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Abstract. This report presents a generalised version of Burgess’[2] Lemma 2 which in-

deed is the first step towards lowering the bound on the quantity
n+H∑
n

χp((x+ a)(x+ b)).

1. Introduction

This report is an output of an attempt to lower the bound on the quantity

n+H∑
n

χp((x+ a)(x+ b))

for given n,H, a, b. Which dictates the diterministic bounds on the problem of polynomial
factoring on finite fields. As an attempt to do this we present the most generalised form of
Lemma 2 of Burgess’[2]. Before moving ahead we define the problem of polynomial factoring
over finite fields.

Given a monic univariate polynomial f(x) in a the ring Fq[x], where Fq is a finite
field with q (q is odd) elements. Using facts about field extensions and vector spaces
we know that q = pr for some odd prime p and r an integer larger than 0. We want
an efficient algorithm to factorise f(x) into distinct monic univariate irreducible
polynomials f1(x), f2(x), . . . , fk(x) such that fi(x) ∈ Fq[x], ∀i in {1, 2, . . . , k}.

This problem has been of interest to mathematicians and computer scientist since long,
due to its vast number of applications, which we will come later in this section. First lets
describe the present state of the problem. First of all by efficient algorithm we mean that
we want a polynomial time algorithm. In general we feel that its hard do factor anything
but using randomness in nature few randomised algorithms like Cantor-Zassenhaus[3], and
Berklecamp[1] were designed that for all practical purposes run in polynomial time. But
still the question whether there exists a deterministic polynomial time algorithm is open.
Ivanyos, Karpinski, Saxena[4] came up with the first polynomial time deterministic algorithm
to factor polynomial of prime degree n oven finite fields, assuming Generalised Reimann’s
Hypothesis (GRH). Also assuming GRH there are algorithms known for polynomial factoring
over finite fields which are sub-exponential in time for instance Ronyai[5]. The best known
deterministic and unconditional bound for this problem is by Victor Shoup [6] which is
”O(n2log(p))” for polynomials over Fp where n is the degree of polynomial.
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Now we come to question of applications of this problem. Various finite field applications
require polynomials over them. Few good examples would be:

• In construction of error correcting codes like BCH code, Goppa, Reed-Solomon codes
and other cyclic redundancy codes, we require the solution of this problem.
• Public key cryptosystems using elliptic curves also use this as a sub problem.
• The problem of factoring multivariate polynomials over finite fields can also be re-

duced to this problem.
• Also used in generation of pseudorandom sequences.

For a detailed report over this one can look at surve by Gathen & Panario [7]. Also a detailed
report of BRIS (Banff International Research Station) meet of Finite Field experts in 2006,
summarises the major advancements in this area[? ]. In this report we present the generalised
form of Burgess’ Lemma 2 which from now we will call as Theorem 1 for convenience. Using
which we can have a shorter proof for the deterministic bounds of polynomial factoring.
An outline of the report is as follows: In section 2 and 3 we present few notations and
preliminary results required for this report. In section 4 we present the generalised form
of Burgess Lemma i.e. Theorem 1 and few lemmas required to prove it. Finally in 5 we
conclude the report.

2. Notations

Following is the list of the notations that we would be using in this report.

• p will always represent an odd prime number.
• F will always represent field F.
• We represent the set {0, 1, 2, . . . , k} for any fixed integer k by [k].
• We represent order of an element a in multiplicative group of Zp by Ordp(a).
• We represent the quantity

(
a
p

)
where (.) represents the Legendre′s symbol of a an

integer with respect to p, by χp(a).
• Let f(x, y) be a bivairate polynomial in the polynomial ring F[x, y]. Then degree of
f(x, y) denoted by deg(f) is max{α+β : xαyβ is monomial term of f(x,y) without coefficient}.
• Similarly we denote degree of f(x, y) ∈ F[x, y] with respect to x by degxf i.e. degree

of f with y treated as constant.
• If f(x, y) and g(x, y) be two bivariate polynomials in F[x, y], then Resx(f, g) repre-

sents the resultant of f, g with y treated as constant. Clearly Resx(f, g) = R(y) for
some R(y) ∈ F[y].

3. Preliminaries

Following is a set of facts that we will assume without proof in this report.

• Fact 1: The degree of polynomial Resx(f, g) = R(y) where f, g ∈ F[x, y] is upper
bounded by deg(f) ∗ deg(g).
• Fact 2: Roots of Resx(f, g) = R(y), f and g same as above capture those y points

where f and g have a common zero.
• Fact 3: If f(x) is a square free, monic, completely factorisable polynomial (in Zp)

with integral coefficients. Then∑
x∈Zp

χ(f(x)) ≤ (deg(f)− 1)p
1
2 .
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• Fact 4: χp(a
k) = χp(a)k = χp(a) if k is odd else 1.

