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1 Einleitung

Diese Diplomarbeit beschäftigt sich mit Quantenspielen und den neuesten Errungen-
schaften bezüglich interaktiver Beweissysteme, deren Teilnehmer Quantencomputer be-
nutzen dürfen (QIP). Im Hauptteil werden vor allem zwei Beweise behandelt, der wis-
senschaftlich anerkannte Beweis von Jain, Ji Upadhyay und Watrous für QIP = PSPACE
[JJUW09] und der Beweis von Gutoski und Wu für DQIP = PSPACE [GW11]. Die
Komplexitätsklasse DQIP beinhaltet alle Entscheidungsprobleme, die in Quantenspie-
len mit Schiedsrichter in einer konstanten Anzahl von Kommunikationsrunden gelöst
werden können. PSPACE bezeichnet, wie üblich die Klasse von Problemen, die von
klassischen Computern in exponentieller Zeit unter Nutzung von polynomiell viel Spe-
icherplatz entscheidbar sind.
Von besonderem Interesse ist die Einordnung dieser Quanten-Komplexitätsklassen, QIP
und DQIP, in PSPACE, da diese die Äquivalenz von klassischen und Quantencomput-
ern in bestimmten komplexitätstheoretischen Situationen zur Folge hat: QIP = IP
und DIP = DQIP. Wobei die Klassen IP und DIP Interaktive Beweissysteme und
doppelte Interaktive Beweissysteme bezeichnen, welche die klassischen Varianten von
QIP und DQIP darstellen. Die beiden Gleichungen folgen aus PSPACE = IP und
DQIP = PSPACE, wobei die erstere von Shamir [Sha92] bewiesen wurden und die
zweite im Hauptteil dieser Diplomarbeit behandelt wird.
Probleme in DIP können von einem polynomiell beschränkten klassischen Schiedsrichter
nach einer polynomiellen Anzahl von Kommunikationsrunden mit zwei omnipotenten
Spielern, Alice und Bob, entschieden werden. Die Einordnung der Klasse DQIP in
PSPACE stellt eine Verallgemeinerung des ursprünglichen Beweises von Gutoski und
Wu für SQG = PSPACE [GW10] dar. Der einzige Unterschied zwischen SQG, der
Klasse von kurzen Quantenspielen, und DQIP besteht darin, dass jeweils nur eine Frage
an die Spieler gestellt wird. Beiden Klassen ist jedoch gemein, dass der Schiedsrichter
die Fragen an Bob von Alices Anwort abhängig machen kann.
Anhand dieser Formulierungen kann man bereits erkennen, dass deutsche Begrifflichkeiten
in diesem Feld entweder noch nicht existieren oder auf einem rudimentären Level des
Eindeutschens englischer Fachbegriffe beruhen. Darüberhinaus soll vor allem der Beweis
für DQIP = PSPACE detailiert dargestellt werden und möglichst vielen Lesern einen
Zugang bieten. Aus diesen Gründen ist es sinnvoll die Diplomarbeit auf Englisch zu
verfassen. Nichtsdestotrotz sind für die Einführung und die Darstellung der Ergebnisse
dieser Arbeit einige deutsche Begrifflichkeiten zu klären. Die Anzahl an unschönen Neol-
ogismen soll jedoch auf ein Minimum beschränkt werden. Deshalb werden die allgemein
üblichen Bezeichnungen für Komplexitätsklassen verwendet, obwohl sich diese auf die
englischen Fachbegriffe beziehen. Interaktive Beweissysteme mit Quantencomputern soll
zum Beispiel als Äquivalent zu dem Begriff “Quantum Interactive Proof systems” (QIP)
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verwendet werden.
Die Beweise für QIP = PSPACE und DQIP = PSPACE beruhen auf ähnlichen Ideen.
Die Problemstellungen in den Quanten-Komplexitätsklassen QIP und DQIP können
als semidefinite Programme formuliert werden und mit NC-Algorithmen gelöst werden.
Diese NC-Algorithmen beruhen auf der Anwendung boolscher Kreise, welche logarith-
mische Speichernutzung und polylogarithmische Tiefe in der Eingabegröße haben dürfen.
Des Weiteren benutzen die Algorithmen eine von Kale entwickelte Subroutine, die mul-
tiplikative Gewichts-Erneuerungs-Methode für Matrizen [Kal07]. Diese wird im Englis-
chen “matrix multiplicative weight update method” (MMW) genannt.
Diese Arbeit erweitert Gus Gutoskis und Xiaodi Wus Abhandlung [GW11] um zahlreiche
Details, die zum Nachvollziehen ihrer Beweise notwendig sind. Des Weiteren wird die
rudimentäre Fehlerkorrektur, der ersten Version ihrer Arbeit [GW10] präzisiert und auf
eine konstante Anzahl von Kommunikationsrunden verallgemeinert. Die Allgemeinheit
des Beweises von Gutoski und Wu lässt sicherlich eine Veröffentlichung in mathematis-
chen Journalen und nicht nur in Online-Archiven zu . Zumal die beiden oben genannten
Gleichungen, QIP = IP und DIP = DQIP, die ersten allgemeinen Ergebnisse darstellen,
die eine Äquivalenz von klassischen Computern und Quantencomputern unter gewissen
komplexitätstheoretischen Annahmen beweisen.
Im Folgenden wird die Entwicklung der mathematischen Theoreme, die zu den oben
genannten Meilensteinen der Quanten-Komplexitäts-Theorie geführt haben, skizziert.
1989 definierten Silvio Micali und Charles Rackhoff interaktive Beweissysteme zum
ersten Mal [GMR89]. Die Komplexitätsklasse IP beinhaltet alle Probleme die von
einem Verifizierer in polynomieller Zeit mit hoher Wahrscheinlichkeit entschieden wer-
den können, wobei dieser einen klassischen probabilistischen Computer benutzen darf
und mit einem omnipotenten Beweiser in polynomiell vielen Runden Nachrichten aus-
tauschen kann. Der Beweiser kann in diesem Fall die zufälligen Münzwürfe, die der Ver-
ifizierer ausführt, nicht einsehen. Man spricht deshalb von privaten Münzen. Im Gegen-
satz dazu bezeichnet die Komplexitätsklasse AM (“Arthur-Merlin class”) Beweisysteme
in denen die Münzwürfe öffentlich sind. Man benutzt die Bezeichnung Arthur-Merlin,
da Merlin ein Zauberer ist, und damit die Möglichkeit besitzt an Informationen zu
gelangen, die selbst einem omnipotenten Beweiser verborgen bleiben. Die auf zwei Run-
den beschränkte Version dieser Klasse, AM(2), wurde bereits 1985 von Lazlo Babai
eingeführt [Bab85]. Die analogen Quantenkomplexitätsklassen, QIP und QAM, unter-
scheiden sich von ihren klassischen Versionen, IP und AM, nur dadurch, dass der Veri-
fizierer beziehugsweise Arthur einen Quantencomputer benutzen darf und die Teilnehmer
Quanteninformationen austauschen können. Die Quantenkomplexitätsklassen QIP und
QMAM werden ausführlich im Hauptteil behandelt, wobei in QMAM die Kommunika-
tion von Merlin initiiert wird und insgesamt drei Nachrichten verschickt werden. Im
Gegensatz zur klassischen Komplexitätstheorie kann in QIP die Anzahl der Runden
auf drei beschränkt werden ohne die Klasse zu verkleinern. Der Beweis von Alexei Ki-
taev und John Watrous für QIP = QIP(3) [KW00] und der Beweis von Chris Marriott
und Watrous für QIP(3) = QMAM [MW05] werden im Hauptteil genau erklärt, um
den Stand der Forschung zu verdeutlichen, welcher zum Beweis der beiden Gleichungen
QIP = PSPACE und DQIP = PSPACE führte. Eine solche Beschränkung auf eine kon-
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stante Anzahl von Runden ist klassisch kaum vorstellbar, zumal dies den Kollaps der
polynomiellen Hierarchie (PH) auf dem zweiten Level zur Folge hätte.
Als die Forschung für diese Diplomarbeit 2010 begann, war nicht bekannt ob QRG(2) =
PSPACE gilt. Bis heute wurde kein direkter Beweis für diese Fragestellung gefunden,
jedoch wurde sie durch die Arbeit von Gutoski und Wu [GW10] gelöst, zumal QRG(2) ⊆
SQG trivialer Weise gilt. Angesichts der Tatsache, dass dieser Beweis bis heute nicht
über jeden Zweifel erhaben ist, schien es wichtiger diesen ausführlich zu erklären und
seine Schwächen zu beheben als einen direkten Beweis für QRG(2) = PSPACE zu finden.
Zumal nach wie vor wertvolle Forschungsressourcen diesem Problem gewidmet werden,
obwohl es bereits gelöst wurde, ist die ausführliche und detaillierte Darlegung dieses
Beweises notwendig.
Um eingängiges Verständnis zu garantieren, werden alle grundlegenden mathematis-
chen Konzepte in den Vorbereitungen (Kapitel 4) dargelegt. Des Weiteren werden zu
Beginn sowohl komplexitätstheoretische wie auch quantenmechanische und spieltheo-
retische Grundlagen erklärt. Es folgen eine ausführliche Erklärung der MMW-Methode
sowie eine kurze Beschreibung semidefiniter Programme. Im Hauptteil wird das Ergeb-
nis QIP = QIP(3) von Kitaev und Watrous [KW00] präsentiert, da es eine wichtige
Rolle im genau ausgeführten Beweis von QIP = PSPACE [JJUW09] spielt. Dieser Be-
weis ist wiederum in der Struktur ähnlich zu dem Ergebnis DQIP = PSPACE, welches
detailliert und in sich abgeschlossen beschrieben wird. Neben der Korrektur zahlre-
icher kleinerer Fehler sowie der Behebung einiger Ungenauigkeiten, wird in Abschnitt
6.2.6 eine Entscheidungsregel entworfen und erläutert, welche die von Gutoski und Wu
gestellten Kriterien erfüllt. Ebenso wird in den Abschnitten 5.3.2, 6.2.3 und 6.2.4 eine
genau Analyse der Beweise für die Gleichungen QIP = PSPACE und DQIP = PSPACE
vorgenommen. Außerdem wird im Abschnitt 5.3.3 die Fehlerkorrektur verbessert und
detailliter dargestellt. Zuletzt wird diese in Abschnitt 6.2.5 zusätzlich auf eine kostante
Anzahl an Kommunikationsrunden verallgemeinert.
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2 Introduction

2.1 Abstract

This thesis emphasizes the latest advances in quantum interactive proof systems (QIP)
and double quantum interactive proofs (DQIP), a generalization of quantum refereed
games (QRG), focusing on two major proofs. On the one hand the scientifically ac-
knowledged proof of QIP = PSPACE from Jain, Ji, Upadhyay and Watrous [JJUW10],
and on the other hand the proof of DQIP = PSPACE from Gutoski and Wu [GW11].
Hereby PSPACE stands for deterministic polynomial bounded space. The above equa-
tions were the first distinct results on the boundaries of quantum computation in terms
of classical complexity classes. Moreover, these equations imply DQIP = DIP (Double
Interactive Proofs) and QIP = IP (Interactive Proof systems), stating the equivalence
of classical and quantum computation in terms of complexity classes. Both proofs share
similar ideas and structures. In fact both problems can be formulated as semidefinite
programs (SDP) and be solved by NC algorithms, relying upon the matrix multiplicative
weight update method (MMW) from Kale [Kal07]. However, only Watrous’ QIP proof
is published in a mathematical journal.
To guarantee complete insight into the complex proofs of the main part the prelimi-
naries in Chapter 4 are quite resourceful, including complexity theoretic and quantum
mechanical principles, as well as a result from game theory and a complete description
of the MMW method. In Chapter 5 the proofs for QIP = QIP(3) from Kitaev and Wa-
trous [KW00] and QIP(3) = QMAM from Marriott and Watrous [MW05] are discussed
since their results are essential for the proof of QIP = PSPACE [JJUW09]. Besides the
correction of several errors and the addition of explanations especially in the proof of
DQIP = PSPACE in Chapter 6, the precision issues are discussed in greater detail in
Section 5.3.3 and 6.2.5. Moreover, the accuracy in the proof of DQIP = PSPACE is
generalized to multiple rounds of interactions. In addition an explicit description of the
oracle algorithm and a decision rule are presented and proven in Section 6.2.4 and 6.2.6,
respectively.

