Perceptrons and SVMs

CS771: Introduction to Machine Learning
Nisheeth

Hyperplane

= Separates a D-dimensional space into two half-spaces (positive and negative)
= Defined by a normal vector w € RP (pointing towards positive half-space)

4

Y

» Equation of the hyperplane: w'x = 0

b > 0 means movingw'x = 0 along the
direction of w; b < 0 means in opp. dir.

L—
wix+b=0

L~

= Assumption: The hyperplane passes through origin. If not, add a bias term b
= Distance of a point x,, from a hyperplane wx + b = 0

Can be positive or w X n _I_ b
Tn =

negative

Hyperplane based (binary) classification

= Basic idea: Learn to separate two classes by a hyperplane w'x + b = 0 ’) Y,

For multi-class classification with

Prediction Rule hyperplanes, there will be multiple
hyperplanes (e.g., one for each pair of

classes); more on this later

y. = sign(w'x, + b)

= [he hyperplane may be “implied” by the model, or learned directly
" Implied: Prototype-based classification, nearest neighbors, generative classification, etc
= Directly learned: Logistic regression, Perceptron, Support Vector Machine (SVM), etc

® [he "direct” approach defines a model with params w (and optionally a bias param b)
* The parameters are learned by optimizing a classification loss function (will soon see examples)
= These are also discriminative approaches — x is not modeled but treated as fixed (given)

* The hyperplane need not be linear (e.g., can be made nonlinear using kernels; later)

Loss Functions for Classification

= |n regression (assuming linear model = w'x), some common loss fn
t,9) = - 9)* t,9) =1y — 9l

* These measure the difference between the true output and model's prediction

= \What about loss functions for classification where § = sign(w'x) ?

* Perhaps the most natural classification loss function would be a "O-1 Loss’
"loss=1ify#yandloss=0if y =y. 0-1Loss

- ASS L m | N g |ab8|5 8.5 + 1 / = 1 j |t m eanS Non-convex, non-differentiable, and
NP-Hard to optimize (also no useful
€ (A) 1 | f wa x < O gradient info for the most part)
p— , —
Yry 0 ifyw'x=>0

—1(0,1)
Same as [[ywTx < 0] or I[sign(w'x) # y] |__

(0,0) yw'x

Loss Functions for Classification

" An ideal loss function for classification should be such that “Perceptron” Loss
= | oss is small/zero if y and sign(w ' x) match max{0, —yw 'z}
= Loss is large/non-zero if y and sign(w'x) do not match
= | arge positive yw" x = small/zero loss

Convex and Non-differentiable

= | arge negative yw' x = large/non-zero loss

Already saw this in logistic regression

.. (the likelihood resulted in this loss . 00 T
Log(istic) LossJ function) Hinge Loss (0,0)

log(1 + exp(—yw ' z))

max{0,1 — yw 'z}

J Convex and Differentiable Convex and Non-differentiable

(0,0) y'wT:B (0,0) (1,0) y’wT:v

Learning by Optimizing Perceptron Loss

= Let's ignore the bias term b for now. So the hyperplane is simply w'x = 0

= The Perceptron loss function: L(w) = ¥N_; max{0, —y,w'x,}. Let's do SGD
“Perceptron” Loss: IIl&]{{O, —yw—rﬂ:} SUbg radleﬂtS W, r-'-t' w One randomly chosen example in
each iteration
I 0, for yaw ' xn > 0
g, =1 —yux, fory.w' x, <0

|

(0,0) yw ' T

= fweusek = Othen g,, = 0 fory,w'x, =0, ,and g,, = —Yp Xy, fOr y,w'x, <0
* Non-zero gradients only when the model makes a mistake on current example (X, ¥y,)
» Thus SGD will update w only when there is a mistake (mistake-driven learning)

The Perceptron Algorithm

= Stochastic Sub-grad desc on Perceptron loss is also known as the Perceptron algorithm

Stochastic SubGD

@ Initialize w = w'%, t = 0, set ne = 1,Vt

Note: An example may

get chosen several times Mistake condition

Pick some (xn, yn) randomly.

during the entire run

L

@ If current w makes a mistake on (X, y»), i.e., yaw? x, <0
W(H‘l) — W(t) + VaXn

t = t+1

@ If not converged, go to step 2.

