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Probabilistic Models for Supervised Learning

» Goal: Learn the conditional distribution of output given input, i.e., p(y|x)

Probabilistic Linear Regression Probabilistic Classification
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* p(y|x) is more informative than a single prediction y
* From p(y|x), can get "expected” or "most likely” output y

= [or classifn, "soft” predictions (e.g., rather than yes/no, prob. of “yes")
» “Uncertainty” in the predicted output y (e.g., by looking at the variance of p(y|x))

= Can also learn a distribution over the model params using fully Bayesian inference




Distribution over model parameters

" Recall that linear/ridge regression gave a single “optimal” weight vector

" With a probabilistic model for linear regression, we have two options

" Use MLE/MAP to get a single “optimal” weight vector

" Use fully Bayesian inference to learn a distribution over weight vectors (figure below)
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(each of which corresponds to a line)

p(y.l-

X,y) = f p(y:lw, x) p(WIX, y)dw

Posterior predictive distribution by doing

posterior weighted averaging over all How mportant/ like this

possible w, not just the most likely one. Pr?dICtIV? distribution _ w is under the posterior
Thus more robust predictions especially if || Y=Y a single w (plug-in distribution (its posterior
we are uncertain about the best solution, | LPredictive distribution) probability)




Probabilistic Models for Supervised Learning

= Usually two ways to model the conditional distribution p(y|x)

= Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution
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“discriminative” sup learning

Gaussian distribution

p(ylx,w)

p(ylx,w) =

= Approach 2: Model both x and y via their joint distr. and get the conditiona

N—

“generative” sup learning

N

Called “generative” because we
are learning the generative
distributions for output as well as

inputs

—

T -1 Probabilistic linear regression
Nyw'x,~) —

The “sigmoid” function

Bernoulli(y|a(w/Tx)) —

Probabilistic linear binary

classification

We assume the conditional

distribution to be some appropriate
distribution and treat the weights w
as learnable parameters of the model
(using MLE/MAP/fully Bayesian
inference). Need not be a linear

model — can replace wTx by a
nonlinear function f(x)

Here @ denotes all the model parameters that we need to model

p(x, y|9)4 the joint distribution of x and y (will see examples later)
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Prob. distribution of
inputs from class k
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YK o(x|y = 4£,0)p(y=¢|6)

For a multi-class classification
model with K classes




Brief Detour
(Gaussian Distribution)



Gaussian Distribution (Univariate)

= Distribution over real-valued scalar random variables x € R
= Defined by a scalar mean u and a scalar variance a2

0.8

1 (x-w?
N (x|, 02) = exp |—
o2 20% 0
» Mean: E[x] = u /L A A IR
Gaussian PDF in terms of
= Variance: var[x] = 02 Z precision

® [nverse of variance is called precision: f = = Nelws) = | Zexp|=E = w2
- pry wB) = |5—exp|=-(x—p)



Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables x € RP?

» Defined by a mean vector 4 € R”and a covariance matrix Z

A two-dimensional Gaussian

N(x|p,X) =

(x — NTY—1(x _
\/(ZH)D|Z|exp[ (x—pw)'Z (x—p)]

Probabiity Density
b=, (= (=]

* Note: The cov. matrix X must be symmetric and PSD
= All eigenvalues are positive

» z"¥z > 0 for any real vector z

= The covariance matrix also controls the shape of the Gaussian



Covariance Matrix for Multivariate Gaussian

Spherical Covariance Diagonal Covariance Full Covariance




Probabilistic Linear Regression

p(ylx,w) = N(ylw'x, 1)

Nice tutorial



http://gregorygundersen.com/blog/2020/02/04/bayesian-linear-regression/

Linear Regression: A Probabilistic View  [efnes our keirood modet

Output y,, assumed
generated from a
Gaussian with
mean w'x,,

= Several variants of this basic model are possible

Mean Variance
YVn = W

-1 saw for least squares regression
~N(@O,7)

Yn ™~ N(w—rwm 6_1)

