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1 Introduction

Smoothed Analysis was first introduced by Daniel A. Spielman and Shang-
Hua Teng in 2001. Up until that time, there were only two standard ways of
measuring an algorithms complexity: worst-case and average-case-analysis.
However, these two techniques are not always adequate in explaining phe-
nomena that occur in practice. The simplex algorithm, for example, has
worst-case and average-case exponential running time. Yet, in practice the
simplex algorithm often operates in polynomial time. These phenomena
can be explained by smoothed complexity: ”the smoothed complexity of
an algorithm is the maximum over its inputs of the expected running time
of the algorithm under slight perturbations of that input” [3]. And if the
smoothed complexity of an algorithm is low, it is unlikely that the algorithm
has a high running time on realistic instances.

A travelling salesman problem (TSP) consists of a set of vertices {v1, v2,
. . . , vn} and of a distance d(vi, vj) for each pair of vertices {vi, vj}. Gener-
ally, a TSP is visualised as graph, in which the edges between two vertices
correspond to the distance between those vertices. In this thesis we only
consider the symmetric TSP, for which d(vi, vj) = d(vj , vi). To solve the
problem, one has to find a tour of minimum length, that visits each vertex
exactly once and returns to the first vertex again at it’s end.
The TSP is known to be a NP-hard problem [13], but there exist several algo-
rithms which can approximate the optimal tour to any arbitrary accuracy in
polynomial time for Euclidean TSP instances, as shown by Arora [14]. The
first approximation algorithm of the TSP was the Christofides algorithm,
which first creates a minimum spanning tree on the graph G = (V,E) and
finds a minimum weight perfect matching in the complete graph over all
vertices with odd degree in the minimum spanning tree. Combining the
edges of the matching and the tree to one multigraph allows to find an Eu-
lerian circuit in this multigraph. Then one only has to make the circuit
Hamiltonian by skipping already visited nodes. This algorithm achieves an
approximation ratio of 1, 5.
Nearest neighbour algorithms chose for every vertex which is being pro-
cessed the nearest unvisited neighbour. In average, this algorithms have an
approximation ratio of 1, 25, but there exist classes of instances on which
this algorithms always find the worst possible solution.
Solving a TSP problem exact, however, will result in exponentially large
running times. If one would try every possible tour and determine the tour
with the shortest length, the running time would be O(n!). Naturally, this
method is highly impracticable, even for rather small instances.
For slightly larger instances one can use branch-and-bound algorithms, which
have been introduced by Land and Doig [15]. If one combines the branch-
and-bound method with techniques of linear programming, one can solve
instances up to 200 vertices fairly well. The best results, however, are
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achieved by branch-and-cut algorithms, which introduce problem specific
cut planes to the branch-and-bound tree, allowing to prune the tree far ear-
lier and more effective than by using mere branch-and-bound procedures.
This method also holds the current record in solving TSP instances exactly,
with 85,900 vertices [16].
Experts all over the world are currently trying to solve the TSP world tour
problem, meaning they are trying to solve a 1,904,711 vertices instance,
where the vertices correspond to locations throughout the world. The best
solution so far was just recently discovered in October 2011 with a length
of 7,515,778,188. Whether this solution is optimal is still unknown.

The 2-Opt-algorithm (2-Opt) is a local search heuristic for the TSP. It
starts with an arbitrary initial tour and modifies the tour in the following
way: Let u1, u2, v1, v2 be vertices of the tour which are distinct and appear
in this order. If there are edges {u1, u2} and {v1, v2} so that removing these
edges and inserting the edges {u1, v1} and {u2, v2} would reduce the total
length of the tour, a new tour is constructed in that way. Englert, Röglin
and Vöcking refer to this as an improving step. If there are no improving
steps possible, the algorithm terminates with a local optimum, which is in
most cases very close to the global optimum itself. A local improvement
made by the algorithm will be denoted as a 2-change[1]. It has been shown
by Lueker that it can take 2-Opt an exponential number of steps before
finding a locally optimal solution[4], when the edge lengths do not satisfy
the triangle inequality. Whether that is also the case when metric instances
are considered, has been answered by Englert, Röglin and Vöcking for L1

and L2 instances. In [1] they construct such metric instances, for which 2-
Opt takes an exponential number of steps. Since this is not relevant for the
smoothed analysis of 2-Opt, I won’t go into details about this construction.
The distribution of the n vertices, or points, plays an important role for the
analysis of 2-Opts complexity. For example, Chandra, Karloff and Tovey
show that the expected running time of 2-Opt for Euclidean instances, where
the points are placed uniformly at random in the unit square, is bounded by
O(n10 log n)[5]. For instances, where the distances are measured with the
Manhattan metric and the points are distributed in the same way as above,
they show that the expected running time is bounded by O(n6 log n).
However, Englert, Röglin and Vöcking use a different, more general proba-
bilistic distribution model of the n points. For each vertex vi the distribution
is given by a density function fi : [0, 1]

2 → [0, φ] for some given φ ≥ 1. The
resulting upper bounds for 2-Opt will only depend on the number of vertices
and the upper bound φ of the density functions. The instances created with
such input are denoted as φ-perturbed Euclidean or Manhattan instances,
based on which metric has been used. For φ = 1 we get a uniform distribu-
tion in the unit square as before, and the larger we chose φ, the better we
can approximate worst case instances by the distributions of the vertices.
This will play an important role in the smoothed analysis of 2-Opt, as we
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set φ ∼ 1
σ2 , where σ is a small standard deviation of a Gaussian random

variable. The σ is used to perturb the position of the n points after the
points have been placed.

Another input model that we will consider is one where the distances of
the edges are perturbed instead of the points, so that the structure of the
input graph doesn’t change. In this model, the perturbation of the length of
an edge does not influence the other lengths in the graph. These perturba-
tions are restricted by the density functions fe : [0, 1] → [0, φ] for each edge
e ∈ E, when the graph G is given by G = (V,E). In this case the maximum
density is φ for a given φ ≥ 1. Such inputs will be denoted as φ-perturbed
graphs.

A state graph is a directed graph that contains a vertex for every possible
tour and an arc between two vertices exists only when the one tour can be
obtained from the other tour by performing one improving 2-Opt step.
Now to Englert, Röglin and Vöcking’s first theorem with relevance to the
smoothed analysis of 2-Opt:

Theorem 1. The expected length of the longest path in the 2-Opt state graph

a) is O(n4φ) for φ-perturbed Manhattan instances with n points.

b) is O(n4+ 1
3 log(nφ)φ

8
3 ) for φ-perturbed Euclidean instances with n points.

c) is O(mn1+o(1)φ) for φ-perturbed graphs with n vertices and m edges.

The second theorem confirms an experimental study[6], which indicated
that the approximation ratio and the running time of 2-Opt can be improved,
if the initial tour is chosen with an insertion heuristic instead of arbitrarily.
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Theorem 2. The expected number of steps performed by 2-Opt

a) is O(n3.5 log nφ) on φ-perturbed Manhattan instances with n points when
one starts with a tour obtained by an arbitrary insertion heuristic.

b) is O(n3+ 5
6 log2(nφ)φ

8
3 ) on φ-perturbed Euclidean instances with n points

when one starts with a tour obtained by an arbitrary insertion heuristic.
c) is O(mn1+o(1)φ) on φ-perturbed graphs with n vertices and m edges.

The third and last theorem that is required for the smoothed analysis
pertains to the approximation ratio of 2-Opt. In general this ratio is close to
1, which is contrary to the theoretical result on the algorithm’s worst-case
analysis by Chandra, Karloff and Tovey[5]. Yet, they have shown that the
approximation ratio is bounded from above by a constant when one considers
n points uniformly at random distributed on the unit square. This result
applies to Englert, Röglin and Vöcking’s model as follows:

Theorem 3. For φ-perturbed Manhattan and Euclidean instances, the ex-
pected approximation ratio of the worst tour that is locally optimal for 2-Opt
is bounded by O(

√
φ).

In the next section, we will give all the necessary definitions and nota-
tions that are required for the understanding of this thesis. Then we will
prove theorems 1,2 and 3 and finally come to the smoothed analysis of 2-Opt,
and then go over to Karp’s partitioning scheme.
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2 Preliminaries

We start with some definitions:

Definition A pair (V, d) of a non-empty set V and a function d : V × V →
R≥0 is called a metric space if for all x, y, z ∈ V the following properties are
satisfied:

a) d(x, y) = 0 if and only if x = y (reflexivity).
b) d(x, y) = d(y, x) (symmetry).
c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

d is called a metric on V when (V, d) is a metric space and a TSP instance,
in which the distances are measured according to a metric, is called a metric
TSP instance.

Given two points X = (x1, x2) and Y = (y1, y2) in R
2, the Lp space

provides us with metrics dLp(X,Y ) = p
√

|x1 − y1|p + |x2 − y2|p. The L1

metric is called the Manhattan metric and the L2 metric is often referred
to as Euclidean metric. An instance of the TSP, where the metric is a Lp

metric is called an Lp instance. For p = 2 we also say Euclidean instance.
In section 1 we also mentioned insertion heuristics. Those create an initial
tour for 2-Opt by adding vertex after vertex, until a tour is found, in the
following way: Let Ti denote a subtour on a subset Si of i vertices and let
v /∈ Si be the next vertex that is to be inserted into the tour we create. We
now chose the edge (x, y) in Ti that minimizes d(x, v)+ d(v, y)− d(x, y) and
create the tour Ti+1 by deleting the edge (x, y) from Ti and adding (x, v)
and (v, y) to it.

Definition Let A be a set. A σ-algebra A is a set for which

a) A ∈ A.
b) If a set B is in A so is its complement Ac.
c) If A1, . . . , An ∈ A then

⋃n
i=1Ai ∈ A.

A measurable space is a Set A, together with a σ-algebra A on A. It is
denoted by (A,A).

Definition A probability measure is a function P : A → R
+
0 on a measur-

able space (A,A) with:

1. P (A) = 1

2. For all countable collections {Ai} of pairwise disjoint sets the following
holds
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P (
⋃

i≥1

Ai) =
∑

i≥1

P (Ai).

A probability space is a triple (A,A, P ) where (A,A) is a measurable
space and P a probability measure.

Definition A measurable function is a function f : A1 → A2, where (A1,
A1) and (A2,A2) are measurable spaces and for every B ∈ A2 ⇒ f−1(B) ∈
A1.

Let (A,A, P ) be a probability space and (B,B) a measurable space. A
(discrete) random variable is a function X : A → B (,B countable,) so that
for all s ∈ B X−1(s) := {a ∈ A : X(a) = s} ∈ A. In other words: X is a
measurable function.

Let (A,A, P ) be a probability space and X : A → S, S countable,
a discrete random variable. The probability mass function for X is the
function fX : A → [0, 1] with fX(x) = P (X = x) = P ({s ∈ S : X(s) = x}).

Definition A function f : R → R is called probability density function,
density function or density of X if P (a ≤ X ≤ b) =

∫ b
a f(x)dx, where the

integral is a Lebesgue-integral.
And finally: the expected value of a random variable X is defined as E[X] =
∫

AXdP =
∫

AX(a)P (da).
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3 2-Opt

In this section we will go in detail through the proofs of theorems 1 and
2 made by the authors of [1]. We will start with the expected number of
2-Changes regarding random L1 metric instances, then go over to the L2

metric and conclude with general TSP instances.

3.1 Expected Number of 2-Changes on the L1 Metric

We start with a theorem that makes use of weaker bounds than the ones in
Theorem 1:

Theorem 4. Starting with an arbitrary tour, the expected number of steps
performed by 2-Opt on φ-perturbed L1 instances is O(n6 log(n)φ).

Proof. We start with an initial tour. This tour can have a maximum length
of 2n, as it consists of n edges and the length of every edge is bounded from
above by 2, due to the fact that we use the L1 metric and the n points are
all in [0, 1]2. Now one has to show, that every 2-Opt step increases the tour
by a polynomially large amount. In order to do so, we take a fixed 2-Opt
step S. Let e1 and e2 be the edges that are removed from the tour in this
step. e3 and e4 denote the newly added edges. Now the improvement of the
tour ∆(S) in step S can be written as

∆(S) = d(e1) + d(e2)− d(e3)− d(e4).

Now we say that e1 = (v1, v2), e2 = (v3, v4), e3 = (v1, v3) and e4 = (v2, v4).
We denote the Cartesian coordinates of vi with (xi, yi), allowing us to rewrite
the above equation as

∆(S) =|x1 − x2|+ |x3 − x4| − |x1 − x3| − |x2 − x4|
+ |y1 − y2|+ |y3 − y4| − |y1 − y3| − |y2 − y4|.

And we can even write ∆(S) as a linear combination of the coordinates. For
example, if x1 ≥ x2 ≥ x3 ≥ x4 and y1 ≥ y2 ≥ y3 ≥ y4 we can write it as

∆(S) = −2x2 + 2x3 − 2y2 + 2x3.

