The Kernel Trick

CS771: Introduction to Machine Learning
Nisheeth



* By now, all of you should have your mid sem results
e Anyone who doesn’t have them should email their TA, cc-ing me

e Assignment 3 will be released after Wednesday’s class
e Will be due next weekend (you will have 10 days)

e Quiz 3 will be this Friday

e Syllabus is everything we covered until the last class

e Your TA will share complete course marks for all assessments in the
course so far later this week

e Please cross-check your marks and submit regrading requests if you find any
discrepancies



Limits of linear Models

" Nice and interpretable but can’t learn nonlinear patterns

" So, are linear models useless for such problems?




Linear Models for Nonlinear Problems

" Consider the following one-dimensional inputs from two classes

" Can’t separate using a linear hyperplane

X



Linear Models for Nonlinear Problems

= Consider mapping each x to two-dimensions as x = z = [zy,2,] = [x, x?]

29

Linear hyperplane
—

<1

» Classes are now linearly separable in the two-dimensional space

. A .



Linear Models for Nonlinear Problems

" The same i1dea can be applied for nonlinear regression as well

X > z = |zq,2,] = [x,cos(x)]

Not a linear relationship - — - -
between inputs (x) and ' % i
outputs (y) .
\\ .,-
A linear regression model will o .ﬁ: A linear regression model will
not work well y E work well with this new two-dim
representation of the original one-
i dim inputs
#‘




Linear Models for Nonlinear Problems

= Can assume a feature mapping ¢ that maps/transforms the inputs to a "nice” space

¢ : R — R’

(z1,Z2) — (21,290, 23) 1= (ﬁa \/(2)5’31372135%)

x Y2

b4
. x

X fff-— -: X
x . ¥
4 - \
[ O 2 |
! /

v

% /

e - X
E =

* x

The linear model in the new

» b4
% feature space corresponds to a
5 X x nonlinear model in the original
: b
o \x . feature space
N X
o\ x
.9
4 J\ 5 Z 1
5 G .- X
O\

= .. and then happily apply a linear model in the new space!



Not Every Mapping is Helpful

" Not every higher-dim mapping helps in learning nonlinear patterns

" Must be a nonlinear mapping

" For the nonlinear classification problem we saw earlier, consider some possible mappings

Monlinear
(Helps)

[21, 2] = {, |x]}

Linear Map
(not helpful)

[

|71, 2] = {2, 2}

<1




How to get these “good” (nonlinear) mappings?

= Can try to learn the mapping from the data itself (e.g., using deep learning - later)

= Can use pre-defined "good” mappings (e.g., defined by kernel functions - today'’s topic)

Even if [ knew a good mapping, it

seems I need to apply it for every

N input. Won’t this be computationally
L

expensive?
L]

NS—

Also, the number of features will

increase? Will it not slow down the
learning algorithm?

Important: As we will see, computing k(.
does not require computing the mapping ¢

= Kernel: A function k (., ) that gives dot product similarity b/w two input‘é say X, and X,

Sk(Xn, Xm) = ¢(n) T (xy)

¢ : R? — R’

($1’$2) = (21,22,23) = (27%, '\/(2)1711:2:37%)

wi
& A ‘ 3
x i X x
x
x X X
/”——_‘"‘\ "7'\\x x X
P x
K/” \\ X ‘J\ x
! O . \ 1 o\ x
T F ')\x
\ 5 2 Z
/ 2 x L
x b g™ \ L N s
Se~al—- x \ : = -
5 " & o
X
% x X .. \
FER

Thankfully, using kernels, you don’t

need to compute these mappings
explicitly

The kernel will define an “implicit”

feature mapping

-

Important: The idea can be applied to any ML algo in

which training and test stage only require computing
pairwise similarities b/w inputs

| underlying mapping ¢ associated this this

In a high-dim space implicitly defined by an

kernel function k(.,.)




Kernels as (Implicit) Feature Maps

» Consider two inputs (in the same two-dim feature space): x = [xq,x2],Z2 = [z4, 25]

= Suppose we have a function k(.,.) which takes two inputs x and z and computes

Didn't need to compute ¢(x)
explicitly. Just using the definition
of the kernel k(x,z) =

(xTz)? implicitly gave us this

mapping for each input
—

=

Can think of this as a notion

Called the “kernel g
function” k (x, Z) — (xT Z)z 4 of similarity b/w x and z

(x121 + xzzz)z

= X%z% + X525 + 2X,X02Z1Z

Thus kernel function k(x,z) =
(x"z)?

implicitly defined a feature mapping
¢ such that for x = [xq,x5],

d(x) = (x12: \/Ex1x2: x%)

This is not a dot/inner product
similarity but similarity using a
more general function of x and z
(square of dot product)

Remember that a kernel does

two things: Maps the data

implicitly into a new feature

T .
_ 2 ./ 2 2 / 2 space (feature transformation)
o (xl g 2 xl xz 4 xz ) (Z]. ) 2 Z]. ZZ ) ZZ ) and computes pairwise

= p(0)TPh(2) =

Dot product similarity in
the new feature space
defined by the mapping ¢

similarity between any two
inputs under the new feature

representation

= Also didn't have to compute ¢(x) T ¢p(2). Defn k(x,z) = (x"z)? gives that

avoa [/

&



As we saw, kernel function k(x,z) = (x'z)?