2.2 Motivation and history

In 2010 my interest was drawn upon a paper [JJUW10], which accomplished the cele-
brated proof of QIP = PSPACE. Studying this significant achievement, I became aware
of the previously unsolved problem whether or not QRG(2)=PSPACE. Since Kale’s
MMW method seemed a promising tool in solving this problem the possibility to con-
tribute to scientific advances was exciting. In order to follow the proofs discussed in
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this thesis, knowledge in different fields of mathematics, physics and computer science
is needed. Hopefully my background enables me to describe quantum computation at
its recent state of the art in an understandable and precise fashion. To achieve this goal
repetitions of important calculations and principles are necessary to some extend. The
fact that SQG = PSPACE is still stated as a hypothesis emphasizes the strong need
for further explanations. The following calculations presented in this thesis clarify the
subject matter and resolve this issue, as well as the generalization DQIP = PSPACE.
Even though quantum computation might seem totally irrational, which is mathemat-
ically backed, it is a stringent logical generalization of classical computers. There is
even the possibility that every physically realizable computing device is essentially a
quantum computer, like every classical one is essentially a Turing machine according to
the Church-Turing thesis. Even though the advances in experimental quantum compu-
tation are quite small so far, the above hypothesis emphasizes, that the chances in this
field might be the best we get. The theoretical part seems even more interesting than
the practical one as the development of physical quantum computers is on a poor level
from a computational point of view. Recently a firm claimed to have built a quantum
computer with 84 qubits. Even if such a machine exists, one can see that it might take
decades to realize helpful physical quantum computers. One needs to take into con-
sideration that the proven limits of quantum computation, also the ones presented in
this thesis are only on levels far above today’s classical computers. Comparing classical
and quantum computation the only significant result was proven by Peter Shor as he
provided a polynomial-time quantum algorithm for prime factorization and discrete log-
arithms [Sho97]. Since the problem of prime factorization is known for quite some time,
it is widely believed that a polynomial time classical algorithm does not exist. These
statements suggest that further investigation is needed in order to fully understand the
chances and limits of quantum computation. More time and energy should be invested
into quantum computational matters, as they are still widely unexplored and new the-
orems and hypothesis are published continuously.
Before the explanations regarding this thesis continue the history of interactive proofs
and the Arthur Merlin class is stated briefly. In 1989 Shafi Goldwasser, Silvio Micali
and Charles Rackhoff introduced the concept of interactive proof systems [GMR89]. A
probabilistic polynomial time verifier decides in polynomially many rounds of interac-
tion with an omnipotent prover, if the statement the prover suggests is true or false.
The verifier has to answer correctly significantly more than half of the times. He uses
private random coins, separating IP from AM. In any Arthur-Merlin class, like AM for
example, the prover sees the verifier‘s random choices, and is therefore called Merlin,
the magician. Lazlo Babai introduced the two round version AM(2) in 1985 [Bab85].
In the quantum versions of the above classes, QIP and QAM, the verifier is allowed to
use quantum computers and to exchange quantum information. Moreover, problems in
the class QMAM can be solved by three turns of communication. Arthur responds to
Merlins first message by sending random bits and uses a quantum computer to process
the information after he received the second and final message from Merlin.
In the large field of game theory, this thesis solely focuses on competitive two player
games with a limited number of rounds. The polynomially bounded referee poses ques-
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tions to the omnipotent players, receives their answers, and declares a winner. One
player supports a certain statement, while his opponent denies it. Hence the referee
decides to approve or discard a statement, as in every decision problem, by declaring a
winner. Therefore, a language belongs to what this thesis calls an interactive class, if the
verifier can distinguish yes- and no-instances after the communication with the prover.
DQIP includes all languages, which can be decided by a quantum refereed game with a
constant number of rounds and separated private communication. Hereby no player is
able to see the messages the referee exchanges with the opponent.
However, after QIP = PSPACE was proven the question remained, how quantum refer-
eed games behave compared to classical complexity classes. The research for this thesis
started in 2010, when the proof for QRG(2) ⊆ PSPACE was yet to be found. Op-
posed to DQIP the communication in QRG(2) is limited to two rounds and the players
are asked at the same time. As mentioned above the proof of QIP = PSPACE relies
upon the matrix multiplicative weight update method (MMW) from Kale [Kal07]. This
method is a promising approximation algorithm. It can be used to solve certain semidef-
inite programs. Therefore, it seemed obvious that the MMW method can help resolving
QRG(2) ⊆ PSPACE, since any problem in QRG(2) can be expressed as a semidefinite
program.
Even though this thesis solved several problems, important ones remained, when Gutoski
and Wu published their proof of SQG = PSPACE. Since QRG(2) ⊆ SQG their paper
solved the question, whether QRG(2) = PSPACE holds. Of course one could still have
tried to prove this equation directly, however, concretizing the proof of Gutoski and Wu
is of higher importance. Gutoski and Wu had the simple but great idea of separating the
different interactions of the referee with each player in a two round quantum refereed
game. Furthermore, they introduced an interesting algorithm design, including a smartly
chosen subroutine for a weak approximation, and a main algorithm, heavily relying upon
the MMW method. This subroutine is implemented by a special case of the main al-
gorithm. Moreover, they managed to generalize their methods to multiple rounds of
interaction proving DQIP = PSPACE. This result even implies QIP = PSPACE. The
goal of this thesis is therefore to explain the mathematical approach to the problem
QRG(2) = PSPACE as well as to present the mentioned results in greater detail than
it has ever been done. To my knowledge neither books nor scripts have been published
on these matters yet. Hopefully this work will explain their tremendous achievement
in a coherent way. To my best knowledge Gutoski’s and Wu’s proofs are correct, even
though they omitted important explanations and an error correction. Nevertheless, they
should receive credit for their work.
Before the mathematical elaboration starts this thesis emphasizes, what is known about
interactive proof systems and refereed games in a classical setting. The first signifi-
cant result on classical interactive proof systems, PSPACE ⊆ IP, was introduced by
Shamir in 1992 [Sha92]. He used arithmetization to convert quantified Boolean for-
mulas into polynomials, whose value depend on the formulas being true or false. The
transformation of these polynomials eased their calculation, while their size increased
only polynomially. This enables a polynomial time verifier to check whether or not the
prover lied, with an interactive protocol in polynomially many rounds. Another impor-
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tant classical result was found by Uriel Feige and Joe Killian in 1997 [FK97]. In order
to prove RG(2) = PSPACE, they pointed out how the #P-complete problem #3-SAT
can be solved using arithmetization. Combining this procedure and Shamir’s interactive
proof for the value of an arithmetic simple QBF (Quantified Boolean Formula) provides
PSPACE ⊆ RG(2). For the reverse containment they argued, that approximately good
strategies (almost always winning) can be found in polynomial space by applying Sav-
itch’s theorem, which is standard in complexity theory, see for example [AB09]. The
equation at hand only holds, because the referee can distribute his information through
private communication channels. Otherwise, when each player sees all the informa-
tion the referee shares, one needs polynomial many rounds of communication to solve
PSPACE-complete problems with a high probability. Moreover, Feige and Killian also
provided the best known bound for refereed games with polynomially many rounds of
communication: RG = EXP [FK97].
The organization of this thesis focuses on clarifying recent advances in Quantum Com-
plexity theory. Therefore, the preliminaries are quite resourceful, taking many different
mathematical concepts into account. Moreover, this part explains basic quantum me-
chanical principles needed to understand quantum computers. In addition the prelimi-
naries include important notational issues as well as some core algorithms and subrou-
tines, especially Kale’s MMW method and the fidelity function. These two concepts are
extensively used in the main part of the thesis, which provides a complete, self-contained
description of the two major advances in quantum complexity theory: QIP = PSPACE
and DQIP = PSPACE. To this end the proofs of QIP = QIP(3) and QIP(3) = QMAM
are discussed before.
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3 Notation

L(X ) set of linear operators acting on X
Herm(X ) set of Hermitian operators acting on X
Pos(X ) set of positive semidefinite operators acting on X
U(X ) set of unitary operators acting on X
D(X ) set of density operators acting on X
Pro(X ) set of projection operators acting on X
Meas(X ) set of projective measurement operators acting on X
T (X ) set of superoperators acting on L(X )

dim(·) dimension of a space

tr(·) trace of an operator

trX (·) partial trace of an operator (X is traced out)

vec(·) vector mapping transforming matrices into vectors

exp(·) exponential function for complex numbers and matrices

e· exponential function for real numbers

log(·) logarithm with base two or logarithmic time, meaning O(log n)

polylog(·) polylogarithmic time, meaning O((log n)k) for some constant k

poly space of polynomial time computable functions

〈·, ·〉 scalar product or Hilbert-Schmidt inner product for linear operators

‖ · ‖ euclidean norm or matrix norm induced by the l2-norm

‖ · ‖p Schatten p-norm for linear operators

‖ · ‖tr trace norm for linear operators and superoperators

‖ · ‖� diamond norm for superoperators

XYZ tensor product of the spaces X ,Y andZ (short notation for X ⊗ Y ⊗ Z)

∠(·, ·) Bures angle between density operators

E[·] expected value of a random variable

8



4 Preliminaries

Since we want to describe the state of art in quantum computation, we will presume,
that the reader is familiar with basic mathematical structures like vectors or matrices
over complex spaces, as well as linear programming and complexity theory. In order
to understand the complicated proofs of the theorems, all lemmas are stated and the
lemmas, which are not standard, are also proven.

4.1 Basic mathematical structure and notation

To describe quantum computational phenomena, operators on finite complex vector
spaces will prove suitable. Therefore, we define certain subsets of linear operators and
superoperators, as well as the Dirac notation and the vector mapping in this section.
Moreover, we examine some decompositions and lemmas, which we need at later chap-
ters. Readers who are familiar with the definitions used in quantum computation and
information, can skip this part, since most of the notation is either standard or more
or less self-explanatory. The following definitions can be found in every sophisticated
book on linear algebra. Most ideas for this section are from the book [NC00] and two
papers discussed in the main part, namely [JJUW10] and [KW00]. Nevertheless, some
easy proofs and details in the cited proofs were added to guarantee complete insight.

4.1.1 Linear operators

In general vectors are expressed in small Latin x, y, v, w . . ., and matrices A,B, U, P . . .
in capital Latin. In order to highlight the spaces we will use Calligraphic symbols, like
A,B,X ,Y , to describe them. Moreover, small Greek letters α, β, γ, δ, . . . represent real
numbers and as usually in quantum information also density operators ρ, σ or τ .
First recall that a Hilbert space X is a complete metric space with an inner product
〈·, ·〉. For two given Hilbert spaces X ,Y the set of linear operators mapping X to Y is
referred to as L(X ,Y). To shorten notation L(X ) will be used instead of L(X ,X ). For
any Hilbert space X the linear operators in L(X ) form an algebra B(X ). If X is finite
dimensional, namely dim(X ) = n, each linear operator A ∈ B(X ) can be identified with
a matrix acting on Cn. To this end we just fix a basis {e1, . . . , en} of X to observe

Aij = 〈ei, Aej〉 ∀i, j ∈ {1, . . . n}.

Notice that Aij refers to the matrix, while A on the right hand side represents the linear
operator. Therefore, we have an algebraic isomorphism from B(H) to the algebra of
n × n matrices with complex entries. Thus, linear algebraic terms can be applied to
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linear operators on finite-dimensional Hilbert spaces, which means we can extend a lot
of well known facts from linear algebra to these operators. This correspondence will not
be mentioned every time, even though one symbol describes both the operator and the
matrix. Since all Hilbert spaces under consideration are finite dimensional it will suffice
throughout most parts of the thesis to think of a complex Euclidean space Cn instead.
If a linear operator A ∈ L(X ) satisfies A = A∗ it is called hermitian. Here the notation
A∗ refers to the adjoint or conjugate transpose of A. Furthermore, let Herm(X ) be the
set of all Hermitian operators acting on X . Note that the sum of Hermitian operators
is also Hermitian, whereas the product of two Hermitian operators is only Hermitian if
they commute. A Hermitian operator A : X → X is positive semidefinite, if and only if
xAx ≥ 0 for all x ∈ X . For A,B ∈ Herm(X ) the notation A ≤ B or B ≥ A will be used
to describe the positive semidefiniteness of B − A. Moreover, Pos(X ) denotes the set
of positive semidefinite operators acting on X . Sometimes positive semidefiniteness is
defined even more general as Pos(X ) = {A ∈ L(X ) : ∃B ∈ L(X ) s.t. A = BB∗}. Fur-
thermore, the set of unitary operators U(X ) includes all U ∈ L(X ) satisfying UU∗ = 1X .
The notation 1X refers to the neutral element of multiplication L(X ). Equivalently we
can characterize unitary operators as norm preserving, i.e.

U ∈ U(X )⇔ ∀x ∈ X : ‖Ux‖ = ‖x‖.

Here ‖ · ‖ represents the Euclidean vector norm as usual. But once additional notation
is introduced, we apply the same notation to more complex operations without explicit
mentioning, even if it coincides with standard notation. This means the notation ‖ · ‖
might refer to the Euclidean vector norm as well as an operator norm later on. If
we would proceed in a different way either the explanations would repeat often or the
notation would be abused, both complicating the understanding of the complex proofs
at later chapters. Therefore, we have to reflect upon the mathematical object under
consideration carefully.
Coming back to the basic definitions, an eigenvalue of a linear operator A ∈ L(X ) is a
scalar λ ∈ K such that

∃v ∈ X , v 6= 0 : Av = λv,

where K refers to the body, the Hilbert space X is built upon. The set of all eigen-
values of some operator A is called the spectrum. It is referred to as spec(A). We
will restrict our analysis to Hermitian operators, since they only have real eigenvalues.
Complex eigenvalues would not be meaningful from a physicist’s point of view. This
will be explained in detail later. Moreover, positive semidefinite operators have non-
negative eigenvalues. An operator Π ∈ Pos(X ) is called a projection if and only if all
its eigenvalues are either 0 or 1. Pro(X ) denotes the set of all projections acting on X .

4.1.2 Decompositions

All Hermitian operators admit a spectral decompositions, which is also called eigende-
composition. Such a decomposition generally exists for normal operators, A ∈ L(X ) :
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AA∗ = A∗A, on complex Euclidean spaces. Let spec(A) = {λ1, . . . , λn} and de-
note by λ′1, . . . , λ

′
k the distinct eigenvalues of A, then there exist an orthonormal basis

{x1, . . . , xn} and orthogonal projection operators P1, . . . , Pk such that

A =
n∑
j=1

λjxjx
∗
j =

k∑
j=1

λ′jPj, (4.1)

where the Pj satisfy
∑

j Pj = 1X . In matrix notation (4.1) can be formulate equivalently
as A = UDU∗, where D is a diagonal matrix with the eigenvalues as entries and U is
the unitary matrix, which consist of the eigenvectors.
Another important decomposition is the singular value decomposition. Let X ,Y be
complex Euclidean spaces and A ∈ L(X ,Y) a non-zero operator of rank r, then there
exist real positive numbers s1 . . . , sr and orthonormal sets {x1 . . . xr} ⊂ X ,{y1, . . . , yr} ⊂
Y satisfying

A =
r∑
j=1

sjxjy
∗
j . (4.2)

In matrix notation (4.2) can be written equivalently as A = UDV ∗. Here D is a diagonal
matrix with the singular values (zeros are included now) as entries. And U, V are
unitary matrices, since their column vectors form orthonormal bases. The spectral
decomposition is related to the singular value decomposition as

sj(A) =
√
λj(A∗A) =

√
λj(AA∗),

where sj(A) and λj(A) refer to the singular values and eigenvalues of some matrix
A, respectively. The right singular vectors {x1, . . . , xr} of A are eigenvectors of A∗A,
whereas the left singular vectors {y1, . . . , yr} are eigenvectors of AA∗.
These decompositions are useful for various reasons. Using the eigenvalue decomposition
one can see, that eigenvalues of Hermitian operators are real, even though the underlying
Hilbert space is complex. Moreover, the spectral decomposition is useful in proving the
following lemma:

Lemma 1. For a linear operator A ∈ L(X ), with 0 ≤ A ≤ 1X , and every β ∈ R the
following statements hold:

exp(βA) ≤ 1+ βexp(β)A, (4.3)

exp(−βA) ≤ 1− βexp(−β)A. (4.4)

Note that (4.3) and (4.4) are no inequalities in the usual sense but rather statements
about the positive semidefiniteness of matrices. This will not be mentioned every time
throughout the thesis, since this notation is used frequently. Sometimes we will also call
these hermiticity relations matrix inequalities or even inequalities. Since actual matrix
inequalities, which are inequalities for the individual entries, will not be used in this
thesis at all this terminology should not cause any confusion.
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Proof. The exponential function is extended to linear operators in the usual way:
exp(A) =

∑∞
i=1 A

i/i!. Due to the restrictions on A, this sum converges, as Ai ≤ 1X ,∀i ∈
N and

∑∞
i=0 1/i! = e. Since any positive semidefinite operator is normal, the spectral

decomposition of A implies

exp(A) = exp(UDU∗) =
∞∑
i=1

(UDU−1)i

i!
= U

(
∞∑
i=1

Di

i!