We can put the coordinates in (4!)2 different orders as there are 4! possi-
bilities for the x-coordinates, and 4! possible orders for the y-coordinates.
For each of the (4!)2 orders there is a corresponding linear combination like
above. Now suppose that all of the non-zero variables except one in one
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of this linear combinations have already been determined by an adversary.
Regardless how those variables are chosen, the linear combination can only
take a value in the interval (0, ǫ] when the last variable xi lies in an interval
of length at most ǫ, for some ǫ > 0. This interval is given by the already
determined variables. But we know that

P [0 < xi ≤ ǫ] ≤ ǫφ,

since we consider a φ-perturbed instance and the density of xi is bound from
above by φ. That means we can bound the probability that ∆(S) takes a
value in (0, ǫ] as follows:

P [0 < ∆(S) ≤ ǫ] ≤ (4!)2,

because for the improvement to be in that interval, one of the linear com-
binations has to be. Now we define ∆min := min{∆(S)|∆(S) > 0}, the
smallest improving 2-Opt step, and we get

P [∆min ≤ ǫ] ≤ (4!)2ǫn4φ,

as there are n · (n− 1) · (n− 2) · (n− 3) < n4 possibilities to chose the four
vertices for a single 2-Opt step, bounding the number of different 2-opt steps
from above by n4. Now let T be a random variable that describes how many
2-Opt steps are done before the algorithm reaches a local optimum. Observe
that T ≥ t can only hold for a given number t if ∆min ≤ 2n

t , otherwise we
would have a tour that is longer than 2n after t steps, and since that is not
possible, T couldn’t exceed t. This yields

P [T ≥ t] ≤ P [∆min ≤ 2n

t
] ≤ 2(4!)2n5φ

t
.

Since the number of possible different TSP tours is always bounded from
above by n!, and non of these tours can appear twice in the local search, T
is discrete random variable, which allows us to bound the expected value of
T via

E[T ] =

n!
∑

t=1

P [T ≥ t] ≤
n!
∑

t=1

2(4!)2n5φ

t

= 2(4!)2n5φ

n!
∑

t=1

1

t
≤ 2(4!)2n5φ ln(n!) + 1

= 2(4!)2n5φ · O(n log n) + 1 = O(n6 log n · φ),
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where we have bounded the n!-th harmonic number by ln(n!) + 1 and with
ln(n!) = O(n log n).

This bound only depends on the smallest improvement made by any
possible 2-Opt step. But in general one would think that the improvement
of a step is larger than ∆min. We achieve this by considering pairs of 2-
changes linked by an edge, meaning that one of the added edges of the first
2-change is removed from the tour again by the second 2-change. Then we
analyse the smallest improvement of such a pair of 2-changes. It will be
shown that the probability of this improvement being much larger than the
sum of the smallest and second smallest improving 2-Opt step is very high,
and this result will help proving theorem 1.

3.1.1 Pairs of Linked 2-Changes

Now we consider an arbitrary sequence of consecutive 2-changes S1, . . . , St

and start with

Lemma 5. In every sequence of t consecutive 2-changes the number of dis-
joint pairs of 2-changes that are linked by an edge, i.e., pairs such that there
exists an edge added to the tour in the first 2-change of the pair and removed
from the tour in the second 2-change of the pair, is at least t

3 −
n(n−1)

12 .

Proof. Let S1, . . . , St be an arbitrary sequence of consecutive 2-changes and
assume that a list L of linked pairs of 2-changes is created. We can not
assume that there are no non-disjoint pairs in L, so we need to modify the
list. Let S1, . . . , Si−1 denote the 2-changes that have already been done by
the algorithm for 1 ≤ i ≤ t, meaning that the next 2-change in the process
would be Si. Now we denote the edges that are removed from the tour in
this step with e1 and e2, and the added ones with e3 and e4. If there exists
a j > i so that e3 is removed from the tour in Sj , we chose the smallest
of such j’s and add the pair (Si, Sj) to L. We do the same for e3 and our
list of linked pairs of 2-changes is created. Now we need to assure that the
elements of our list are pairwise disjoint. We do that by creating another
list L′

, which is empty. Now we go through the first list and check for every
element if it is disjoint with all elements of L′

. If an element is disjoint, we
add it to the new list, which is obviously disjoint in the end. As we have
seen above, every 2-change allows 2 possible different pairs for the list L.
Minus the cases in which an edge is added to the tour but never removed,
are n(n−1)

2 , since there are n possibilities for the first vertex and n − 1 for
the second and divide by 2 because the TSP is symmetric. That means
L contains at least 2t − n(n−1)

2 elements. Every of the 2-changes can only
be in 4 different pairs of L, since there are only 4 edges to consider in one
2-change. This means each pair in L is non-disjoint from at most 6 other
pairs in the list. We can now conclude the number of elements in L′

as at
least a sixth of the elements in L.

10



Now we will evaluate the possible cases of added edges in a fixed linked
pair of 2-changes. Let {v1, v2} and {v3, v4} be the edges removed from the
tour in the first 2-change of such a fixed linked pair, and let {v1, v3} and
{v2, v4} be the added edges. We assume that in the second step the edges
{v1, v3} and {v5, v6} are exchanged with the edges {v1, v5} and {v3, v6}.
While the vertices v1, v2, v3, v4 have to be distinct, the vertices v5 and v6 are
not necessarily distinct from the vertices v2 and v4. There are 3 cases we
have to consider:

1. |{v2, v4} ∩ {v5, v6}| = 0. In this case the edges {v1, v5} and {v3, v6}
are added to the tour in the second step.

2. |{v2, v4} ∩ {v5, v6}| = 1. We assume v2 ∈ {v5, v6} and obtain two
subcases: In the second step of the tour the edges a) {v1, v5} and
{v2, v3} are added to the tour, b) the edges {v1, v2} and {v3, v5} are
added to the tour.

3. |{v2, v4} ∩ {v5, v6}| = 2. If v2 = v5 and v4 = v6 the tour would be the
same after the pair of linked 2-changes as before, resulting in the only
possibility: v2 = v6 and v4 = v5.

We observe that pairs of type 3 can result in too little randomness when
the distances are measured via the L2 metric, meaning the steps are too
dependent on each other, so we can’t bound the probability that both steps
improve the tour at most by ǫ appropriately. It is necessary, to consider that
the list in the lemma above is created without pairs of type 3, in order to
analyse φ-perturbed L2 instances. We will now show, that there are always
enough pairs of type 1 or 2 to complete the analysis.

Let Si and Sj for i < j be a pair of type 3. Further let {v1, v2} and
{v3, v4} be the edges exchanged with {v1, v3} and {v2, v4} in Si, and the
latter shall be the ones exchanged with {v1, v4} and {v2, v3} in Sj . Now
consider steps Sl and Sl′ with l > j and l

′

> j where the edge {v1, v4} in Sl

and {v2, v3} in Sl′ is removed, if such l, l
′

exist. Neither the pair (Sj, Sl) nor
the pair (Sj , Sl′ ) can be of type 3, because then we would simply add the
removed edges to the tour again. This means that for every pair (Si, Sj) of
type 3 we have two pairs (Sj , Sl) and (Sj , Sl

′ ) of type 1 or 2, unless such l, l
′

don’t exist. When we consider a pair of type 2 we see that it has at most two
pairs of type 3 associated with it. In case a) that would be the two pairs we
get when we remove either one of the beforehand added edges and remove
{v7, v8} with v2 = v8 and v3 = v7 or v1 = v8 and v5 = v7 and add the two
resulting edges to the tour. Analogously one can show the same for case b)
and for pairs of type 1. Let x be the total number of pairs of type 3, and
y be the total number of pairs of type 1 and 2. We have 2y ≥ 2x− n(n−1)

2 ,
because we have to subtract the possible cases of an edge added to the tour,
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but never removed, and respectively y ≥ x − n(n−1)
4 . The total number of

pairs is still at most 2t and 2x− n(n−1)
4 ≤ 2t, because there cannot be more

pairs of type 1, 2 and 3 than there are pairs in total. Which leads to

(⋆) x ≤ t+
n(n− 1)

8
.

As we established earlier, the total number of pairs is at least 2t − n(n−1)
2

and this yields y ≥ t − 5n(n−1)
8 when we subtract (⋆) from it. When we

construct the list L′

now, the following lemma must hold:

Lemma 6. In every sequence of t consecutive 2-changes the number of dis-
joint pairs of 2-changes of type 1 or 2 is at least t

6 − 5n(n−1)
48 .

3.1.2 Analysing the Pairs of Linked 2-Changes

To analyse the pairs we first prove two lemmas about pairs of type 1 and 2.

Lemma 7. In a φ-perturbed L1 instance with n vertices, the probability that
there exists a pair of type 1 in which both 2-changes are improvements by at
most ǫ is bounded by O(n6ǫ2φ2).

Proof. Let {v1, v2} and {v3, v4} be the edges that are replaced by {v1, v3}
and {v2, v4} in the first step of the pair and let {v1, v3} and {v5, v6} are
exchanged with {v1, v5} and {v3, v6}. We can again write the improvements
∆1 of step one and ∆2 of step two as

∆1 = |x1 − x2|+ |x3 − x4| − |x1 − x3| − |x2 − x4|
+|y1 − y2|+ |y3 − y4| − |y1 − y3| − |y2 − y4|

and

∆2 = |x1 − x3|+ |x5 − x6| − |x1 − x5| − |x3 − x6|
+|y1 − y3|+ |y5 − y6| − |y1 − y5| − |y3 − y6|,

where xi is the x-coordinate of vertex i and yi its y-coordinate. Observe,
that the improvements might be negative. And again, we can write these
improvements as linear combinations of the coordinates, which depend on
the order of those coordinates. Let σx and σy denote a fixed order, and
∆

σx,σy

1 and ∆
σx,σy

2 the corresponding linear combinations. Further, let A be
the event that ∆1 and ∆2 takes a value in some interval (0, ǫ], for ǫ > 0,
and analogously Aσx,σy for σx and σy. As we already know, A only occurs
when Aσx,σy occurs for at least one pair of σx and σy, which leads to
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P [A] ≤
∑

σx,σy

P [Aσx,σy].

The number of total orders is (4!)2 and if we can show that P [Aσx,σy] for
such an order is bounded by O(ǫ2φ2), the fact that there are n(n − 1)(n −
2)(n − 3)(n − 4)(n − 5) < n6 possible vertices to chose in order to form a
pair of type 1 yields the lemma. To show this bound we need the following
lemma:

Lemma 8. Let X1, . . . ,X2n be random variables and assume that for i ∈
{1, . . . , n}, the random variables X2i−1 and X2i are described by a joint den-
sity fi : [0, 1]

2 → [0, φ] for some given φ ≥ 1. Assume that the random vec-
tors (X1,X2), . . . , (X2n−1,X2n) are independent, and let X = (X1, . . . ,X2n)
be a vector. Furthermore, let k ≤ n and, for i ∈ {1, . . . , 2k}, let λ(i) ∈ Z

2n

be a row vector such that the vectors λ(1), . . . , λ(2k) are linearly independent.
For a fixed ǫ, we denote by Ai the event that λ(i) · X ∈ [0, ǫ] occurs, i.e.
the linear combination of the variables X1, . . . ,X2n with the coefficients λ(i)

takes a value in the interval [0, ǫ]. Then we have

P [

2k
⋂

i=1

Ai] ≤ (ǫφ)2k.