Updates are “corrective™: If y n = +1
and w'x, < 0, after the update w'x,,
will be less negative. Likewise, if y, = —1
and w'x,, > 0, after the update w'x,,
will be less positive

/7

If training data is linearly separable, the

Perceptron algo will converge in a finite number
of iterations
(Block & Novikoff theorem)

J

= An example of an online learning algorithm (processes one training ex. at a time)
= Assuming w(®) = 0, easy to see that the final w has the form w = 3¥N_, a, v, x,,

" a, is total number of mistakes made by the algorithm on example (x5, ¥n)

Meaning of a,,
may be different

N —

= As we'll see, many other models also have weights w in the form w = X, _; @, ynXn

Perceptron and (lack of) Margins

= Perceptron would learn a hyperplane (of many possible) that separates the classes

Basically, it will learn the hyperplane
which corresponds to the w that
minimizes the Perceptron loss

Kind of an “unsafe” situation to have — ideally

would like it to be reasonably away from

closest training examples from either class

» Doesn't guarantee any "margin” around the hyperplane —7
* The hyperplane can get arbitrarily close to some training example(s) on either side
= This may not be good for generalization performance ¥ > 0 is some pre-specified margin
—

» Can artificially introduce margin by changing the mistake condition to y,w'x, <y

» Support Vector Machine (SVM) does it directly by learning the max. margin hyperplane

S U p p O rt Ve CtO f I\/I acC h | ne (Sv I\/I) SVM originally proposed by Vapnik and

colleagues in early 90s

e

= Hyperplane based classifier. Ensures a large margin around the hyperplane
= Will assume a linear hyperplane to be of the form wTx + b = 0 (nonlinear ext. later)

T — T ' =
WT x+b>1 ‘ ‘ B .;'W X + b = —1| Distance from the closest point
o Py ‘." .;" ® (on either side) Yn (wan + b) >1 Vn
o © T Distance of an input
' g ® O “Margin” of the hyperplane x,, from the h.p
® 0 . Class -1
. o0 lw' xn+b|/
. R W x+b< -1 y = min
0 o © 1snsN [[wl| lIwll
Want the hyperplane (w, b) such
T P) ‘ that this margin is maximized . 2
w x+b=0.: @ Constrained (max-margin hyperplane) and Total margin = ” i
optimization Vi (WT X, + b) >1 Vn
problem (The 1/-1 in supp. h.p.

= Two other “supporting” hyperplanes defining a “no man’s land" |20 " “0v = | gy

replace by any scalar m/-m

= Ensure that zero training examples fall in this region (will relax later) | and solution won't change w1/
. " . . . T except a simple scaling of w &
* The SVM idea: Position the hyperplane s.t. this region is as "wide" as possible

Hard-Margin SVM

» Hard-Margin: Every training example must fulfil margin condition y,(w'x,, + b) > 1
= Meaning: Must not have any example in the no-man's land

- . 2
Class +1 = Also want to maximize margin 2y = —

Wt b= —1 Iw]l
wix+b>1 SWXFTD=—

. w
= Equivalent to minimizing ||lw||? or %
Class -1

' . o0 b <
wixtbs-t The objective func. for hard-margin SVM

: |w]|?
Constrained optimization T:E f(w’ b) = 2
problem with N inequality
constraints. Objective and subject to yn(wan + b) > 1, n=1 ..., N
constraints both are convex

Solving Hard-Margin SVM

* The hard-margin SVM optimization problem is

w
min f(w, b) = Ll
w.b 2
subject to 1 — y,,(wa,, + b) <0, n=1,...,N

= A constrained optimization problem. One option is to solve using Lagrange’'s method
* Introduce Lagrange multipliers a,, (n = 1, ..., N), one for each constraint, and solve