)
U−1.

Once we plug this result into (4.3), we just have to prove the statement for a scalar
α ∈ [0, 1] instead of the linear operator A. Furthermore, we can assume α > 0 since
α = 0 satisfies both inequalities with equality. According to the mean value theorem
there exists α0 ∈ [0, 1] such that

exp(βα)− 1

α
= βexp(βα0) ≤ βexp(β).

This proves the first inequality, the second one is proven analogously.

Lemma 1 was stated and proven in [JJUW09]. The following lemma is also due to
the spectral decomposition:

Lemma 2. Let P ∈ Pos(X ) be non zero and A,B ∈ L(X ,Y), s.t. A∗A = B∗B = P ,
then there exists a unitary operator U ∈ L(Y), such that AU = B.

Proof. Consider the spectral decomposition of P

P =
r∑
j=1

λjx
∗
jxj,

where r is the rank of P , λ1 . . . , λr > 0 are the non-zero eigenvalues and the corre-
sponding eigenvectors {x1, . . . , xr} ⊂ X form an orthonormal set. Then orthonormal
sets {y1, . . . , yr} ⊂ Y and {z1, . . . , zr} ⊂ Y exist such that

A =
r∑
j=1

√
λjx

∗
jyj and B =

r∑
j=1

√
λjx

∗
jzj.

If you extend {y1, . . . , yr} and {z1, . . . , zr} to bases of Y , the unitary operator U , satis-
fying U =

∑n
j=1 y

∗
j zj, will meet our needs.

Dividing P ∈ Pos(X ) in this way is referred to as the square root decomposition. In
general this decomposition exists if and only if dim(Y) ≥ rank(P ). This statement can
be derived from the singular value decomposition as well. Therefore, Lemma 2 justifies
the use of the square root for matrices A =

√
P as the different solutions are unitary

equivalent. Actually Lemma 2 is mainly proven to guarantee insight into square roots
of matrices, since they are often used at later chapters.
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Furthermore, the spectral decomposition ensures the existence of the polar decomposi-
tion:

∀A ∈ L(X ,Y)∃B ∈ L(X ,Y), P ∈ Pos(X ,X ) : A = BP,

with P =
√
A∗A and BB∗ = ΠIm(P ), where ΠIm(P ) is a projection on the image of P.

This version is sometimes also called the right polar decomposition. There is also a left
polar decomposition: A = P ′B. Either one is unique if and only if A is reversible. Its
existence can be proven by the singular value decomposition, namely A = V DW ∗. If
we define P = WDW ∗ and B = VW ∗ we get the right polar decomposition, whereas
P ′ = V DV ∗ gives the left one. Notice that the dimension of Y provides an upper bound
on the rank of A∗A. And if A ∈ L(X ) then B ∈ U(X ).

4.1.3 The Dirac notation

Due to historic facts the Dirac notation is widely used in quantum physics. In this thesis
it is used to describe complex vectors. There are bras |·〉 and kets 〈·|. They combine
either to an inner product 〈·|·〉 : Cn⊗Cn → C or an outer product |·〉〈·| : Cn⊗Cn → Cn×n.
But one can also “line them up” indicating a tensor product

|x〉|y〉 = |x〉 ⊗ |y〉 = |xy〉 ∈ Cnm ∀|x〉 ∈ Cn, |y〉 ∈ Cm.

Formally the Dirac notation is defined on finite dimensional Hilbert spaces in the fol-
lowing way. Let S denote some finite set and HS the Hilbert space of dimension |S|,
such that each h ∈ HS is a mapping h : S → C. For each s ∈ S, |s〉 represents the unit
vector corresponding to the map that satisfies

h(s) = 1 and h(s′) = 0,∀s′ 6= s.

In this case arbitrary vectors like |ψ〉 can be written as linear combinations of the or-
thonormal basis {|s〉 : s ∈ S}. Then the bra 〈ψ| can be defined as linear functionals
satisfying 〈ψ| : |φ〉 → 〈ψ|φ〉,∀φ ∈ HS, where 〈·|·〉 is the inner product of the Hilbert
space HS.
Later binary numbers will be used in the Dirac notation. This refers to the j-th vector
of the standard basis, if they are ordered lexicographically. For example we can describe
an 8-dimensional complex vector space by a binary number with three figures. There-
fore, |000〉, |001〉, |010〉|011〉 . . . |111〉 correspond to e1, e2, e3, e4 . . . e8 ∈ C8, respectively.
Moreover, we will also use the notation |j〉X to describe the j-th standard basis vector
of the Hilbert space X .

4.1.4 Norms and superoperators

With the matrix operations addition and scalar multiplication L(X ) is a linear space.
This can be illustrated by the trace tr : L(X )→ K, which is known from linear algebra
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but generalized to linear operators on Hilbert spaces over the body K. Let A be a matrix
representation of some linear operator in L(X ), then the trace is defined as

tr(A) =
n∑
j=1

ajj =
n∑
j=1

λj(A).

The trace is invariant under orthonormal basis changes. This definition allows us to
characterize the last subset of linear operators of interest to this thesis, i.e. the set of
density operators D(X ). It includes all positive semidefinite operators with unit trace.
With the notation of the previous section an operator norm can be derived from the
l2-norm ‖ · ‖ on X for all A ∈ L(X )

‖A‖ = sup
|ψ〉∈X\{0}

‖A|ψ〉‖
‖|ψ〉‖

.

When this norm is applied to a matrix A it is also called the spectral norm since ‖A‖ =√
λmax(A ∗ A), where λmax(·) refers to the maximum eigenvalue of its argument. In the

line of exploring the linear space L(X ), we construct a conjugate symmetric positive
definite sesquilinear form: 〈A,B〉 = tr(A∗B), for A,B ∈ L(X ). This is called the
Hilbert-Schmidt inner product, it induces the Frobenius norm, ‖A‖Fr =

√
tr(A∗A),

which is a Schatten 2-norm. In general the Schatten p-norms are defined for A ∈ L(X ,Y)
as

‖A‖p =
(

tr
(

(A∗A)p/2
))1/p

.

The Schatten 1-norm for L(X ) is the trace norm ‖A‖tr = tr(
√
A∗A). The trace norm will

often serve our future needs better than other Schatten norms. In general, a bounded
linear operator is an element of the trace class if its trace norm is finite. However, this is
always the case here, since the Hilbert spaces under consideration are finite dimensional
anyway. Taking A∗A’s positive semidefiniteness into account the trace of the square
root is positive and there exist unitary operators transforming them into each other due
to Lemma 2. Therefore, the trace norm is well defined. It is also easy to verify the
definiteness, the homogeneity and the triangle inequality for the trace norm.
In the following lemma we will characterize the trace norm by unitary operators:

Lemma 3. For all A ∈ L(X ) we have

‖A‖tr = max
U∈U(X )

|tr(UA)|. (4.5)

Proof. Due to the left polar decomposition of A we can conclude

|tr(AU)| = |tr(PV U)| = |tr(P 1/2P 1/2V U)|
≤
√

tr(P )tr(U∗V ∗PV U) = tr(P ) = tr(
√
A∗A).

Here the inequality is the Cauchy-Schwarz inequality (|〈A,B〉|2 ≤ 〈A,A〉〈B,B〉) for the
Hilbert-Schmidt inner product. Once we choose U = V ∗ equality is achieved.
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Extending the norm to a metric d(x, y) = ‖y − x‖tr gives insight into L(X ) being a
Hilbert space. In order to describe the quantum algorithms in the main part operators
will not suffice. We need superoperators, mappings acting on operator spaces. The
notation T (X ,Y) refers to the set of all linear superoperators Ψ : L(X )→ L(Y), again
T (X ) denotes T (X ,X ). Keep in mind that the superoperators under consideration, can
be thought of as high dimensional matrices. If Ψ ∈ T (X ), then Ψ ∈ Kdim(X )2×dim(X )2 .
On first sight it might seem odd to come up with a new name (superoperator) since it
is just a linear operator. But its entirely different usage justifies this terminology which
is standard in quantum computation.
The trace norm for such a superoperator Ψ can be derived from the one for operators
in the following way:

‖Ψ‖tr = sup
A∈L(X )\{0}

‖T (A)‖tr

‖A‖tr

.

In order to define a more useful norm for superoperators we need tensor products.
In general a tensor product space X ⊗ Y of two vector spaces X ,Y needs a universal
bilinear function Φu : X × Y → X ⊗ Y . This provides a minimal space X ⊗ Y , and for
any choice of a vector space V and a bilinear function Φ : X × Y → V a linear mapping
A : V → X ⊗Y , such that Φu = A ◦ Φ. Analogously, tensor products of three or
more spaces relate to multilinear functions. For the description of quantum information
finite dimensional complex spaces suffice. A tensor product operating on them is the
Kronecker product

⊗ : X × Y → X ⊗ Y
(x⊗ y)i,j = xiyj,

for all x ∈ X , y ∈ Y and all elements i, j of some index sets I, J , respectively. Distributive
laws hold for the scalar multiplication and vector addition of Kronecker products. They
also extend to spaces of linear operators

⊗ : L(X1,Y1)× L(X2,Y2)→ L(X1,X2)⊗ L(Y1,Y2)

(A⊗B)(i,j)(k,l) = Ai,jBk,l,

for all A ∈ L(X1,Y1), B ∈ L(X2,Y2), and all i, j, k, l from the respective index sets. We
define the linear operator A⊗B to be the unique linear mapping satisfying

A⊗B(x⊗ y) = (Ax)⊗ (By),

for all x ∈ X , y ∈ Y . This gives an universal bilinear form and therefore an identification
of the tensor product space L(X1,X2)⊗L(Y1,Y2) with L(X1⊗X2,Y1⊗Y2). This product
can be exemplified as

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
. . .

...
am1B · · · amnB

 ,
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for A ∈ L(X ,Y), with dim(X ) = n and dim(Y) = m.
Dealing with superoperators on tensored operator spaces is not entirely trivial. But
luckily we can restrict our analysis to admissible superoperators: An admissible trans-
formation Φ : D(X ) → D(Y) is a map, for which a collection {A1, . . . , Ak} ⊆ L(X ,Y)
exists that satisfies the conditions

1. Φ(ρ) =
∑k

j=1AjρA
∗
j for all ρ ∈ D(X ),

2.
∑k

j=1A
∗
jAj = 1X .

Admissible transformations can be identified with elements of T (X ,Y) as follows: Φ(X) =∑k
j=1AjXA

∗
j for all X ∈ L(X ). The trace of a linear operator is the only admissible

transformation in T (X ,C) for any Hilbert space X . The collection {A1, . . . , Ak} are the
matrices having a single non-zero entry on the diagonal of value one.
Another admissible transformation, which is widely used in quantum computation is the
partial trace. For ρ ∈ D(X ⊗ Y) the partial trace trY : D(X ⊗ Y) → D(X ) is defined
for any orthonormal basis {|e1〉, . . . , |en〉} of Y as

trY(ρ) =
n∑
j=1

(1X ⊗ 〈ej|)ρ(1X ⊗ |ej〉).

Since this operation is essential to most of the quantum algorithms studied later, the
following statement will be used repeatedly

∀A ∈ L(X ⊗ Y) : ‖trY(A)‖tr ≤ ‖A‖tr. (4.6)

It immediately follows from Lemma 3, since the maximum on the right-hand side is
taken over a bigger space, as the partial trace drops away all the components belonging
to Y . This is sometimes called to “trace out”.
In the following lemma an upper bound is provided by a tensor product of a constant
operator and a partial trace. Moreover, it relies upon the Pauli matrices, well known in
quantum physics.

Lemma 4. Let A ∈ Pos(X ⊗ Y) with dim(X ) = 2, then A ≤ 21X ⊗ trX (A).

Proof. The Pauli matrices are defined as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

All of them are Hermitian and therefore

(σx ⊗ 1Y)A(σx ⊗ 1Y)
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is positive semidefinite. for all i ∈ {1, 2, 3}. Moreover, we divide A into four square
matrices A11, A12, A21 and A22 in the obvious way to conclude

21X ⊗ trX (A) = 2

(
1 0
0 1

)
⊗ ((1Y ⊗ 〈0|)A((1Y ⊗ |0〉) + (1Y ⊗ 〈1|)A((1Y ⊗ |1〉))

=

(
2 0
0 2

)
⊗ (A11 + A22) = A+

(
A22 A21

A12 A11

)
+

(
A22 −A21

−A12 A11

)
+

(
A11 −A12

−A21 A22

)
= A+

3∑
i=1

(σi ⊗ 1Y)A(σi ⊗ 1Y) ≥ A.

The partial trace can also be used to define the diamond norm ‖ · ‖� : T (X ,Y) → C
by

‖Φ‖� = inf
A,B∈L(X ,Y⊗Z)

{‖A‖‖B‖ : Φ = trZ(A ·B∗)} , (4.7)

for an arbitrary Hilbert spaces Z, such that dim(X )dim(Y) ≤ dim(Z). Since this
definition is not very intuitive we will use an equivalent definition relying upon the trace
norm for superoperators. For Φ ∈ T (X ,Y) we define

‖Φ‖� = ‖Φ⊗ 1L(X )‖tr = max
X∈L(X⊗X )

{
‖(Φ⊗ 1L(X )(X)‖tr : ‖X‖tr = 1

}
. (4.8)

For the proof of QIP = QIP(3), which is explained in the main part, it is important to
note that the diamond norm is multiplicative with respect to tensor products:

Lemma 5. Let Φ1Φ2 ∈ T (X ,Y) be any superoperators, then ‖Φ1⊗Φ2‖� = ‖Φ1‖�‖Φ2‖�.