The proof of this lemma can be found in [1] and it is denoted by Lemma 31.
We divide all possible pairs of linear combinations (∆

σx,σy

1 ,∆
σx,σy

2 ) into
three classes. Class A contains every such pair where one linear combination
of it equals 0. A pair of linear combinations is in class B if ∆

σx,σy

1 = −∆
σx,σy

2 ,
and if both linear combinations are linearly independent the pair belongs
to class C. So, for a pair (∆

σx,σy

1 ,∆
σx,σy

2 ) of class A or B, the event Aσx,σy

can not occur, because at least one linear combination of such a pair is
≤ 0. For pairs of class C we can use Lemma 8 and we get P [Aσx,σy] ≤
ǫ2φ2. What we now have to show is, that the three classes cover every
pair of the linear combinations. Let σx and σy be a fixed order. We can
express the improvements as sums of their x and y parts, meaning ∆

σx,σy

1 =
Xσx

1 + Y
σy

1 and ∆
σx,σy

2 = Xσx
2 + Y

σy

2 . If we show for the pair of linear
combinations (Xσx

1 ,Xσx
2 ) that it belongs to one of the three classes, the pair

(Y
σy

1 , Y
σy

2 ) does too, because they are symmetric. And since the properties
we defined for the classes are preserved when we add x and y parts, the pair
of linear combination (∆

σx,σy

1 ,∆
σx,σy

2 ) would be also in class A,B, or C. We
assume that (Xσx

1 ,Xσx
2 ) is linear dependent and not in class A or B and lead

this to contradiction. Luckily, there are only a few cases to consider. Our
assumption can only be true, if Xσx

1 does not contain x2 and x4 (⋆), and

13



Xσx
2 does not contain x5 and x6 (⋆⋆), otherwise they would be automatically

linear independent. We see that (⋆) can only be, if

x3 ≥ x4 ∧ x2 ≥ x4 ∧ x2 ≥ x1 (1)

∨

x3 ≤ x4 ∧ x2 ≤ x4 ∧ x2 ≤ x1, (2)

and (⋆⋆) only if

x5 ≥ x6 ∧ x3 ≥ x6 ∧ x5 ≥ x1 (3)

∨

x5 ≤ x6 ∧ x3 ≤ x6 ∧ x5 ≤ x1. (4)

In case (1) we get

Xσx
1 = −x1 + x3 − |x1 − x3| =

{

−2x1 + 2x3 if x1 ≥ x3
0 if x3 ≥ x1

,

and for case (2)

Xσx
1 = x1 − x3 − |x1 − x3| =

{

0 if x1 ≥ x3
2x1 − 2x3 if x3 ≥ x1

,

and for case (3)

Xσx
2 = x1 − x3 + |x1 − x3| =

{

2x1 − 2x3 if x1 ≥ x3
0 if x3 ≥ x1

,

and finally for case (4)

Xσx
2 = −x1 + x3 + |x1 − x3| =

{

0 if x1 ≥ x3
−2x1 + 2x3 if x3 ≥ x1

.

So we see that for x1 ≥ x3 we get Xσx
1 ∈ {0,−2x1 + 2x3} and Xσx

2 ∈
{0, 2x1−2x3} in which case the pair of linear combinations (Xσx

1 ,Xσx
2 ) would

be of class A or B. For x3 ≥ x1 we get Xσx
1 ∈ {0, 2x1 − 2x3} and Xσx

2 ∈
{0,−2x1 + 2x3} and again, the pair (Xσx

1 ,Xσx
2 ) would be in either class A

or B. This is a contradiction to our assumption, meaning the assumption
was wrong which proves the lemma.

Lemma 9. In a φ-perturbed L1 instance with n vertices, the probability that
there exists a pair of type 2 in which both 2-changes are improvements by at
most ǫ is bounded by O(n5ǫ2φ2).

14



Proof. The proof is very similar to the one above, so by using the same
notations we now consider pairs of type 2 a) first. We get

∆1 = |x1 − x2|+ |x3 − x4| − |x1 − x3| − |x2 − x4|
+|y1 − y2|+ |y3 − y4| − |y1 − y3| − |y2 − y4|

and

∆2 = |x1 − x3|+ |x2 − x5| − |x1 − x5| − |x2 − x3|
+|y1 − y3|+ |y2 − y5| − |y1 − y5| − |y2 − y3|.

Again we assume, that the pair (Xσx
1 ,Xσx

2 ) is linear dependent and does not
belong to either class A or B. With the same argument as above we know
that x2 cannot be in Xσx

1 (⋆) and x5 cannot be in Xσx
2 (⋆⋆), which leads to

the following conditions for (⋆):

x3 ≥ x4 ∧ x2 ≥ x4 (1)

∨

x3 ≤ x4 ∧ x2 ≤ x4, (2)

and for (⋆⋆):

x2 ≥ x5 ∧ x1 ≥ x5 (3)

∨

x2 ≤ x5 ∧ x1 ≤ x5. (4)

We can write for case (1):

Xσx
1 = |x1−x2|−|x1−x3|−x2+x3 =















−2x2 + 2x3 if x1 ≥ x3 ∧ x1 ≥ x2
−2x1 + 2x3 if x1 ≥ x3 ∧ x1 ≤ x2
2x1 − 2x2 if x1 ≤ x3 ∧ x1 ≥ x2
0 if x1 ≤ x3 ∧ x1 ≤ x2

,

and for case (2)

Xσx
1 = |x1−x2|−|x1−x3|+x2−x3 =















0 if x1 ≥ x3 ∧ x1 ≥ x2
−2x1 + 2x2 if x1 ≥ x3 ∧ x1 ≤ x2
2x1 − 2x3 if x1 ≤ x3 ∧ x1 ≥ x2
2x2 − 2x3 if x1 ≤ x3 ∧ x1 ≤ x2

,
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and for case (3)

Xσx
2 = |x1−x3|−|x2−x3|−x1+x2 =















0 if x1 ≥ x3 ∧ x2 ≥ x3
2x2 − 2x3 if x1 ≥ x3 ∧ x2 ≤ x3
−2x1 + 2x3 if x1 ≤ x3 ∧ x2 ≥ x3
−2x1 + 2x2 if x1 ≤ x3 ∧ x2 ≤ x3

,

and finally for case (4)

Xσx
2 = |x1−x3|− |x2−x3|x1−x2 =















2x1 − 2x2 if x1 ≥ x3 ∧ x2 ≥ x3
2x1 − 2x3 if x1 ≥ x3 ∧ x2 ≤ x3
−2x2 + 2x3 if x1 ≤ x3 ∧ x2 ≥ x3
0 if x1 ≤ x3 ∧ x2 ≤ x3

.

If x1 ≥ x3 we have Xσx
1 ∈ {0,−2x1 + 2x2,−2x1 + 2x3,−2x2 + 2x3} and

Xσx
2 ∈ {0, 2x1 − 2x2, 2x1 − 2x3, 2x2 − 2x3}, so the pair of those two linear

combinations is in class A, B, or C. For x3 ≥ x1 we have Xσx
1 ∈ {0, 2x1 −

2x2, 2x1−2x3, 2x2−2x3} and Xσx
2 ∈ {0,−2x1+2x2,−2x1+2x3,−2x2+2x3}

and again the pair is in one of the three classes. This is a contradiction to
our assumption, so the lemma is proven for pairs of type 2 a). The proof
for pairs of type 2 b) is done analogously.

3.1.3 Proofs of Theorem 1 a) and Theorem 2 a)

With the Lemmas 6,7 and 9 we can now prove Theorem 1 a).

Proof of Theorem 1 a). Let T be the discrete random variable that describes
the length of the longest path in the state graph. T is discrete, because the
number of possible tours is bounded from above by n! and no tour can
appear twice during the local search. For T ≥ t there has to be a sequence
of t consecutive 2-changes in the state graph. From Lemma 6 we know, that
there exist at least t

6−
5n(n−1)

48 linked pairs of type 1 and 2 in the state graph.
Let ∆i

min for i ∈ {1, 2} be the smallest improvement of a pair of improving

2-Opt steps of type i. And for t > n2 we get t
6 − 5n(n−1)

48 > t
6 − 5t

48 = t
16 ,

because n(n− 1) < n2 < t. With the use of Lemmas 7 and 9 and the same
argument we used in the proof of Theorem 4, that T ≥ t can only be if the
smallest improvement is at most 2n

t , we have

P [T ≥ t] ≤ P [∆1
min ≤ 32n

t
] + P [∆2

min ≤ 32n

t
]

= O(min{n
8φ2

t2
, 1}) +O(min{n

7φ2

t2
, 1})

= O(min{n
8φ2

t2
, 1}).
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We simply used ǫ = 2n
(t/16) in the second row above. For the expected value

of T we get

E[T ] = n2 +

n!
∑

t=1

O(min{n
8φ2

t2
, 1}) = O(n4φ),

since T > n2 and for t ≥ n4φ the minimum would always be 1.

Proof of Theorem 2 a). For an arbitrary set of n points in the unit square,
we know that for every metric on R

2 the optimal tour has length O(
√
n)

[5] and every insertion heuristic finds an O(log n)-approximation [7]. So
if we start 2-Opt with an insertion heuristic the initial tour has length
O(

√
n log n). This means that for an appropriate constant c and t > n2

we get

P [T ≥ t] ≤ P [∆
(1)
min ≤ c

√
n log n

t
] + P [∆

(2)
min ≤ c

√
n log n

t
]

= O(min{n
7 log2 n · φ2

t2
, 1}) +O(min{n

6 log2 n · φ2

t2
, 1})

= O(min{n
7 log2 n · φ2

t2
, 1}),

with the same arguments as in the proof above. Again with the same argu-
ments we have

E[T ] = n2 +

n!
∑

t=1

O(min{n
7 log2 n · φ2

t2
, 1}) = O(n3.5 log n · φ),

what concludes this part of the proof.

3.2 Expected Number of 2-Changes on the L2 Metric

Before we can start to prove Theorems 1 b) and 2 b) there has to be done
a lot of work. First, we are going to analyse the improvement of a single
2-change.
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3.2.1 Analysis of a Single 2-Change

The improvement of a single 2-change can be described by a random vari-
able. Let {O,Q1} and {P,Q2} be the edges that are replaced by {O,Q2}
and {P,Q1} in a 2-change. We will first assume slightly weaker conditions
for this input model and expand the analysis later to our general input
model. Assume that O = (0, 0) and P ,Q1 and Q2 are chosen indepen-
dently and uniformly from the interior of a circle with radius

√
2 around O.

Let P = (0, T ), where T = d(O,P ) and let Z1 = d(O,Q1) − d(P,Q1) and
Z2 = d(O,Q2) − d(P,Q2). So we have ∆ = Z1 − Z2, where ∆ denotes the
improvement of the 2-change. Z1 and Z2 are random variables, of which we
need to show some properties first.

Lemma 10. Let i ∈ {1, 2} , Q = Qi, and R = d(O,Q). Let Z denote the
random variable d(O,Q)−d(P,Q), i.e., Z = Zi. For z ∈ [−τ,min{τ, 2r−τ}],
the conditional density fZ|T=τ,R=r of the random variable Z, given T = τ

and R = r with 0 ≤ r, τ ≤
√
2, can be upper bounded by

fZ|T=τ,R=r(z) ≤







√

2
τ2−z2

if r ≥ τ
√

2
(r+z)(2r−τ−z) if r ≤ τ

.

For z /∈ [−τ,min{τ, 2r − τ}] the density is 0.

Proof. By using polar coordinates for Q we obtain

Z = d(O,Q)− d(P,Q) = r −
√

(0− xQ)2 + (τ − yQ)2

= r −
√

x2Q + y2Q + τ2 − 2τyQ

= r −
√

r2 + τ2 − 2rτ cosα,

where α is the angle between the x-axis and the line between O and Q,
which yields yQ = r cosα. When we chose α uniformly from the interval
[0, π] instead of [0, 2π) the density of Z doesn’t change, because it is on the
interval [0, π] symmetric to itself on [π, 2π]. With this observation we see
that for α = 0 we get

Z = r −
√

r2 − 2rτ + τ2 = r −
√

(r − τ)2 ∨ r −
√

(τ − r)2 = −τ ∨ 2r − τ.

For α = π we have
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Z = r −
√

r2 + 2rτ + τ2 = r −
√

(r + τ)2 = −τ.

Hence, Z can only take values in [−τ,min{τ, 2r − τ}]. Since α is restricted
to [0, π] we can provide an unique inverse function that maps Z to α:

z = r −
√

r2 + τ2 − 2rτ cosα ⇔ (z − r)2 = r2 + τ2 − 2rτ cosα

⇔ cosα =
τ2 + 2zr − z2

2rτ
,

which leads to

α(z) = arccos(
τ2 + 2zr − z2

2rτ
).

Due to a simple density transformation we can write

fZ|T=τ,R=r(z) = fα(α(z)) ·
d

dz
α(z)

=
1

π
· d

dz
α(z),

where fα is the density of α, namely the uniform density over [0, π]. Now
we only have to bound α′. We know that for |x| < 1 we have (arccos(x)

′

) =
− 1√

1−x2
, so we get

α′(z) =
r − z

rτ
· −1
√

1− (r2+2zr−z2)2

4r2τ2

=
2(z − r)

√

4r2τ2 − (τ2 + 2zr − z2)2

=
2(z − r)

√

4r2τ2 − (τ4 + 4z2r2 + z4 + 4τ2zr − 2τ2z2 − 4z3r)

=
2(z − r)

√

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4)
.

For r ≥ τ we show

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 ≥ 2(z − r)2(τ2 − z2),
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what proves this case of the lemma as

fZ|T=τ,R=r(z) =
1

π
· 2(z − r)√

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4

≤ 2(z − r)
√

2(z − r)2(τ2 − z2)

=

√

2

τ2 − z2
.