Ke r n e | F u n Ct I O n S implicitly defines a feature mapping ¢ such that for a

two-dim x = [xq,x5] , p(x) = (x%:\/zxﬂz:x%)

» Fvery kernel function k implicitly defines a feature mapping ¢
= ¢ takes input x € X (e.g.. RP) and maps it to a new “feature space” F

= The kernel function k can be seen as taking two points as inputs and computing their
inner—product based Slmllarlty in the F SPACE || For some kernels, as we will see shortly, ¢p(x) (and thus

the new feature space F ) can be very high-dimensional
or even be infinite dimensional (but we don't need to

(jb : X — -F compute it anyway, so it is not an issue)
k @ XA xX =R, k(x,z)=¢(x) ¢(2)

= F needs to be a vector space with a dot product defined on it (a.k.a. a Hilbert space)

® |s any function k(x,z) = ¢(x)"¢(z) for some ¢ a kernel function?

* No. The function k must satisfy Mercer's Condition



Kernel Functions

* For k(.,.) to be a kernel function
» k must define a dot product for some Hilbert Space
» Above is true if k is symmetric and positive semi-definite (p.s.d.) function (though there are

EKceptIDHS. there dre a|SD HlndEflﬂlte" kEfﬂE'S) Loose|y Speakmg a PSD function here

means that if we evaluation this function for
N inputs (N?2pairs) then the N X N matrix

For all “square integrable” functions f k(x’ Z) — k(ZJ x) will be PSD (also called a kernel matrix)

(such functions satisfy [ f(x)?dx < oo
kff f(xX)k(x,z)f(z)dxdz = 0

* The above condition is essentially known as Mercer’s Condition

Can easily verify that the
Mercer’s Condition holds

" | et kq, ky be two kernel functions then the following are as well

L] k(x’ Z) — kl (x’ Z) + kz(x, Z): Simp|e suUum 2 Can also combine these rules and the resulting function
- k(x, z) — Etkl(x, Z): Sca|ar prOdUCt will also be a kernel function
* k(x,z) = ki(x,2)k,(x, z): direct product of two kernels




Some Pre-defined Kernel Functions
Several other kernels proposed for non- \ Remember that kemels are a %ﬂl /

~notion of similarity between

[ | |_| near kernel k ( x’ Z) = xTz vector data, such as trees, strings, etc pairs of inputs

—/7
Kernels can have a pre-defined form or can be

. Quadratlc Kerne] k(xl z) = (xTz)z or k(x, z) - (1 + xTZ)z learned from data (a bit advanced for this

course)

= Polynomial Kernel (of degree d): k(x,z) = (x"2)® or k(x,z) = (1 + x"2)“

= Radial Basis Function (RBF) or “Gaussian” Kernel: k(x,2z) = exp[—Yy ||lx — z||*]

. ' . ‘ Controls how the distance between
= Gaussian kernel gives a similarity score between O and 1 w0 inputs should be comerted into
* ¥ > 0 is a hyperparameter (called the kernel bandwidth parameter )~ asimilarity

* The RBF kernel corresponds to an infinite dim. feature space F (i.e., you can't actually
write down or store the map ¢ (x) explicitly — but we don't need to do that anyway ©)

= Also called “stationary kernel”: only depends on the distance between x and z (translating
both by the same amount won't change the value of k(x, z))

= Kernel hyperparameters (e.g..d,y) can be set via cross-validation



RBF Kernel = Infinite Dimensional Mapping

= We saw that the RBF/Gaussian kernel is defined as k(x, z) = exp[—y ||x — z||?]

= Using this kernel corresponds to mapping data to infinite dimensional space

k (x, Z) = exp [— (x — Z)Z] (assuming y = 1 and x and z to be scalars)

= exp(—x?) exp(—z?)exp(2xz)
o ok, k,k
= exp(—x*) exp(—z°) X4 fdz

Thus an infinite-dim vector (ignoring the

— T
_ ¢ (X) (p (Z) constants coming from the 2% and k! terms

* Here ¢p(x) = [exp(—xz)xl,exp(—xz)xz, exp(—x2)x3, ..., exp(—x2)x*]

= But again, note that we never need to compute ¢(x) to compute k(x, z)
= k(x, z) is easily computable from its definition itself (exp[—(x — z)*#] in this case)



Kernel Matrix

= Kernel based ML algos work with kernel matrices rather than feature vectors
= Given N inputs, the kernel function k can be used to construct a Kernel Matrix K

* The kernel matrix K is of size N X N with each entry defined as

Note again that we don't
need to compute ¢ and this

KU — k(xl,x]) p— ¢(xl)T ¢(x]) Jdot product explicitly

" K;; @ Similarity between the it"and jt" inputs in the kernel induced feature space ¢

Features j
K, K is a symmetric and
. g positive semi-definite matrix

i
Inputs _)_} K ﬂ
z'Kz>0vVzeRN

Kl Fisysien Also, all eigenvalues of K are non-negative

Feature Matrix Kernel Matrix



	The Kernel Trick
	Logistics
	Limits of linear Models
	Linear Models for Nonlinear Problems
	Linear Models for Nonlinear Problems
	Linear Models for Nonlinear Problems
	Linear Models for Nonlinear Problems
	Not Every Mapping is Helpful
	How to get these “good” (nonlinear) mappings?
	Kernels as (Implicit) Feature Maps
	Kernel Functions
	Kernel Functions
	Some Pre-defined Kernel Functions
	RBF Kernel = Infinite Dimensional Mapping
	Kernel Matrix