Proof. Let X1 and X2 be linear operators acting on the tensor product X ⊗ X , such that
‖X1‖tr = ‖X2‖tr = 1, ‖Φ1‖� = ‖

(
Φ1 ⊗ 1L(X )

)
(X1)‖tr and ‖Φ2‖� = ‖

(
Φ2 ⊗ 1L(X )

)
(X2)‖tr,

then ‖X1 ⊗X2‖tr = 1 and therefore

‖Φ1 ⊗ Φ2‖� = ‖Φ1 ⊗ Φ2 ⊗ 1L(X ) ⊗ 1L(X )‖tr

≥ ‖
(
Φ1 ⊗ Φ2 ⊗ 1L(X ) ⊗ 1L(X )

)
(X1 ⊗X2)‖tr

= ‖
(
Φ1 ⊗ 1L(X )

)
(X1)⊗

(
Φ2 ⊗ 1L(X )

)
(X2)‖tr

= ‖
(
Φ1 ⊗ 1L(X )

)
(X1)‖tr‖

(
Φ2 ⊗ 1L(X )

)
(X2)‖tr = ‖Φ1‖�‖Φ2‖�.

We proof the reverse inequality using the original definition of the diamond norm, (4.7),
as

‖Φ1 ⊗ Φ2‖� = inf {‖A‖‖B‖ : Φ1 ⊗ Φ2 = trZ(A ·B∗)}
≤ inf {‖A1‖‖B1‖ : Φ1 = trZ1(A1 ·B∗1)} · inf {‖A2‖‖B2‖ : Φ2 = trZ2(A2 ·B∗2)}
= ‖Φ1‖�‖Φ2‖�,

where the first infimum is taken over all A,B ∈ L(X ⊗ X ,Y ⊗ Y ⊗ Z). The other
infima are taken over all A1, B1 ∈ L(X ,Y ⊗ Z1) and A2, B2 ∈ L(X ,Y ⊗ Z2), respec-
tively. Notice that dim(Z1) and dim(Z2) are at least dim(X ) dim(Y) while dim(Z) ≥
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dim2(X ) dim2(Y). Therefore, choosing Z = Z1 ⊗ Z2 respects the original definition,
(4.7). Thus, the above inequality is due to the fact that the infimum over the tensor
product space is at most the product over the individual infima.

A proof of Lemma 5 was published by Dorit Aharonov, Alexei Kitaev and Noam
Nisan [AKN98]. Since they only relied upon the original definition of the diamond norm
a proof for the equivalence of (4.7) and 4.8 can be found in their paper as well.

4.1.5 The vector mapping

In the later chapters we will often rely upon the linear mapping vec : L(X ,Y)→ X ⊗ Y ,
which is called the vector mapping in this thesis. It transforms matrices into vectors by
lining the entries up row wise in increasing order. Here we state some properties of the
vector mapping:

1. For all appropriate choices of linear operators A,B and X such that AXBt exists,
the following holds

(A⊗B)vec(X) = vec(AXBt).

2. The vector mapping transforms kets into bras: For all |ψ〉 ∈ X , and |φ〉 ∈ Y we
have

vec(|ψ〉〈φ|) = |ψ〉|φ〉.

3. For all finite Hilbert spaces X ,Y and all linear operators A,B ∈ L(X ,Y) we get

trX (vec(A)vec(B)∗) = AB∗, and

trY(vec(A)vec(B)∗) = (B∗A)t.

Properties 1 and 2 can be proven by straightforward calculations. Let |e1〉, . . . , |en〉 be
an orthonormal basis of X , then the first equation of property (3) follows from

trX (vec(A)vec(B)∗) =
n∑
j=1

(1Y ⊗ 〈ej|) vec(A)vec(B)∗ (1Y ⊗ |ej〉)

=
n∑
j=1

vec(A|ej〉)vec(B|ej〉)∗ =
n∑
j=1

A|ej〉〈ej|B∗ = AB∗,

where the second equality is due to property 1. The remaining equation in property 3 is
proven analogously. This completes the pure mathematical structure needed to describe
quantum computation and information. Of course, there is a lot more to come before we
can discuss the recent developments in quantum interactive proofs and quantum refereed
games.
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4.2 Classical computation

Throughout this thesis a robust definition for polynomial time computable functions is
required. To this end we use the following definition, which was also used by Kitaev and
Watrous [KW00], for instance.

Definition 1. A function f : Z+ → N is in the class poly if

1. ∃ polynomial p,∀n ∈ Z+ : f(n) ≤ p(n),

2. f(n) is computable in polynomial time.

This is a robust definition since it allows all kind of sub-polynomial functions and
guarantees their polynomial time computability as well. Moreover, we will utilize the
Landaus symbol Ω(·), specifying an asymptotical lower bound. For functions f, g : R→
R we define

f ∈ Ω(g)⇔ 0 < lim inf
x→a

f(x)

g(x)
≤ ∞,

where a ∈ R ∪ {−∞,∞}. It is also common in complexity theory to insert classes of
functions instead of individual functions. For example O(poly) refers to the class of
functions, which are polynomially bounded, using the standard big O notation. We
will need the Landaus symbol Ω to guarantee that a parameter δ is at least inverse
polylogarithmic in the size of the input n ∈ N:

δ = Ω

(
1

polylog(n)

)
,

where polylog(n) is the class of functions, which are polynomials of logarithms. There-
fore, all functions f ∈ polylog(n) obey f ≤ (log n)k for some k ∈ N.

4.2.1 Classical complexity classes

We will have to deal with a couple of classical complexity classes like interactive proofs
(IP), deterministic polynomial bounded space (PSPACE), or NC, describing functions,
which can be computed by polynomially sized Boolean circuits of polylogarithmic depth.
The name NC stands for Nick’s class in honor of professor Nick Pippenger, who proved
several results in parallel computation. Moreover, we deal with two classes of classical
refereed games RG and RG(2). The class RG consists of refereed zero-sum games for
two players, while problems in RG(2) can be solved by the two round version of such a
game. Furthermore, AM and MA refer to the Arthur-Merlin and Merlin-Arthur class,
respectively. MA is the randomized version of NP, whereas the more powerful class AM
even contains statistically zero-knowledge proofs (SZP).
The exact definitions of all these complexity classes are not provided since they are
essentially the same as their quantum counterparts. Except that the participants are
only allowed to use classical computation, but neither quantum computers nor quantum
information. The quantum counterparts will be defined in detail at later chapters.
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Furthermore, the standard notation is used for problems solvable in polynomial time
(P), in nondeterministic polynomial time (NP), and in exponential time (EXP). Detailed
information on classical complexity classes can be found in the book of Sanjeev Arora
and Boaz Barak [AB09], for instance. The following relations between the stated classical
complexity classes are known:

NC ⊆ P ⊆ NP ⊆ MA ⊆ AM ⊆ PSPACE ⊆ EXP.

Unfortunately only one subset relation is provably strict: P ⊂ EXP. We do not even
know if P ⊂ PSPACE holds. Furthermore, we have the following classical characteriza-
tions of PSPACE

PSPACE = IP = NC(poly) = RG(2).

Here NC(poly) refers to the class of problems, which can be decided by Boolean circuits
of polynomial depth. Since all of these equalities are essential to the proofs in the main
part, we have to take a closer look.
The containment PSPACE ⊆ IP, was proven by Shamir in 1992 [Sha92]. He used a
technique called arithmetization, which relates quantified Boolean formulas (QBF) to
polynomials. The values of the polynomials decide whether the QBF under considera-
tion are true or false. Furthermore, he transformed the polynomials in a way, that made
them easy to compute, but only increased their size polynomially. Therefore, the values
of these new polynomials can be checked using an interactive protocol with a polyno-
mial number of rounds. These considerations proved PSPACE ⊆ IP. But some of the
credit given to Shamir should be shared with Lance Fortnow, Carsten Lund, Howard
Karloff and Noam Nisan. They used very similar ideas to prove the containment of the
whole polynomial hierarchy PH in IP, as they found a one-prover protocol for the per-
manent [FLKN92]. The opposite containment, IP ⊆ PSPACE, has already been proven
before by Christos Papadimitriou [Pap83]. He showed how a verifier can simulate an
optimal prover in polynomial space by traversing the tree of all possible interactions and
calculating the probabilities recursively.
Moreover, the proof of PSPACE ⊆ RG(2) is similar to Shamir’s proof of PSPACE ⊆ IP.
For the reverse containment one has to find a near-optimal strategy for one of the play-
ers. The implementation in PSPACE can be proven by Savitch’s theorem, which is
standard in complexity theory and can be found in [AB09], for example. The whole
equality PSPACE = RG(2) was proven by Uriel Feige and Joe Kilian in 1997 [FK97].
Notice that they used a different notation relying upon rounds of communication in-
stead of turns. Moreover, they included the privacy of the coin tosses, naming RG(2)
RG(private,1). Actually we also know that refereed games with a polynomial number
of rounds (RG) are equivalent to EXP. First RG ⊆ EXP was proven by fast algorithms
for game trees [KM90], [KMvS94], before the reverse containment was established in
1997 [FK97].
The equality NC(poly) = PSPACE was proven by Allan Borodin in 1977 [Bor77]. He
connected the space a Turing machine uses to the depth of a circuit: Depth(s(n)) ⊆
DSPACE(s(n)) ⊆ Depth(s(n)2).
These results can be summarized in the following diagram. The classes at the bottom
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are included in the upper ones. The lines connecting the classes stand for these subset
relations. The diagrams at hand are standard in complexity theory and therefore expla-
nations can probably be found in any scientific book regarding this topic.

PSPACE

AM PP

MA

BPP NP

P

NC

Actually, this form of presentation is only partly meaningful here. Nevertheless it is
quite useful in order to compare these classes to their quantum analogues. Moreover,
AM also includes MA since the multiple rounds of communication do not increase the
computational power of AM [BM88] and therefore a protocol for AM[3] can simulate
one for MA.
Since we mentioned the class PP it has to be discussed shortly. To this end keep in mind
that the counting class #P can basically count the number of accepting paths from a
nondeterministic Turing machine. The class PP is the decision class analogue to #P. It
computes the most significant bit of a function in #P. The class PP was introduced by
Gill in 1977 [Gil77]. More information on PP and #P can be found in a paper of Lance
Fortnow [For97], for instance. Furthermore, the class PP can be defined analogously
to the standard class BPP, which stands for bounded-error probabilistic polynomial
time. The only difference is that both the soundness and completeness are exactly
1/2 instead of arbitrarily close to 1/2. These considerations explain why a soundness
and a completeness of exactly 1/2 dramatically increase the computational power of a
complexity class.
In the main part we will utilize a few more results from classical computation. Since
this thesis is mainly concerned with quantum computers, the proofs of such well known
classical results will be skipped.

4.2.2 Efficient parallel algorithms

To prove the implementation of various algorithms in PSPACE we need a couple of
results on parallel computing. Note that NC can be defined equivalently as the class of
problems that can be decided in polylogarithmic time by polynomially many processors.
These processors are connected in parallel. We state that matrix exponentials, spectral
decompositions and projections onto the positive eigenspaces can be found in NC up to
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any rational accuracy. Consider the following problems:

Matrix exponentials

Input: An n× n matrix A, η ∈ Q+ and k ∈ N in unary notation.

Promise: ‖A‖ ≤ η

Output: An n× n matrix X, such that ‖exp(A)−X‖ < η.

Spectral decomposition

Input: An n× n Hermitian matrix A and η ∈ Q+.

Output: An n× n unitary matrix U and a n× n real diagonal matrix D such that

‖A− UDU∗‖ < η.

Positive eigenspace projection

Input: An n× n Hermitian matrix A, η ∈ Q+.

Output: An n× n positive semidefinite matrix P ≤ 1 such that ‖P − Π‖ < η ,where

Π is the projection operator onto positive eigenspace of A.

All three problems can be efficiently computed in parallel. This means NC algorithms
exist for these problems. In addition exact NC algorithms for elementary matrix opera-
tions, such as sums, products, tensor products and inverses can be found in the survey
of Joachim von zur Gathen [vzG93]. Moreover, von zur Gathen also states NC imple-
mentations for iterated sums, as well as the trace and the partial trace. The existence
of such NC implementations is key to the algorithms discussed in the main part.

4.3 Quantum computation

In this section a simple mathematical introduction to quantum computation is provided
at first. Secondly, we briefly discuss essential quantum mechanical properties and ex-
amine a slightly more complex approach using density operators. To handle the density
operators we define purifications, the fidelity function, and Bures angle. In order to
guarantee complete insight into the matter at hand several lemmas and theorems are
proven. Moreover, we discuss a couple of additional NC implementations, which we
need at later chapters. Finally, a suitable quantum computational model based on small
quantum gates is stated.

4.3.1 Basics in quantum computation and information

Initially, we introduce some basic definitions and notations from quantum computation.
These can be found in the book of Michael Nielsen and Isaac Chuang [NC00], for instance.
Unlike classical computers quantum computers use qubits instead of bits. A qubit can
be thought of as an elementary particle, which has two basic states 0 and 1 referring
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to some physical property such as energy values or spin. Unlike classical bits, qubits
do not only exist in the two basic states. Superposition of these basic or pure states
can occur, leaving a qubit in a mixed state α0|0〉 + α1|1〉, where α0, α1 ∈ C such that
|α0|2 + |α1|2 = 1. Once we measure this qubit it will be in state |0〉 with probability
|α0|2, and in state |1〉 with probability |α1|2. Quantum computers operate on registers of
qubits, which are vectors in finite complex Hilbert spaces. As stated before Calligraphic
symbols like X ,Y will be used to describe those Hilbert spaces.
Let us examine an n-qubit register. It has 2n pure states |0n〉, |10n−1〉, . . . |0n−11〉, . . . |1n〉.
Now let |ψ〉 be some mixed state such that

|ψ〉 =
2n∑
j=0

αj|φj〉,

where |φj〉 is the j-th pure state and αj are complex coefficients for all j, such that∑
j |αj|2 = 1. Basically there are two actions we can perform on a quantum register:

1. transformation by unitary operators U : C2n → C2n

2. quantum measurement by a projection Π : C2n → C2n that collapses the quantum
state and outputs state |φj〉 with probability |αj|2.

One can only apply unitary operators because those are the only linear operators that
preserve

∑
|αj|2 = 1.

