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Abstract

We consider the problem of testing algebraic independence of a set of polynomials

over finite fields of small characteristic. Algebraic independence of polynomials is

a nonlinear generalization of linear independence of polynomials. Over fields of

zero characteristic, a set of polynomials is algebraically independent if and only

if the Jacobian matrix of the polynomials has full rank, and this can be tested

in randomized polynomial time. But over fields of small characteristic, Jacobian

criterion does not work and designing an efficient criterion to test algebraic inde-

pendence is an open problem till now. In this thesis, we explore new approaches

towards finding such a criterion.

Over fields of small characteristic, if Jacobian of a set of polynomials is nonzero,

then we conclude that they are algebraically independent. If the Jacobian is zero,

the polynomials need not be algebraically dependent. We try to transform the

algebraically independent polynomials for which the Jacobian is zero such that

the Jacobian of the transformed polynomials is nonzero. Using this approach, we

solve the special case of efficiently testing algebraic independence of two bivariate

binomials over Fp .

Pursuing a different approach, we come up with a new characterization of algebraic

independence over Fp. We lift the polynomials by adding polynomials whose coef-

ficients are multiples of p. We prove that if the two polynomials are algebraically

dependent, then the p-adic valuation of the Jacobian of these polynomials can be

arbitrarily increased by suitable lifting of the polynomials, but if the polynomials

are algebraically independent then the p-adic valuation of the Jacobian cannot

be increased by lifting beyond a fixed bound. One part of the proof uses Witt

Jacobian [MSS12] criterion, the other part uses the observation that the anni-

hilating polynomial’s p-adic valuation can be arbitrarily increased by lifting the

polynomials.
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Chapter 1

Introduction

1.1 Motivation

The concept of algebraic dependence of polynomials is a nonlinear generaliza-

tion of the concept of linear dependence of polynomials. Linear dependence of

polynomials can only capture linear relationship among the polynomials, whereas

algebraic dependence of polynomials can capture even nonlinear or higher degree

relationship among the polynomials. Algebraic independence is a fundamental

notion in mathematics, an important tool in commutative algebra and algebraic

geometry. It has several applications in computer science, in polynomial identity

testing algorithms [BMS13, ASSS12], proving formula lower bound for determi-

nant [Kal85], construction of deterministic randomness extractors for polynomial

sources [DGW09], computing program invariants of arithmetic straight line pro-

grams [L’v84].

Deciding whether a given set of polynomials are algebraically dependent or not

and computing the relationship of the dependent polynomials are two natural com-

putational problems. It is known that, although computing the dependency rela-

tionship of algebraically dependent polynomials is computationally hard, checking

whether the polynomials are algebraically dependent or not can be done efficiently,

in randomized polynomial time if the polynomials are over fields of characteristic

zero (like the field Q), or has large enough characteristic (compared to the product

of the degrees of the input polynomials).

1
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In this case, testing algebraic independence of polynomials reduces to computing

the rank of the Jacobian matrix of f1, . . . , fm ∈ k[x1, . . . , xn]. If the Jacobian

is of full rank, the polynomials are independent, otherwise the polynomials are

dependent. Even if the polynomials are succinctly encoded as arithmetic circuits,

using [BS83] we can efficiently construct the circuits computing partial derivatives.

Now we can plug in random constants from the field in place of the variables and

compute the rank of the Jacobian Matrix. Using Schwartz-Zippel lemma, we can

show that, with high probability, the rank of the this matrix (with random values

plugged in) equals the rank of the Jacobian with polynomial entries. So in this

case, testing algebraic independence reduces to (the complement of) Polynomial

Identity Testing (PIT) and can be done in randomized polynomial time (in terms

of bit-size of the input).

Whereas the case of zero or large characteristic has efficient solution, the scenario

is different if the polynomials are over finite fields of small positive characteristic.

In this case, the Jacobian criterion fails. If we get nonzero Jacobian over Fp, we

can surely conclude that the given polynomials are algebraically independent over

Fp. If we get zero Jacobian, the polynomials need not be dependent, they can be

independent as well. For example, let us take the polynomials xp, yp over the field

Fp. Their Jacobian with respect to x, y is zero, but clearly they are algebraically

independent.

1.2 Problems

The absence of a criterion analogous to Jacobian leads to the following interesting

question.

Problem 1.1 (Algebraic Independence Testing over Fp). Given a set of m (n-

variate) polynomials (encoded as Arithmetic Circuits) over Fp, decide whether they

are Algebraically Independent or not. Can we decide this in randomized polynomial

time?

We identify a few special cases of this general problem, which should be easier,

but all these cases are nontrivial in the sense that current methods cannot decide

independence over Fp efficiently (in randomized or deterministic polynomial time)

even for these cases. In our thesis, we mainly focus on the following three special

cases.
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• We have two bivariate polynomials of high degree (exponential in terms of

bit size) with constantly many monomials.

• We have two bivariate polynomials, both are supersparse or lacunary (sparse

polynomials with exponential degree).

• We have two arithmetic circuits of bivariate polynomials.

1.3 Previous Work

[DGW09] asked whether algebraic independence testing of polynomials over Fp is

in RP. [Kay09, ASSS12] also mentioned this as an open problem. [MSS12] gave

a generalization of Jacobian, named Witt Jacobian which works for polynomials

over Fp. They improved the complexity of the independence testing over Fp from

PSPACE to NP#P. So, in terms of complexity, there is a huge gap between the

best known upper bound NP#P and RP.

1.4 Contribution of the thesis

In this thesis, we explore new directions to this problem. The first approach we try

is transforming the input polynomials (preserving their transcendence degree) so

that Jacobian works correctly for the transformed polynomials, although Jacobian

was wrongly zero for the original polynomials. The following example illustrates

the idea: Let us take the polynomials xp, yp over the field Fp. By taking pth

root, we transform these two polynomials into x and y. This transformation

preserves the transcendence degree of the original set of polynomials. Now we get

nonzero Jacobian (of x and y) and conclude that xp and yp are independent. We

give evidence that Jacobian can be corrected even when the polynomials are not

prime powered using natural transformations like applying polynomial map. We

come up with a monomial map correcting Jacobian of algebraically independent

monomials. Using these ideas, we resolve a special case of two exponential degree

bivariate binomials, where direct application of known techniques do not give

efficient solution. Pursuing a different approach, we give a new characterization

of algebraic independence over finite fields. We prove that p-adic valuation of the
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Jacobian of two polynomials can be arbitrarily increased if and only if the two

polynomials are algebraically dependent.

1.5 Organization of the thesis

In chapter two, we describe the preliminary concepts and survey some of the key

results. In chapter three and four, we present the main results of the thesis. In

chapter five, we conclude, giving a summary and directions to future work.



Chapter 2

Background

2.1 Basic Definitions

We begin with the definition of algebraic independence of polynomials.