4. Theorem 1

Define sets A and K as follows:

A = {ai : i ∈ [n] for some fixed n}
K = {2i : i ∈ [Ordp(2)− 1]}

From now onwards A and K will always represent these sets and n will always represent
cardinality of A. This theorem is the generalisation of Lemma 2 of Burgess[]. It states:

Given a prime p, let H be any set ⊂ Zp whose cardinality is h (from henceforth
h will represent the cardinality of H), also let φ(x) =

∏
ai∈A

(x+ ai). Define the

quantity SH(x) for a given A and H as,

SH(x) =
∑
b∈H

χp(φ(x+ b))

Then for a given integer r > 0 and sufficiently large p.∑
x∈Zp

(SH(x))2r < (2rh)2rp+ nr(2 ∗ p 1
2 + 1)h2r)

For proving this theorem we need the following lemmas.

Lemma 1. : Let f(x) be a polynomial in the polynomial ring Fp[x] over Fp.
Then if

g(x) =
∏
ai∈A

f(x+ ai)

is a perfect square modulo p. Then

ψ(x, k) =
∏
ai∈A

f(x+ kai)

is a perfect square ∀k ∈ K.

Proof: We look at the quantity g(x + aj), aj ∈ A. For all aj, g(x + aj) is a perfect
square, since g(x) is a perfect square. This implies that the quantity∏

aj∈A
g(x+ aj)

is a perfect square modulo p. But

(1)

∏
aj∈A

g(x+ aj) =
∏
aj∈A

∏
ai∈A

f(x+ ai + aj)

= (
∏
aj=ai

f(x+ 2ai))(
∏
aj 6=ai

f(x+ aj + ai))

= (
∏
aj=ai

f(x+ 2ai))(
∏
aj 6=ai
i>j

f(x+ aj + ai)
2)
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This implies that
∏

aj=ai

f(x + 2ai) is a perfect square. But now replace A by 2 ∗ A =

{2 ∗ ai : ai ∈ A} and hence we go on, which essentially proves the lemma i.e. ∀k ∈ K,
ψ(x, k) =

∏
ai∈A

f(x+ kai) is a perfect square.

Lemma 2. : If ψ(x, y) in F[x, y], with deg(ψ(x, y)) = d is square free polynomial as a
bivariate and number of values of y for which ψ(x, y), is not square free, is finite and atleast
γ. Then ∃ a polynomial θ(y), such that deg(θ(y)) ≤ d2 and theta(y) has at least γ roots.

Proof: Let derivative of any polynomial η(x, y) in the polynomial ring F[X, Y ] over field
F, with respect to x is denoted by dxη. Now let us look at the polynomial

Resx(ψ(x, y), dxψ) = R(y)

If ψ(x, y) is not square free as a bivariate polynomial, then R(y)) is essentially 0. Otherwise
by Fact 1 we know that deg(R(y)) ≤ d2. Also by Fact 2 we know that R(y) captures all the
points k where ψ and dxψ have a common root. As ψ is not square free for atleast γ values
of k, hence R(y) has atleast γ roots. Put θ(y) = R(y). We are done.

Note: In above proof ψ is a general bivariate polynomial with only condition that it is
square free.

Lemma 3. : Chose some arbitrary ε > 0, then almost for all p,

Ordp(2) ≥ p
1
2
−ε

Proof: Let P(x) = {p : p < x & Ordp(2) < p
1
2
−ε}. Hence for any p ∈ P(x) ∃ a number

δ < p
1
2
−ε such that

p|(2δ − 1)

There can be at most x
1
2
−ε such δ. Hence by Pigeon Hole Principle we know that

∃ δ′ < x
1
2
−ε

such that at least
|P(x)|
x
1
2−ε

primes divide 2δ
′ − 1. We now use the following fact that number of prime divisors of an

integer k is less that log(k)
log(log(k)

. Hence clearly

|P(x)|
x
1
2−ε

< log(2δ
′−1)

log(log(2δ′−1) = δ′

log(δ′)
< x

1
2
−ε

(2)

This implies P(x) < x1−2ε. Clearly limx→∞
|P(x)|
π(x)

= 0 where π(x) is the prime counting

function.

Lemma 4. : ψ(x, y) ∈ F[x, y], be equal to∏
ai∈A

f(x+ yai)

for a given set A, and let f(x) ∈ F[x] be a polynomial with splitting field, Fs, such that

f(x) =
∏
βi

(x+ βi)
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where {β1, β2 . . . , βl} ⊂ Fs. Then ψ(x, y) is a bivariate square free polynomial iff f(x) is a
square free polynomial.

Proof: If f(x) is not square free, then each of f(x + yai), ai ∈ A is not perfect square
free, when viewed as a bivariate. Hence

ψ(x, y) =
∏
ai∈A

f(x+ yai)

is not square free as a bivariate.

If ψ(x, y) is not square free then, this is possible iff at least one of βi + yaj = βk + yam as
a monomial in y, for some i, j, k,m, but then this implies that βk = βi and j = am. But this
is leads to contradiction. Hence the lemma follows.

