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Hyperplane 2 

Can be positive or 
negative 
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Hyperplane based (binary) classification 3 

Prediction Rule 
For multi-class classification with 
hyperplanes, there will be multiple 
hyperplanes (e.g., one for each pair of 
classes); more on this later 
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Loss Functions for Classification 4 

(0,0) 

(0,1) 

0-1 Loss 

Non-convex, non-differentiable, and 
NP-Hard to optimize (also no useful 
gradient info for the most part) 
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Loss Functions for Classification 5 

(0,0) 

“Perceptron” Loss 

(0,0) 

(0,1) 

(1,0) (0,0) 

Log(istic) Loss Hinge Loss 
Already saw this in logistic regression 
(the likelihood resulted in this loss 
function) 

Convex and Differentiable Convex and Non-differentiable 

Convex and Non-differentiable 
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Learning by Optimizing Perceptron Loss 6 

One randomly chosen example in 
each iteration 
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The Perceptron Algorithm 7 

Note: An example may 
get chosen several times 
during the entire run 

If training data is linearly separable, the 
Perceptron algo will converge in a finite number 
of iterations  
(Block & Novikoff theorem) 

Mistake condition 
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Perceptron and (lack of) Margins 8 

Kind of an “unsafe” situation to have – ideally 
would like it to be reasonably away from 
closest training examples from either class 
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Support Vector Machine (SVM) 9 

Class +1 

Class -1 
“Margin” of the hyperplane 

Distance from the closest point 
(on either side) 

Constrained 
optimization 
problem 

SVM originally proposed by Vapnik and 
colleagues in early 90s 
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Hard-Margin SVM 10 

Class +1 

Class -1 
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Solving Hard-Margin SVM 11 
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Solving Hard-Margin SVM 12 

(Note: For various SVM solvers, can see “Support Vector Machine Solvers” by Bottou and Lin) 
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Solving Hard-Margin SVM 13 
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Soft-Margin SVM (More Commonly Used) 14 

Soft-margin constraint: 
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Soft-Margin SVM (Contd) 15 

Sum of slacks is like the 
training error 

Inversely prop. to 
margin 

training 
error 

Trade-off hyperparam 
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Support Vectors in Soft-Margin SVM 16 

1. Lying on the supporting hyperplanes 
 

2. Lying within the margin region but still on the correct 
side of the hyperplane 
 

3. Lying on the wrong side of the hyperplane 
(misclassified training examples) 
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Solving Soft-Margin SVM 17 
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Solving Soft-Margin SVM 18 

Weighted sum of training inputs 

(Note: For various SVM solvers, can see “Support Vector Machine Solvers” by Bottou and Lin) 
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