Definition 2.1 (Algebraic Independence). Polynomials f1, . . . , fm ∈ k[x1, . . . , xn]

are called algebraically independent over a field k, if there is no nonzero m-variate

polynomial A ∈ k[y1, . . . , ym] such that A(f1, . . . , fm) = 0. If such a nonzero poly-

nomial A exists, f1, . . . , fm are called algebraically dependent and the polynomial

A is called an annihilating polynomial.

Examples: f1 = x + y and f2 = x2 + 2xy + y2 are two algebraically dependent

polynomials. Their annihilating polynomial is f 2
1 − f2.

f1 = x and f2 = y over F [x, y] are two algebraically independent polynomials. The

general definition of algebraic dependence comes from field theory[Coh03]. Given

any field extension F/k (where F is an extension of k), let p1, . . . , pm, q ∈ F .

Now, q is algebraically dependent on p1, . . . pm over k if q is algebraic over the field

k(p1, . . . , pm) that is if q satisfies an equation with coefficients in k(p1, . . . , pm). If

we multiply the equation by a common denominator, we get the equation for q as

a0q
d + a1q

d−1 + . . .+ ad = 0 where a0 is not zero and ai ∈ k[p1, . . . , pm].

Now, a subset X of F is algebraically independent over k if no element of X

is algebraically dependent on the rest of the elements in X. Otherwise, it is

algebraically dependent.

5
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Definition 2.2 (Transcendence Basis). A subset B of F which is algebraically

independent and every element of F is algebraically dependent on B over k is

called a transcendence basis or transcendence base of F over k.

Example: If K = k(x, y), {x2, y2} is a transcendence basis for K. We note that,

k(x2, y2) 6= k(x, y).

Definition 2.3 (Algebraic Extension). A field extension F/k is algebraic if every

element of F is algebraic over k.

Example: All finite extensions are algebraic but the converse is not true. For

example, field of all algebraic numbers is an infinite algebraic extension of field of

rational numbers. An extension which is not algebraic is called a transcendental

extension.

Definition 2.4 (Purely Transcendental Extension). A field extension F/k is purely

transcendental if there is an algebraically independent subset X of F such that

F = k(X).

Example: k(x1, ..., xn)/k

2.2 Properties of Algebraic Independence

2.2.0.1 Combinatorial Properties

It is evident from the definition of algebraic dependence that it is a generalization of

linear dependence. If some polynomials are linearly dependent then obviously they

are algebraically dependent. But the converse is not true, unless the polynomials

are all linear. Analogous to linear dependence, algebraic dependence satisfies the

defining properties of Matroid, a combinatorial structure unifying and generalizing

the abstraction of dependence.[VdWAN31] Here, we prove two common properties

of algebraic independence and linear independence.

• If f1, . . . , fm are algebraically independent polynomials, any subset of them

are also algebraically independent.
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Proof. Let us assume a subset S of the polynomials fi, . . . , fj which are

algebraically dependent and there is a nonzero A such that A(fi, . . . , fj) =

0. Now, the same annihilating polynomial annihilates f1, . . . fm because if

fk /∈ S we can have ck.fk as a term in the annihilating polynomial where

ck = 0.

• If a polynomial f is algebraically dependent on g1, . . . , gm but not on g1, . . . , gm−1,

then gm is algebraically dependent on f, g1, . . . , gm−1.

Proof. Let us write the annihilating polynomial of f, g1, . . . , gm as a polyno-

mial in gm: a0gm
d+a1gm

d−1+. . .+ad = 0, here ai ∈ k[f, g1, . . . , gm−1]. Now, if

a0, a1, . . . ad−1 are all zero, then ad equals to 0. Now, ad = 0 implies that there

is a nonzero polynomial relation between f, g1, . . . , gm−1 contradicting the hy-

pothesis that they were independent. So, a0, a1, . . . , ad−1 are not all 0. From

the equation, we get gm is algebraically dependent on f, g1, . . . , gm−1

Definition 2.5 (Transcendence Degree). Maximal number of algebraically in-

dependent polynomials in a set of polynomials is known as the transcendence

degree of the polynomials. Transcendence degree of a field extension, written as

tr.deg(F/k) is the cardinality of its transcendence base.

Using the exchange property of matroid, it can be proved that all transcendence

bases have same degree. So, transcendence degree is well defined.

Algebraic extensions have transcendence degree zero.

Transcendence degree of k(x1, . . . , xn)/k = n as x1, . . . , xn forms transcendence

basis.

We present the analogy between algebraic independence and linear independence

in the following table.

Linear Independence Algebraic Independence

Basis Transcendence Basis

Dimension Transcendence Degree

S Spans L L is algebraic over k(S)

We mention here two basic facts. The proofs of these facts can be found in most

textbooks on algebra and fields. [Coh03]
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• Transitivity Property of algebraic dependence:

If f is algebraically dependent on g1, . . . , gn, and each gi is algebraically

dependent on h1, . . . hm, then f is algebraically dependent on h1, . . . , hm

• tr.deg(F/k)=tr.deg(F/E)+tr.deg(E/k)

2.2.1 Algebraic properties

The set of all annihilating polynomials of f1, . . . , fn forms an ideal of the polyno-

mial ring k[y1, . . . , yn].

Lemma 2.6. [Kay09] Let f1, . . . , fm ∈ F [x1, . . . , xn] be a set of algebraically de-

pendent polynomials over field F , such that no proper subset of them is algebraically

dependent, equivalently the transcendence degree of the polynomials is n−1. Then

the ideal of the annihilating polynomials is generated by a unique irreducible (up to

constant) polynomial A. So in this case, the ideal of the annihilating polynomials

is a principal ideal.

Proof. Let A ∈ F [y1, . . . , ym] be a minimal degree annihilating polynomial of

f1, . . . , fm. First, we prove that it is a F -irreducible polynomial. If it is reducible,

it is the product of two polynomials with smaller degree. Let us assume,

A(y1, . . . , ym) = A1(y1, . . . , ym) · A2(y1, . . . , ym).

Now, as A(f1, . . . , fm) = 0, either A1(f1, . . . , fm) = 0 or A2(f1, . . . , fm) = 0.

In both the cases, we get annihilating polynomial of smaller degree, this contra-

dicts the assumption that A was the minimal degree annihilating polynomial of

f1, . . . , fm.

Now, the uniqueness of the minimal irreducible annihilating polynomial can be

proved using properties of resultant. Let B(y1, . . . , ym) be another irreducible

annihilating polynomial of f1, . . . , fm. We have to prove A = c·B for some constant

c. As, no proper subset of f1, . . . , fm are algebraically dependent, f2, . . . , fm are

not algebraically dependent. So, both A and B has y1. Now, let

p(y2, . . . , ym) = RESULTANTy1(A(y1, . . . , ym), B(y1, . . . , ym)).

