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Evaluation Measures for Regression Models

= Plotting the prediction y,, vs truth y,, for the validation/test set
= Residual Sum of Squares (RSS) on the validation/test set

Plots of true vs predicted outputs
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Logistic Regression (LR)

= A probabilistic mode

for binary classification

= | earns the PMF of the output label given the input, i.e., p(y]x)
= A discriminative model: Does not model inputs x (only relationship b/w x and y)

= Uses the sigmoid function to define the conditional probability of y being 1

e =ply =1lw,x)

A linear model
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= Here w' x is the score for input x. The sigmoid turns it into a probability



LR: Decision Boundary

= At the decision boundary where both classes are equiprobable

ply =1lx,w) = p(y =0|x, w) :
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= \Very large positive w'x means p(y = 1|w, x) close to 1
= Very large negative w'x means p(y = 0|w, x) close to 1
= At decision boundary, w'x = O implies p(y = 1|lw,x) = p(y = 0|lw,x) = 0.5



MLE for Logistic Regression

Assumed 0/1, not -1/+1

—_—
= | ikelihood (PMF of each input's label) is Bernoulli with prob y,, =
p(Ynlw, x,,) = Bernoulli(,) = 2™ (1 — p,) 1~

= Overall likelihood, assuming i.i.d. observations
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“cross-entropy” loss (a popular loss

function for classification)

* The negative log-likelihood NLL(w) = —log p(ylw, X) S|mp||f|es to

Loss function I;NLL(W) = Z _[ynlog Un + (1 yn)log (1 aun)] Very large loss if y, close to 1and
n=1 Uy, close to O, or vice-versa

: . p( Good news: For LR,
" - 1s convex
Plugging in u,, = Trexp (wan) and simplifying %
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An Alternate Notation

= [f we assume the label y,, as -1/+1 (not O/1), the likelihood can be written as
1
1+ exp(—y,w'x,)

p(Ynlw, x,) = = J(yanxn)

= Slightly more convenient notation: A single expression gives the probabilities of
both possible label values

" [n this case, the total negative log-likelihood will be

NLL(W) = Yy_1—log p(yulw, x,) =X 5-1log (1 + exp(—=y,w'x,))



MAP Estimation for Logistic Regression

= Need a prior on the weight vector w € RP
= Just like probabilistic linear regression, can use a zero-mean Gaussian prior
A

2

Or NLL — log of prior

p(w) = N(w|0,A17 11, ) < exp (——WTW)

= The MAP objective (log of posterior) will be log-likelihood + log of prior
» Therefore the MAP solution (ignoring terms that don't depend on w) will be

A Good news: convex
Wyap = aI'g m“i’n N LL(W) + EWTW 2 objective

= Just like MLE case, no closed form solution. Iterative opt methods needed
= Highly efficient solvers (both first and second order) exist for MLE/MAP estimation for LR



Fully Bayesian Inference for Logistic Regression

" Doing fully Bayesian inference would require computing the posterior

| Gaussian | Bernoulli

pWrGIX,w) _ pW) [Tn=1 (G lw, %)
p(¥|X) IP(W) Hﬂ=1p(Yn|wJ Xp) dw

" Need to approximate the posterior in this case

p(wlX,y) =

" We will use a simple approximation called Laplace approximation

Approximates the posterior
of w by a Gaussian whose
mean is the MAP solution
Wy 4p and covariance matrix
is the inverse of the Hessian
(Hessian: second derivative
of the negative log-posterior
of the LR model)

Unfortunately, Gaussian and
Bernoulli are not conjugate with
each other, so analytic expression
for the posterior can’t be obtained

unlike prob. linear regression

Can also employ more advanced
posterior approximation methods,
like MCMC and variational

inference




e So far we have seen Bayesian calculations with conjugate priors,
where the posterior is guaranteed to have the same form as the prior

* In many interesting situations in probabilistic ML, this will not be true

e MCMC-based approximation of the posterior is a godsend in such
situations

* Let us build some intuition about MCMC sampling

e Suppose there is a greedy cat, who wanders from house to house
expecting to be fed /




Assume that the cat only frequents a row
of seven houses on a block

Let the Erobability of the cat being fed at
any of the houses be represented by the
graph on the right

The cat
* Flips a coin to decide whether to go left or
right
e |f she thinks the ﬁrobability of being fed
there is higher, she goes there

e If not, then she goes there probabilistically
as a function of the ratio of the probability
of being fed in either of the two places

Sampled long enough, the distribution of
the cat’s visits reflects the true underlying
distribution of her being fed in the block
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 We are interested in estimating the distribution of model parameters after seeing
data p(0]y)

 We sample possible proposal 8 from a ‘jump’ distribution that conditions on the
immediately previous 0 value (say a Gaussian)

e Find the ratio of the proposed posterior distribution to the current one
fﬂwfjfﬂg'}’w:]

" 70 0 10

 Generate a random number a between O and 1

e |If r > a, accept the proposed 0, otherwise stick with the earlier 0

e After tens of thousands of samples, the histogram of 8 approximates p(6|y)
e Incredibly simple but powerful way of approximating Bayesian posteriors

A nice tutorial for applying MCMC approximation for logistic regression


https://towardsdatascience.com/intro-to-markov-chain-monte-carlo-c6f217e00345

Posterior for LR: An Illustration

" Can sample from the posterior of the LR model

" Each sample will give a weight vec defining a hyperplane separator
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Logistic Regression: Predictive Distribution

= When using MLE/MAP

solution Wy, can use the plug-in predictive distribution

p(y, =1|x, X, y) = [ p(y, = 1lw,x)p(W|X, y)dw

~ p(y* — 1‘Wopb x*) — O-(Wopt-rxn)

p(y.|x.,X,y) = Bernoulli[o(W,,; ' x,)]

* When using fully Bayesian inference, we must compute the posterior predictive

p(v. =1|x,X,y) = [ p(y. = 1w, x.)p(W|X, y)dw
__—— J\

Integral not tractable and must

be approximated

sigmoid Gaussian (if using Laplace approx.)

=

Monte-Carlo approximation of this
integral is one possible way \

Generate M samples wq,W,, ..., Wy, from the Gaussian approx. of posterior and

1 1
use p(y* = 1|x*,X, y) ~ EZ%=1p(y* = 1Iwm1x*) = Ez?ﬁfl:la(w;lxn)




Input Dimension 2

LR: Plug-in Prediction vs Postrerior Averaging

Logistic Regression decision boundary
when using a point estimate of w
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Input Dimension 1

Input Dimension 2

Logistic Regression decision boundary
when using posterior averaging
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Input Dimension 1

Posterior averaging is like using an
ensemble of models. In this
example, each model is a linear
classifier but the ensemble-like
effect resulted in nonlinear

boundaries

CS771: Intro to ML



Multiclass Logistic (a.k.a. Softmax) Regression

= Also called multinoulli/multinomial regression: Basically, LR for K > 2 classes
= |n this case, y,, € {1,2, ..., K} and label probabilities are defined as

Softmax function

Also note that X.5_, ppe =1 1/
Hnk for any input x,, &

* K weight vecs wyq, W, ..., W (one per class), each D-dim, and W = [wy, W, ..., Wi]
= Each likelihood p(y,, |x;,, W) is @ multinoulli distribution. Therefore total likelihood

N K y | Notation: y,, = 1 if true class of
M[ —_ nt - ynd —
p(ylx’ )_ ‘ ‘ 1‘ L 1“11{’ ﬂxnisfandyny:OV{”i{’
n= =

= Can do MLE/MAP/fully Bayesian estimation for W similar to LR model

p(yn — klan W)
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