 1 cluster means are initialized Thus farthest points are most
likely to be selected as cluster

means

= Now run standard K-means with these initial cluster means

= K-means++ initialization scheme sort of ensures that the initial cluster means are located in
different clusters



K-means: Soft Clustering

" A-means makes hard assignments of points to clusters
* Hard assignment: A point either completely belongs to a cluster or doesn't belong at all

' A more principled extension of K-
Q means for doing soft-clustering is A
| _ via probabilistic mixture models A p /
such as the Gaussian Mixture
O | Model 7‘&

Hard-assignment okay Hard-assignment tricky

= When clusters overlap, soft assignment is preferable(i.e., probability of being assigned to
each cluster: say K = 3 and for some point x,,, p1 = 0.7,p, = 0.2,p; = 0.1)

= A heuristic to get soft assignments: Transform distances from clusters into prob.

. exp(—||xn — pul|?)
Z Ynk =1 Ynk = (prob. that x, belongs to cluster k)
k=1 " r/ >y exp(—=1xn — pell?)
ZHN—l VYnkXn . ‘ L
» Cluster mean updates also change: px = SN (all points contribute, fractionally)
n=1 'n



K-means: Decision Boundaries and Cluster Sizes/Shapes

" K-mean assumes that the decision boundary between any two clusters 1s linear

" Reason: The K-means loss function implies assumes equal-sized, spherical clusters

k

Reason: Use of Euclidean
: distances

Distance from a cluster = ||z, — jux||*

@ Like using Gaussians with equal covariances

" May do badly if clusters are not roughly equi-sized and convex-shaped
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Ke r n e | K - m e a n S Helps learm non-spherical clusters and

nonlinear cluster boundaries

= Basic idea: Replace the Eucl. distances in K-means by the kernelized versions

o lo(xa) = ()l = Nlo(xa)ll” + [[6(ri)lI* — 26(xn) " Sk )
Kemelized distance between = k(xn, Xn) + k(ﬂ'k: ’J’k) o 2k(x”? y‘k)

input x,, and mean of cluster k

= Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map
= Note: ¢ () is the mean of ¢ mappings of the data points assigned to cluster k

Not the same as the ¢p mapping of .
the mean of the data points r ¢ (uk) |Ck Z ¢ (xn) Can also used landmarks or kernel

assig ned to cluster k Zn= —k random features idea to get new

features and run standard k-means
KKKKKK i Kemel KMeans on those &

| g | ] e N——
e’. I

% % Note: Apart from kernels, it is also possible to use other
5 | S distance functions in K-means. Bregman Divergence* is such
i [ < j a family of distances (Euclidean and Mahalanobis are special
‘.‘ cases)

*Clustering with Bregman Divergences (Banerjee et al, 2005)



Ove rl a p p i n g C | u Ste ri n g Kind of unsupervised version of multi-label

classification (just like standard clustering is like

unsupervised multi-class classification)

= Have seen hard clustering and soft clustering L
, ) Example: Clustering people based on the interests they
" In hard ClU Sterl ng- Z n IS a0 ne_hOt VeCtor may have (a person may have multiple interests; thus may

belong to more than one cluster simultaneously)

* |n soft clustering, z, is a vector of probabilities

= Overlapping Clustering: A point can simultaneously belong to multiple clusters
= This is different from soft-clustering
= 7, would be a binary vector, rather than a one hot or probability vector, e.g.,

_ K=5 clusters with point x,, belonging (in whole, not in
Zn T [1 O O 1 O] ==, terms of probabilities) to clusters 1 and 4

* [n general, more difficult than hard/soft clusterinlgj (for N data points and K clusters, the
size of the space of possible solutions is not K but 2VK - exp in both N and K)

= K-means has extensions™ for doing overlapping clustering. There also exist latent
variable models for doing overlapping clustering

*An extended version of the k-means method for overlapping clustering (Cleuziou, 2008); Non-exhaustive, Overlapping k-means (Whang et al, 2015)



Evaluating Clustering Algorithms

= Clustering algos are in general harder to evaluate since we rarely know the
ground truth clustering (since clustering is unsupervised)

= [f ground truth labels not available, use output of clustering for some other task
* For example, use cluster assignment z,, (hard or soft) as a new feature representation
= Performance on some task using this new rep. is a measure of goodness of clustering

= |f ground truth labels are available, can compare them with clustering based labels
= Not straightforward to compute accuracy since the label identities may not be the same, e.g.,
Groundtruth=[111000] Clustering=[0001 1 1]
(Perfect clustering but zero “accuracy” if we just do a direct match)
* There are various metrics that take into account the above fact
= Purity, Rand Index, F-score, Normalized Mutual Information, etc



Evaluating Clustering Algorithms

" Purity: Looks at how many points in each cluster belong to the majority class in that cluster

Sum and divide by total

number of points

— =
Purity = (5+4+43)/17 = 0.71

3 classes (x,0, ,asyAming known

ground truth labels)

Close to 0 for bad clustering, 1 for perfect clustering

T~

Also a bad metric if number of clusters is very large — each cluster will be kind of pure anyway

" Rand Index (RI): Can also look at what fractions of pairs of points with same (resp. different) label are
assigned to same (resp. different) cluster

True Positive: No. of pairs with same true True Negative: No. of pairs with diff true
label and same cluster label and diff clusters
Fg score is also popular T =
o TP . TP F_(ﬁ2+1}PR RI = I +IH
MG TP + FP + FN + TN
— — . : :
False Positive: No. of pairs with diff true False Negative: No. of pairs with same true

Precision rRecall

label and same cluster label and diff cluster
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