We use y to denote y1, . . . , ym.
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Using a standard property of resultant, we can find A′(y) and B′(y) such that

p(y2, . . . , ym) = A′(y) · A(y) +B′(y) ·B(y).

Plugging in f1, . . . , fm in place of y1, . . . , ym, we get,

p(f2, . . . , fm) = A′(f1, . . . , fm) · A(f1, . . . , fm) +B′(f1, . . . , fm) ·B(f1, . . . , fm).

This implies p(f2, . . . , fm) = 0. But as f2, . . . , fm are algebraically independent, p

must be zero.

Now, resultant of A and B is zero implies that A and B share a common factor.

As A is irreducible, this implies A = c ·B.

Remark 2.7. This lemma can be sometimes useful in testing algebraic indepen-

dence in the following way. Let us suppose that the f(x, y) and g(x, y) are two

algebraically dependent polynomials and A(f(x, y), g(x, y)) is an annihilating poly-

nomial of them. Now, we substitute y with a constant c from the base field (or

suitable field extension of the base field), such that none of f(x, c), g(x, c) becomes

constant. If no such substitution is possible, then we keep y as it is and replace x

by a constant c. Let U be the ideal of annihilating polynomials of f(x, y), g(x, y)

and V be the ideal of annihilating polynomials of f(x, c), g(x, c). As none of f, g

is constant, the ideal U is a principal ideal. Now, if A(f(x, y), g(x, y)) = 0, then

A(f(x, c), g(x, c) = 0. As the transcendence degree of f(x, c), g(x, c) is 1, V is also

a principal ideal, generated by a single absolutely irreducible polynomial. This im-

plies, U = V. We use this idea to test algebraic independence in this special case.

Let us assume, polynomials f and g are of the form such that f1 = f(0, c) = c1y
a

and f2 = g(0, c) = c2y
b. In this case if f and g are dependent, their minimal

annihilating polynomial would be just the minimal annihilating polynomial of ya

and yb. Let us suppose, minimal annihilating polynomial of f1, f2 is fd1 = f e2 . So,

in this case, f and g are algebraically independent if and only if fd = ge.

The following lemma is very useful, it says if number of polynomials is more

than number of variables in the polynomials, then those polynomials are always

algebraically dependent.

Lemma 2.8. [For92] The polynomials f1, . . . , fm ∈ k[x1, . . . , xn] are algebraically

dependent over k if m > n.
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Proof. We prove this by contradiction. Let us assume f1, . . . , fm are algebraically

independent. Then, f1, . . . , fm forms a transcendence basis for k(x1, . . . , xn). Now,

Tr.degk(x1, . . . , xn)/k = n as x1, . . . , xn forms a transcendence basis. But m > n.

As we know that any two transcendence bases for K/k have the same cardinality,

we get a contradiction.

2.3 Computing the Annihilating Polynomial

2.3.1 Degree bound of Annihilating Polynomial

Let f1, . . . , fm ∈ k[x1, . . . , xn] be polynomials of degree at most δ ≥ 1 and r is the

transcendence degree of f1, . . . , fm. If the polynomials are algebraically dependent,

then there exists a non zero annihilating polynomial A ∈ k[y1, . . . , ym] such that

degree of A ≤ δr. [Mit13] contains detailed proof of this degree upper bound.

This bound is tight, there are algebraically dependent polynomials whose minimal

annihilating polynomial’s degree matches this bound.[Mit13]. x1, x2 − x1
d, x3 −

x2
d, . . . , xn − xn−1d, xdn has transcendence degree n and it’s minimal annihilating

polynomial has degree dn

The upper bound on the degree of annihilating polynomial gives a simple but

inefficient method to compute the annihilating polynomial or test if they are al-

gebraically independent. If f1, . . . , fm ∈ K[x1, . . . , xn] are polynomials of degree

at most δ ≥ 1, then f1, . . . , fm ∈ K[x1, . . . , xn] are algebraically independent over

k if and only if {fd11 · fd22 · · · fdmm |
∑m

i=1 di ≤ δm} is K-linearly independent. This

exponential sized system of linear equations can be solved in PSPACE. In case

of constantly many sparse polynomials with low (polynomially bounded) degree,

as the degree bound of the annihilating polynomial is polynomial, we can test

algebraic independence in polynomial time. But for constantly many polynomials

with high (exponential) degree, the degree bound is exponential.

2.3.2 Hardness of computing Annihilating Polynomial

As annihilating polynomial’s degree bound can be exponential, explicitly comput-

ing the annihilating polynomial is definitely computationally intractable. Kayal
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in [Kay09] showed computing A(0, . . . , 0) mod p is #P-hard. If annihilating poly-

nomial had polynomial sized arithmetic circuit that could be computed efficiently,

then A(0, . . . , 0) mod p could also be computed efficiently. He also showed that

annihilating polynomials do not have polynomially bounded (in input size) circuits

unless polynomial hierarchy collapses.

2.3.3 Special cases of algebraic dependence

2.3.3.1 Linear polynomials

If all the polynomials are linear, they are algebraically dependent if and only if

they are linearly dependent. As, Jacobian matrix of linear polynomials is just

the matrix of their coefficients, we can show this using Jacobian Criterion (proved

later) for algebraic independence.

2.3.3.2 Monomials

Lemma 2.9. [Mit13] A set of monomials are algebraically independent if and only

if their exponent vectors are linearly independent over Z.

Proof. If mi = x1
αi1 . . . xn

αin , then (αi)=(αi1, αi2, . . . , αin) is called the exponent

vector of the monomial mi. Now, let us assume that the exponent vectors of the

monomials are Z-linearly dependent and

λ1.α1 + ...+ λn.αn = 0

From this, we can easily show,

m1
λ1m2

λ2 . . .mn
λn = 1

This shows m1, . . . ,mn are algebraically dependent.

Conversely, let m1, . . . ,mn be algebraically dependent. If t1, . . . , tr are the terms

of the annihilating polynomial, then ti(m1, . . . ,mn) is a monomial for all ti. As

all these monomials cancel, there are two distinct terms t1 = y1
λ1y2

λ2 ...yn
λn and

t2 = y1
µ1y2

µ2 ...yn
µn such that t1(m1, ...,mn) = t2(m1, ...,mn).
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Plugging in m1, ...,mn in t1 and t2, we will get

(λ1−µ1)α1 + · · ·+(λn−µn)αn = 0. As t1 and t2 are distinct, not all (λi−µi) can

be zero. This shows that the exponent vectors are linearly dependent.

2.4 A Sufficient condition for Algebraic Inde-

pendence

Lemma 2.10. [KR05] Let f1, . . . , fn ∈ k[x1, . . . , xn] be non-zero polynomials. If

under some lexicographic ordering σ, leading monomials of f1, . . . , fn are alge-

braically independent over K, then f1, . . . , fn are algebraically independent over

K.

