The Kernel Trick

CS771: Introduction to Machine Learning
Nisheeth



* By now, all of you should have your mid sem results
e Anyone who doesn’t have them should email their TA, cc-ing me

e Assignment 3 will be released after Wednesday’s class
e Will be due next weekend (you will have 10 days)

e Quiz 3 will be this Friday

e Syllabus is everything we covered until the last class

e Your TA will share complete course marks for all assessments in the
course so far later this week

e Please cross-check your marks and submit regrading requests if you find any
discrepancies



Limits of linear Models

" Nice and interpretable but can’t learn nonlinear patterns

" So, are linear models useless for such problems?




Linear Models for Nonlinear Problems

" Consider the following one-dimensional inputs from two classes

" Can’t separate using a linear hyperplane

X



Linear Models for Nonlinear Problems

= Consider mapping each x to two-dimensions as x = z = [zy,2,] = [x, x?]

29

Linear hyperplane
—

<1

» Classes are now linearly separable in the two-dimensional space

. A .



Linear Models for Nonlinear Problems

" The same i1dea can be applied for nonlinear regression as well

X > z = |zq,2,] = [x,cos(x)]

Not a linear relationship - — - -
between inputs (x) and ' % i
outputs (y) .
\\ .,-
A linear regression model will o .ﬁ: A linear regression model will
not work well y E work well with this new two-dim
representation of the original one-
i dim inputs
#‘




Linear Models for Nonlinear Problems

= Can assume a feature mapping ¢ that maps/transforms the inputs to a "nice” space

¢ : R — R’

(z1,Z2) — (21,290, 23) 1= (ﬁa \/(2)5’31372135%)
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= .. and then happily apply a linear model in the new space!



Not Every Mapping is Helpful

" Not every higher-dim mapping helps in learning nonlinear patterns

" Must be a nonlinear mapping

" For the nonlinear classification problem we saw earlier, consider some possible mappings

Monlinear
(Helps)

[21, 2] = {, |x]}

Linear Map
(not helpful)

[

|71, 2] = {2, 2}

<1




How to get these “good” (nonlinear) mappings?

= Can try to learn the mapping from the data itself (e.g., using deep learning - later)

= Can use pre-defined "good” mappings (e.g., defined by kernel functions - today'’s topic)

Even if [ knew a good mapping, it

seems I need to apply it for every

N input. Won’t this be computationally
L

expensive?
L]

NS—

Also, the number of features will

increase? Will it not slow down the
learning algorithm?

Important: As we will see, computing k(.
does not require computing the mapping ¢

= Kernel: A function k (., ) that gives dot product similarity b/w two input‘é say X, and X,

Sk(Xn, Xm) = ¢(n) T (xy)

¢ : R? — R’

($1’$2) = (21,22,23) = (27%, '\/(2)1711:2:37%)

wi
& A ‘ 3
x i X x
x
x X X
/”——_‘"‘\ "7'\\x x X
P x
K/” \\ X ‘J\ x
! O . \ 1 o\ x
T F ')\x
\ 5 2 Z
/ 2 x L
x b g™ \ L N s
Se~al—- x \ : = -
5 " & o
X
% x X .. \
FER

Thankfully, using kernels, you don’t

need to compute these mappings
explicitly

The kernel will define an “implicit”

feature mapping

-

Important: The idea can be applied to any ML algo in

which training and test stage only require computing
pairwise similarities b/w inputs

| underlying mapping ¢ associated this this

In a high-dim space implicitly defined by an

kernel function k(.,.)




Kernels as (Implicit) Feature Maps

» Consider two inputs (in the same two-dim feature space): x = [xq,x2],Z2 = [z4, 25]

= Suppose we have a function k(.,.) which takes two inputs x and z and computes

Didn't need to compute ¢(x)
explicitly. Just using the definition
of the kernel k(x,z) =

(xTz)? implicitly gave us this

mapping for each input
—

=

Can think of this as a notion

Called the “kernel g
function” k (x, Z) — (xT Z)z 4 of similarity b/w x and z

(x121 + xzzz)z

= X%z% + X525 + 2X,X02Z1Z

Thus kernel function k(x,z) =
(x"z)?

implicitly defined a feature mapping
¢ such that for x = [xq,x5],

d(x) = (x12: \/Ex1x2: x%)

This is not a dot/inner product
similarity but similarity using a
more general function of x and z
(square of dot product)

Remember that a kernel does

two things: Maps the data

implicitly into a new feature

T .
_ 2 ./ 2 2 / 2 space (feature transformation)
o (xl g 2 xl xz 4 xz ) (Z]. ) 2 Z]. ZZ ) ZZ ) and computes pairwise

= p(0)TPh(2) =

Dot product similarity in
the new feature space
defined by the mapping ¢

similarity between any two
inputs under the new feature

representation

= Also didn't have to compute ¢(x) T ¢p(2). Defn k(x,z) = (x"z)? gives that

avoa [/

&



As we saw, kernel function k(x,z) = (x'z)?