From a physicist’s point of view unitary operators are precisely the ones conserving the
energy of a quantum state. The fact that one can only use linear operators is due to
quantum mechanics. In particular, both properties are due to the Schrödinger equation,
which describes the time evolution of a quantum state |ψ(t)〉 as

Ĥ|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉, (4.9)

where ~ is the reduced Planck constant and Ĥ is the Hamiltonian operator, which
is the sum of the operators corresponding to the kinetic and potential energy of the
system. Its spectrum describes all the energy levels of the system and those ought to
be real. Therefore, Ĥ is Hermitian, the eigenvalues λ1; . . . , λn of Ĥ are real, and the
corresponding eigenvectors |φ1〉, . . . , |φn〉 can be chosen orthonormal. Once we describe
ψ(t) in this eigenbasis

|ψ(t)〉 =
n∑
j=1

αj(t)|φj〉, (4.10)

and plug the result into the Schrödinger equation

i~
∂
∑n

j=1 αj(t)|φj〉
∂t

= Ĥ
n∑
j=1

αj(t)λj|φj〉 =
n∑
j=1

αj(t)|φj〉,
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we derive the following differential equation

i~
∂αj(t)

∂t
= λjαj(t)⇒ αj(t) = e−iλjt/~αj(0), ∀j ∈ {1, . . . , n}.

Reinserting into (4.10) yields

|ψ(t)〉 =
n∑
j=1

e−iλjt/~αj(0)|φj〉 =

e
−iλ1t/~ 0

. . .

0 e−iλnt/~


α1(0)

...
αn(0)

 = U(t)ψ(0)〉,

where U(t) is obviously a diagonalized unitary operator. Note that the state |ψ(t)〉 of
a quantum system is often the representation for a wave function ϕ(x, t), where x de-
scribes the location of a particle and t the time. This is actually one of the reasons
why physicists have to think in terms of linear operators instead of matrices. Moreover,
a physical quantum computer can not be separated from its environment completely.
Therefore, the environment interacts with the quantum computer causing even saved
data to vanish over time. Since the above calculation is standard in quantum mechan-
ics, it can probably be found in any scientific book on this topic. The notation used
for the derivative is not a perfect solution from a pure mathematical point of view but
standard in theoretical physics.
Actually we already applied the three postulates of quantum mechanics. The first pos-
tulate says every isolated physical system is associated to a Hilbert space and it is
completely described by the unit vectors of this space. The second one describes the
time evolution of a closed system, which is given by the Schrödinger equation, (4.9).
The third postulate of quantum mechanics is concerned with measurements. It will be
explained later. A measurement is the only physically realizable way to get information
out of quantum states. Unlike classical computers, quantum computers are probabilistic
machines by nature. But the reason for this probabilistic nature is not discovered yet.
The term quantum decoherence refers to the loss of coherence, the ordering of the phase
angle of the elements in a quantum superposition. A measurement, which coincides
with the collapse of the wave function is thought of as an interaction with the nature
in an irreversible way. The state that evolves in this process lies in a high dimensional
space, depending on the degrees of freedom of the measuring device. If we choose the
expansion in a way that the interaction is element specific, almost no interference of
the original particle will occur. Therefore, they will be separated from each other with
high probability, as they take their own independent paths due to their natural unitary
evolution. This consideration also reveals the fact that decoherence is concerned with
the transition from quantum physics to classical physics, where untangling leads to a
single macroscopic reality.
Nevertheless, the probabilistic nature of quantum states cannot be derived. Today we
can only interpret the experimental data. One example is the multi-universe interpre-
tation, claiming that each outcome of a measurement is realized in a different universe.
Under certain circumstances they even have to merge in order to rule out the possibility
of one observer seeing different universes. But there are arguable weaknesses, as for the
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conservation of energy to hold universes have to be weighted according to the proba-
bility they ”occur” with. Measurements are observer independent in this theory, as it
is based upon quantum decoherence. Therefore, it can be used to resolve problems like
the EPR paradox or Schrödinger’s cat experiment. For further information about the
multi-universe interpretation and its connections to quantum computers, see for exam-
ple [Deu85].
In order to generalize the notion of pure and mixed states, remember the definition of
the Dirac notation in Section 4.1.3. S was some finite set while HS denoted the Hilbert
space of dimension |S|, with each h ∈ HS being a mapping h : S → C. Pure states
are unit vectors in HS. A mixed state of a quantum system is a distribution on not
necessarily orthogonal pure states. Moreover, a mixture is defined to be a collection
{(pk, |ψk)} with

∑
pk = 1. Here each pk ≥ 0 and each |ψk〉 is a pure state. The quan-

tum system is with probability pk in state |ψk〉. Such a mixture is described by a density
operator ρ =

∑
k pk|ψk〉〈ψk|. Obviously ρ : L(HS)→ L(HS) is a linear operator. It has

unit trace because
∑
pk = 1 and it is positive semidefinite since each pk ≥ 0. Different

mixtures might yield identical states, in the sense that no measurement can distinguish
between them even statistically. But if two mixtures yield different density operators,
they can be distinguished statistically, since their probability distributions are different.
Therefore, describing mixtures with density operators makes sense.
Before D(X ) was the set of all density operators for some Hilbert space X . For measur-
ing the distance between density operators the trace norm defined in the previous section
is suitable. Since transformations of mixed states are examined later, one needs super-
operators between spaces of density operators. This is the reason why we can restrict
our view to admissible superoperators. The only physically realizable transformations
that map D(X ) to D(Y) are admissible transformations. In the main part we will often
use the partial trace, trY : D(X × Y)→ D(X ), defined in Section 4.1.4. Sometimes it is
also called the ”trace out” operation, since the part of the register corresponding to Y
is eliminated. Observe the following equivalent definition for clarification. The partial
trace trY : L(X ,Y)→ L(X ) is precisely the mapping that satisfies trY(A⊗B) = tr(B)A
for all A ∈ L(X ) and B ∈ L(Y). This can be extended to tensor products of multiple
spaces by linearity. The above information is available in the paper of Kitaev and Wa-
trous [KW00].
Note that we can also describe the first and second postulate of quantum mechanics in
terms of density operators. The state space is D(X ) instead of X in this case. More-
over, the time evolution of any density operator ρ to a new density operator ρ′ can be
described by

ρ′ = U(t)ρU(t)∗,

where U(t) is the unitary operator derived from the Schrödinger equation, (4.9). Since
there is no theory describing measurements in a way, which is useful for quantum com-
putation, besides the collapsing interpretation, we are just going the brute-force way
and define measurements, as functions µ : I → Pos(X ), for some finite nonempty set of
measurement outcomes I. For each a ∈ I there exists a measurement operator Πa that
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corresponds to the outcome a, such that∑
a∈I

Πa = 1X (4.11)

holds. If we apply a measurement {Πa : a ∈ I} to a quantum system in the mixed state
ρ ∈ D(X ) the following happens:

1. One element a ∈ I is chosen. The probability of a being selected is

Pr(a) = 〈Πa, ρ〉, ∀a ∈ I.

2. The register collapses, which means it drops away, resulting in a single state:

ΠaρΠ∗a
〈Πa, ρ〉

Notice that this definition respects the third postulate of quantum mechanics, which can
be described as follows:
A quantum measurement is a set of measurement operators {Πa}, where a are the
possible outcome of the measurement. If the quantum system under consideration is in
state |ψ〉 the probability that outcome a occurs is

Pr(a) = 〈ψ|Π∗aΠa|ψ〉 = 〈ψ|Πa|ψ〉.

The second equality is due to the fact that we can restrict our view to projective mea-
surements. This means all the Πa are projections. After the measurement the system is
in state

Πa|ψ〉√
〈ψ|Πa|ψ〉

.

Finally, the third postulate also requires the completeness condition, (4.11).
The only difference between these definitions is the use of the density matrix opposed to
the direct description in terms of state vectors. Moreover, both definitions can be used
to prove the fact that quantum states can only be distinguished if they are orthogonal.
Later on we will also measure just some part of a quantum register. To describe such
a measurement let ρ ∈ D(X ⊗ Y) be the state of some pair of registers (X,Y). Fur-
thermore, let {Πa1 : a1 ∈ I1} ⊂ Pos(X ) be a measurement, that only acts on X and
{Πa2 : a2 ∈ I2} ⊂ Pos(Y) a measurement, that only acts on Y. Both measurements are
interpreted as functions µ1 : I1 → [0, 1] and µ2 : I2 → [0, 1]. First observe the probability
vector, corresponding to the product measurement µ = (µ1, µ2)

p(a1, a2) = 〈Πa1 ⊗ Πa2 , ρ〉,

and the probability vector, corresponding to the measurement µ1

p1(a1) =
∑
a2∈I2

p(a1, a2) = 〈µ1(a1)⊗ 1Y , ρ〉 = 〈µ1(a1), trY(ρ)〉.
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If we condition the second measurement on µ1 having outcome a1, we end up with the
following probability vector

p
(a1)
2 (a2) =

p(a1, a2)

p1(a1)
=
〈Πa1 ⊗ Πa2 , ρ〉
〈Πa1 ⊗ 1Y , ρ〉

= 〈Πa2 , ρ
(a1)
2 〉, (4.12)

where

ρ
(a1)
2 =

trX (Πa1 ⊗ 1Y)ρ

〈Πa1 ⊗ 1Y , ρ〉
.

The last equality of (4.12) is due to tr((A ⊗ B)C) = tr(B(trX (A ⊗ 1))C), which holds
for all A,B and C, where (A⊗B)C exists.
After performing the measurement µ1 on ρ with outcome a1 the remaining system is in
state ρ

(a1)
2 . This is a standard way to describe product measurements, it can be found

in Nielsen’s and Chuang’s book [NC00] for example.
In the main part Meas(X ) will be used to describe the set of measurement operators
within L(X ). Note that this set is compact and convex, since all measurement operators
Π ∈Meas(X ) are positive semidefinite and obey Π ≤ 1X .
This completes the introduction into quantum computation, which was supposed to
point out different perspectives on quantum states and how they can be manipulated.
It will enable us to immerge further into the subject matter in the following sections.

4.3.2 Purification

For every quantum state described by a density operator ρ ∈ D(X ) there exist pure
states |ψ〉 ∈ D(X ⊗ Y), called purifications of ρ, such that

trY |ψ〉〈ψ| = ρ. (4.13)

The existence of many different purifications for one state is due to the fact that the
square root decomposition, discussed in Section 4.1.2, is not unique. For every density
operator ρ ∈ D(X )

∃A ∈ L(X ,Y) and an orthonormal basis {|e1〉, . . . , |en〉} ⊆ X : ρ = AA∗ =
n∑
k=1

|ek〉〈ek|.

If dim(Y) = m is sufficiently large, n ≤ m, an orthonormal basis {e′1, . . . , e′m} exists such
that: |ψ〉 =

∑n
k=1 |ek〉 ⊗ |e′k〉 satisfies (4.13). This provides the basis for a principle of

enormous importance in quantum information, the unitary equivalence of purifications.

Theorem 1. If two quantum states |φ〉|ψ〉 ∈ X ⊗ Y are purifications of the same oper-
ator X ∈ Pos(X ). trY |φ〉〈φ| = X = trY |ψ〉〈ψ| then a unitary operator U ∈ U(Y) exists,
which transforms them into each other

(1X ⊗ U)|φ〉 = |ψ〉.

Moreover, U can be computed in NC.
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Proof. Lemma 2 states the existence of a unitary operator V ∈ U(Y) transforming A into
B: AV = B for matrices A,B with AA∗ = BB∗. It is just the change of the orthonormal
basis providing their singular value decomposition. Once you choose A,B ∈ L(X ,Y),
such that vec(A) = |ψ〉, vec(B) = |φ〉, applying property 3 about the vector mapping
(see Section 4.1.5) gives

AA∗ = trY |ψ〉〈ψ| = X = trY |φ〉〈φ| = BB∗.

Using Lemma 2 and property 1 about the vector mapping, we end up with

vec(B) = vec(AV ) = vec(1XAV ) = (1X ⊗ V t)vec(A),

therefore U = V t achieves the task, proving the unitary equivalence of purifications.
In order to compute U in NC observe the singular value decompositions of A and B,
which can be computed approximately in NC according to Section 4.2:

A = S1D1T1 and B = S2D2T2,

where S1, S2 ∈ U(X ), T1, T2 ∈ U(Y) and D1, D2 ∈ L(Y ,X ) are diagonal matrices. If
we could compute the singular value decomposition exactly we would get S1 = S2 and
D1 = D2 immediately. Therefore, we could choose U t = T ∗1 T2 to end up with AU t = B
and thus (1X ⊗U)|φ〉 = |ψ〉 as desired. But since the singular value decomposition is not
exact we have to choose U t = T ∗1S

∗
1V
′S2T2, with V ′ ∈ U(Y), such that S2D

∗
2S
∗
2S1D1S

∗
1V

is positive semidefinite. Such a choice will enable us to prove that (1X ⊗ U)|φ〉 and |ψ〉
are close to each other in terms of the trace norm. But the closeness we desire highly
depends on the situation, in which the unitary operator U is used. Thus, we will do this
adjustment for the case at hand, when we need it.

Since the unitary equivalence of purifications is a standard theorem in quantum com-
putation it can probably be found in any scientific book on this topic, see for exam-
ple [NC00].

4.3.3 The fidelity function

The fidelity function is used to describe the distance between density operators. It
was first mentioned by Richard Jozsa in 1994 [Joz94]. Roots of positive semidefinite
operators acting on Hilbert spaces are not unique, but unitary equivalent and hence
norm invariant. Therefore, we can define the fidelity function F (ρ, σ) of two density
operators ρ, σ ∈ D(X ) as

F (ρ, σ) =
∥∥√ρ√σ∥∥

tr
= tr

(√
(
√
σ)∗(
√
ρ)∗
√
ρ
√
σ

)
= tr

(√
(
√
σ)∗ρ
√
σ

)
,

where ‖ · ‖tr denotes the trace norm defined in Section 4.1.4. Obviously the fidelity is
non-negative and we have F (ρ, σ) = 1 if and only if ρ = σ.
With the fidelity function at hand we are able to state Uhlmann‘s theorem, which
correlates the fidelity to the trace of some purifications.
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Theorem 2. Let X ,Y be Hilbert spaces such that dim(X ) ≤ dim(Y). Let ρ, σ ∈ D(X )
be density operators and |φ〉 ∈ XY any purification of ρ. Then

F (ρ, σ) = max{|〈φ, ψ〉| : |ψ〉 ∈ XY is a purification of σ}. (4.14)

This theorem was first proven by Uhlmann in 1976 [Uhl76]. Back then the notation in
quantum information was quite different, the fidelity was called transition probability.
Therefore, we will not examine the original proof, but instead a proof based on the
modern terminology and methods, inspired by a paper from Jozsa [Joz94].