N
. [|w|[? T
min max L(w, b,)= 5 + E an{l — yn(w' x, + b)}

n=1

"a = |aq,a,, ..., ay] denotes the vector of Lagrange multipliers
= |tis easier (and helpful; we will soon see why) to solve the dual: min and then max

Solving Hard-Margin SVM

= The dual problem (min then max) is

Note: if we ignore the bias term b then we don't 25
need to handle the constraint Y¥_, a,, ¥, = 0 | | /
(problem becomes a bit more easy to solve)

max min L(w, b, o) =
a>0 w,b

w ' w Otherwise, the a,,’s are coupled and
-
> + Z an{l — yn(w x, + b)} some opt. techniques such as co-
n=1 ordinate ascent can't easily be applied

= Take (partial) derivatives of £ w.rt. w and b and Setting them to zero gives (verify)

oL

ow 07

* The solution w is simply a weighted sum of all the training inputs =

N
W — E anyan
n=1

oL
db

—0:>Zanyn—0

n=1 a, tells us how important

training example (x,,, y,,) is

= Substituting w = XN_; @, X, in the Lagrangian, we get the dual problem as (verify)

This is also a "quadratic
program” (QP) — a quadratic 20 Lp(a) =
function of the variables a

Zan - = Z Qmc nYmYn(x xn)

mnl

- — —— -
Maximizing a concave function
(or minimizing a convex function) x>0

1

max I.',D(a)—a I—Ea Ga

U

Gisan N X N p.s.d. matrix, also called the Gram
Matrix, Gy = YnYmXn ' Xm, and 1 is a vector of all 1s

sta=0and ¥N_a,y, =0.
Many methods to solve it.

(Note: For various SVM solvers, can see “Support Vector Machine Solvers” by Bottou and Lin)

Solving Hard-Margin SVM

* One we have the a,, s by solving the dual, we can get w and b as
w = ZL an,YnX, (we already saw this)

b = —% (minn;yn:H w' x, + maxy, -1 wan) (exercise)

= A nice property: Most a,,'s in the solution will be zero (sparse solution)

"Tx+b=1 "
oV . *t = Reason: KKT conditions

g . _I_ - . ,
ST b=-1""a For the optimal a,,'s, we must have

e = Thus a, nonzero only if y,(w'x,, + b) = 1, ie, the
.. o training example lies on the boundary
| an{l - yn(WTxn + b)} =0

= [These examples are called support vectors

Soft-Margin SVM (More Commonly Used)

O .‘) , slack

= Allow some training examples to fall within the
® o 0 X
class +1 e o N

no-man'’s land (margin region)

O AN wxtb=-1

® N[= Fven okay for some training examples to fall

X E"‘-—-‘.' 0 totally on the wrong side of h.p.

[
® o an = Extent of "violation™ by a training input (X5, Yn)
Ll ol el E EE is known as slack &, = 0

(. B = _

g .}". mn = ¢, > 1 means totally on the wrong side
O

wix,+b>1-¢&, if y, =+1
wix,+b<—-1+¢&, if y,=-1

Soft-margin constraint: Vn (wan +b)=1—-¢, Vn

Soft-Margin SVM (Contd)

= Goal: Still want to maximize the margin such that

Sum of slacks is like the

training error

= Soft-margin constraints y,(w'x,, + b) = 1 — &, are satisfied | training ex.

= Do not have too many margin violations (sum of slacks YXN_, &, should be small)

om slack = The objective func. for soft-marain SYM
. Inversely prop. to __ - | Trade-off hyperparam training
wWix#b=-1 margin I>,‘| |;_;\‘ ,'}.ur | error Constrained optimization
/ O . i ‘, i ‘. ; problem with 2N inequality
N B wn?f:?s f(w, b, §) Vo9 II+C “E: En ; constraints. Objective and
' N N S constraints both are convex
C subject to y,(w'x, +b) >1-£,, £, >0 n=1,... N
C I B

cass-1 - m Hyperparameter C controls the trade off between large margin
and small training error (need to tune)