It is

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 − 2(z − r)2(τ2 − z2)

= 2r2τ2 − 2r2z2 − τ4 + z4

= 2r2(τ2 − z2)− τ4 + z4

≥ 2τ2(τ2 − z2)− τ4 + z4

= (τ2 − z2)2 ≥ 0.

and for r ≤ τ we show (1)

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4

≥ 2(z − r)2(τ + z)(2r − τ − z)

to prove this case of the lemma as

fZ|T=τ,R=r(z) =
1

π
· 2(z − r)√

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4

≤ 2(z − r)
√

2(z − r)2(τ + z)(2r − τ − z)

=

√

2

(τ + z)(2r − τ − z)
.

It is

(1) ⇔ (−2r + z + τ)(τ + z)(z2 + 2τz − 2rz + 2r2 − τ2 − 2τr) ≥ 0

⇔ z2 + 2τz − 2rz + 2r2 − τ2 − 2τr ≤ 0
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and

z2 + 2τz − 2rz + 2r2 − τ2 − 2τr

= z2 + 2z(τ − r) + 2r2 − τ2 − 2τr

≤ (2r − τ)2 + 2(2r − τ)(τ − r) + 2r2 − τ2 − 2τr

= 2(r2 − τ2) ≤ 0.

The next lemma provides us with a bound for the conditional density
f∆|T=τ,R1=r1,R2=r2 where R1 = d(O,Q1) and R2 = d(O,Q2). Notice, that
changing T will influence Z1 and Z2 while changing Ri, i ∈ {1, 2}, will only
affect Zi.

Lemma 11. Let τ, r1 and r2 be distances with r1 ≤ r2 and 0 ≤ τ, r1, r2 ≤√
2. Furthermore, let Z1 and Z2 be independent random variables drawn

according to the densities fZ|T=τ,R=r1(z) and fZ|T=τ,R=r2(z), respectively,
and let ∆ = Z1 − Z2. For a sufficiently large constant κ, the conditional
density of ∆ for δ ≥ 0, given τ, r1, and r2, is bounded from above by



















κ
τ (ln(

1
δ ) + 1) if τ ≤ r1 ∧ τ ≤ r2

κ√
r1r2

(ln(1δ ) + ln( 1
|2(r1−r2)−δ|) + 1) if r1 ≤ τ ∧ r2 ≤ τ

κ√
r1τ

(ln(1δ ) + 1) if r1 ≤ τ ≤ r2
κ√
r2τ

(ln(1δ ) + ln( 1
|2(τ−r2)−δ|) + 1) if r2 ≤ τ ≤ r1

.

The following two identities are used in the proof:
For every c > 0 and a > 0,

c
∫

z=0

1
√

z(c − z)
dz = π

and

a
∫

z=0

1
√

z(z + c)
dz = ln(

c

2
+ a+

√

a(a+ c))− ln(
c

2
).

If a is bounded from above by a constant, then we can find a constant κ
such that
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a
∫

z=0

1
√

z(z + c)
dz ≤ ln(

1

c
) + κ.

Proof. We can express f∆|T=τ,R1=r1,R2=r2 as convolution of fZ|T=τ,R=r1 and
fZ|T=τ,R=r2:

f∆|T=τ,R1=r1,R2=r2(δ) =

∞
∫

z=−∞

fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ)dz.

Let κ be a sufficiently large constant.
In the case τ ≤ r1 ∧ τ ≤ r2 we know that Zi can only take values in the
interval [−τ, τ ], which allows the assumption 0 ≤ δ ≤ 2τ . This leads to

f∆|T=τ,R1=r1,R2=r2(δ) =

τ
∫

z=−τ+δ

fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ)dz.

The previous lemma gives us the following bound of the densities of Zi,
i ∈ {1, 2}:

f∆|T=τ,R=ri(z) ≤
√

2

τ2 − z2
≤

√

2

τ(τ − |z|)

≤
√

2

τ
(

1√
τ − z

+
1√
τ + z

).

This leads to
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f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2

τ

τ
∫

−τ+δ

(
1√
τ − z

+
1√
τ + z

)(
1√

τ − z + δ
+

1√
τ + z − δ

)dz

=
2

τ
(

τ
∫

−τ+δ

1
√

(τ − z)(τ − z + δ)
dz +

τ
∫

−τ+δ

1
√

(τ + z)(τ − z + δ)
dz

+

τ
∫

−τ+δ

1
√

(τ − z)(τ + z − δ)
dz +

τ
∫

−τ+δ

1
√

(τ + z)(τ + z − δ)
dz)

=
2

τ
(

2τ−δ
∫

0

1
√

z(z + δ)
dz +

2τ
∫

δ

1
√

z(2τ + δ − z)
dz

+

2τ−δ
∫

0

1
√

z(2τ − δ − z)
dz +

2τ−δ
∫

0

1
√

z(z + δ)
dz)

≤ κ

τ
(ln(

1

δ
) + 1),

as we used the above mentioned identities in the last step.
In the case r1 ≤ τ ∧ r2 ≤ τ Z can only take values in [−τ, 2ri − τ ], so the
assumption 0 ≤ δ ≤ 2r1 can be made, and

f∆|T=τ,R1=r1,R2=r2(δ) =

min{−τ,2ri−τ}
∫

z=−τ+δ

fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ)dz,

and again we can use our already known bounds, yielding

f∆|T=τ,Ri=ri(z) ≤
√

2

(τ + z)(2ri − τ − z)

≤







√

2
ri(τ+z) if z ≤ ri − τ

√

2
ri(2ri−τ−z) if z ≥ ri − τ

≤
√

2

ri
(

1√
τ + z

+
1√

2ri − τ − z
).

Now we have to consider two subcases, in the first we assume δ ∈
[max{0, 2(r1 − r2)}, 2r1] and we get
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f∆|T=τ,R1=r1,R2=r2(δ)

≤ R
2r1−τ
∫

−τ+δ

(
1√
τ + z

+
1√

2r1 − τ − z
)(

1√
τ + z − δ

+
1√

2r2 − τ − z + δ
)dz

= R(

2r1−τ
∫

−τ+δ

dz
√

(τ + z)(τ + z − δ)
+

2r1−τ
∫

−τ+δ

dz
√

(2r1 − τ − z)(τ + z − δ)

+

2r1−τ
∫

−τ+δ

dz
√

(τ + z)(2r2 − τ − z + δ)

+

2r1−τ
∫

−τ+δ

dz
√

(2r1 − τ − z)(2r2 − τ − z + δ)
)

= R(

2r1−δ
∫

0

1
√

z(z + δ)
dz +

2r1−δ
∫

0

1
√

z(2r1 − δ − z)
dz

+

2r1
∫

δ

1
√

z(2r2 + δ − z)
dz +

2r1−δ
∫

0

1
√

z(2(r2 − r1) + δ + z)
dz)

≤
{

κ√
r1r2

(ln(1δ ) + 1) if r1 ≤ r2
κ√
r1r2

(ln(1δ ) + ln( 1
2(r2−r1)+δ ) + 1) if r2 ≤ r1

,

with R = 2√
r1r2

.

The second subcase we have to consider is δ ∈ [0,max{0, 2(r1 − r2)}].
Since this case is only relevant if r2 ≤ r1, we obtain
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f∆|T=τ,R1=r1,R2=r2(δ)

≤ R
2r2−τ+δ
∫

−τ+δ

(
1√
τ + z

+
1√

2r1 − τ − z
)(

1√
τ + z − δ

+
1√

2r2 − τ − z + δ
)dz

= R(

2r2−τ+δ
∫

−τ+δ

dz
√

(τ + z)(τ + z − δ)
+

2r2−τ+δ
∫

−τ+δ

dz
√

(2r1 − τ − z)(τ + z − δ)

+

2r2−τ+δ
∫

−τ+δ

dz
√

(τ + z)(2r2 − τ − z + δ)

+

2r2−τ+δ
∫

−τ+δ

dz
√

(2r1 − τ − z)(2r2 − τ − z + δ)
)

= R(

2r2
∫

0

dz
√

z(z + δ)
+

2r2
∫

0

dz
√

z(2r1 − δ − z)

+

2r2
∫

0

dz
√

z(2r2 + δ − z)
+

2r2
∫

0

dz
√

z(2(r2 − r1)− δ + z)
)

≤ κ√
r1r2

(ln(
1

δ
) + ln(

1

2(r1 − r2)− δ
) + 1),

with R = 2√
r1r2

.

The third case is r1 ≤ τ ≤ r2 and we observe that Z1 only takes values
in [−τ, 2r1 − τ ] and Z2 only takes values in [−τ, τ ]. Again we can assume
0 ≤ δ ≤ 2r1 and

f∆|T=τ,R1=r1,R2=r2(δ) =

2r1−τ
∫

z=−τ+δ

fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ)dz.

This time we obtain
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f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
τr1

2r1−τ
∫

−τ+δ

(
1√
τ + z

+
1√

2r1 − τ − z
)(

1√
τ − z + δ

+
1√

τ + z − δ
)dz

=
2√
τr1

(

2r1−τ
∫

−τ+δ

1
√

(τ + z)(τ − z + δ)
dz +

2r1−τ
∫

−τ+δ

1
√

(2r1 − τ − z)(τ − z + δ)
dz

+

2r1−τ
∫

−τ+δ

1
√

(τ + z)(τ + z − δ)
dz +

2r1−τ
∫

−τ+δ

1
√

(2r1 − τ − z)(τ + z − δ)
dz)

=
2√
τr1

(

2r1
∫

δ

1
√

z(2τ + δ − z)
dz +

2r1−δ
∫

0

1
√

z(2(τ − r1) + δ + z)
dz

+

2r1−δ
∫

0

1
√

z(z + δ)
dz +

2r1−δ
∫

0

1
√

z(2r1 − δ − z)
dz)

≤ κ

2
√
τr1

(ln(
1

δ
) + ln(

1

2(τ − r1) + δ
) + 1)

≤ κ√
τr1

(ln(
1

δ
) + 1),

where the last inequality follows since τ ≥ r1.
In the fourth and last case r2 ≤ τ ≤ r1 Z1 takes only values in [−τ, τ ]

and Z2 takes only values in [−τ, 2r2 − τ ], what leads to the assumption
0 ≤ δ ≤ 2(τ − r2) and

f∆|T=τ,R1=r1,R2=r2(δ) =

2r2−τ+δ
∫

z=−τ+δ

fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ)dz.

One last time we estimate the bound
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f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
τr2

2r2−τ
∫

−τ+δ

(
1√
τ − z

+
1√
τ + z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)dz

=
2√
τr2

(

2r2−τ
∫

−τ+δ

1
√

(τ + z)(τ + z − δ)
dz +

2r2−τ
∫

−τ+δ

1
√

(τ − z)(τ + z − δ)
dz

+

2r2−τ
∫

−τ+δ

1
√

(τ + z)(2r2 − τ − z + δ)
dz +

2r2−τ
∫

−τ+δ

1
√

(τ − z)(2r2 − τ − z + δ)
dz)

=
2√
τr2

(

2r2−δ
∫

0

1
√

z(z + δ)
dz +

2r2−δ
∫

0

1
√

z(2τ − δ − z)
dz

+

2r2
∫

δ

1
√

z(2r2 + δ − z)
dz +

2r2
∫

δ

1
√

z(2(τ − r2)− δ + z)
dz)

≤ κ√
τr2

(ln(
1

δ
) + ln(

1

2(τ − r2)− δ
) + 1)

,

which finally concludes the longest proof of this thesis.

Now we prove some lemmas about some weaker conditions:

Lemma 12. Let τ and r1 be distances with 0 ≤ τ, r1 ≤
√
2. We are in-

terested in the conditional density f∆|T=τ,R1=r1 of the random variable ∆,
when the distance T and the radius R1 are given. For a sufficiently large
constant κ, this conditional density is bounded by

f∆|T=τ,R1=r1(δ) ≤
κ√
r1 · τ

(ln(
1

|δ| ) + 1).

Proof. Using the law of total probability for densities allows us to write the
conditional density as
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f∆|T=τ,R1=r1(δ) =

√
2

∫

r2=0

fR2(r2) · f∆|T=τ,R1=r1,R2=r2(δ)dr2

=

√
2

∫

r2=0

r2 · f∆|T=τ,R1=r1,R2=r2(δ)dr2

≤ κ√
r1 · τ

(ln(
1

|δ| ) + 1)

√
2

∫

r2=0

r2

=
κ√
r1 · τ

(ln(
1

|δ| ) + 1),

where the last inequality follows from Lemma 11.

Lemma 13. Let τ and r2 be distances with 0 ≤ τ, r2 ≤
√
2. We are in-

terested in the conditional density f∆|T=τ,R2=r2 of the random variable ∆,
when the distance T and the radius R2 are given. For a sufficiently large
constant κ, this conditional density is bounded by

f∆|T=τ,R2=r2(δ) ≤
{

κ
τ (ln(

1
|δ|) + 1) if r2 ≥ τ

κ√
r2τ

(ln( 1
|δ| ) + ln( 1

|2(τ−r2)−δ|) + 1) if r2 ≤ τ
.