Proof. Let us assume according to a lexicographic ordering σ, leading monomials

of f1, . . . , fn are respectively LM(f1), . . . , LM(fn). Take any nonzero polynomial

g(f1, . . . , fn). Let us suppose that m is the monomial in the support of g, such that

m(LM(f1), . . . , g(LM(fn)) is leading with respect to σ. Hence, for any monomial

m′ in the support of g, and any monomial ki in the support of fi,

m′(k1, . . . , kn) � m′(LM(f1, . . . fn)) � m(LM(f1), . . . , LM(fn))

In this case the last inequality cannot be equality, unless m′ = m. Otherwise,

m′ − m is the annihilating polynomial of leading monomials, contradicting the

assumption. So, this proves, the monomial m(LM(f1), . . . , g(LM(fn)) cannot

cancel with other monomials. This implies that there is no nonzero annihilating

polynomial for f1, . . . , fn .

This condition on leading terms is not a necessary condition for algebraic inde-

pendence as there are algebraically independent polynomials such that under all

possible lexicographic orderings, their leading terms are algebraically dependent.

For example, x + y and x3 + y3 are algebraically independent over Q and under

both orderings x ≺ y and y ≺ x, leading terms are dependent.

As a corollary of this condition, we can show if in a set of n-variate polynomials,

each polynomial has a variable, which is not present in the other polynomials, then
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they are algebraically independent, because we can pick a lexicographic ordering

such that the leading terms would be the terms containing the unique variables.

2.5 Jacobian Criterion

[ER93, For92] Jacobian converts the nonlinear problem of testing algebraic inde-

pendence to linear algebra. We define Jacobian matrix as

Jacx1,...,xn(f1, . . . , fn) =


∂f1
∂x1

∂f2
∂x1

. . . ∂fn
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fn
∂x2

...
...

. . .
...

∂f1
∂xn

∂f2
∂xn

. . . ∂fn
∂xn



Jacobian follows Chain Rule.

Jacx(f(g)) = Jacg(x)(f)Jacx(g)

Theorem 2.11. Over fields of characteristic zero, the transcendence degree of

the polynomials f1, . . . , fn in[x1, . . . , xm] equals to the rank of the Jacobian matrix

Jacx1,...,xm(f1, . . . , fn).

We prove the case, when m = n.

Proof. Let us suppose that the fi are algebraically dependent and A ∈ k[y1, . . . , yn]

is a minimal degree annihilating polynomial that is A(f1, . . . , fn) ≡ 0.

Differentiating the annihilating polynomial with respect to xi and applying the

chain rule, we get

∂

∂xi
A(f1, . . . , fn) =

∂A

∂y1

∂f1
∂xi

+ · · ·+ ∂A

∂yn

∂fn
∂xi
≡ 0

Arranging all the equations, we get

Jac(f1, . . . , fn)


∂A
∂y1
...
∂A
∂yn

 =


0
...

0





Chapter 2. Background 14

Over characteristic zero, we can always find yi such that ∂A
∂yi

is not zero. Over

characteristic p, if for all i, ∂A
∂yi

is zero, then A is pth power of some polynomial.

So, it will contradict the fact that A was the minimal annihilating polynomial.

After fixing such a yi,
∂A
∂yi
|yj=fj should be nonzero. As derivative decreases the

degree, if ∂A
∂yi
|yj=fj is zero, it would become an annihilating polynomial of f1, . . . , fn

with lesser degree than A. This contradicts the assumption that A is the minimal

annihilating polynomial of f1, . . . , fn.

Thus, ∂A
∂yi

cannot be all zero. So, determinant of Jacobian matrix must be zero.

Converse: Let us assume that the fi are algebraically independent. Now, we

know if number of polynomials are greater than the number of variables, then the

polynomials are always algebraically dependent, so for each i there is a minimal

degree annihilating polynomial Ai ∈ k[y0, . . . , yn] such that

Ai(xi, f1, . . . , fn) ≡ 0

As f1, . . . , fn are not algebraically dependent, the annihilating polynomial Ai

should have y0. As the field has characteristic zero,

∀i :
∂Ai
∂y0
6= 0

We note, over small characteristic, this is the step, where proof of this direction

of Jacobian criterion breaks down. Because, derivative of a pth power is zero, over

characteristic p, we cannot say ∀i : ∂Ai
∂y0
6= 0. If the field has characteristic larger

than the degree bound of this annihilating polynomials, then only this step would

be correct over characteristic p. Now, If ∂Ai
∂y0

evaluated at xi, f1, . . . , fn is zero, that

would contradict the fact that Ai is the minimal degree annihilating polynomial

of xi, f1, . . . , fn, because derivative decreases the degree.

For all i,

∂Ai
∂xi

=
∂Ai
∂y0

+
∂Ai
∂y1

∂f1
∂xi

+ · · ·+ ∂Ai
∂yn

∂fn
∂xi
≡ 0

j 6= i⇒ ∂Ai
∂xj

=
∂Ai
∂y1

∂f1
∂xj

+ · · ·+ ∂Ai
∂yn

∂fn
∂xj
≡ 0
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Jac(f1, . . . , fn)


∂Ai
∂y1
∂Ai
∂y2
...

∂Ai
∂yn

 =



0
...

−∂Ai
∂y0
...

0


← ithposition

Jac(f1, . . . , fn)


∂A1

∂y1

∂A2

∂y1
. . . ∂An

∂y1
∂A1

∂y2

∂A2

∂y2
. . . ∂An

∂y2
...

...
. . .

...
∂A1

∂yn
∂A2

∂yn
. . . ∂An

∂yn

 = −


∂A1

∂y0
0 . . . 0

0 ∂A2

∂y0
. . . 0

...
...

. . .
...

0 0 . . . ∂An
∂y0


As the matrix at right hand side is a diagonal matrix with all diagonal entries

nonzero, Jacobian must have full rank.

We note that the same proof works for rational functions as well. For an abstract

proof of Jacobian criterion, we refer [MSS12] For the proof of the general case,

that transcendence degree equals the rank of the Jacobian, we refer [BMS13].