P(J’n |lw, x,,) - Gaussian

Output ¥, generated from a
linear model and then zero
Equivalently: mean Gaussian noise added A

— =

X + € Note the term in the Gaussian’s
n n

exponent — just like a squared error we

T

Gaussian

Using a Laplace Mean Variance

distribution would l

correspond to using an

4 yn
absolute loss /

Yn — W wn)

(2ol

Y

= QOther distributions to model the additive noise (e.g., Laplace) L
= Different noise variance/precision for each output: y,, ~ N(w'x,,, B )



MILE for Probabilistic Linear Regression

= Since each likelihood term is a Gaussian, we have

Also note that x,, is fixed here
but the likelihood depend on it,

so it is being conditioned on
1 -1 2
w,X,) =N w'x , B = —ex —— —w'x
p(yn n) (ynl n ) p [ (yn n) ] Exercise: Verify that you can also

write the overall likelihood as a
single N dimensional Gaussian with

* Thus the overall likelihood (assuming i.i.d. responses) will be mean Xw and cou. matrix ™y
S i
BN | By Ty
X — nisn — |\ A= Y n — n
plyIX. w) Ep(y )= (57) o5 200w

MLE for probabilistic linear

*» | og-likelihood (ignoring constants w.r.t. w)
N regression with Gaussian noise A

5 s equivalent to least squares

|Og p(_y|X, W) X —— E (yn — l.ﬂl.f—l_,":’j,]r)2 regression without any 4 /
2 regularization (with solution

n=1 Wyre = (XTX)—l XTJ’

» Negative log likelihood (NLL) in this case is similar to squared loss function



MAP Estimation for Prob. Lin. Reg.: The Prior

= For MAP estimation, we need a prior distribution over the parameters w € RP

= A reasonable prior for real-valued vectors can be a multivariate Gaussian
" Equivalent to saying that a prior7 we expect the solution to be

p(w) = N (wwy, Z)

close to some vector w,,

(subject to X being such that the variances is not too large

= A specific example of a multivariate Gaussian Erior in this problem

 NOwalo, 2 = | pwa)

Omitting p(w) — N(Wloy A_llD )
Afor brevity =

The precision A of the Gaussian prior P
controls how aggressively the prior o PRaSNNUWINLAT)

pushes the elements towards mean

N (wgl0,271) = I—EXp[——Wd :1;

This is essentially like a regularizer
that pushes elements of w to be
small (we will see shortly)

D

d=1
T

Equivalent to saying that a priori we expect
each element of the solution to be close to 0

(i.e., “small”)

b 1\ P/ 1
Nw|0,171,) = (E) exp [_E wé] = (E) exp [—EwTw]

g




MAP Estimation for Probabilistic Linear Regression

= The MAP objective (log-posterior) will be the log-likelihood + log p(w)

In the likelihood and prior,

N
/8 T 2 A T ignored terms that don't
_E E (_yn — W Xn) —EW w depend on w

n=1

= Maximizing this is equivalent to minimizing the following w.r.t. w

N
\ﬁf — arem | N ( L WT X )2 + i WT w Not surprising since MAP A
MAP — g W Yn n 6 estimation indeed optimizes a .o
n=1 regularized loss function! ; !v!‘ /

= This is equivalent to ridge regression with regularization hyperparameter 3

A

3 I) ' X'y

= The solution will be WMAP = (XTX +



Fully Bayesian Inference for Prob. Linear Regression

= Can also compute the full posterior distribution over w

For brevity, we have not
p (W)p (ylx, W) shown the dependence of the

various distributions here on

wlX,y) =
p y P (y |X ) the hyperparameters A and

= |ikelihood and prior are conjugate (both Gaussians) - postenor will be Gaussian

....................................................................................... Posterior’s mean is the same as the MAP

p(WIX y)=N (uN,EN) :
' N—(XTX+ I)"1 Xy
Ty = (BXT X+,11D) 1

solution since the mean and mode of a

Gaussian are the same

Note: A and f are assumed to be
fixed; otherwise, the problem is a bit
harder (beyond the scope of C5771)