Proof. Observe the polar decomposition of the first density operator ρ =
√
ρA∗, where

A ∈ L(X ,Y) : AA∗ = ΠIm(ρ). Then a purification |φ〉 ∈ X ⊗ Y of ρ exists such that
|φ〉 = vec(

√
ρA∗). Similarly, ∃B ∈ L(X ,Y) : BB∗ = ΠIm(σ) such that |ψ〉 = vec(

√
σB∗)

purifies σ. Due to Theorem 1 every purification of σ can be described as

|ζ〉 = vec(
√
σB∗U∗) for some U ∈ U(Y).

Therefore, we can convert the right hand side of (4.14):

max
|ζ〉∈X⊗Y

{|〈φ, ζ〉| : trY |ζ〉〈ζ| = σ} = max
U∈U(Y)

{∣∣〈√ρA∗,√σB∗U∗〉∣∣}
= max

U∈U(Y)

{∣∣tr (A√ρ√σB∗U∗)∣∣} =
∥∥A√ρ√σB∗∥∥

tr
.

Since ‖A‖ ≤ 1 and ‖B‖ ≤ 1 hold, we find a lower bound for the fidelity,∥∥A√ρ√σB∗∥∥
tr
≤ ‖A‖

∥∥√ρ√σ∥∥
tr
‖B∗‖ ≤

∥∥√ρ√σ∥∥
tr

= F (ρ, σ).

On the other hand

F (ρ, σ) =
∥∥√ρ√σ∥∥

tr
=
∥∥A∗A√ρ√σB∗B∥∥

tr

≤ ‖A∗‖
∥∥A√ρ√σB∗∥∥

tr
‖B‖ ≤

∥∥A√ρ√σB∗∥∥
tr

provides the same upper bound, completing the proof.

Uhlmann’s theorem can also be stated differently:
Let X ,Y be Hilbert spaces such that dim(X ) ≤ dim(Y) and let ρ, σ ∈ D(X ) be any
density operators, then

F (ρ, σ) = max
|φ〉,|ψ〉

|〈φ|ψ〉|,

where the maximum is taken over all purifications |φ〉 ∈ XY of ρ and all purifications
|ψ〉 ∈ XY of σ.
From this characterization of the fidelity its symmetry, F (ρ, σ) = F (σ, ρ), is obvious.
Moreover, both formulations of Uhlmann’s theorem can be used for further characteri-
zation of the fidelity. Due to the Cauchy-Schwarz inequality the fidelity is bounded by
one as pure states are unit vectors, leading to 0 ≤ F (ρ, σ) ≤ 1 for all ρ, σ ∈ D(X ).
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Uhlmann’s theorem also implies the monotonicity of the fidelity function, which was
proven by Barnum, Caves, Fuchs, Josza and Schumacher [BCF+96]:

∀ρ, σ ∈ D(X ) : F (Φ(ρ),Φ(σ)) ≤ F (ρ, σ), (4.15)

where Φ ∈ T (X ) is any admissible superoperator.
In order to prove the monotonicity choose purifications |φ〉|ψ〉 ∈ XY of ρ and σ, re-
spectively, such that F (ρ, σ) = 〈φ|ψ〉. As stated in Section 4.3.1 there exists a unitary
operator U on a bigger space simulating Φ. Therefore, U |φ〉|0〉 is a purification of Φ(ρ)
and U |ψ〉|0〉 is a purification of Φ(σ). Applying Uhlmann’s theorem gives

F (Φ(ρ),Φ(σ)) ≥ 〈φ|〈0|U∗U |ψ〉|0〉| = |〈φ|ψ〉| = F (ρ, σ).

Later on we need the following lemma, introducing bounds on the fidelity function:

Lemma 6.

∀ρ, σ, τ ∈ D(X ) : F (ρ, σ)2 + F (σ, τ)2 ≤ 1 + F (ρ, τ) (4.16)

∀ρ, σ ∈ D(X ) : 2− 2F (σ, ρ) ≤ ‖σ − ρ‖tr ≤ 2
√

1− F (σ, ρ)2 (4.17)

Proof. In order to prove (4.16) let |ψ〉 ∈ XY and |ζ〉 ∈ XY be purifications of ρ and
τ , respectively. Due to Uhlmann’s theorem there exist purifications |φ1〉 ∈ XY and
|φ2〉 ∈ XY of σ, such that

F (ρ, σ) = |〈ψ|φ1〉| and F (σ, τ) = |〈φ2|ζ〉|.

Of course, Y has to large enough to admit these purifications. Moreover, the unitary
equivalence of purifications (Theorem 1) guarantees the existence of a unitary operator
U ∈ U(XY), for which U |φ2〉 = |φ1〉 holds. Therefore, we can estimate

F (ρ, σ)2 + F (σ, τ)2 = |〈ψ|φ1〉|2 + |〈ζ|φ2〉|2 = |〈ψ|U |φ2〉|2 + |〈ζ|φ2〉|2

≤ max
φ∈XY

(
|〈ψ|U |φ〉|2 + |〈ζ|φ〉|2

)
= |〈ψ|U |ζ〉|+ 1

≤ max
U

(|〈ψ|U |ζ〉|) + 1,

where the maximum is taken over all unitary operators, which obey try(U |ζ〉〈ζ|U∗) = τ .
This choice of U guarantees that U |ζ〉 is a purification of τ . The equality in the second
line is due to the fact that |〈ψ|U |ζ〉|+1 is the maximal eigenvalue of |ζ〉〈ζ|+U |ψ〉〈ψ|U∗.
Finally, Uhlmann’s theorem yields

1 + max
U

(|〈ψ|U |ζ〉|) ≤ 1 + F (ρ, τ),

as the maximum runs through all purifications U |ζ〉 of τ due to the unitary equivalence of
purifications. This proof is similar to a proof from Ashwin Nayak and Peter Shor [NS03].
A proof for the presented formulation of (4.16) can also be found in a paper from Robert
W. Spekkens and Terry Rudolph [SR02].
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In order to prove the second inequality of (4.17) let Y be a Hilbert space with the same
dimension as X . According to Uhlmann’s theorem purifications |ψ〉, |φ〉 ∈ XY of ρ and
σ exist such that F (σ, ρ) = |〈φ, ψ〉|. Therefore, we get

‖σ − ρ‖tr ≤ ‖|φ〉〈φ| − |ψ〉〈ψ|‖tr = 2
√

1− |〈φ, ψ〉|2 = 2
√

1− F (ρ, σ)2

where the inequality follows from (4.6). The equality holds for any unit vectors, because
the non-zero eigenvalues of A = |φ〉〈φ| − |ψ〉〈ψ| are ±

√
1− |〈φ, ψ〉|2. Observe first

rank(A) ≤ 2 and tr(A) = 0. Therefore, zero is an eigenvalue with multiplicity n− 2 and
there are only two non-zero eigenvalues ±λ. Moreover, the eigenvalues can be calculated
as follows

2λ2 = tr(A2) = tr
(
(|φ〉〈φ| − |ψ〉〈ψ|)2

)
= tr(|φ〉〈φ|+ |ψ〉〈ψ| − |φ〉〈φ||ψ〉〈ψ| − |ψ〉〈ψ||φ〉〈φ|) = 2− 2|〈φ|ψ〉|2.

In order to prove the first inequality of (4.17) observe

‖
√
σ −√ρ‖2

Fr = tr
(
(
√
σ −√ρ)2

)
= tr(σ) + tr(ρ)− 2tr

(√
σ
√
ρ
)
≥ 2− 2F (σ, ρ).

Therefore, it is sufficient to prove that the trace norm is an upper bound on the Frobenius
norm in the following sense

‖
√
σ −√ρ‖2

Fr ≤ ‖σ − ρ‖tr,

which generally holds for positive semidefinite operators. This can be proven by applying
the spectral decomposition to

√
σ − √ρ first. Moreover, we have to choose a unitary

operator U =
∑

sgn(λi)uiu
∗
i and take Lemma 2 into account. These consideration lead

to the above inequality by the triangle inequality for real numbers, as well as an easy
operator identity, namely

A2 −B2 =
1

2
((A−B)(A+B)) +

1

2
((A+B)(A−B)) .

For a complete but different proof see for example [NC00]. Sometimes (4.17) and the
following equivalent formulation are called the Fuchs-van de Graaf inequalities

1− 1

2
‖ρ− σ‖tr ≤ F (ρ, σ) ≤

√
1− 1

4
‖ρ− σ‖2

tr.

These have been proven initially by Christopher Fuchs and Jeroen van de Graaf [FvdG99].
We apply the Fuchs-van de Graaf inequalities to prove the following lemma relating the
distances of a state to the one after a partial measurement.

Lemma 7. Let σ, σ′ ∈ D(X ), and ρ ∈ D(X ⊗ Y) be density operators such that
trY(ρ) = σ. Then there exists a density operator ρ′ ∈ D(X ⊗ Y), such that trY(ρ′) = σ′.
Moreover, if

α =
1

2
‖σ − σ′‖tr β =

1

2
‖ρ− ρ′‖tr,
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then
α ≥ 1−

√
1− β2 β ≥ 1−

√
1− α2,

and ρ′ can be computed efficiently in parallel.

The lemma is mainly used in the proof DQIP = PSPACE [GW11] from Gutoski
and Wu, who called it the fidelity trick. Moreover, the first part of Lemma 7 is also
called the preservation of subsystem fidelity, since the construction of ρ′ will imply
F (σ, σ′) = F (ρ, ρ′).

Proof. It is sufficient to prove F (σ, σ′) = F (ρ, ρ′) since the Fuchs-van de Graaf inequal-
ities of these fidelity functions imply

1− α ≤ F (σ, σ′) = F (ρ, ρ′) ≤
√

1− β2, and

1− β ≤ F (ρ, ρ′) = F (σ, σ′) ≤
√

1− α2.

Due to the monotonicity of the fidelity, (4.15), one inequality follows immediately:

F (σ, σ′) = F (trY(ρ), trY(ρ′) ≥ F (ρ, ρ′).

To prove the reverse inequality choose U ∈ U(X ) such that
√
σ
√
σ′U is positive semidef-

inite. Then F (σ, σ′) = tr
(√

σ
√
σ′U

)
holds. Now define Z = X ⊗ Y and choose the

purification |ψ〉 ∈ X ⊗ Y ⊗ Z of ρ, such that

|ψ〉 = vec(
√
ρ).

By reordering the coefficients we can get an operator A : Y ⊗ Z → X , which obeys
vec(A) = |ψ〉. Since |ψ〉 is a purification of ρ and ρ is a purification of σ, also |ψ〉 is a
purification of σ, just on a bigger space than ρ. We notice here that the relation ”is a
purification of” is transitive. Due to the unitary equivalence of purifications there exists
a linear isometry V : X → Y ⊗Z, such that

A =
√
σV ∗.

Then |φ〉 = vec
(√

σ′UV ∗
)
∈ X ⊗ Y ⊗ Z is a purification of σ′. Therefore, we can choose

ρ′ = trZ(|φ〉〈φ|) to finally conclude

F (ρ, ρ′) ≥
∣∣∣〈vec

(√
σV ∗

)
, vec

(√
σ′UV ∗

)
〉
∣∣∣

=
∣∣∣〈√σV ∗,√σ′UV ∗〉∣∣∣ = tr(

√
σ
√
σ′U) = F (σ, σ′).

The initial inequality is due to Uhlmann’s theorem. Notice that the first inner product
is the standard scalar product, but the second one is the Hilbert-Schmidt inner product.
The equality between them holds in general for all hermitian matrices:

|〈vec(A), vec(B)〉| = |
∑
i,j

ai,jbi,j| = tr(A∗B).
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Moreover, we have to prove the computability of ρ′ in NC. First the computation of
U can be done in NC, since we can find a singular value decomposition of

√
σ
√
σ′ in

NC due to Section 4.2. Let SDT be such a singular value decomposition then the
choice U = T ∗S guarantees the positive semidefiniteness of

√
σ
√
σ′U . Moreover, the

calculation of A is easy as we just have to rearrange the coefficients in the entries of
√
ρ

to guarantee vec(A) = |ψ〉 = vec(
√
ρ). To be able to compute the linear isometry V we

compute the singular value decomposition of
√
σ, namely S1D1T1 and the inverse or the

pseudo-inverse of
√
σ, namely T ∗1D

−1
1 S∗1 . Notice that D1 is not necessarily invertible. In

this case D−1
1 refers to the inversion of the diagonal entries, which are not zero. Once

we choose V = A∗((
√
σ)−1)∗ it only remains to calculate ρ′:

ρ′ = trZ

(
vec
(√

σ′UV ∗
)

vec
(√

σ′UV ∗
)∗)

.

Since standard matrix operations like multiplication and partial trace can be done in
NC according to Section 4.2, we can compute ρ′ efficiently in parallel from the classical
representations of σ, σ′ and ρ.

Furthermore, we need the following corollary of Uhlmann’s theorem.

Corollary 1. Let ρ, σ be as before. Define ε = min{‖|φ〉 − |ψ〉‖}, where the minimum
is taken over all purifications |φ〉 and |ψ〉 of ρ and σ, respectively. Then the fidelity can
be characterized as

F (ρ, σ) =

(
1− ε2

2

)2

.

This is a direct consequence of Uhlmann’s theorem, since

min ‖|φ〉 − |ψ〉‖2 = min (|〈φ|φ〉| − 2|〈φ|ψ〉|+ |〈ψ|ψ〉|) = min (2− 2|〈φ|ψ〉|)
= 2− 2 max |〈φ|ψ〉|

holds, when the minima and the maximum are taken over purifications |φ〉 and |ψ〉.
Therefore, we can prove the corollary by(

1− ε2

2

)2

= max
|φ〉,|ψ〉

|〈φ|ψ〉| = F (ρ, σ).

Now we stated all the theorems, lemmas and corollaries about the fidelity function, which
we will need in the main part. In the next section we will examine a metric relying upon
the fidelity function.

4.3.4 Bures angle

The Bures angle is a tool to measure the angle between two quantum states. The name
goes back to a paper of Donald Bures [Bur69], in which he studied a metric. Eventually
this metric was called the Bures metric. Uhlmann pointed out its application to quantum
states in 1992 [Uhl92]. Nevertheless, the following section is mostly due to Nielsen’s and
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Chuang’s book [NC00] as well as Gutoski’s and Wu’s paper [GW11]. For any two density
operators ρ, σ ∈ D(X ) the Bures angle is defined as

∠(ρ, σ) = arccosF (ρ, σ).