Here, we give an alternate representation of Jacobian. Let R be a ring, and A be a

R-algebra. Differentials are objects following these two rules d(ra+sb) = r da+s db

and d(ab) = a db+ b da. Wedge products or exterior products are antisymmetric

product. du ∧ dv = −dv ∧ du. Ω denotes the universal module of differentials of

the polynomial ring k[x1, . . . , xn] over k.

df1 ∧ · · · ∧ df2 = Jacx1,...,xn(f1, . . . , fn)dx1 ∧ · · · ∧ dxn

2.6 Algebraic Independence over positive char-

acteristic

There are polynomials over Fp which are algebraically dependent over Fp but

independent if viewed over Q. For example, f = x+y and g = xp+yp are two such

polynomials because in Fp, (x+ y)p = xp + yp. Now, if f1, . . . , fn are algebraically

dependent over Fp, then we know that Jacobian of f1, . . . , fn would be zero over

Fp, because while proving the Jacobian criterion, we saw that even over positive

characteristic, this direction of Jacobian criterion holds true. So, nonzero Jacobian
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over Fp proves that the polynomials are algebraically independent. But the other

direction is false over fields of positive characteristic unless the characteristic of the

field is greater than the product of the degrees of the polynomials ( equivalently

degree bound of annihilating polynomial).[Mit13]

2.6.1 Witt-Jacobian Criterion

[MSS12] introduced a new generalization of Jacobian, which they named Witt-

Jacobian, that works over all finite fields. Unlike Jacobian criterion’s proof, Witt-

Jacobian Criterion’s proof is not elementary, it uses technical results from algebraic

geometry like De Rahm Complex. One key idea of Witt-Jacobian is it lifts the coef-

ficients of polynomials from Fp to Ẑp(p-adics), thereby changing the characteristic

from p to zero.

For ` ≥ 1, the `th Witt-Jacobian is defined as,

WJP`(F ) = (f̂1 . . . f̂n)
p`−1−1

(x1 . . . xn).detJac(f̂1 . . . f̂n)

Witt-Jacobian f is called (`+1)-degenerate if the coefficient of xα in f is divisible

by pmin[vp(α),`]+1 for all α ∈ Nn. vp(α) is the highest power of p dividing all αn.

Now, the explicit Witt-Jacobian criterion of algebraic independence is:

Theorem 2.12. f1, . . . , fn are algebraically independent if and only if ` + 1th

Witt Jacobian polynomial WJP`+1 = (f̂1 . . . f̂n)p
`−1.Jac(f̂1, . . . , f̂n).x1 . . . xn is not

(`+ 1) degenerate for ` ≥ logp[F(x1, . . . xn) : F(f1, . . . fn)]insep

Here, [F(x1, . . . xn) : F(f1, . . . fn)]insep is the inseparable degree of the finitely gen-

erated field extension. We refer to [MSS12] for the definition. This degree is

bounded by product of the degrees of the polynomials.

[F(x1, . . . xn) : F(f1, . . . fn)]insep ≤ δr

where r is the transcendence degree of the polynomials and δ is the maximum

degree.
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As degeneracy testing is computationally hard in general, and Witt-Jacobian may

have exponential sparsity, it is difficult to test this criterion efficiently. This cri-

terion can be tested in NP#P complexity, that means by a nondeterministic

polynomial time Turing machine with a #P oracle.



Chapter 3

Correcting Jacobian’s failure in

special cases

3.1 Jacobian Correcting Transformations

We have seen that there are algebraically independent polynomials f1, . . . , fn over

Fp, such that their Jacobian is zero. In this case, we say that Jacobian is failing.

A natural question is whether we can always transform the polynomials f1, . . . , fn

(preserving their transcendence degree) to g1, . . . , gn such that Jac(g1, . . . , gn) is

non-zero. We know if Jacobian of g1, . . . , gn is nonzero over Fp, then g1, . . . , gn are

algebraically independent over Fp. As the transformation is transcendence degree

preserving, we can conclude that f1, . . . , fm are algebraically independent over Fp.
We call g1, . . . , gm as algebraic independence certifying polynomials for f1, . . . , fm

and the transformation as Jacobian correcting transformation and transcendence

degree preserving transformation as faithful transformation.

Faithful transformations like applying algebraically independent polynomial map

cannot correct Jacobian because chain rule shows that Jacobian of the transformed

polynomials is multiple of the Jacobian of the original polynomials. But one faith-

ful transformation can correct the Jacobian, if the polynomials are pth powered, we

can take the highest possible pth root of them and then take the Jacobian. This

sometimes corrects the Jacobian. For example: Jacobian fails for xp, yp. After

taking pth root of them, the Jacobian becomes nonzero.

But there are algebraically independent polynomials f, g over Fp, none of them

pth powered, yet their Jacobian is zero. For example, xp−1y and xyp−1. We give

18
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evidence to show that in some of these cases, we can apply faithful transformations

like applying polynomial map and make them pth powered.

Let us see how some natural transformations on the polynomials preserves the

transcendence degree and can also help in correcting Jacobian.

3.1.1 Taking pth root of polynomials

Lemma 3.1. fp
α

1 , . . . , f p
α

m are algebraically dependent over Fp if and only if f1, . . . , fm

are algebraically dependent over Fp.

Proof. If fp
α

1 , . . . , f p
α

m are algebraically dependent over Fp, then there exists a

nonzero annihilating polynomial A(fp
α

1 , . . . , f p
α

m ) = 0. Clearly this same poly-

nomial also annihilates f1, . . . , fm .

If f1, . . . , fm are algebraically dependent over Fp, then there exists a nonzero

annihilating polynomial A(f1, . . . , fm) = 0. Over Fp: (a + b)p
α

= ap
α

+ bp
α
. If we

take pα power of A, we get

Ap
α

(f1, . . . , fm) = A(fp
α

1 , . . . , f p
α

m ) = 0.

Thus, Ap
α

works as an annihilating polynomial for fp
α

1 , . . . , f p
α

m .

We note that this proof can easily be generalized to the polynomials fp
α1

1 , . . . , f p
αn

n .

The first part of the proof is just the same and in the second part, we simply take

Am as the annihilating polynomial where m is plcm(α1,...,αn).

3.1.2 Applying polynomial map

A polynomial map ϕ is :

(x1, x2, . . . , xn) 7→ (g1, g2, . . . , gn)

where gi ∈ k[x1, . . . , xn]

So, a polynomial f ∈ k[x1, ..., xn] gets mapped to f(g1, . . . , gn), we denote this by

ϕ(f)
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Lemma 3.2. If f1, . . . , fn are algebraically dependent then ϕ(f1), ϕ(f2), . . . , ϕ(fn)

are algebraically dependent. If g1(x1, . . . , xn), . . . , gn(x1, . . . , xn) are algebraically

independent polynomials, then the converse is also true.

Proof. If f1, . . . , fn are algebraically dependent, clearly the same annihilating poly-

nomial annihilates f1(g1, . . . , gn), . . . , fn(g1, . . . , gn). Now, we prove the opposite

direction, which requires the map to be algebraically independent. We can view

ϕ as a homomorphism from k[x1, . . . , xn] → k[g1, . . . , gn]. As g1, . . . , gn are al-

gebraically independent, ϕ is injective. For the sake of contradiction, assume

that f1, . . . , fn be algebraically independent but ϕ(f1), ϕ(f2), . . . , ϕ(fn) are alge-

braically dependent. So, there is a nonzero annihilating polynomial A such that

A(ϕ(f1), ϕ(f2), . . . , ϕ(fn)) = 0. As ϕ is homomorphism, ϕ(A(f1, . . . , fn)) = 0. As

ϕ is injective, this means A(f1, . . . , fn) = 0. So, we get a contradiction.