The proof is analogously to the proof of Lemma 12.

Lemma 14. Let r be an arbitrary distance with 0 ≤ r ≤
√
2. For a suffi-

ciently large constant κ and for i ∈ {1, 2}, the conditional density f∆|Ri=r(δ)
of ∆ for δ ≥ 0 under the condition d(O,Qi) = r can be bounded by

f∆|Ri=r(δ) ≤
κ√
r
(ln(

1

δ
) + 1).

To proof this lemma one just hast to integrate over all possible values of
T and make use of the Lemmas above.
Analogously one proves the following lemma by integrating over all possible
values of R1 and R2.

Lemma 15. Let τ be an arbitrary distance with 0 ≤ τ ≤
√
2. For a suffi-

ciently large constant κ and for i ∈ {1, 2}, the conditional density f∆|T=τ (δ)
of ∆ for δ ≥ 0 under the condition T = τ can be bounded by
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f∆|T=τ (δ) ≤
κ

τ
(ln(

1

δ
) + 1).

The following lemma is proven by integrating the conditional density in
Lemma 10 over all possible values for R.

Lemma 16. Let τ be an arbitrary distance with 0 ≤ τ ≤
√
2. For a suffi-

ciently large constant κ and for i ∈ {1, 2}, the conditional density fZi|T=τ (z)
of Zi for z ∈ [−τ, τ ] under the condition T = τ can be bounded by

fZi|T=τ (z) ≤
κ√

τ2 − z2
.

For z /∈ [−τ, τ ] the density is 0.

And finally we only need one last lemma to conclude this part. Only the
case where we consider a single 2-change is missing, in which we don’t need
the conditional density of ∆, but the density:

Lemma 17. For a sufficiently large constant κ, the density f∆(δ) of ∆ for
δ ≥ 0 can be bounded by

f∆(δ) ≤ κ(ln(
1

δ
) + 1).

We use the bound of Lemma 15 and integrate over all values T can take
to prove this lemma.

3.2.2 Simplified Random Experiments

Now we are going to compare the simplified version from before with the
actual situation. We will denote the event ∆ ∈ [0, ǫ] with EO when we
consider the original experiment, and ES when we consider the simplified
experiment.We will show that P [EO] does not differ much from P [ES ]. In
the original experiment O isn’t necessary the origin, instead let O = (x, y) ∈
[0, 1]2 and let R(x,y) denote the region with

(P,Q1, Q2) ∈ R(x,y) ⇔ Eoccurs.
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The shape of this region is independent from the choice of O, merely the
position of this regions changes. Let V = sup(x,y)∈[0,1]2 vol(R(x,y) ∩ [0, 1]6),

the supremum of the biggest possible volume of the region lying in [0, 1]6.
Since the density functions of P,Q1 and Q2 are bounded from above by φ,
we can bound P [EO] ≤ φ3V in the original experiment. We make the simple
observation

R(x,y) ∩ [0, 1]6 = R(0,0) ∩ ([−x, 1− x]× [−y, 1− y])3 ⊆ R(0,0) ∩ [−1, 1]6,

let V ′ = vol(R(0,0) ∩ [−1, 1]6), and it is V ≤ V ′. Since the circle around

the origin with radius
√
2 contains the square [−1, 1]2 completely and the

density functions of P,Q1 and Q2 in the simplified experiment are 1
2π , we

get P [ES ] ≥ 1
2π in this case. Meaning, that P [ES ] is smaller by a factor of

at most (2πφ)3 than P [EO].

Lemma 18. The probability that there exists an improving 2-change whose
improvement is at most ǫ is bounded from above by

O(n4 · ǫ · (log(1
ǫ
) + 1) · φ3).

Proof. We use Lemma 17, a union bound over all possible 2-changes, namely
n4 > n(n− 1)(n − 2)(n − 3) and the factor (2πφ)3 and we have proven the
lemma.

Theorem 19. Starting with an arbitrary tour, the expected number of steps
performed by 2-Opt on φ-perturbed L2 instances is

O(n7 · log2(n) · φ3).

Proof. The proof is almost entirely the same as the proof of Theorem 4. This
time we have to bound P [∆min ≤ ǫ] with Lemma 18. A simple substitution
in the formulas given in the proof of Theorem 4 and a short calculation
yields the theorem.

In order to improve this bound, we will now consider again pairs of linked
2-changes. But since the results we have for those are restricted for the orig-
inal experiment, we have to stretch the results to the simplified version first.

Pairs of Type 1. Let for a fixed pair of type one v3 be the origin and let
v1, v2, v4, v5 and v6 be chosen uniformly from a circle of radius

√
2 centred

at the origin. Let EO denote the event, that ∆1 and ∆2 lie in [0, ǫ] for some
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given ǫ in the original experiment, and let ES be the same for the simplified
experiment. Using the same methods as above we get that P [ES ] is smaller
than P [EO] by at most a factor of (2πφ)5.

Pairs of Type 2. Let for a fixed pair of type two v2 be the origin and
let v1, v3, v4, and v5 be chosen uniformly from a circle of radius

√
2 centred

at the origin. Using the same methods as above we get that P [ES ] is smaller
than P [EO] by at most a factor of (2πφ)4.

3.2.3 Analysis of Pairs of Linked 2-Changes

Lemma 20. For φ-perturbed L2 instances, the probability that there exists
a pair of type 1 in which both 2-changes are improvements by at most ǫ is
bounded by O(n6 · ǫ2 · (log2(1ǫ ) + 1) · φ5).

Proof. We consider the simplified case first, use the notations from above
and observe that the events ∆1 ∈ [0, ǫ] and ∆2 ∈ [0, ǫ] are independent,
since the coordinates of v1 are fixed and only v1 and v3 play a role in both
steps of the linked pair of type 1. The densities of v2, v4, v5 and v6 are
rotationally symmetric, so we don’t need to care about the position of v1,
but the distance d(v1, v3) gives us all we need. We have

P [∆i ∈ [0, ǫ]|d(v1, v3) = r] =

ǫ
∫

0

f∆i|d(v1,v3)=r(δ)dδ

≤ κ√
r
· ǫ · (ln(1

ǫ
) + 1),

where we used the bound from Lemma 15 and κ is a sufficiently large con-
stant. Since ∆1 and ∆2 are independent when the distance between v1 and
v3 is fixed, we obtain

P [∆1,∆2 ∈ [0, ǫ]|d(v1, v3) = r] ≤ κ2

r
· ǫ2 · (ln(1

ǫ
) + 1)2

≤ κ′

r
· ǫ2 · (ln2(1

ǫ
) + 1),

for a sufficiently large constant κ′. Now we can use the law of total proba-
bility again and we get
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P [∆1,∆2 ∈ [0, ǫ]|] =

√
2

∫

0

fd(v1,v3)(r) · P [∆1,∆2 ∈ [0, ǫ]|d(v1, v3) = r]dr

=

√
2

∫

0

r · P [∆1,∆2 ∈ [0, ǫ]|d(v1, v3) = r]dr

≤
√
2κ′ · ǫ2 · (ln2(1

ǫ
) + 1).

Since there are O(n6) different pairs of type one, because there are six nodes
to chose, we can conclude the proof using a union bound over all this pairs
and the factor (2πφ)5 we obtained from simplifying the experiment.

Lemma 21. For φ-perturbed L2 instances, the probability that there exists
a pair of type 2 in which both 2-changes are improvements by at most ǫ is
bounded by O(n5 · ǫ 3

2 · (log(1ǫ ) + 1) · φ4).

Proof. Let for a fixed pair of type two v2 be the origin and let v1, v3, v4,
and v5 be chosen uniformly from a circle of radius

√
2 centred at the origin.

Since there are only 5 vertices instead of 6 involved now, the distances of
the vertices affect the analysis stronger than it was the case with pairs of
type 1. The nodes v1, v2, and v3 take part in both 2-changes of the first step
of the pair. Because of that, and the fact that there is only one new node,
v5, introduced in the second pair, we haven’t the circumstance for pairs of
type 2 that fixing one distance makes ∆1 and ∆2 independent. We start
with pairs of type 2 a). When we analyse P [∆1 ∈ [0, ǫ]] we can consider
both distances d(v1, v3) and d(v2, v3) as random variables to calculate the
mentioned probability. However, for the second step, given that v1, . . . , v4
are already chosen, we can’t do this, because we used the randomness of the
distances in the first step. This holds not true for d(v1, v5) and d(v2, v5).
So we assume, that d(v1, v3) and d(v2, v3) are already chosen, meaning Z =
d(v2, v5)− d(v1, v5) has to take a value in an already predetermined interval
of length ǫ for ∆2 to take a value in [0, ǫ]. We can use Lemma 14 to obtain
for a sufficiently large constant κ

P [∆1 ∈ [0, ǫ]|d(v1, v2) = r] ≤ κ√
r
· ǫ · (ln(1

ǫ
) + 1).

Lemma 16 gives us for |z| ≤ r

fZ|d(v1,v2)=r ≤
κ√

r2 − z2
.
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Since the integral

b
∫

a

κ√
r2 − z2

dz

is biggest for a = −r ∧ b = −r + ǫ or a = r − ǫ ∧ b = r, remember that the
interval has to have length ǫ, Z has the highest probability to take a value
in [−r,−r + ǫ] and [r − ǫ, r]. Thus we have for a sufficiently large constant
κ′

P [∆2 ∈ [0, ǫ]|d(v1, v2) = r] ≤
r

∫

max{r−ǫ,−r}

κ√
r2 − z2

dz

≤ κ√
r
·

r
∫

max{r−ǫ,−r}

1
√

r − |z|
dz ≤ κ′

√
ǫ√
r

for fixed vertices v3 and v4. Together with the bound for P [∆1 ∈ [0, ǫ]] we
get

P [∆1,∆2 ∈ [0, ǫ]|d(v1, v2) = r] ≤ κκ′√
r
· ǫ 3

2 · (ln(1
ǫ
) + 1).

Now we eliminate the condition by integrating over all possible values of r,
using the law of total probability:

P [∆1,∆2 ∈ [0, ǫ]] ≤

√
2

∫

0

r · κκ
′

√
r
· ǫ 3

2 · (ln(1
ǫ
) + 1)dr = O(ǫ

3
2 (ln(

1

ǫ
) + 1)).

As there are 5 vertices to chose, we have O(n5) possible pairs of type 2. With
a union bound over them, and taking the (2πφ)4 we get from the simplified
experiment into consideration, we have proven the lemma for pairs of type
2 a).
For pairs of type 2 b) the distances d(v2, v5) and d(v3, v5) are random vari-
ables in the second step, and analogously we get the following results:

P [∆1 ∈ [0, ǫ]|d(v2, v3) = τ ] ≤ κ

τ
· ǫ · (ln(1

ǫ
) + 1),
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for a sufficiently large constant κ using Lemma 15, and

fZ|d(v2,v3)=τ ≤ κ√
τ2 − z2

,

for |z| ≤ τ with Z = d(v2, v5)− d(v3, v5), using Lemma 16. Using the same
arguments as above we obtain for fixed vertices v1 and v3:

P [∆2 ∈ [0, ǫ]|d(v2, v3) = τ ] ≤
r

∫

max{τ−ǫ,−τ}

κ√
τ2 − z2

dz

≤ κ√
τ
·

r
∫

max{τ−ǫ,−τ}

1
√

τ − |z|
dz ≤ κ′

√
ǫ√
τ

,

for a sufficiently large constant κ′. This leads again to

P [∆1,∆2 ∈ [0, ǫ]] ≤

√
2

∫

0

τ · κκ
′

√
τ
· ǫ 3

2 · (ln(1
ǫ
) + 1)dτ = O(ǫ

3
2 (ln(

1

ǫ
) + 1)).

With the same argument as for pairs of type 2 a) the proof is concluded.

3.2.4 Proofs of Theorem 1 b) and 2 b)

Proof of Theorem 1 b). Let T be the discrete random variable that describes
the length of the longest path in the state graph. T is discrete, because the
number of possible tours is bounded from above by n! and no tour can
appear twice during the local search. For T ≥ t there has to be a sequence
of t consecutive 2-changes in the state graph. From Lemma 6 we know, that
there exist at least t

6−
5n(n−1)

48 linked pairs of type 1 and 2 in the state graph.
Let ∆i

min for i ∈ {1, 2} be the smallest improvement of a pair of improving

2-Opt steps of type i. And for t > n2 we get t
6 − 5n(n−1)

48 > t
6 − 5t

48 = t
16 ,

because n(n − 1) < n2 < t. With the use of Lemmas 20 and 21 and the
same argument we used in the proof of Theorem 4, that T ≥ t can only be
if the smallest improvement is at most 2n

t , we have
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P [T ≥ t] ≤ P [∆
(1)
min ≤ 16

√
2n

t
] + P [∆

(2)
min ≤ 16

√
2n

t
]

= O(min{n
8(log2( t

n) + 1)

t2
φ5, 1})

+O(min{n
13
2 (log2( t

n) + 1)

t
3
2

φ4, 1}).

