Kernelizing ML algorithms

CS771: Introduction to Machine Learning
Nisheeth



Recap: Kernel functions

= Can assume a feature mapping ¢ that maps/transforms the inputs to a "nice” space

¢ : R* — R°
(T1,T2) — (21,22, 23) == (=7, \/(2)-”31372»35%)

« A% 4 <3

The linear model in the new
» % feature space corresponds to a
- e » 5 X » s nonlinear model in the original
TR 2 5 S il E - feature space
If’ -* \ X, N X
o 2 - 1 o\ X
| > x
\ < % i \ =
x . J 5 2O 3% L
. . \k » I
X - — s - x N\ i - | ) \
T . e M A . *
» X N
X
X " X o - %\
K

= .. and then happily apply a linear model in the new space!



Using Kernels

= Kernels can turn many linear models into nonlinear models
= Recall that k(x, z) represents a dot product in some high-dim feature space F

* Important: Any ML model/algo in which, during training and test, inputs only
appear as dot product can be "kernelized

= Just replace each term of the form xiij by r,b(x,;)Tqb(xj) = k(xi;xj) = K;;

* Most ML models/algos can be easily kernelized, e.q.,
= Distance based methods, Perceptron, SVM, linear regression, etc.
= Many of the unsupervised learning algorithms too can be kernelized (e.g., K-means clustering,
Principal Component Analysis, etc. - will see later)
= Let's look at two examples: Kernelized SVM and Kernelized Ridge Regression



Nonlinear SVM using Kernels



Solving Soft-Margin SVM

» Recall the soft-margin SVM optimization problem

min  f(w, b, &) = ||W||2+C§:£n
w.b. £ 2 -

subject to 1 < y,(w'x, + b)+&,, —&, <0 n=1,...,N

" Here & = [&4,&,, ..., &n] is the vector of slack variables
* Introduce Lagrange multipliers a,,, 5;, for each constraint and solve Lagrangian

[|w]|?

N N N
ax L(w,b, &, a,) = ++CZ£n-|-Zar,,{1—yn(wan+b)—€n}—Zﬁn€n
n=1 n=1 n=1

n m
w,b,& a>0,8>0 2

* The terms in red color above were not present in the hard-margin SVM
* Two set of dual variables @ = [aq, a3, ..., ay]| and B = [B1, B2, ..., Bn]
= Will eliminate the primal var w, b, ¢ to get dual problem containing the dual variables



SO |V| n g SOft_ I\/l a rgl n Sv I\/I Note: if we ignore the bias term b then we don't e~

need to handle the constraint YN_, a,,y,, = 0 | R | /
(problem becomes a bit more easy to solve) &
—_—————
u The Lag raﬂg|aﬂ prﬂb|em o SD'VE Otherwise, the a,,'s are coupled and some opt. techniques
such as co-ordinate aspect can't easily applied

n max L:(w!b?&-?a?/ﬁ): M
w,b,£ «>0,8>0 2

N N N
+ +C Z En + Z thn{]. —_ yn(WTXn + b)—gn}_ Z ﬁngn
n=1 n=1 n=1

» Take (partial) derivatives of L wrt. w, b, and &, and setting to zero gives

Weighted sum of training inputs

oL N = N
— =0 = XnYnXn | oL oc - - Qp — -
ow e nzzl: YnX ﬁ:(]:}'nz:;&n}"n:oa ¢, 0=C n—Bn=0
* UsingC —a, — B, =0and B,, = 0, we have a,, < C (for hard-margin, a,, = 0)
= Substituting these in the Lagrangian L gives the Dual problem The dual variables 8 don’t

Given e w and b can be appear in the dual problem!

N N N
found just like the hard-margin max  Lp(a, B) = o _ 1t Qo T _ol——"
3 - n m nymyn(xmxn) St' an}’n - 0
SVM case 20,520 nzzg 2 2 nz=1:

w m,n:l
Maximizing a concave function 1 %' In the solution, e will still be sparse just like the
(or minimizing a convex function) max ﬁg(a) = a_T 1 — _QTGO_ hard-margin SVM case. Nonzero a,, correspond
st a < C and Zﬁzl AnVn = 0. a<C 2 to the support vectors
Many methods to solve it. (Note: For various SVM solvers, can see “Support Vector Machine Solvers™ by Bottou and Lin)




Kernelized SVM Training

» Recall the soft-margin linear SVM objective (with no bias term)

1 _
argmax a'1 — —a'Ga 6y =y 1Ty
0<a<C 2
= o kernelize, we can simply replace G; i = YiYj x}rxj by YiVj K; j

= . where K;j = k(xi,xj) = ¢(x)"p(x;) for a suitable kernel function k

= The problem can now be solved just like the linear SVM case

* The new SVM learns a linear separator in kernel-induced feature space F

» This corresponds to a non-linear separator in the original feature space X
x A '
A




Kernelized SVM Prediction

= SVM weight vector for the kernelized case will be w = YN_. a,, v, d(x,,)

= Note: We can't store w unless the feature mapping ¢ (x;,) is finite dimensional

®* |In practice, we store the a_n's and the training data for test time (just like KNN)

= |n fact, need to store only training examples for which a,, is nonzero (i.e., the support vectors)

* Prediction for a new test input x, (assuming hyperplane’s bias b = 0) will be

N T

n=1

N

anynk(xn: x*))

n=1

= Note that the prediction cost also scales linearly with N (unlike a linear model where
we only need to compute w' x,, whose cost only depends on D, not N)