Now, we show how monomial maps and more generally, polynomial maps may

help to transform a non pth-powered polynomial to a pth-powered polynomial. Let

us assume, we have two bivariate polynomials f and g such that none of them

is pth powered and all occurrences of x in both the polynomials are pth-powered,

but not all of the occurrences of y are pth-powered. In this case, this monomial

map, x 7→ x, and y 7→ yp makes both f and g, pth-powered and if we take highest

possible pth root, the occurrence of x which had minimum pth power, becomes pth

power free.

Polynomial maps are more general than monomial maps. We show how polynomial

maps can help to correct Jacobian with two examples.

• f = x2 + x3 + y and g = x3 + y over F2 Now, applying the polynomial map,

x 7→ x

y 7→ x3 + y2

We get, x2 and y2. After taking square root of both, we get x and y. This

proves the independence of f and g.

• f = x+ y, g = xy2 + y3 over F2 Now, applying the polynomial map

x 7→ x2 − y
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y 7→ y

We get, x2 and x2y2. After taking square root of both the polynomials, we

get x and xy. Jacobian of x, y is clearly nonzero.

3.1.3 Taking polynomials from the ring or function field

of original polynomials

We know that, transcendence degree of polynomials f, g over field k = transcen-

dence degree of k(f, g). As k[f, g] is contained in the function field k(f, g), this

implies that if f and g are two algebraically dependent polynomials, then any two

polynomials p1, p2 ∈ k[f, g] should be also be algebraically dependent. So, if we

take two polynomials from k[f, g] and prove them to be algebraically independent,

it proves f and g must be algebraically independent. The converse is obviously

not true. Now, going to ring can help in getting algebraic independence certifying

polynomials.

• Even if none of the original polynomials are p powered, we may find pth

powered polynomial in the ring generated by them, and after taking pth

root, Jacobian can be corrected sometimes. For example,take these two

polynomials over F2, f = x2 + x3 + y and g = x3 + y. None of them are

square. But, if we take f − g, it is just x2. If we take the Jacobian of the

square root of f − g and g, the Jacobian would be non zero. This proves f

and g are independent.

• For example, f = up−1vp and g = u over Fp. Now, taking product of f and

g, we get f ′ = upvp, which is pth-powered. If Jac(uv, u) is nonzero, we get

algebraic independence certifying polynomial

3.2 Correction of the Jacobian in special cases

3.2.1 Monomials

In chapter two, we saw the characterization of algebraic independence of monomi-

als. As algebraic independence of monomials is equivalent to Z-linear independence
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of the exponent vectors of them, M1, . . . ,Mn are algebraically independent over Fp
if and only if they are algebraically independent over Q. So testing independence

of monomials is easy, we just have to check if their Jacobian over Q is nonzero

or if the exponent vectors are Z-linear dependent. But, there are algebraically

independent monomials whose Jacobian over Fp is zero. Obviously, if one or both

of the monomials are p-powered, Jacobian of them would be zero over Fp. In

this case, by taking pth root, we can easily get algebraic independence certifying

monomials. But it is not necessary that one or both of the failing monomials have

to be pth powered, we saw the example of failure of Jacobian for monomials like

xp−1y, xyp−1. Here, we show we can also transform these kinds of monomials to

pth powered monomials.

Lemma 3.3. Independence certifying polynomials exists for every set of n alge-

braically independent n-variate monomials over Fp.

Proof. Let us assume that we have n monomials, M1, . . . ,Mn , where

Mi = ci · xai11 xai22 . . . , xainn

Exponent vector for Mi is (ai1, ..., ain).

We denote the matrix of the exponent vectors of the monomials by

An,n =



x1 x2 · · · xn

M1 a11 a12 · · · a1n

M2 a21 a22 · · · a2n
...

...
...

. . .
...

Mn an1 an2 · · · ann



Calculating the Jacobian using the definition we get

Jac(m1, . . . ,mn) = (
n∏
i=1

ci) · det A ·
∏n

i=1Mi∏n
i=1 xi

Now, the monomials are algebraically dependent over any field if and only if det A

is zero over Q. But Jacobian over Fp can be zero if det A is divisible by p.



Chapter 3. Correcting Jacobian’s failure in special cases 23

We show that we can correct the Jacobian by applying a monomial map, each

variable is mapped to algebraically independent monomials.

(x1, x2, . . . , xn) 7→ (N1, N2, . . . , Nn)

We illustrate this with an example. If m1 = xayb,m2 = xcyd and if

x 7→ xeyf

y 7→ xgyh

Then the transformed monomials become m′1 = xae+bgyaf+bh m′2 = xce+dgycf+bh

We represent this with exponent matrix.(
a b

c d

)(
e f

g h

)
=

(
ae+ bg af + bh

ce+ dg cf + bh

)

Now, let us suppose B is the matrix of the exponent vectors of the monomials

N1, . . . , Nn. It is easy to see that the matrix of the exponent vectors of the trans-

formed monomials would be the product of the two exponent matrices A ·B.

So, we have to find a suitable B. We show that if we take B as the Adjoint of A

(denoted by Adj A), we get algebraic independence certifying monomials.

We know that, Adj A · A = det A · In

Now, the exponent matrix of the transformed monomials would be

Adj A · A = det A · In

So, monomials would be transformed to

(M1,M2, . . . ,Mn) 7→ (xdetA1 , xdetA2 , . . . , xdetAn )

.

This transformation makes every monomial pth powered as det A = c · pk.

After taking pkth root, the monomials get transformed to xc1, . . . , x
c
n, where c is

not divisible by p.
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Now, Jacobian of xc1, . . . , x
c
n is clearly non-zero.

3.2.2 Two bivariate binomials

Let us assume the given binomials over Fp (ignoring the constant terms) are

f1(x, y) = m1 +m2

f2(x, y) = n1 + n2

Here, m1 = α1x
a1yb1 , m2 = α2x

a2yb2 , n1 = β1x
c1yd1 , n2 = β2x

c2yd2

Now,

Jac(f1, f2) = Jac(m1, n1) + Jac(m1, n2) + Jac(m2, n1) + Jac(m2, n2)

Let us assume, according to the lexicographic ordering y ≺ x, {m1, n1} are pair of

leading monomials and {m2, n2} are pair of least monomials.

ALGORITHM:

First, we test if the Jacobian of the two binomials is nonzero. If yes, the two

polynomials are algebraically independent. Else, we go to Case 1.

• Case 1: We check if {m1, n1} or {m2, n2} are algebraically independent. If

yes, then f1 and f2 are algebraically independent using the lemma from 2.10

Else, we go to case 2.

• Case 2: If both {m1, n1} and {m2, n2} are dependent, we check if {m1,m2}
are dependent. If yes, then f1 and f2 are dependent.