This leads to

E[T ] = n2 +

n!
∑

t=1

(O(min{n
8 log2 t

t2
φ5, 1}) +O(min{n

13
2 log2 t

t
3
2

φ4, 1})).

When we split the two sums at t = n4 ·log(nφ)·φ 5
2 and t = n

13
3 ·log 2

3 (nφ)·φ 8
3 ,

respectively, we see that the minimum would be 1 for greater values of t, so
we conclude

E[T ] = O(n4 · log(nφ) · φ 5
2 ) +O(n

13
3 · log 2

3 (nφ) · φ 8
3 )

= O(n
13
3 · log(nφ) · φ 8

3 )

and are done.

Proof of Theorem 2 b). For an arbitrary set of n points in the unit square,
we know that for every metric on R

2 the optimal tour has length O(
√
n)

[5] and every insertion heuristic finds an O(log n)-approximation [7]. So
if we start 2-Opt with an insertion heuristic the initial tour has length
O(

√
n log n). So for an appropriate constant c and t > n2 we get

P [T ≥ t] ≤ P [∆
(1)
min ≤ c · √n · log n

t
] + P [∆

(2)
min ≤ c · √n · log n

t
]

= O(min{n
7 log2 n · log2 t · φ5

t2
, 1})

+O(min{n
23
4 log

3
2 n · log t · φ4

t2
, 1}).

We get
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E[T ] = n2 +
n!
∑

t=1

O(min{n
7 log2 n · log2 t · φ5

t2
, 1})

+O(min{n
23
4 log

3
2 n · log t · φ4

t2
, 1}).

When we split the two sums at t = n
7
2 ·log2(nφ)·φ 5

2 and t = n
23
6 ·log 5

3 (nφ)·φ 8
3 ,

respectively, we see that the minimum would be 1 for greater values of t, so
we conclude

E[T ] = O(n
7
2 · log2(nφ) · φ 5

2 ) +O(n
23
6 · log 5

3 (nφ) · φ 8
3 )

= O(n
23
6 · log2(nφ) · φ 8

3 )

and are done.

3.3 Expected Number of 2-Changes on General Graphs

In φ-perturbed graphs every edge can be considered a random variable, thus
they are much more random than φ-perturbed L1 or L2 instances. This is
the main reason to move on from pairs of linked 2-changes to sequences
of linked 2-changes in order to analyse the expected number of 2-changes
of φ-perturbed graphs. We call a sequence S1, . . . , Sk linked if there exists
for every i < k an edge that has been added to the tour in Si and which
is removed again in Si+1. The improvement to the tour of such a linked
sequence must be at least ∆(k), the sum of the smallest improvement of all
steps. But in general one can expect the improvement, like in the case of
φ-perturbed L1 and L2 instances, to be much higher. To prove this we need
to define linked sequences with additional properties.

3.3.1 Definition of Witness Sequences

Before we define the three different types of witness sequences, there are
some general things to say. When m is the number of edges in the graph,
then there are O(m2) different possible choices for S1. For S2 there is already
one edge predetermined to be removed in the first step, so there are just m
possible choices for the second edge of this step, and there are 4 ways to
add a new edge in the second step. Together this makes 4m possible choices
for S2. Since we can do the same for any Si, 3 ≤ i ≤ k, we can bound the
number of linked sequences from above by m2 · (4m)k−1 = 4k−1mk+1.

In the definitions of the different types of witness sequences we will use
the following notations: ei−1 and fi−1 denote the edges that are removed
from the tour in Si. ei and fi denote the edges that are added to the tour
in Si.

36



Definition If for every i ≤ k the edge ei does not occur in any step Sj with
j < i, then S1, . . . , Sk is called a k-witness sequence of type 1.

Definition Assume that for every i ≤ k − 1 the edge ei does not occur in
any step Sj with j < i. If the edges ek, gk and fk−1 occur in steps Sj with
j < k and if both endpoints of fk−2 occur in steps Sj with j < k − 1, then
S1, . . . , Sk is called a k-witness sequence of type 2.

Definition Assume that for every i ≤ k − 1 the edge ei does not occur in
any step Sj with j < i. If the edges ek and gk occur in steps Sj with j < k
and if fk−1 does not occur in any step Sj with j < k, then S1, . . . , Sk is
called a k-witness sequence of type 3.

3.3.2 Improvement to the Tour Made by Witness Sequences

As in the sections before, we want to know the probability that there exists
a k-witness sequence in which every step improves the tour by at most ǫ.
The following lemma tells us exactly that.

Lemma 22. The probability that there exists a k-witness sequence in which
every step is an improvement by at most ǫ is

a) bounded from above by 4k−1mk+1(ǫφ)k for sequences of type 1.

b) bounded from above by k44kmk−1(ǫφ)k−1 for sequences of type 2.

c) bounded from above by k24kmk(ǫφ)k for sequences of type 3.

Proof. a) As we already know, the number of k-witness sequences of type 1
is bounded from above by 4k−1mk+1. Let S1, . . . , Sk be a fixed k-witness
sequence of type 1. We assume that in the first step the edges e0 and f0
are removed from the tour, and e1 and g1 are added. Further, we assume
that the lengths e0, f0 and g1 are predetermined by an adversary. We
can write the improvement ∆1 of step one as

∆1 = d(e0) + d(f0)− d(e1)− d(g1),

meaning that if this step shall be an improvement to the tour of at most
ǫ, d(e1) has to take a value in an interval with length at most ǫ. This
leads to

P [d(e1) ∈ [a, b]] =

b
∫

a

fd(e1)(x)dx ≤ ǫφ,
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since the density of d(e1) is bounded from above by φ and b−a = ǫ. Now
we consider a step Si with i > 1 and assume that the lengths of ej, fj
for j < i, and gl for l ≤ i are predetermined arbitrarily. Per definition,
ei is not involved in any step Sh with h < i, meaning the length of this
edge has still to be determined. So we have the same situation as we had
for S1, meaning the probability that Si improves the tour at most by ǫ
is bounded from above by ǫφ. Since we got k steps, and for each one
we get the same bound, the lemma follows when we combine this result
with the bound of the number of possible k-witness sequences of type 1.

b) For k-witness sequences of type 2 there are also O(m2) possible choices
for S1, and 4m possible choices for steps Si with 1 < i < k − 1 The first
step introduces 4 new vertices to the sequence and every step Si with
1 < i < k at most 2, so the number of different vertices involved in the
steps Sj with j < k − 1 is at most 4 + 2(k − 3) < 2k. Which leaves
us with less than 4k2 choices for Sk−1, because both points contained in
fk−2 have to be chosen from the vertices that had already been chosen
in the steps Sj with j < k − 1. Now we can do the same for Sk: With
the first step there are 4 new edges introduced to the sequence, in every
other step Sj with 1 < j < k there are at most 3 new edges introduced.
So there are at most 4+3(k−2) < 3k edges involved in every step before
Sk, which leaves us at most 9k2 different choices for Sk. When we put all
the results together, we get a bound on the number of different possible
k-witness sequences of type 2, namely 36k44k−3mk−1 < k44kmk−1.
Now we can use the same arguments as for k-witness sequences of type
1, except for the last step Sk, because the edge ek has already been used
before. Thus we get the bound (ǫφ)k−1 on the improvement of at most
ǫ of every step Si with i < k. Combined with the bound on the number
of possible sequences of type 2 yields this part of the lemma.

c) This part of the proof is done analogously, as one shows, that the num-
ber of different possible k-witness sequences of type 3 is bounded by
9k24k−2mk < k24kmk−1. Contrary to sequences of type 2, the last step
introduces with fk−1 a new edge to the tour. So we get again a factor of
(ǫφ)k, and combined with the number of possible sequences, the proof of
the lemma is complete.

Definition In the following, we use the term k-witness sequence to denote
a k-witness sequence of type 1 or an i-witness sequence of type 2 or 3 with
i ≤ k. We call a k-witness sequence improving if every 2-change in the

sequence is an improvement. Moreover, by ∆
(k)
WS we denote the smallest

total improvement made by any improving k-witness sequence.
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Using the lemma from above, we can now show that it is highly unlikely for
an improving witness sequence to have a small total improvement.

Corollary 23. For 0 < ǫ ≤ 1/(4k−2mk−1φk−2)1/(k−2) and arbitrarily chosen
k it is

P [∆
(k)
WS ≤ ǫ] ≤ 10k5(4mǫφ)2.

Proof. According to the lemma above, the fact that every witness sequence
of type 2 or 3 must consist of three or more steps, and using the notation
from the definition above, we get

P [∆
(k)
WS ≤ ǫ] ≤ 4k−1mk+1(ǫφ)k +

k
∑

i=3

i44imi−1(ǫφ)i−1 +

k
∑

i=3

i24imi(ǫφ)i

≤ 4k−1mk+1(ǫφ)k + 4k4
k

∑

i=3

(4mǫφ)i−1 + k2
k

∑

i=3

(4mǫφ)i.

And it is

ǫ <
1

(4k−2mk−1φk−2)
1

k−2

⇔ 4mǫφ <
4mφ

4φm
k−1
k−2

⇔ 4mǫφ < m
−1
k−2

⇒ 4mǫφ < 1.

This allows us to bound the two sums in the following way

P [∆
(k)
WS ≤ ǫ] ≤ 4k−1mk+1(ǫφ)k + 4k5(4mǫφ)2 + k3(4mǫφ)3

≤ 4k−1mk+1(ǫφ)k + 5k5(4mǫφ)2.

A simple calculation shows, that for our choice of ǫ the first term of the sum
is smaller or equal to the second term. This concludes the proof.

3.3.3 Identifying Witness Sequences

Now we have to show, that we can find disjoint k-witness sequences in every
sequence of consecutive 2-changes of enough length. In order to do so, we
first have to define a witness directed acyclic graph (DAG), that will repre-
sent the sequence of 2-changes S1, . . . , St for t > n2k. To clarify notations,
we will speak of nodes and arcs when we consider a DAG W, and of vertices
and edges when we consider the input graph G.
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W has a node for every edge of the initial tour. Every one of this nodes
gets an arbitrary time stamp i ∈ {1, . . . , n}, with the only condition that no
two nodes have the same time stamp. Now assume S1, . . . , Si−1 have already
been processed, meaning Si would be the next step. Let ei−1 and fi−1 be
the edges that are exchanged in Si with ei and fi. The edges ei−1 and fi−1

were in the tour, so there are nodes u1 and u2 in W corresponding to those
edges. Now two new nodes u3 and u4, which correspond to ei and fi, are
added to W with the time stamp n+ i and we add four new arcs: (u1, u3),
(u1, u4), (u2, u3), and (u2, u4), which we shall call twin arcs. This leads to
the fact that every node in W has indegree and outdegree of at most 2 and
we call W a t-witness DAG. The height of a node u of W shall be defined as
the length of the shortest path from the node to one of W’s leafs. If a node
u has a height ≥ k, we can identify a so called sub-DAG Wu of W, which
contains all nodes of W, that can be reached from u while using no more
than k arcs, and the arcs between those nodes are induced by W.

Lemma 24. For every sub-DAG Wu, the 2-changes represented by the arcs

in Wu yield a total improvement of at least ∆
(k)
WS.

Proof. Let Wu be a fixed sub-DAG with root u. We know that the height
of u is at least k, which means that every path from u to a leaf in Wu has
length k−1. Since there are always two possible arcs to chose at nodes which
are no leafs, one can identify 2k−1 different sequences of linked 2-changes of
length k in Wu. We will now show that at least one of those sequences is
either a k-witness sequence, or a sequence which improves the tour as much
as the total improvement of one the k-witness sequences would do. In order
to do so, we give an recursive algorithm that is initialized with the sequence
S1, which is represented by the two outgoing arcs of u.

Let the algorithm be called by a sequence S1, . . . , Si that has already
been constructed. Now the algorithm has to determine whether there will
be added a step Si+1, which is linked to Si, to the sequence, or the sequence
is already a k-witness sequence. For that matter, let ej−1 and fj−1 be the
edges that are replaced by ej and fj in Sj with j ≤ i+1. Further, let e′i and
f ′
i be the edges that are replaced by e′i+1 and g′i+1 in S′

i+1, where S
′
i+1 is the

alternative to Si+1 in being the next step of the sequence. Let Ei denote all
edges involved in steps Sl with l ≤ i and Ei−1 all edges involved in steps Sl

with l ≤ i− 1.
When the algorithm is called with a sequence S1, . . . , Si there is at least
one edge, that is new to the tour, added in Si. Let w.l.o.g. ei be that
edge, meaning ei /∈ Ei−1. We will see, that when the algorithm is called
recursively with a sequence S1, . . . , Si+1 or S1, . . . , S

′
i+1, it will either not

have a return value, since it found a witness sequence, or it will return a
2-change S. Whenever that happens, there is a sequence of linked 2-changes
in Wu that starts with Si+1 if the algorithm was called with S1, . . . , Si, or
with S′

i+1 otherwise. After all steps of this sequences are performed, they
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introduce exactly the same edges as S to the tour. Analogously, they remove
the same edges from the tour, and every other edge either never left the tour,
or was never added to the tour. So if this happens, we can replace Si+1, or
S′
i+1 respectively, with S.