Proof of theorem 1: Using combinatorial arguments we have

∑
x∈Zp

(SH(x))2r =
∑
x∈Zp

∑
b1∈H

. . .
∑

b2r∈H

∏
bj

j∈[[2r]/{0}

χp(φ(x+ bj))

(3)

To avoid the cumbersomeness in notations, with bj we would mean bj for some j ∈ [2r]/{0}.
We are interested in knowing the fact, when

∏
bj

φ(x + bj) for some fixed sequence of b′js

becomes a perfect square. By observation

(4)

∏
bj

φ(x+ bj) =
∏
bj

∏
ai∈A

(x+ ai + bj)

=
∏
ai∈A

∏
bj

(x+ bj + ai)

=
∏
ai∈A

f(x+ ai)

Where f(x) =
∏
bj

(x + bj) =. We eliminate the cases when f(x) is a perfect square which

makes ψ(x, k) =
∏
ai∈A

f(x+ kai) a perfect square for all k in Zp. Note that f(x) is a perfect

square iff only there are even number of bi’s taking a particular value. Now this implies
ψ(x, k) is a perfect square as a bivariate if even number of bi’s take a particular value. Now
number of cases when this happens is bounded by (2rh)r and for each of those cases the
inner most sum

S =
∑
x∈Zp

χp(
∏
ai∈A

φ(x+ ai))

(5)

is bounded by p. Hence this portion contributes (2rh)rp to the inequality.
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Now we look at the other case when f(x) is not perfect square, then f(x) can be written as∏
βi

(x+ βi)
ei

, where the set {βi} ⊂ Zp and ei’s are integers ≥ 1 . Since f(x) is not a perfect square hence
at least one of the ei’s is odd. We now construct a polynomial f ′(x) from f(x) as follows:

• If a factor in f(x) has even power then dont include it in f ′(x).
• If a factor in f(x) has odd power then include it in f ′(x) and give it power 1.

Note that f(x) would be a perfect square iff f ′(x) = 1 also that f ′(x) captures all the factors
in f(x) whose power is odd. Also we construct the polynomial ψ′(x, k) by keeping f ′(x) in
ψ(x, k). Also

∏
ai∈A

χf(x+ ai) =
∏
ai∈A

χf ′(x+ ai) but for the cases when x ≡ −(ai+bj)mod(p)

which can at most be at nr points over all combinations of ai + aj. Hence we would deal
with f ′(x) instead of f(x).
Now we assume that f(x) is not a perfect square and the product

∏
ai∈A

f(x + ai) becomes a

perfect square then clearly
∏
ai∈A

f ′(x + ai) is perfect square, now using lemma 1, ψ′(x, k) is

perfect square ∀k ∈ K. Using lemma 4 on f ′(x), we have ψ′(x, k) is square free as a bivariate.
Now we bound the value of p for such conditions to hold.
Hence using lemma 2 on ψ′(x, k) and taking γ to be |K| = Ordp(2), we have

|K| < 2r2n2

which implies

p < 24r2n2

. If we chose p to be sufficiently large then we cannot have
∏
ai∈A

f ′(x + ai) as perfect square

if f ′(x) 6= 1.

This implies that for large enough p i.e. p ≥ 24r2n2
we cannot have

∏
ai∈A

f(x + ai) a perfect

square, if f(x) is not a perfect square. The number of cases when at least one value is taken
by odd number of bi’s is bounded by h2r. For these values we can write∑

x∈Zp
χp(

∏
ai∈A

∏
bj

(x+ bj + ai)) =
∑
x∈Zp

χp(
∏
αi∈L

(x+ αi)).

For some L ⊂ Zp.
Using Fact 4 over the product

∏
ai∈A

∏
bj

(x+ bj + ai) and using the form of
∏
ai∈A

f(x+ ai), as

we have used the form of f(x) to come up with f ′(x). Note that we ignore the cases when
x ≡ −bj − ai(modp) and power of the factor is even as we then make it 1 which gives an
error of nr, as for a given sequence of bi’s they can at most be nr extra counting. Now let

ζ(x) =
∏
αi∈L

(x+ αi)

(6)
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Note that deg(ζ) = |L| ≤ 2nr. By Fact 3 we have

∑
x∈Zp

χp(ζ(x)) ≤ (2nr − 1)p
1
2 .

(7)

Hence for the case when we have at least one value taken by odd number of bi’s we have the
inner sum |S| < nr + (2nr − 1)p

1
2 . Hence we derive our second term of the inequality.

Using this we can have an easy proof of p
1
2 + ε (for arbitrary ε) bound on polynomial

factoring. Also if we look at the requirement of largeness of p for which this Theorem 1 will
hold. We find that even for |A| = 3 and r = 100, p needs to be greater than 23600. But if we

use lemma 3 then we find that almost for all p we have we have Ordp(2) > p
1
3 , that lowers

the bound on p sufficiently. So for almost every p the requirement would be p > 36003.

5. Conclusion

We have proved theorem 1 but still the problem of lowering the bound on
n+H∑
n

χp((x+ a)(x+ b))

, remains open, hence the deterministic bound on polynomial factoring remains the same.
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