Proof. If {m1, n1} are algebraically dependent and {m1,m2} are algebraically

dependent, then {m2, n1} are also algebraically dependent. This follows from

2.2.0.1 transitive property of algebraic dependence. In case of monomials, we

can also directly verify this easily. Now {m1, n1} are dependent and {n1, n2}
are dependent, so {m1, n2} are dependent. As all pairs are dependent over

Q, Jac(m1, n1) +Jac(m1, n2) +Jac(m2, n1) +Jac(m2, n2) is 0 if viewed over

Q. Thus, the two binomials will be dependent over Fp as well.
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Else, we go to case 3.

• Case 3: In this case, we apply the following monomial map on both the

binomials. The exponent matrix of the monomial map is the adjoint matrix

of the exponent matrix of m1,m2. As m1,m2 are independent, adjoint of

their exponent matrix exists. Now, as we have seen in 3.2.1, the monomial

map m1 will be transformed to α1x
a and m2 will be transformed to α2y

a

where a is the determinant of the exponent matrix of m1,m2. As monomial

map preserves transcendence degree, transformed m1 and transformed n1

should continue to be dependent. This implies that the map transforms

n1 to β1x
c. For the same reason, n2 gets transformed to β2y

d. Now, the

transformed binomials become

α1x
a + α2y

a

and

β1x
c + β2y

d

As Jac(α1x
a, β1x

c) = 0 and Jac(α2y
a, β2y

d) = 0

Jac(α1x
a + α2y

a, β1x
c + β2y

d) = Jac(α1x
a, β2y

d) + Jac(α2y
a, β1x

c)

We also use the fact that Jac(c1x
a, c2y

b) is abc1c2.x
a−1yb−1. So, it would be

zero if and only if either a is divisible by p or b is divisible by p.

– Case A: If none of a, c, d is divisible by p and Jac(f1, f2) is zero, then

the binomials are algebraically dependent.

Proof. In this case, from the condition Jac(f1, f2) = 0, we get c1x
a−1yd−1 =

c2x
c−1ya−1 where c1 = adα1β2 and c2 = acα2β1. This implies c1 = c2

and a = c = d. From c1 = c2 and c = d, we get α1

β1
= α2

β2
So, in this case

the two binomials are constant multiples of each other.

– Case B: If a is divisible by p, remain in this case. else go to case C

If the highest power of p dividing a is k. We take pkth root from the first

binomial. Now the first binomial is not pth power anymore. We take

Jacobian of the transformed binomials again. If Jacobian is nonzero,

the binomials are independent. If Jacobian is zero, then go to next case.
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– Case C: If a is not divisible by p, and c is divisible by p, but d is not

divisible by p.

Proof. If only c is divisible by p, then Jac(α2y
a, β1x

c) is zero. But

Jac(α1x
a, β2y

d) is nonzero. So, Jacobian of the two binomials is nonzero

in this case.

If a is not divisible by p and d is divisible by p, but c is not divisible by

p, the same proof works and Jacobian is nonzero.

– Case D: In this case, p divides both c, d. We take highest possible pth

root from c, d. Now, if p does not divide both c, d, this will lead to case

A, so we know the binomials are algebraically dependent in this case.

The other possible case is p does not divide one of c or d. In this case,

as the Jacobian is nonzero, the binomials are algebraically independent.

Time complexity:

Each case involves only checking if the highest power of p dividing the exponents

and checking if Jacobian of the two binomials is zero. Even if the exponents are

exponential in terms of bitsize, these operations can be done in polynomial time

in the size of the input. So, this algorithm decides algebraic independence of two

binomials in polynomial time in the size of input.
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Lifting the Jacobian

Let f(x, y), g(x, y) be two polynomials over Fp, whose Jacobian is zero over Fp
but when f and g are viewed as polynomials over Q, the Jacobian is nonzero. It

implies that all the coefficients of the Jacobian polynomial are divisible by p. The

highest power of p dividing the Jacobian is called valuation (or p-adic order) of the

Jacobian. If the Jacobian is zero over Q, it’s p-adic valuation would be infinity,

because any power of p divides the Jacobian. A lift of a polynomial over Fp is

adding a polynomial whose all coefficients are divisible by p. For example, xp+px

is a lifted polynomial of xp. Clearly, f and g are algebraically dependent over Fp
if and only if f + pµ and g + pδ are algebraically dependent.

Let us take two algebraically dependent polynomials over Fp, x+ y and xp + yp. If

we lift the second polynomial by adding (x+ y)p − (x+ y) to (x+ y)p, the p-adic

valuation of the Jacobian gets increased, in this case it goes up to infinity. We

show that for any two algebraically dependent polynomials, p-adic valuation of the

Jacobian can be arbitrarily increased by lifting. We also prove the converse, if they

are independent, p-adic valuation of the Jacobian cannot be increased arbitrarily.

This gives a characterization of algebraic dependence over finite fields based on

classical Jacobian, though we do not know if it is computationally efficient.

Theorem 4.1. p-adic valuation of Jac(f, g) can be increased arbitrarily if and

only if f, g are algebraically dependent.

Proof. ⇒ To prove this direction, we first prove the following lemma.

Lemma 4.2. p-adic valuation of evaluated Annihilating Polynomial can be in-

creased arbitrarily .
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Proof. Let us take two bivariate polynomials f(x, y), g(x, y) which are dependent

over Fp, but independent over Q. Let A(x, y) be the minimal annihilating polyno-

mial of f and g. Here, A(f(x, y), g(x, y)) is a zero polynomial over Fp, that is, if we

view A(f(x, y), g(x, y)) as a polynomial over Q, all its coefficients are divisible by

p. The highest power of p dividing all its coefficients is called the p-adic valuation

of the annihilating polynomial evaluated at f(x, y), g(x, y).

A(x, y) =
∑

cix
diyei

A(f, g) =
∑

cif
digei ≡ 0 (mod p)

Now, polynomials are lifted.

f 7→ f + pδ

g 7→ g + pµ

We want δ and µ such that,

A(f + pδ, g + pµ) ≡ 0 (mod p2)

∑
ci(f + pδ)di(g + pµ)ei ≡ 0 (mod p2)

Here we note that the same annihilating polynomial would work for the lifted

polynomials as well.

Expanding the expression using binomial theorem and removing the terms with

coefficients divisible by p2, we get the following congruence equation.