This is a quite unusual notation, because the Bures angle is referred to as A(·, ·) in the
literature. But the extensive use of the letter A for the player Alice in a game justifies
this notation avoiding double occupancy.
Since the range of the fidelity function is [0, 1], Bures angle is well defined and non-
negative as 0 ≤ arccosx ≤ π/2 holds for all x ∈ [0, 1]. Moreover, the statement
,F (ρ, σ)=1 if and only if ρ = σ, implies ∠(ρ, σ) = 0 if and only if ρ = σ. Since the Bures
angle is also symmetric and obeys the triangle inequality, ∠(ρ, σ) ≤ ∠(ρ, τ) +∠(τ, σ) for
all density operators ρ, σ, τ , it is a metric on quantum states.
In order to prove the triangle inequality let |ζ〉 be a purification of τ . Now we choose
purifications |ψ〉 of σ and |φ〉 of ρ such that

F (ρ, τ) = 〈φ|ζ〉 F (τ, σ) = 〈ζ|ψ〉,

and 〈φ|ψ〉 is a positive real number. Such a choice is always possible since we can
multiply the purifications with suitable phase factors to force 〈φ|ψ〉 into being real and
positive. As any purification is a unit vector,

arccos〈φ|ψ〉 ≤ arccos〈φ|ζ〉+ arccos〈ζ|ψ〉 (4.18)

is the triangle inequality for the angle between points on the surface of the unit sphere.
Combining a consequence of Uhlmann‘s theorem (Theorem 2), namely F (ρ, σ) ≥ 〈φ|ψ〉,
the monotone decrease of the arccos function, and (4.18) we conclude

∠(ρ, σ) ≤ arccos〈φ|ψ〉 ≤ ∠(ρ, τ) + ∠(τ, σ).

Additionally the Bures angle is contractive. This means

∠(Φ(ρ),Φ(σ)) ≤ ∠(ρ, σ),

for any quantum channel Φ ∈ T (X ,Y) and all density operators ρ, σ ∈ D(X ). The
contractiveness of the Bures angle is a consequence of the monotonicity of the fidelity,
which was discussed in the previous section. Since F (Φ(ρ),Φ(σ)) ≥ F (ρ, σ) holds for all
density operators ρ, σ ∈ D(X ) and all quantum channels Φ ∈ T (X ,Y) the contractive-
ness follows from the monotone decrease of the arccos function.
Furthermore, the Fuchs-van de Graaf inequalities can be used to find bounds on the
Bures angle in terms of the trace norm.

Lemma 8. For all density operators ρ, σ ∈ D(X )

1

2
‖ρ− σ‖tr ≤ ∠(ρ, σ) ≤

√
π

2
‖ρ− σ‖tr .
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Proof. The upper bound is a direct consequence of (4.17):

1

2
‖ρ− σ‖tr ≤

√
1− cos(∠(ρ, σ))2 = sin(∠(ρ, σ)) ≤ ∠(ρ, σ).

Here we applied the equality
√

1− (cosx)2 = sinx and the inequality sinx ≤ x, which
holds for all x ≥ 0 due to basic calculus.
Also the lower bound can be proven by applying (4.17):

1

2
‖ρ− σ‖tr ≥ 1− cos(∠(ρ, σ)) ≥ ∠(ρ, σ)2

π
,

where the second inequality follows from the inequality cosx ≤ 1 − x2/π, which holds
for all x ∈ [0, π/2] due to basic calculus.

After this theoretical approach, we will discuss a computational model for quantum
computers.

4.3.5 Quantum circuits

We will rely upon the quantum circuit model of computation, a computational model
from David Deutsch [Deu89]. Despite the fact that there exist many different equivalent
models, such as, for example, the quantum Turing machine, which was also introduced
by Deutsch [Deu85], the quantum circuit model best suits our purpose. Actually, we will
use a refined version by Yao [Yao93], who also established the equivalence of these mod-
els. Transformations on quantum registers ought to be unitary and hence invertible.
Therefore, it is easy to describe unitary operators, which reorder qubits or flip them
around. But it is harder to define simple operations like copying a qubit. Actually,
copying a qubit can only be accomplished by increasing the register’s size.
Basic unitary operations are called gates. Quantum circuits process quantum informa-
tion through quantum gates. Since matrices are used to describe these gates, a basis has
to be selected. Here the standard basis will be chosen. For single qubit operations this
means

|0〉 corresponds to e1 =

(
1
0

)
and |1〉 corresponds to e2 =

(
0
1

)
.

In general the lexicographical order of the basis in the dirac notation corresponds to the
standard basis as explained in Section 4.1.3.
Initially, we will examine three quantum gates, which will produce any others up to
sufficient precision:

1. The Hadamard gate is probably the most frequently used gate in quantum algo-
rithms. It operates on a single qubit and has the following effect on the standard
basis: |0〉 → (1/

√
2)(|0〉+ |1〉), |1〉 → (1/

√
2)(|0〉− |1〉). The matrix representation

of the Hadamard gate on one qubit is

H =
1√
2

(
1 1
−1 1

)
.
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2. The
√
σ3-gate or phase shift gate also operates on one qubit, it has the following

matrix representation
√
σ3 =

(
1 0
0 i

)
.

The notation
√
σ3 refers to the Pauli matrices utilized in the proof of Lemma 4.

Alternatively, the notation
√
σz-gate is used in the literature. Notice that this gate

does not change the outcome of a measurement performed on the resulting qubit,
but instead it only shifts the phase: |0〉 remains unchanged and |1〉 → eiπ/2|1〉.

3. The Toffoli gate operates on 3 qubit. In terms of Boolean variables it has the
following effect on pure states: |xyz〉 → |xy(z ⊕ x ∧ y)〉. This leads to the matrix
representation

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The Toffoli gate is sometimes also called the CCNOT gate, since it is a doubly
controlled not operation: the last qubit is negated if and only if the first two qubits
are in state |1〉.

These three gates are called Shor‘s basis as they generate a set of gates dense in the
set of 3-qubit gates. Moreover, Shor pointed out, how to construct a polynomial size
quantum circuit that tolerates O(1/ logcm) amounts of decoherence and inaccuracy
for any quantum computation with m gates [Sho96]. We will rely upon an improved
theorem, which can be found in the book of Arora and Barak [AB09].

Theorem 3. For every n ∈ N : n ≥ 3 and ε ∈ R : ε > 0, there exists an m ≤
100

(
nlog

(
1
ε

))3
such that for all i, j ≤ n the entry Uij of any unitary n × n matrix U

can approximated by unitary operators U1 . . . , Um in the following sense:

|Uij − (U1 · · ·Um)ij| ≤ ε,

where each Uk for k ∈ {1, 2, . . . ,m} is either a Hadamard, a phase shift or a Toffoli gate,
tensored with the identity operator on the remaining qubits.

Initially, the stated accuracy was published by Kitaev for arbitrary dense sets [Kit97]
and independently proven by Solovay, resulting in the Kitaev-Solovay theorem. Since
the proof of Theorem 3 is known for a long time and quite elaborate it will not be
discussed here. Details can also be found in the book of Nielsen and Chuang [NC00],
for instance. In the main part we will also use two more quantum gates:
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1. The controlled not or CNOT gate acts on 2 qubits. It is determined by its actions
on the standard basis, |0x〉 → |0x〉 and |1x〉 → |1¬x〉, for x ∈ {0, 1}. Therefore,
the matrix representing a CNOT gate is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

It is called a CNOT gate, since the first qubit controls, whether or not the second
qubit is flipped.

2. The swap gate acts on two qubits, it exchanges the values of the two qubits in the
following way: |01〉 → |10〉, |10〉 → |01〉, whereas |00〉 and |11〉 remain unchanged.
The matrix representing the swap gate is:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Keep in mind that all these matrix representations are with respect to the standard
basis which is related to the lexicographical order of the binary numbers in the Dirac
notation, as mentioned in Section 4.1.3.
This concludes the part of the preliminaries concerned with quantum phenomena. In
this thesis a theoretical approach to quantum computation through unitary matrices
on Hilbert spaces was already presented. Moreover, this section explains a practical
approach utilizing gates acting on few qubits. But there is still some work to do before
we can tackle the most recent advances in quantum complexity theory.

4.4 Game theory

In the wide field of game theory this thesis is only concerned with two-player zero-sum
games. This section is mainly due to a paper from Maurice Sion [Sio58]. Even though
most of the game theory we apply, is easy or even self-explanatory, a few results on
two-player zero-sum games have to be considered. At first John von Neumann proved
the existence of a saddle point in 1928 [vN28] for finite dimensional simplices M and
N , and a bilinear function f acting on M⊗N . Analytically formulated this means

max
µ∈M

min
ν∈N

f(µ, ν) = min
ν∈N

max
µ∈M

f(µ, ν). (4.19)

This equation relates to two-player games, as M and N can be interpreted as sets of
strategies available to the players. In this case the function f specifies the payout for the
player, who chooses his strategy from M. He tries to maximize the value of f , but his
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opponent tries to minimize it. Moreover, on the left side of (4.19), the player maximizes
his minimal win (Maximin strategy), opposed to the right side, where his opponent
minimizes his maximal loss (Minimax strategy). Therefore, we can immediately conclude

max
µ∈M

min
ν∈N

f(µ, ν) ≤ min
ν∈N

max
µ∈M

f(µ, ν).

All points (x′, y′), which satisfy a min-max theorem, such as (4.19), are called equilibrium
points.
Sion generalized von Neumann’s theorem in 1958 to semi-continuous, quasi-concave-
convex functions on compact convex subsets [Sio58]. Actually, Fan did this generalization
using fixpoint arguments [Fan53], but Sion unified the proofs of the existing theories.

Theorem 4. For compact convex sets X ,Y , any real valued, quasi-concave-convex func-
tion f on X ⊗ Y , which is upper semi-continuous on X and lower semi-continuous on Y
satisfies

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

In order to apply this to quantum refereed games it will suffice to understand, that
bilinear functions are quasi-concave-convex. This is obvious, since a function f acting
on XY is called quasi-concave-convex if

1. for all y ∈ Y , c ∈ R, the set {x : f(x, y) ≥ c} is convex, (quasi-concave on Y) and

2. for all x ∈ X , c ∈ R, the set {y : f(x, y) ≤ c} is convex (quasi-convex on X ).

Therefore, Theorem 4 can be applied to bilinear functions. Further details are presented
in the original paper from Sion [Sio58]. We will consider a scaled down version of his
proof for the special case of bilinear functions.
Like in all equilibrium point problems one inequality follows immediately, sup inf f(x, y) ≤
inf sup f(x, y). Since the supremum is always taken over Y , while the infimum is always
taken over X , this shortened notation is used. For the reverse inequality, observe that
bilinear functions over compact sets, make the use of the infima and suprema obsolete,
because they are always achieved. Therefore, we can use minima and maxima instead.
Sion’s arguments are outlined without including the proofs of the following lemmas,
since these statements have been known for a long time.

Lemma 9. For an n-dimensional simplex S with vertices a0, . . . , an, let A0, . . .An be
open sets, such that S ⊂

⋃n
j=0Aj, S −Aj is convex ,and aj /∈ Ak, for all j, k = 0, . . . , n :

j 6= k, then
⋂n
j=0Aj = Ø.

Lemma 10. Let U = {a0 . . . an} be a set of n+ 1 points in a linear space of dimension
k < n, then

⋂n
j=0 conv(U − aj) 6= Ø.

The notation conv(·) denotes the convex hull, which is the set of all convex combina-
tions. Let X be any subset of a vector space, then

conv(X ) =

{
n∑
j=1

αjxj : xj ∈ X , n ∈ N,
n∑
j=1

αj = 1, αj ≥ 0

}
.

Lemma 9 and Lemma 10 are only used to prove the following lemma:
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Lemma 11. Let X be a convex set, N a finite set and f a bilinear function on X ⊗N .
If N is minimal with respect to the property: ∀x ∈ X∃ν ∈ N : f(x, ν) < c, then there
exists x0, such that f(x0, ν) < c,∀ν ∈ N .

Originally this lemma was designed for quasi-concave and upper semi-continuous func-
tions, and thus there was an analogous formulation for lower semi-continuous quasi-
convex functions. Since we only need the statement for bilinear functions and both sets
X and Y are convex and compact, our situation is completely symmetric. Therefore,
the statement holds, if we exchange the role of X and Y . Although the proof would be
simpler for bilinear functions, it is usefuI to present this more complex proof since it
unites the different concepts in two-player zero-sum games.

Proof. In order to prove Lemma 11 name the elements of N ν0, . . . , νn and define

Aj = {x : f(x, νj) < c} for j = 0, . . . , n.

Since f is bilinear, Aj is open and X −Aj is convex for all j. The minimality condition
on N implies for each j the existence of a aj ∈ X , such that aj ∈ X −Ak for all k 6= j.
Moreover, we define U = {a0, . . . , an} in order to achieve

conv(U − {aj}) ⊂ conv(X −Aj) = X −Aj,

which is due to U ⊂ X and the fact that the convex hull of a convex set is the set itself.
Furthermore, due to minimality criterion on N we conclude X ⊂

⋃n
j=1Aj and therefore

we have
n⋂
j=0

conv(U − {aj}) = Ø.

Now the negation of Lemma 10 implies that U is a n-dimensional simplex. Thus, we can
apply Lemma 9 to find a x0 ∈

⋂n
j=0Aj satisfying f(x0, ν) < c,∀ν ∈ N .

Note that due to the bilinearity of f the roles of X and Y can be exchanged, as well
as the inequality in the minimality condition can be reversed, to formulate an analogous
lemma. Lemma 11 was originally designed to take the different assumptions on the
convexity of f into account. Therefore, it is not important to this proof and we show
Theorem 4 by contradiction.

Proof. Suppose max min f < c < min max f and define

Ax = {y : f(x, y) > c} and By = {x : f(x, y) < c}.

Since f is bilinear all Ax are open and their union covers Y . Due to the compactness of
Y some finite subset of {Ax : x ∈ X} also covers Y . Analogously, some finite subset of
{By : y ∈ Y} covers X . Now we can choose finite subsets M1 ⊂ X and N1 ⊂ Y , such
that for each y ∈ Y , and therefore for each y ∈ conv(N1), there exists a µ ∈ M1, with
f(µ, y) > c. Analogously, for each x ∈ X and therefore for each x ∈ conv(M1), there
exists a ν ∈ M1 with f(x, ν) < c. Furthermore, let M2 be a minimal subset of M1,
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such that for each y ∈ N1 there exists a µ ∈M2, with f(µ, y) > c. Moreover, let N2 be
the set, which is defined by an analogous construction with N2 in place of M2.
Once we iterate this alternating process we end up with two finite subsets M⊂ X and
N ⊂ Y , such that N is minimal with respect to the property:

∀ν ∈ conv(N ),∃µ ∈M : f(µ, ν) > c.