Now, this is what the algorithm does when called with a sequence S1, . . . , Si:

1. Based on the last step Si, identify the steps Si+1 and S′
i+1.

2. If i = k, then S1, . . . , Si is a k-witness sequence of type 1.

3. If ei /∈ Ei or gi+1 /∈ Ei, then make a recursive call with the sequence
S1, . . . , Si+1 as input. If a step S is returned, replace Si+1 virtually
by the returned step, that is in the following steps of the algorithm,
assume that Si+1 equals S. In this case the edges ei+1 and gi+1 that
are added to the tour in the new step S are always chosen from the
set Ei.

4. If e′i /∈ Ei−1 and (ei+1 /∈ Ei or gi+1 /∈ Ei), then make a recursive call
with the sequence S1, . . . , S

′
i+1 as input. If a step S is returned, replace

S′
i+1 virtually by the returned step, that is in the following steps of the

algorithm, assume that S′
i+1 equals S. In this case the edges e′i+1 and

g′i+1 that are added to the tour in the new step S are always chosen
from the set Ei.

5. If ei ∈ Ei−1 and ei+1, gi+1 ∈ Ei:

(a) If fi−1 ∈ Ei−1, then S1, . . . , Si+1 is a witness sequence of type 2.
(b) If fi /∈ Ei, then S1, . . . , Si+1 is a witness sequence of type 3.
(c) If ei+1, gi+1 ∈ Ei−1, then S1, . . . , Si+1 is a witness sequence of type

2 since one endpoint of fi−1 equals one endpoint of e
′
i and the other

one equals one endpoint of either ei+1 or gi+1.
(d) If fi ∈ Ei and (ei+1 ∈ Ei Ei−1 or gi+1 ∈ Ei Ei−1) then one can

assume w.l.o.g that gi+1 = fi−1 and ei+1 ∈ Ei−1 since ei+1 6= e′i
and gi+1 6= e′i (ei+1 and gi+1 share one endpoint with ei, e

′
i does

not share an endpoint with ei). In this case, return the step S =
(ei−1, fi) → (ei+1, e

′
i).

6. If ei ∈ Ei−1 and ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei:

(a) If ei+1, gi+1 /∈ Ei−1 and e′i+1, g
′
i+1 ∈ Ei−1, then S1, . . . , Si is a

witness sequence of type 2.
(b) If f ′

i /∈ Ei, then S1, . . . , Si, S
′
i+1 is a witness sequence of type 3.

(c) If fi, f
′
i ∈ Ei and (ei+1 ∈ Ei Ei−1 or gi+1 ∈ Ei Ei−1) and

(e′i+1 ∈ Ei Ei−1 or g′i+1 ∈ Ei Ei−1), then as in case 5(d), assume
w.l.o.g. gi+1 = g′i+1 = fi−1 and ei+1, e

′
i+1 ∈ Ei−1. In this case,

it must be fi 6= e′i and f ′
i 6= ei as otherwise step Si would be

reversed in step Si+1 or S′
i+1, respectively. Hence, fi, f

′
i ∈ Ei−1
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and S1, . . . , Si+1 is a witness sequence of type 2 since one endpoint
of fi−1 equals one endpoint of fi and the other endpoint equals
one endpoint of f ′

i .
(d) If |{ei+1, e

′
i+1, gi+1, g

′
i+1} ∩ (Ei Ei−1)| = 1, assume w.l.o.g. ei+1,

gi+1, e
′
i+1 ∈ Ei−1 and g′i+1 = fi−1. As in the previous case, it

must f ′
i ∈ Ei−1. We replace step Si by the step S = (ei−1, f

′
i) →

(ei, e
′
i+1). Then the sequence S1, . . . , Si+1 is a witness sequence of

type 2 as f ′
i ∈ Ei−1. Observe: The original sequence S1, . . . , Si+1

together with the step S′
i+1 yields the same net effect and hence the

same improvement as the sequence with the modified step Si = S.

This part of the proof has been taken exactly out of [1]. The algorithm does
find k-witness sequences, which are constructed via the sub-DAG, meaning
that the improvement made by this 2-changes can’t be smaller then the
total improvement of any of the k-witness sequences, and that yields the
lemma.

Lemma 25. For t > n4k+2, every t-witness DAG contains at least t
4k+3

nodes u whose corresponding sub-DAGs Wu are pairwise disjoint.

Proof. Let W be a t-witness DAG, then W consists of n+2t nodes, for every
edge of the initial tour one, and every step Si introduces two new nodes to
W . Further, n of these nodes are leafs, because there still have to be n edges
in the tour afterwards. As we already mentioned, the in- and outdegree of
every node is bounded from above by 2, which leads to the conclusion, that
the number of nodes of height less than k is at most n2k. That implies, there
are at least n + 2t − n2k ≥ t nodes in W with height at least k, meaning
there is sub-DAG Wu associated to this nodes. Now we construct a list of
disjoint sub-DAGs by first adding an arbitrary sub-DAG to it, and then we
delete every node, arc and every twin arc of that sub-DAG from W . We add
another arbitrary sub-DAG to the list, and repeat the procedure. We do
this until there are no more sub-DAGs left in W . Obviously, the sub-DAGs
are disjoint.
Each sub-DAG of W consists of at most 2k+1 nodes, as the height is k and
the in- and outdegree is bound from above 2. Let v be one node of the sub-
DAG. As we can only have at most 2k+1 nodes to either left or right from v,
which induce a sub-DAG that also includes v, each node can be contained
in at most 2 · 2k+1 = 2k+2 sub-DAGs. This means, that every sub-DAG can
only be non-disjoint from at most 2k+1 · 2k+2 = 22k+3 < 4k+2 other sub-
DAGs. As there were at least t nodes in W with associated sub-DAGs, the
number of disjoint sub-DAGs must be at least ⌊ t

4k+2 ⌋ > t
4k+3 , what proves

the lemma.

Lemma 26. Let k be chosen arbitrarily, and let S1, . . . , St denote a sequence
of consecutive 2-changes performed by the 2-Opt heuristic with t > n2k. The
sequence S1, . . . , St shortens the tour by at least t

4k+4 ·∆ : WSk.
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Proof. If we combine Lemmas 24 and 25 they yield this lemma.

3.3.4 Proof of Theorem 1 c) and 2 c)

Proof of Theorem 1 c). For t ≥ n4k+2, Lemma 26 tells us, that the tour is

shortened by a sequence of 2-changes by at least t
4k+3 · ∆(k)

WS. Let T once
again denote the random variable describing the longest path in the state
graph. We have

P [T ≥ t] ≤ P [
t

4k+3
·∆(k)

WS ≤ n] = P [∆
(k)
WS ≤ n4k+3

t
].

For t ≥ 4k+4nφm
k−1
k−2 Corollary 23 gives us

P [T ≥ t] ≤ 10k5(
4k+4nmφ

t
)2

.

Which leaves us with the following expected value of T :

E[T ] ≤ 4k+4nφm
k−1
k−2 +

n!
∑

t=1

min{10k5(4
k+4nmφ

t
)2, 1},

with the same arguments as in the proofs of the other parts. We split the
sum at t = nmφk

5
2 , since for bigger or equal values the minimum is always

one. This yields

E[T ] = O(k
5
2 4knm

k−1
k−2 )

.

With k =
√
logm the proof is concluded.

This directly implies Theorem 2 c), as the expected number of steps
equals the expected length of the longest path in the state graph.
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3.4 Proof of Theorem 3

At this point we only need to prove Theorem 3 in order to make the smoothed
analysis. As it has been shown in [5], that for TSP instances with n points
in [0, 1]2, where the distances are measured according to a metric that is
induced by a norm, every locally optimal solution of 2-Opt is not larger
than c

√
n, where c is a constant which depends on the metric. The L1

and L2 metrics are both induced by a norm, so the tour 2-Opt finds on
corresponding φ-perturbed L1 and L2 instances is not larger than O(

√
n).

This put together with the following lemma will prove the theorem:

Lemma 27. For φ-perturbed L1 and L2 instances, it holds

E[
1

OPT
] = O(

√

φ

n
),

where OPT is the length of the shortest possible tour.

Proof. We denote the vertices of the φ-perturbed L1 or L2 instance with
p1, . . . , pn and partition the unit square into k = ⌈nφ⌉ smaller squares with
length 1

k . Now we construct a set P ⊆ {p1, . . . , pn} in the following way:
We start with P = {p1} and check for p2 if it is in the same square as p1 or
if p1 is in one of p2’s 8 neighbour squares. If it isn’t, we insert p2 into P .
We continue this for every vertex, meaning we check a vertex pi in the same
way with all vertices in P . The shortest tour on P is at most as long as the
shortest tour on {p1, . . . , pn}. To see this, one just has to consider the fact
that the triangle inequality holds, because if there is an edge in the optimal
tour on P , which is not used in the optimal tour on {p1, . . . , pn}, then this
edge has lower costs then the two edges needed in the tour on {p1, . . . , pn}.
The worst case is obviously P = {p1, . . . , pn}, where both optimal tours have
the same length.

Let X be the number of squares which contain at least one vertex, then
P contains at least X

9 vertices, due to the construction of P . And because
of the construction of the squares, every edge between two vertices in P has
length at least 1√

k
. This yields, that the length of the optimal tour on P is

at least X
9 · 1√

k
= X

9
√
k
.

For 1 ≤ i ≤ k let Xi denote the random variable which equals 1 if square
i contains at least one vertex, and 0 otherwise. The probability pji , that
vertex j is in square i is induced by the given density function of vertex j
for every 1 ≤ j ≤ n. Since the densities are bounded from above by φ, the
probability pji is bounded from above by φ

k , since it is the probability that
a point falls in an interval of length 1

k . Further let for 1 ≤ i ≤ k Mi be the
probability mass for square i. It is
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Mi =

n
∑

j=1

pji ≤
nφ

k
,

and we have

E[Xi] = P [Xi = 1] = 1− P [Xi = 0] = 1−
n
∏

j=1

(1− pji ) ≥ 1− (1− Mi

n
)n,

as
n
∑

j=1
(1 − pji =

n
∑

j=1
1 −

n
∑

j=1
pji = n − Mi, which means that

n
∏

j=1
(1 − pji ) is

maximized, when all pji are equal. Since the expected value is linear, we get

E[X] ≥
k

∑

i=1

(1− (1− Mi

n
)n) = k −

k
∑

i=1

(1− Mi

n
)n.

It is
k
∑

i=1
Mi = n, because every vertex is per definition in one of the squares,

and this means the sum
k
∑

i=1
(1−Mi

n )n is maximized, when the Mi’s are chosen

as unbalanced as possible. So we assume that ⌈ kφ⌉ of them take their biggest

possible value of nφ
k and all the others are zero. This implies for sufficiently

large n

E[X] ≥ k − (⌈k
φ
⌉(1− φ

k
)n + (k − ⌈k

φ
⌉))

≥ k

φ
− 2k

φ
(1− φ

k
)n

≥ k

φ
(1− 2(1− 1

n+ 1

n

)) ≥ n

5
.

This provides us with

E[OPT ] ≥ E[
X

9
√
k
] =

E[X]

9
√
k

≥ n

45
√
k
≥

√
n

45
√
φ+ 1

.
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But since it is our goal to prove a bound on the expected value of 1
OPT ,

we will show that X, and that implies OPT , too, are sharply concentrated
around their mean values. X is the sum of n 0-1-random variables, meaning
the Xi are Bernoulli random variables. If they were independent, we could
apply the Chernoff bound on them to bound the probability of X taking
a value that is smaller than its mean value. However, it was shown in [8],
that we can still apply a Chernoff bound, if the Xi are negative dependent,
meaning that if some of them are zero, this decreases the probability of the
other Xi taking the value zero. This is obviously the case here, and we can
use the bound:

P [X ≤ n

10
] ≤ e

−n
40 ,

and since 1
X ≤ 1 we get the following bound on the expected value of 1

X :

E[
1

X
] <

10

n
· P [

1

X
<

10

n
] + P [

1

X
≥ 10

n
]

≤ (1− e
−n
40 ) · 10

n
+ e

−n
40 <

11

n
,

for sufficiently large n. If we combine this with the results from above, this
implies

E[
1

OPT
] ≤ E[

9
√

⌈nφ⌉
X

] = O(

√

φ

n
).