Ke r n e | F u n Ct I O n S implicitly defines a feature mapping ¢ such that for a

two-dim x = [xq,x5] , p(x) = (x%:\/zxﬂz:x%)

» Fvery kernel function k implicitly defines a feature mapping ¢
= ¢ takes input x € X (e.g.. RP) and maps it to a new “feature space” F

= The kernel function k can be seen as taking two points as inputs and computing their
inner—product based Slmllarlty in the F SPACE || For some kernels, as we will see shortly, ¢p(x) (and thus

the new feature space F ) can be very high-dimensional
or even be infinite dimensional (but we don't need to

(jb : X — -F compute it anyway, so it is not an issue)
k @ XA xX =R, k(x,z)=¢(x) ¢(2)

= F needs to be a vector space with a dot product defined on it (a.k.a. a Hilbert space)

® |s any function k(x,z) = ¢(x)"¢(z) for some ¢ a kernel function?

* No. The function k must satisfy Mercer's Condition



Kernel Functions

* For k(.,.) to be a kernel function
» k must define a dot product for some Hilbert Space
» Above is true if k is symmetric and positive semi-definite (p.s.d.) function (though there are

EKceptIDHS. there dre a|SD HlndEflﬂlte" kEfﬂE'S) Loose|y Speakmg a PSD function here

means that if we evaluation this function for
N inputs (N?2pairs) then the N X N matrix

For all “square integrable” functions f k(x’ Z) — k(ZJ x) will be PSD (also called a kernel matrix)

(such functions satisfy [ f(x)?dx < oo
kff f(xX)k(x,z)f(z)dxdz = 0

* The above condition is essentially known as Mercer’s Condition

Can easily verify that the
Mercer’s Condition holds

" | et kq, ky be two kernel functions then the following are as well

L] k(x’ Z) — kl (x’ Z) + kz(x, Z): Simp|e suUum 2 Can also combine these rules and the resulting function
- k(x, z) — Etkl(x, Z): Sca|ar prOdUCt will also be a kernel function
* k(x,z) = ki(x,2)k,(x, z): direct product of two kernels




Some Pre-defined Kernel Functions
Several other kernels proposed for non- \ Remember that kemels are a %ﬂl /

~notion of similarity between

[ | |_| near kernel k ( x’ Z) = xTz vector data, such as trees, strings, etc pairs of inputs

—/7
Kernels can have a pre-defined form or can be

. Quadratlc Kerne] k(xl z) = (xTz)z or k(x, z) - (1 + xTZ)z learned from data (a bit advanced for this

course)

= Polynomial Kernel (of degree d): k(x,z) = (x"2)® or k(x,z) = (1 + x"2)“

= Radial Basis Function (RBF) or “Gaussian” Kernel: k(x,2z) = exp[—Yy ||lx — z||*]

. ' . ‘ Controls how the distance between
= Gaussian kernel gives a similarity score between O and 1 w0 inputs should be comerted into
* ¥ > 0 is a hyperparameter (called the kernel bandwidth parameter )~ asimilarity

* The RBF kernel corresponds to an infinite dim. feature space F (i.e., you can't actually
write down or store the map ¢ (x) explicitly — but we don't need to do that anyway ©)

= Also called “stationary kernel”: only depends on the distance between x and z (translating
both by the same amount won't change the value of k(x, z))

= Kernel hyperparameters (e.g..d,y) can be set via cross-validation



RBF Kernel = Infinite Dimensional Mapping

= We saw that the RBF/Gaussian kernel is defined as k(x, z) = exp[—y ||x — z||?]

= Using this kernel corresponds to mapping data to infinite dimensional space

k (x, Z) = exp [— (x — Z)Z] (assuming y = 1 and x and z to be scalars)

= exp(—x?) exp(—z?)exp(2xz)
o ok, k,k
= exp(—x*) exp(—z°) X4 fdz

Thus an infinite-dim vector (ignoring the

— T
_ ¢ (X) (p (Z) constants coming from the 2% and k! terms

* Here ¢p(x) = [exp(—xz)xl,exp(—xz)xz, exp(—x2)x3, ..., exp(—x2)x*]

= But again, note that we never need to compute ¢(x) to compute k(x, z)
= k(x, z) is easily computable from its definition itself (exp[—(x — z)*#] in this case)



Kernel Matrix

= Kernel based ML algos work with kernel matrices rather than feature vectors
= Given N inputs, the kernel function k can be used to construct a Kernel Matrix K

* The kernel matrix K is of size N X N with each entry defined as

Note again that we don't
need to compute ¢ and this

KU — k(xl,x]) p— ¢(xl)T ¢(x]) Jdot product explicitly

" K;; @ Similarity between the it"and jt" inputs in the kernel induced feature space ¢

Features j
K, K is a symmetric and
. g positive semi-definite matrix

i
Inputs _)_} K ﬂ
z'Kz>0vVzeRN

Kl Fisysien Also, all eigenvalues of K are non-negative

Feature Matrix Kernel Matrix
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