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Evaluation Measures for Regression Models 2 

Unlike RSS and RMSE, it is always 
between 0 and 1 and hence 
interpretable 

Pic from MLAPP (Murphy) 
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Logistic Regression (LR) 3 
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A linear model 
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LR: Decision Boundary 

A linear hyperplane 
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MLE for Logistic Regression 5 

Loss function 

“cross-entropy” loss (a popular loss 
function for classification) 

Good news: For LR, 
NLL is convex 

Assumed 0/1, not -1/+1 
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An Alternate Notation 6 
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MAP Estimation for Logistic Regression 7 

Or NLL – log of prior 

Good news: convex 
objective 



CS771: Intro to ML 

Fully Bayesian Inference for Logistic Regression 8 

 Doing fully Bayesian inference would require computing the posterior 

 

 

 

 Need to approximate the posterior in this case 

We will use a simple approximation called Laplace approximation 

 
 

Bernoulli Gaussian Unfortunately, Gaussian and 
Bernoulli are not conjugate with 
each other, so analytic expression 
for the posterior can’t be obtained 
unlike prob. linear regression 

Can also employ more advanced 
posterior approximation methods, 
like MCMC and variational 
inference 
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Quick detour: MCMC sampling 

• So far we have seen Bayesian calculations with conjugate priors, 
where the posterior is guaranteed to have the same form as the prior 

• In many interesting situations in probabilistic ML, this will not be true 
• MCMC-based approximation of the posterior is a godsend in such 

situations 
• Let us build some intuition about MCMC sampling 
• Suppose there is a greedy cat, who wanders from house to house 

expecting to be fed 
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Cat food sampling: The Metropolis algorithm 

• Assume that the cat only frequents a row 
of seven houses on a block 

• Let the probability of the cat being fed at 
any of the houses be represented by the 
graph on the right 

• The cat  
• Flips a coin to decide whether to go left or 

right 
• If she thinks the probability of being fed 

there is higher, she goes there 
• If not, then she goes there probabilistically 

as a function of the ratio of the probability 
of being fed in either of the two places 

• Sampled long enough, the distribution of 
the cat’s visits reflects the true underlying 
distribution of her being fed in the block 
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Metropolis-Hastings for Bayesian inference 

• We are interested in estimating the distribution of model parameters after seeing 
data p(θ|y) 

• We sample possible proposal θ from a ‘jump’ distribution that conditions on the 
immediately previous θ value (say a Gaussian) 

• Find the ratio of the proposed posterior distribution to the current one 
 
 

• Generate a random number a between 0 and 1 
• If r > a, accept the proposed θ, otherwise stick with the earlier θ 
• After tens of thousands of samples, the histogram of θ approximates p(θ|y) 
• Incredibly simple but powerful way of approximating Bayesian posteriors 

 A nice tutorial for applying MCMC approximation for logistic regression 

https://towardsdatascience.com/intro-to-markov-chain-monte-carlo-c6f217e00345
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Posterior for LR: An Illustration 12 

 Can sample from the posterior of the LR model  

 Each sample will give a weight vec defining a hyperplane separator 

Not all separators are equally good; 
their goodness depends on their 
posterior probabilities 

When making predictions, we can 
still use all of them but weighted 
by their importance based on their 
posterior probabilities 

That’s exactly what we do when computing 
the predictive distribution 
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Logistic Regression: Predictive Distribution 13 

sigmoid Gaussian (if using Laplace approx.) 
Integral not tractable and must 
be approximated 

Monte-Carlo approximation of this 
integral is one possible way 
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LR: Plug-in Prediction vs Postrerior Averaging 14 

Posterior averaging is like using an 
ensemble of models. In this 
example, each model is a linear 
classifier but the ensemble-like 
effect resulted in nonlinear 
boundaries 
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Multiclass Logistic (a.k.a. Softmax) Regression 15 

Softmax function 
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