We now have a distribution over the

possible solutions — it has a mean but we

can generate other plausible solutions by A
sampling from this posterior. Each sample | WV | /

will give a weight vector




Prob. Linear Regression: The Predictive Distribution

= \Want the predictive distribution p(y.|x,, X, ¥) of the output y, for a new input x,
= With MLE/MAP estimate of w, we will use the plug-in predictive

p(ye|X, X, ¥) = p(yu|Xs, wmie) = N(wpex.,f7") - MLE prediction
p(ys|Xe, X, ¥) & p(yu| X, wmap) = N(Wpapx.,37") - MAP prediction

= When doing fully Bayesian inference, can compute the posterior predictive dist.

J Not true in general for Prob.
_ Lin. Reqg. but because the
p(y* |X*, x’ 'Y) T / p(y* IX*, W)p(Wlx, y)dw hYDerpgrameters Aand B are
treated as fixed

" Requires an integral but has a closed form [ pedcion

— ) Input-specific predictive variance
unlike the MLE/MAP based

— I . —1 T redictive where it was B8~ (and
p(y*|x*axﬁy)_N(pNx*:ﬁ ‘|‘X* ZNX*) P B~ (

was same for all test inputs)

" |nput-specific predictive uncertainty useful in problems where we want confidence
estimates of the predictions made by the model (e.g., Active Learning)



Fully Bayesian Linear Regression — Pictorially

» Fach sample from posterior p(w|X,y) = N (uy, Zy) will give a weight vector w
* |n case of lin. reg., each weight vector corresponds to a regression line

N=2 N=4

The posterior sort of represents an

ensemble of solutions (not all are equally

good but we can use all of them in an e~
“importance-weighted” fashion to make | | /

the prediction using the posterior &
predictive distribution)

Importance of each solution in

this ensemble is its posterior
probability p(w|X, y)

= Fach weight vector will give a different set of predictions on test data
* These different predictions will give us a variance (uncertainty) estimate in model’s prediction
* The uncertainty decreases as N increases (we become more sure when we see more training data)

Pic source: https://waterprogramming.wordpress.com/



MLE, MAP/Fully Bayesian Lin. Reg: Summary

= MLE/MAP give point estimate of w
= MLE/MAP based prediction uses that single point estimate of w

= Fully Bayesian approach gives the full posterior of w
» Fully Bayesian prediction does posterior averaging (computes posterior predictive distribution)

= Some things to keep in mind:

= MLE estimation of a parameter leads to unregularized solutions E.g.. using Laplace distribution
= MAP estimation of a parameter leads to regularized solutions for likelihood s equivalent to.

_ absolute loss, using it as a prior
= A Gaussian likelihood model corresponds to using squared loss is equivalent to ¢, reqularization
= A Gaussian prior on parameters acts as an £, regularizer /

= Other likelihoods/priors can be chosen (result in other loss functions and regularizers)



Evaluation Measures for Regression Models

= Plotting the prediction y,, vs truth y,, for the validation/test set
= Residual Sum of Squares (RSS) on the validation/test set

Plots of true vs predicted outputs

N
_ _ a5 )\2 and R? for two regression models
RSS (W) T (yn yn) degree 1. RZ% Test = 0.473
n=1 " st A TE 41.'-/,"'
1 L
= RMSE (Root Mean Squared Error) £ [=RSS(w) | R
N AR,
= Coefficient of determination or R?
N o N2 s
n=1(yn - yn) relative” error w.r.t. a model .- . ;:,4‘.
R2 =1 — that makes a constant Al
/\_ Zg—1(yn —_ 37)2 prediction ¥ for all inputs T ..'.g;.{{
Unlike RSS and RMSE, it is always /\ o T R
between 0 and 1 and hence y is empirical mean of true
interpretable responses, i.e., % g:l Vi
Pic from MLAPP (Murphy)
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