3.5 Smoothed Analysis of 2-Opt

We will analyse a perturbation model for L1 and L2 instances, where the n
points are at first chosen by an adversary in the unit square, but then the
coordinates of the vertices are perturbed by adding independent random
variables to them. This random variables are Gaussian random variables
with standard deviation σ ≤ 1. After that, we check if one of the random
variable’s absolute value is larger than some given α ≥ 1. If this is the case,
we replace the random variable with a new Gaussian random variable with
standard deviation σ. We do this as long as it takes to bound all absolute
values of the random variables by α. Let X be one of the just drawn random
variables, and let Y be an arbitrary Gaussian random variable with standard
deviation σ and density function fY . As fX(x) ≤ supy∈R fY (y), since Y is
not bounded by α, we can bound the density of X by
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fX(x) ≤
supy∈R fY (y)

P [|Y | ≤ α]
≤ 1/(σ

√
2φ)

1− σ/
√
2π · e−α2/(2σ2)

.

Since the points do not lie in the unit square after the perturbation, but
in [−α, 1 + α]2, we can’t apply Theorems 1-3. In order to be able to apply
them, we have to rescale and shift the instance in a way such that it lies
again in the unit square. Doing so can increase the density of X by at most a
factor of (2α+1)2, as becomes obvious when considering the corresponding
integral to the density. When we chose

φ =
(2α+ 1)2

(σ
√
2φ− σ2e−α2/(2σ2))2

= O(
α2

σ2
)

we can apply the theorems.
We get for L1 instances:

• Expected length of the longest path in the 2-Opt state graph: O(n
4α2

σ2 ).

• The expected number of steps performed by 2-Opt: O(n
3.5α2

σ2 log n).

• The approximation ratio: O(ασ ).

And for L2 instances:

• Expected length of the longest path in the 2-Opt state graph:

O(n
4+1/3α16/3

σ16/3 log(nα
2

σ )).

• The expected number of steps performed by 2-Opt:

O(n
3+5/6α16/3

σ16/3 log2(nα
2

σ2 )).

• The approximation ratio: O(ασ ).

If the standard deviation is small enough, meaning σ ≤ min{ α√
4n lnn

, 1}, one
has not to redraw the Gaussian random variables until their absolute values
are bound by α to apply the theorems. The proof can be found in [1].
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4 Karp’s Partitioning Scheme

Karp’s Partitioning Scheme is, like 2-Opt, a heuristic, but only for Euclidean
TSP instances. Given a set V consisting of n points in the unit square, the

algorithm first partitions the unit square into k =
√

n
log(n) stripes, with the

restraint that each stripe has to contain exactly
√
n · log n points. Then the

algorithm partitions this stripes again into k cells with the constraint that
each cell has to contain exactly n

k2
= log n points and computes for each cell

an optimal TSP tour. In a final step the algorithm joins all computed tours
to obtain a tour for V , which shall be denoted by KP (V ). This is a very
specific version of Karp’s Partitioning Scheme, in general it works for every
k =

√

n
s with s! ≤ n.

When the n points are chosen uniformly and independently in the unit
square, it has be shown by Steele that KP (V ) converges completely to
TSP (V ), where TSP (V ) denotes the optimal tour on V . We want to extend
this to φ-perturbed L1 instances, using methods from [2]. A smoothed
analysis of the running time of Karp’s Partitioning Scheme has not been
done so far, leaving this question still open. We can, however, analyse the
expected approximation ratio of the algorithm, which we will do in this
section.

4.1 Preliminaries

Definition An Euclidean functional is a function F : ([0, 1]2)∗ → R which
maps a finite set V ⊆ [0, 1]2 to a real number F (V ). In our case F (V ) equals
TSP (V ), the length of the optimal TSP tour over a set V consisting of n
points.
We call an Euclidean functional smooth, if there is a constant C such that

|F (V ∪W )− F (V )| ≤ C ·
√

|Y |,

for all finite V,W ⊆ [0, 1]2.
We call an Euclidean functional, according to Frieze and Yukich [11], near-
additive, if for all partitions C1, . . . , Cs of the unit square into cells we have

|F (V )−
l

∑

i=1

F (Vi)| ≤ O(

s
∑

i=1

diameter(Ci)), (5)

for all finite sets V ⊆ [0, 1]2, and where Vi is the set of points in cell Ci, and
the diameter of a cell is the greatest distance between any pair of vertices
in that cell.
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Definition The Nearest neighbour graph for a set V of n points in a metric
space is a directed graph which consists of a vertex for every point in V ,
and edges (v,w) between all v,w ∈ V , with v 6= w, whenever the distance
d(v,w) is shorter than d(v, x) for all x ∈ V with x 6= v and x 6= w.

The total edge length NN(V ) of the nearest neighbour graph is

NN(V ) =
∑

v∈V
min

w∈V,w 6=v
||v − w||,

and NN is an Euclidean functional.
In the following, µF (n, φ) will denote a lower bound on the expected value
of an Euclidean functional F, which maps a set of n points.

4.2 Necessary Lemmas and Theorems

We start with a theorem, which has been proven by Rhee in [10] for n
identically distributed points, but she also mentions that the proof can be
extended to the situation when the points are drawn independently with not
necessarily identical distributions.

Theorem 28. Let V be a set of n points drawn independently according to
identical distributions from [0, 1]2. Let F be a smooth Euclidean functional.
Then there exist constants C and C ′ such that for all t > 0, we have

P [|F (V )− E[F (V )]| > t] ≤ C · e−C′t4

n .

The next theorem gives us a first expected approximation ratio of Karp’s
Partitioning Scheme, but in fact the theorem is much more general. We
assume that A is some algorithm, which divides [0, 1]2 into s cells C1, . . . , Cs,
computes optimal solutions for each cell and joins them to a solution for V .
Let F be a smooth and near-additive functional, then the value computed
by A can be bounded by

A(V ) ≤
s

∑

i=1

F (Vi) + J ′,

where J ′ upper bounds the costs of joining the solutions of the cells and Vi

is the set of points in Ci. Because F is near-additive we get
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A(V ) ≤ F (V ) + J,

for J = J ′ +O(
s
∑

i=1
diameter(Ci)), which implies

A(V )

F (V )
≤ 1 +O(

J

F (V )
),

and since E[F (V )] ≥ µF (n, φ) we obtain

E[A(V )]

E[F (V )]
≤ 1 +O(

J

µF (n, φ)
).

Theorem 29. Assume that A has a worst-case approximation ratio of α(n)
for instances V consisting of n points. Then the expected approximation
ratio of A for φ-perturbed L2 instances on V is

E[
A(V )

F (V )
] ≤ 1 +O(

J

µF (n, φ)
+ α(n) · e

−CµF (n,φ)4

n ,

for some constant C > 0 and J chosen as above.

Proof. If F (V ) ≥ µF (n,φ)
2 then we obtain an approximation ratio of 1 +

O( J
µF (n,φ)) as shown above. If F (V ) < µF (n,φ)

2 the ratio is α(n), thus we
have

A(V )

F (V )
≤ min{1 +O(

J

µF (n, φ)
), α(n)}.

Applying Theorem 28 yields

P [F (V ) <
µF (n, φ)

2
] ≤ P [|F (V )− E[F (V )]| > µF (n, φ)] ≤ C ′ · e

−CµF (n,φ)

n ,

for some constants C,C ′ > 0. Combining this two results gives us

E[
A(V )

F (V )
] ≤ 1 +O(

J

µF (n, φ)
+ α(n) · e

−CµF (n,φ)4

n ),
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and the proof is complete.

The following lemma will help us to choose µTSP (n, φ) for our smoothed
analysis.

Lemma 30. For φ-perturbed L2 instances we have

E[NN(V )] = Ω(

√

n

φ
),

where NN is the nearest neighbour functional.

Proof. As we have

NN(V ) =
∑

v∈V
min

w∈V,w 6=v
||v − w||,

we obtain

E[NN(V )] = n ·E[mini≥2||v1 − vi||],

due to the linearity of the expected value. Now we assume, that v1 has been
chosen by an adversary, and v2, . . . , vn have been drawn to their respective
density function. We get

E[mini≥2||v1 − vi||] =
∞
∫

0

P [mini≥2||v1 − vi|| ≥ r]dr

=

∞
∫

0

n
∏

i=2

(1− P [||v1 − vi|| ≤ r])dr

≥
1/

√
φπn

∫

0

n
∏

i=2

(1− P [||v1 − vi|| ≤ r])dr.

We can bound the probability that the distance from v1 to vi is less or equal
to r from above by φ times the area of a circle of radius r, since φ is an
upper bound on the density of every point. This lets us continue with
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E[mini≥2||v1 − vi||] ≥
1/

√
φπn

∫

0

(1− φπr2)n−1dr

≥
1/

√
φπn

∫

0

(1− 1

n
)n−1dr ≥ 1

e
√
φπn

,

as 1 − φπr2 ≥ 1 − 1
n for r ∈ [0, 1/

√
φπn] and (1 − 1

n)
n−1 ≥ 1

e . This implies
E[mini≥2||v1 − vi||] = Ω(1/

√
nφ), which completes the proof.

4.3 Smoothed Analysis of Karp’s Partitioning Scheme

Since we now have the tools to complete the smoothed analysis of the al-
gorithm’s approximation ratio, we still need to figure out how to choose J ,
µTSP (n, φ) and α(n) to be able to apply Theorem 29.

Since the nearest neighbour functional is a lower bound for the TSP,
we can apply Lemma 30 to obtain µTSP (n, φ) = Ω(

√

n/φ). We also have
µTSP (n, φ) = O(

√

n/φ), due to the results of Chandra, Karloff and Tovey
([5]), which state that the length of an optimal TSP tour is O(

√
n). This

implies

µTSP (n, φ) = Θ(
√

n/φ).

Further we use the following bound provided by Karp [11] and Steele [12]:

KP (V ) ≤ TSP (V ) + 6k = TSP (V ) + 6
√

n/ log n,

for k2 = n/ log n. This bound gives us

J = O(

√

n

log n
).

Now only α(n) is left to be determined. Let v,w ∈ V be two arbitrary
points. Every tour has to visit both points, so according to the triangle
inequality the tour must have a length of at least 2||v − w||. Since every
tour has exactly n edges, we obtain an upper bound on the length of every
possible tour: n

2TSP (V ). Thus we get

α(n) =
n

2
,
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which leads us to the final theorem of this thesis:

Theorem 31. For φ ∈ o(
√

n/ log n), the expected approximation ratio of
Karp’s Partitioning Scheme is

E[
KP (V )

TSP (V )
≤ 1 +O(

√

φ

log n
).

Proof. We use µTSP (n, φ) = Θ(
√

n/φ), J = O(
√

n
logn) and α(n) = n

2 with

Theorem 29 to obtain

E[
KP (V )

TSP (V )
] ≤ 1 +O(

√

φ

log n
) +O(n · e−Ω( n

φ2
)
)..

φ ∈ o(
√

n/ log n) implies that O(
√

φ
logn) is an upper bound for O(n ·

e
−Ω( n

φ2
)
), which concludes the proof.
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5 Conclusions and Open Questions

The gap between theoretical and practical results concerning the TSP is still
rather big, and therefore it is still much work left to be done. For example,
we have analysed 2-Opt by constructing lower bounds on the smallest possi-
ble improvement of sequences of linked 2-changes. This pivot rule, however,
is in practice much too pessimistic, as the improvement can be expected to
be much better per step. Furthermore, not even the complexity of comput-
ing locally optimal solutions for 2-Opt is known yet. As until today there
has not been any published work on locally optimal solutions which can be
applied to our case.

Another interesting fact is, that the approximation ratio of 2-Opt in ex-
periments were sometimes very close to 1. Not any theoretical work comes
even close to this results.

The smoothed analysis for φ-perturbed graphs is still an open question.
If one finds a suitable perturbation model for such instances, he would be
provided by this thesis with the necessary theorems to analyse φ-perturbed
graphs.

For Karp’s Partitioning Scheme we have only seen a smoothed analy-
sis of the approximation ratio, but no work has been done on the general
running time. The total running time is 2O(n/k2)poly(n/k2) +O(k2), which
is polynomial in n for k2 = n/ log n. Furthermore, the results we showed
are for a very specific choice of k. It would be interesting to see results for
general possible values of k.

In general, there have not been many results for the TSP in the field of
smoothed analysis, especially on the known exact algorithms, e.g. branch-
and-cut algorithms. Though the running time of such algorithms is of course
exponential, a smoothed analysis could provide new methods to improve
this algorithms further. But in order for a successful analysis, a suitable
approach has to be found first.
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