= Also note that, for unkernelized (i.e., linear) SVM, w = ¥N_, a,, y,x,, can be computed
and stored as a D X 1 vector and we can compute w'x, in 0(D) time



Nonlinear Ridge Regression using Kernels



Kernelized Ridge Regression

N
-

" Recall the ridge regression problem: w =argmin } (yn — w'x,)* +Aw'w

n=1

= The solution to this problem was inner product

Inputs don’t appear to be as m
1 ~
. No hope of b

kernelization?
# { v ,
‘.\_’- They do; with a bit w — (Z xnx: + /\ID)(ZJ"’nxn) — (x—rx + AID)_IXT}‘
n=1 n=1

of algebra ©

» Can use matrix inversion lemma (FH™'G — E)"'FH™!' = E"'F(GE™'F — H)

—1

N X 1 vector of J
» Using the lemma, can rewrite w as dual variables 1

Note: Not sparse
unlike SVM

ey
w=X (XX" +Aly) ly=X"a = Z QpXp where a = (XX +Aly)"ly

= (K+ Aly) "ty

= Kernelized weight vector will be w = ZN 1 A @ (x;,)

Prediction cost is also
linear in N (like KNN)

= Prediction for a test input x, will be w' ¢ (x,) =ZN In(xn) Px.) = Z

L~

N

Apk(Xn, X))

n=1



Speeding-up Kernel Methods



Speeding-up Kernel Methods

= Kernel methods, unlike linear models are slow at training and test time

= Would be nice if we could easily compute mapping ¢ (x) associated with kernel k
* Then we could apply linear models directly on ¢ (x) without having to kernelize

= But this is in general not possible since ¢ (x) is very high/infinite dimensional

= An alternative: Get a good set of low-dim features ¥ (x) € R* using the kernel k

» [f 1(x) is a good approximation to ¢ (x) then we can use Y (x) in a linear model
Goodness Criterion: P (x;) " (x;) = ¢ (x;) Tp(x;)

.. which also means ¥(x)Ty(x;) = k(x;, x;)

= Will look at two popular approaches: Landmarks and Random Features



Extracting Features using Kernels: Landmarks

= Suppose we choose a small set of L "landmark™ inputs z4, Z,, ..., Z; in the training data

@ | o

| ® | | ® -z - Landmarks need not be
o ® o ® o ® @ 2 @ actual inputs; can even

@ _ Z1@ @ be L learned locations

® | L in the input space
@ [
o @ - |
¢ o o . %3

Y(xn) = [k(zy, x0), k(22 x7), k (23, x,)] € R?

= For each input X, using a kernel k, define an L-dimensional feature vector as follows

l/J(xn) = [k(zl:xn)» k(ZZan)» LLY k(ZL:xn)] € RL

= Can now apply a linear model on ¥ representation (L-dimensional now) of the inputs

= This will be fast both at training as well as test time if L is small
= No need to kernelize the linear model while still reaping the benefits of kernels ©



Extracting Features using Kernels: Random Features

= Many kernel functions* can be written as

k(Xp, Xm) = &(xn) " (Xm) = Eweop(w) [tw (Xn) tw (Xm)]
. where t,,(.) is a function with params w € R with w drawn from some distr. p(w)

= Example: For the RBF kernel, t,,(.) is cosine func. and p(w) is zero mean Gaussian

T

k(Xn, Xm) = Eyp(w)[cos(w ' x,) cos(w ' x,,)]

* Given wq, W, ..., w; from p(w), using Monte-Carlo approx. of above expectation
L

k(Xp, Xm) & %Zcos(ngn)cos(ngm) = (x,) " Y(xm)
(=1
.. where ¥(x,) = ﬁ[cos( wi x,),...,cos(w; x,)] is an L-dim vector

= Can apply a linear model on this L-dim rep. of the inputs (no need to kernelize)

*Random Features for Large-Scale Kernel Machines (Recht & Rahimi, NIPS 2007. Remember the ML alchemy talk? That was these guys)



Learning with Kernels: Some Aspects

» Storage/computational efficiency can be a bottleneck when using kernels

= During training, need to compute and store the N X N kernel matrix K in memory

= Need to store training data (or at least support vectors in case of SVMs) at test time
= Test time can be slow: O(N) cost to compute a quantity like Y- a,k(x,, X.)

= Approaches like landmark and random features can be used to speed up

» Choice of the right kernel is also very important

= Some kernels (e.g., RBF) work well for many problems but hyperparameters of
the kernel function may need to be tuned via cross-validation

= Quite a bit of research on learning the right kernel from data

= | earning a combination of multiple kernels (Multiple Kernel Learning)

= Bayesian kernel methods (e.g., Gaussian Processes) can learn the kernel hyperparameters from
data(thus can be seen as learning the kernel)

m NDeen | earnina can alen he seen as learnina the kernel from data (maore on this later)



	Kernelizing ML algorithms
	Recap: Kernel functions
	Using Kernels
	Nonlinear SVM using Kernels
	Solving Soft-Margin SVM
	Solving Soft-Margin SVM
	Kernelized SVM Training
	Kernelized SVM Prediction
	Nonlinear Ridge Regression using Kernels
	Kernelized Ridge Regression
	Speeding-up Kernel Methods
	Speeding-up Kernel Methods
	Extracting Features using Kernels: Landmarks
	Extracting Features using Kernels: Random Features
	Learning with Kernels: Some Aspects