∑
cif

digei + pδ
∑

cif
di−1eig

ei + pµ
∑

cif
dieig

ei−1 ≡ 0 (mod p2)

As p|A(f, g), we can write p−1A(f, g), and the above congruence equation is equiv-

alent to

p−1(
∑
i

fdigei) + δ
∑

cif
di−1eig

ei + µ
∑

cif
didig

ei−1 ≡ 0 (mod p)

The above equation can be re-written as,

p−1A(f, g) + (∂xA)|(f,g)δ + (∂yA)|(f,g)µ ≡ 0 (mod p)
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Now, this equation has two unknowns δ and µ, we set one of them zero, and find

the other. If

(∂xA)|(f,g) 6≡ 0 (mod p)

then we get the solution as,

δ =
−p−1A(f, g)

(∂xA)|(f,g)
µ = 0

Similarly if

(∂xA)|(f,g) ≡ 0 (mod p) but (∂yA)|(f,g) 6≡ 0 (mod p)

we have the following solution,

δ = 0

µ =
−p−1A(f, g)

(∂yA)|(f,g)

Now, if

(∂xA)|(f,g) ≡ 0 (mod p) and (∂yA)|(f,g) ≡ 0 (mod p)

then, A(x, y) is pth power of some polynomial. In this case, A1/p will also be

an annihilating polynomial. This contradicts the fact that A was the minimal

annihilating polynomial.

Now, we have

A(f + pδ, g + pµ) ≡ 0 (mod p2).

If we write f + pδ as f1 and g + pµ as g1 we can again repeat the same argument

by lifting f1 to f1 + p2δ1 and g1 to g1 + p2δ2. Then we can get

A(f + pδ + p2δ1, g + pµ+ p2µ1) ≡ 0 (mod p4).

Iterating this process i times, we will get

A(f + p.δi′ , g + p.µi′) ≡ 0 (mod p2
i

).

Here δi′ =
∑i

j=1 p
2j−1

δj and µi′ =
∑i

j=1 p
2j−1

δj
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Now, using this lemma, we can prove that Jac(f, g)’s p-adic valuation can be

arbitrarily increased if f, g are algebraically dependent. The proof is exactly similar

to the approach of proving that if f and g are algebraically dependent, then

Jacobian of f and g is zero. We are using the same technique, presented here

using the language of differentials and wedge product.

Let A(f, g) be a minimal annihilating polynomial of f and g such that A(f, g) ≡
0 (mod p).

After lifting f to f1 and g to g1, we get,

A(f1, g1) ≡ 0 (mod p2).

Applying the differential operator on A, we get

dA(f1, g1) ≡ 0 (mod p2).

Taking wedge product (or exterior product) with dg1, we get,

dA(f1, g1) ∧ dg1 ≡ 0 (mod p2).

Now,

(∂f1A(f1, g1)df1 + ∂g1A(f1, g1)dg1) ∧ dg1 ≡ 0 (mod p2).

We get,

∂f1A(f1, g1)(df1 ∧ dg1) ≡ 0 (mod p2).

Now if ∂f1A(f1, g1) ≡ 0 (mod p), we take dA(f1, g1) ∧ df1.

Repeating the previous steps, we’ll get

∂g1A(f1, g1)(dg1 ∧ df1) ≡ 0 (mod p2).

Now, both ∂f1A(f1, g1) and ∂g1A(f1, g1) cannot vanish mod p, because that implies

that the annihilating polynomial is pth power of some polynomial, contradicting
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the fact that A was the minimal annihilating polynomial. So, we get

(df1 ∧ dg1) ≡ 0 (mod p2).

So, the lifts which increased the p-adic valuation of the annihilating polynomial

would also increase the p-adic valuation of the Jacobian.

⇐ Now, we prove the converse using the non-degeneracy condition of algebraic

independence from [MSS12].

Jac(f, g) cannot be lifted arbitrarily if f and g are algebraically independent. The

number of steps of lifting is upper bounded by log2(logp[F(x, y) : F(f, g)]insep + 1)

Proof. We prove this by contradiction. Let us assume that Jacobian’s p-adic val-

uation can be arbitrarily lifted even when f and g are algebraically independent.

So, after the ith lifting, f and g can be lifted to fi and gi such that

Jac(fi, gi) ≡ 0 (mod p2
i

).

After i = log2(logp[F(x, y) : F(f, g)]insep + 1) many steps, we get

Jac(fi, gi) ≡ 0 (mod pm+1).

where m = logp[F(x, y) : F(f, g)]insep

Now, from the explicit definition of Witt-Jacobian 2.6.1, Witt-Jacobian is a mul-

tiple of the p-adic Jacobian. So we get,

WJPm+1(fi, gi) ≡ 0 (mod pm+1)

That means, WJPm+1(fi, gi) is m+ 1 degenerate.

But as m+ 1th Witt-Jacobian polynomial’s degeneracy cannot be increased by

lifting, we get WJPm+1(f, g) is also m+ 1 degenerate.

This contradicts with m+ 1th Witt-Jacobian’s non-degeneracy condition.
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This theorem can be potentially used to design an algorithm for testing algebraic

independence over positive characteristic, but currently we do not know if it is

computationally feasible. Let us assume that the input polynomials are f0 and g0

and

df0 ∧ dg0 ≡ 0 mod (p).

We search for rational functions δ1 and µ1 over characteristic p such that

d(f0 + p · δ1) ∧ d(g0 + p · µ1) ≡ 0 mod (p2).

If we can solve this equation, we iterate this process again i = log2(logp[F(x, y) :

F(f, g)]insep+ 1) many steps. If in that step, Jacobian can be lifted, then the poly-

nomials are algebraically dependent. Otherwise, the polynomial are algebraically

independent. We note that in the special case of purely inseparable extensions of

exponent 1, that means if [F(x, y) : F(f, g)]insep = p, then we need to just check

for the existence of δ1 and µ1, this could be easier than the general case. We end

this chapter with the following conjecture.

Conjecture 4.3. If two polynomials are algebraically dependent over Fp, then we

can lift those polynomials so that they become algebraically dependent over Q.



Chapter 5

Conclusion and Future Directions

5.1 Summary

We have pursued two approaches to efficiently test algebraic independence of poly-

nomials over positive characteristic. Both the approaches are around the classical

Jacobian criterion. The first approach we have tried is transforming polynomials

such that Jacobian works correctly for the transformed polynomials. We could

find such transformations for special cases like monomials and two binomials. The

main difficulty in this approach, is transforming a polynomial to a pth power. Al-

though, we can probably resolve a few more cases with this technique, new tools

are needed to make this approach work for the general case of two high degree

polynomial’s algebraic independence testing. The second approach we have tried

is lifting the polynomials and it’s effect on Jacobian’s p-adic valuation. We have

come up with a characterization, which is closer to classical Jacobian than Witt-

Jacobian. Though we do not know how to test this criterion effectively, pursuing

this approach may lead to new insights on the problem.

5.2 Future Directions

We would try to extend the proof of two binomial’s algebraic independence testing

to two bivariate trinomials and if possible to the case of two bivariate polynomials

with constantly many monomials. We would also like to prove or disprove the

following conjecture.
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Conjecture 5.1. If f and g are two algebraically independent polynomials over

Fp such that their Jacobian polynomial is zero, we can always get algebraic inde-

pendence certifying polynomials for them by applying suitable polynomial map and

and taking pth root.
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