* Large C: small training error but also small margin (bad)
= Small C: large margin but large training error (bad)

Support Vectors in Soft-Margin SVM

* The hard-margin SVM solution had only one type of support vectors
= Al lied on the supporting hyperplanes w'x,, + b =1andw'x,, + b = —1

* The soft-margin SVM solution has three types of support vectors (with nonzero a,,)

1. Lying on the supporting hyperplanes

2. Lying within the margin region but still on the correct

side of the hyperplane

3. Lying on the wrong side of the hyperplane

(misclassified training examples)

Solving Soft-Margin SVM

» Recall the soft-margin SVM optimization problem

min f(w, b, &) = ||W||2+C§:£n
w.b. £ 2 -

subject to 1 < y,(w'x, + b)+&,, —&, <0 n=1,...,N

" Here & = [&4,&,, ..., &n] is the vector of slack variables
* Introduce Lagrange multipliers a,,, 5;, for each constraint and solve Lagrangian

[|w]|?

N N N
ax L(w,b, &, a,) = ++CZ£n-|-Zar,,{1—yn(wan+b)—€n}—Zﬁn€n
n=1 n=1 n=1

n m
w,b,& a>0,8>0 2

* The terms in red color above were not present in the hard-margin SVM
* Two set of dual variables @ = [aq, a3, ..., ay]| and B = [B1, B2, ..., Bn]
= Will eliminate the primal var w, b, ¢ to get dual problem containing the dual variables

SO |V| n g SOft_ I\/l a rgl n Sv I\/I Note: if we ignore the bias term b then we don't e~

need to handle the constraint YN_, a,,y,, = 0 | R | /
(problem becomes a bit more easy to solve) &
—_—————
u The Lag raﬂg|aﬂ prﬂb|em o SD'VE Otherwise, the a,,'s are coupled and some opt. techniques
such as co-ordinate aspect can't easily applied

n max L:(w!b?&-?a?/ﬁ): M
w,b,£ «>0,8>0 2

N N N
+ +C Z En + Z thn{]. —_ yn(WTXn + b)—gn}_ Z ﬁngn
n=1 n=1 n=1

» Take (partial) derivatives of L wrt. w, b, and &, and setting to zero gives

Weighted sum of training inputs

oL N = N
— =0 = XnYnXn | oL oc - - Qp — -
ow e nzzl: YnX ﬁ:(]:}'nz:;&n}"n:oa ¢, 0=C n—Bn=0
* UsingC —a, — B, =0and B,, = 0, we have a,, < C (for hard-margin, a,, = 0)
= Substituting these in the Lagrangian L gives the Dual problem The dual variables 8 don’t

Given e w and b can be appear in the dual problem!

N N N
found just like the hard-margin max Lp(a, B) = o _ 1t Qo T _ol——"
3 - n m nymyn(xmxn) St' an}’n - 0
SVM case 20,520 nzzg 2 2 nz=1:

w m,n:l
Maximizing a concave function 1 %' In the solution, e will still be sparse just like the
(or minimizing a convex function) max ﬁg(a) = a_T 1 — _QTGO_ hard-margin SVM case. Nonzero a,, correspond
st a < C and Zﬁzl AnVn = 0. a<C 2 to the support vectors
Many methods to solve it. (Note: For various SVM solvers, can see “Support Vector Machine Solvers™ by Bottou and Lin)

	Perceptrons and SVMs
	Hyperplane
	Hyperplane based (binary) classification
	Loss Functions for Classification
	Loss Functions for Classification
	Learning by Optimizing Perceptron Loss
	The Perceptron Algorithm
	Perceptron and (lack of) Margins
	Support Vector Machine (SVM)
	Hard-Margin SVM
	Solving Hard-Margin SVM
	Solving Hard-Margin SVM
	Solving Hard-Margin SVM
	Soft-Margin SVM (More Commonly Used)
	Soft-Margin SVM (Contd)
	Support Vectors in Soft-Margin SVM
	Solving Soft-Margin SVM
	Solving Soft-Margin SVM