Analogously, M is minimal with respect to the property:

∀µ ∈ conv(M),∃ν ∈ N : f(ν, µ) < c.

Therefore, Lemma 11 ensures the existence of a x0 ∈ conv(M) such that f(x0, y) < c
for all y ∈ conv(N ). The analogous version of Lemma 11 guarantees the existence of a
y0 ∈ conv(N ) such that f(x, y0) > c for all x ∈ conv(M). But then c < f(x0, y0) < c,
which is obviously a contradiction.

In the main part we will use Theorem 4 to construct a suitable SDP, representing
the game value of a quantum refereed game. This SDP can be solved by a version of
the matrix multiplicative weight update algorithm, which we will examine in the next
section.

4.5 Matrix multiplicative weight update method

In 2007 Sayten Kale published in his thesis [Kal07] a generalization of the multiplicative
weight update method onto matrices. It is called the MMW method and relies upon a
survey by Sanjeev Arora, Elad Hazan and Kale [AHK12], in which the multiplicative
weight update method and some applications are discussed. Actually this survey exists
since 2005, but it was just recently published in a journal. The MMW method was
originally designed to solve the following problem:
In each round k ∈ {1, 2, . . . , N} a player selects randomly one of n experts, which are
each represented by a unit vector in Cn. The player has to carry the advice of the
chosen expert into execution for example to buy or sell a certain stock. The monetary
consequences of choosing a certain expert are represented by a loss matrix. The letter
M ∈ Cn×n serves as the description of a quadratic form quantifying the loss, caused
by expert v ∈ Sn−1 as vtMv, where Sn−1 is the unit sphere in Cn. There is only the
following restriction on M : 0 ≤ M ≤ 1n. Here 1n is the n × n dimensional identity
matrix. Moreover, Kale restricted his proof to vectors and matrices with real entries
rather than complex ones, only mentioning the possibility of this generalization. Since
we discuss the generalization it is important to keep in mind that all matrices under
consideration are hermitian.
Coming back to the original problem, the objective is to choose the experts, such that
the best expert does not control his losses significantly better than the player. The
opinion of the player about the experts changes over the course of the experiment. In
the beginning a rational player should not favor any expert. When the experts give
good or bad advice, the player has to judge their success or failure to improve future
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decisions. Therefore, the player has to keep track of a probability distribution D(k) after
which he chooses the experts at random. This can be interpreted as assigning a weight
to each expert, justifying the name of this method. The expected loss of the player,
after choosing his expert in round k according to D(k) is

E
[
vtM (k)v

]
= E

[
〈M (k), vvt〉

]
= 〈M (k),E

[
vvt
]
〉,

where E is the expected value ranging over all experts v ∈ D(k) of a certain distribution.
Observe that ρ = E [vvt] is positive semidefinite, since ∀v ∈ Sn−1 : vvt ∈ Pos(Rn) and
the expectation is just a convex combination of these matrices. Furthermore, notice that
tr(vvt) = ‖v‖2 = 1 implies ρ ∈ D(Cn). Moreover, keeping the spectral decomposition,
ρ =

∑
j λj(ρ)vjv

t
j, in mind, the density matrix can be associated with the probability

distribution, which chooses vector vj with probability λj. In general λj(A) refers to the
j-th largest eigenvalue of a hermitian matrix A. Since we are interested in the expected
loss, the density matrix suffices to calculate this value as

E
[
vtM (k)v

]
= 〈M (k), ρ〉.

The expected loss over N rounds is therefore

N∑
k=1

E
[
vtM (k)v

]
=

N∑
k=1

〈M (k), ρ〉.

The above considerations enable us to state the matrix multiplicative weight update
algorithm

1. Initialize γ ∈ R : 0 ≤ γ ≤ 1
2

and W (1) = 1n

2. For k = 1, 2, . . . , N

a) Update ρ(k) = W (k)/tr(W (k)), and

b) Observe the loss matrix M (k) and update the weight matrix

W (k+1) = exp

(
−γ

k∑
i=1

M (i)

)
.

The next theorem provides an upper bound on the overall expected loss if the player
applies the MMW algorithm.

Theorem 5. The MMW algorithm guarantees, that after N rounds, every density
matrix ρ ∈ D(Cn) satisfies

(1− γ)
N∑
k=1

tr
(
M (k)ρ(k)

)
≤ tr

(
N∑
k=1

M (k), ρ

)
+

ln(n)

γ
.
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Before we are able to prove this theorem some basic considerations are necessary:
First note that the Golden-Thompson inequality, tr(exp(A + B)) ≤ tr(exp(A)exp(B),
holds for all hermitian matrices A and B. Secondly if two real valued functions f and g
satisfy f(x) ≥ g(x) for all x in some domain, then f(A) ≥ g(A) for any hermitian matrix
A, whose eigenvalues lie in this domain. In order understand this statement observe
that the application of a function to a diagonalizable matrix can be understood as the
application of the function to the eigenvalues in the diagonal matrix: f(A) = Uf(D)U∗.
Utilizing this notation the positive semidefiniteness of f(A)− g(A) is simply due to the
non-negativity of the eigenvalues of f(D)− g(D) as f(A)− g(A) = U(f(D)− g(D))U∗.
Moreover, we apply this consideration to the following inequality

exp(−γx) ≤ 1− (1− exp(−γ))x,

which holds for all γ ≤ 1 and all x ∈ [0, 1] due to the convexity of the exponential
function. This leads to the matrix inequality

exp(−γA) ≤ 1n − (1− exp(−γ))A, (4.20)

which holds for all hermitian n× n matrices A with eigenvalues in [0, 1]. These consid-
erations enable us to prove Theorem 5.

Proof. Observe the following recursive inequality:

tr
(
W (k+1)

)
= tr

(
exp

(
−γ

k∑
j=1

M (j)

))

≤ tr

(
exp

(
−γ

k−1∑
j=1

M (j)

)
exp

(
−γM (k)

))
= tr

(
W (k)exp

(
−γM (k)

))
≤ tr

(
W (k)

(
1n − (1− e−γ)M (k)

))
= tr

(
W (k)

) (
1− tr

[
(1− e−γ)M (k)ρ(k)

])
≤ tr

(
W (k)

)
exp

(
tr
[
(e−γ − 1)M (k)ρ(k)

])
,

where we used the shortened notation for the exponential function on real values. The
second line is due to the Golden-Thompson inequality. The third line follows from
(4.20) and the definition of ρ(k) in the algorithm. Moreover, the last inequality is due
to 1 + x ≤ ex, which holds for all real x, and therefore by the above consideration
1 + A ≤ exp(A) holds for any hermitian matrix A.
Iterating the resulting inequality leads to

tr
(
W (N+1)

)
≤ tr

(
W (1)

)
exp

(
(e−γ − 1)tr

[
N∑
k=1

M (k)ρ(k)

])
(4.21)

by induction. Due to the initialization of the weight matrix in the algorithm we have
tr(W (1)) = tr(1n) = n.On the other hand observe

tr
(
W (N+1)

)
= tr

(
exp

(
−γ

N∑
k=1

M (k)

))
≥ exp

(
−γλmin

(
N∑
k=1

M (k)

))
.
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In general λmin(A) refers to smallest eigenvalue of a normal matrix A. The last inequality
follows from tr(exp(A)) =

∑
j λj(exp(A)) =

∑
j exp(λj(A)) ≥ exp(λmin(A)). Combining

the above inequalities for tr(W (N+1)) leads to

exp

(
−γλmin

(
N∑
k=1

M (k)

))
≤ n exp

(
(e−γ − 1)tr

[
N∑
k=1

M (k)ρ(k)

])
. (4.22)

Moreover, any unit vector v obeys
∑N

k=1 v
tM (k)v ≥ λmin

(∑N
k=1 M

(k)
)

. However, since

the theorem is stated in terms of density matrices instead of unit vectors, we need
the eigenvalue decomposition, ρ =

∑n
j=1 λj(ρ)vjv

t
j, which exists for any ρ ∈ D(Cn) to

conclude

N∑
k=1

tr(M (k)ρ) =
N∑
k=1

tr

(
M (k)

n∑
j=1

λj(ρ)vjv
t
j

)
=

N∑
k=1

n∑
j=1

vtjM
(k)vjλj(ρ)

≥
n∑
j=1

λj(ρ)λmin

(
N∑
k=1

M (k)

)
= λmin

(
N∑
k=1

M (k)

)
.

The last inequality is due to
∑
λi(ρ) = tr(ρ) = 1. Since exp(−γx) is strictly monotoni-

cally decreasing we can conclude

exp

(
−γ

N∑
k=1

tr(M (k)ρ)

)
≤ exp

(
−γλmin

(
N∑
k=1

M (k)

))
.

Plugging this result into (4.22) and taking logarithms, we end up with

−γ
N∑
k=1

tr(M (k)ρ) ≤ ln n+ (e−γ − 1)tr

[
N∑
k=1

M (k)P (k)

]
.

Furthermore, we use e−γ − 1 ≤ −γ(1− γ) for γ ≤ 1/2 to rephrase this inequality:

−γ
N∑
k=1

tr(M (k)ρ) ≤ ln n− γ(1− γ)tr

[
N∑
k=1

M (k)ρ(k)

]
.

Dividing by γ and rearranging the terms completes the proof.

In the main part we will need a slightly different variant of Theorem 5. The difference
will regard the upper bound on the loss matrices: 0 ≤M (k) ≤ α1n. This implies

(1− γ)
N∑
k=1

tr
(
M (k)ρ(k)

)
≤ tr

(
N∑
k=1

M (k), ρ

)
+ α

ln(n)

γ
, (4.23)

since all other terms in the inequality besides ln(n/γ) are lowered by the factor α.
Furthermore, we can use the eigenvalue decomposition to conclude

tr(M (k)ρ) = tr

(
M (k)

n∑
j=1

λj(ρ)vjv
t
j

)
=

n∑
j=1

vtjM
(k)vjλj(ρ) ≤

n∑
j=1

λj(ρ)λmax(M
(k)) ≤ α
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for any density operator ρ and all k ∈ {1, . . . , N}. Therefore, adding γ
∑

k tr(M (k)ρ(k))
to both sides of inequality (4.18) and using the Hilbert-Schmidt inner product gives

N∑
k=1

〈
ρ(k),M (k)

〉
≤

〈
ρ,

N∑
k=1

M (k)

〉
+ αγN +

αln(n)

γ

Thus, dividing by N provides the desired extended version of Theorem 5:

1

N

N∑
k=1

〈
ρ(k),M (k)

〉
≤

〈
ρ,

1

N

N∑
k=1

M (k)

〉
+ α

(
γ +

ln(n)

γN

)
. (4.24)

This completes the description of the MMW method. The further adjustments we need
are postponed to the main part, where we will apply the MMW method to semidefinite
programs. The next section is dedicated to this generalization of linear programs.

4.6 Semidefinite programs

The formulation of quantum interactive proofs and quantum refereed games as semidef-
inite programs (SDPs) is important to the new polynomial space algorithms. Therefore,
this generalization of linear programs ought to be examined. Since the following descrip-
tion of SDPs is completely standard similar presentations can be found in most books
regarding this topic.
The previously defined superoperators enable a compact description of semidefinite pro-
grams as triples (Ψ, A,B) of a hermiticity preserving superoperator Ψ ∈ T (X ,Y) and
two Hermitian operators A ∈ Herm(X ) and B ∈ Herm(Y) such that

Primal Dual

minimize :〈A,X〉 maximize :〈B, Y 〉
subject to :Ψ(X) ≥ B subject to :Ψ∗(Y ) ≤ A

X ∈ Pos(X ) Y ∈ Pos(Y).

Note that the restrictions to positive semidefinite matrices causes nonlinearities, as a
Hermitian operator X ∈ Herm(X ) is positive semidefinite if and only if vtXv ≥ 0 for
all v ∈ X . Obviously, this condition is quadratic. Therefore SDPs are a generalization
of linear programs, which is also explained in detail in a survey of Lieven Vanderberghe
and Stephen Boyd [VB96].
Analogously to linear programs, semidefinite programs have a primal and a dual formu-
lation, with primal and dual feasible sets

P = {X ∈ Pos(X ) : Ψ(X) ≥ B} and D = {Y ∈ Pos(Y) : Ψ∗(Y ) ≤ A}

and optimal primal and dual values p, d ∈ R. The two formulations obey the following
weak duality theorem:
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Theorem 6. For any Euclidean vector spaces X ,Y and a semidefinite program (Ψ, A,B)
the primal optimum value is at least as big as the dual optimum value:

p = inf
X∈Pos(X )

{〈A,X〉 : Ψ(X) ≥ B} ≥ sup
Y ∈Pos(Y)

{〈B, Y 〉 : Ψ∗(Y ) ≤ A} = d. (4.25)

Notice that the above equations define the optimal values of the primal and dual SDP
appropriately.

Proof. Suppose the primal feasible set and dual feasible sets are not empty and let
X ∈ P , Y ∈ D be elements of these sets. Then

〈A,X〉 ≥ 〈Ψ∗(Y ), X〉 = 〈Y,Ψ(X)〉 ≥ 〈B, Y 〉,

due to the restrictions on X and Y in the above SDP. If either P = ∅ or D = ∅ holds,
(4.25) would follow immediately, because p or d have infinite values in these cases. If P
is empty p =∞, if D is empty d = −∞.

Remember that linear programs, obey strong duality (∃p, d ∈ R : p = d) if there exists
an optimal solution to the primal problem, for instance. Additionally optimal solutions
to semidefinite programs have to obey a statement concerned with positive definiteness
for strong duality to hold. Positive definiteness can be defined analogously to positive
semidefiniteness. A matrix X ∈ Herm(X ) is called positive definite if vtXv > 0 for all
v ∈ X\{0}. Moreover, the notation A > B or B < A is used to describe the positive
definiteness of A−B for A,B ∈ Herm(X ). This notation allows a compact presentation
of the strong duality theorem for semidefinite programs:

Theorem 7. Let (Ψ, A,B) be a semidefinite program as above then the following two
implications hold:

1. If p is finite and ∃Y ∈ Pos(Y), such that Y is positive definite and Ψ∗(Y ) < A,
then p = d and ∃X ∈ P , s.t. 〈A,X〉 = p.

2. If d is finite and ∃X ∈ Pos(X ), such that X is positive definite and Ψ(X) > B,
then p = d and ∃Y ∈ D, s.t. 〈B, Y 〉 = d.

Since this theorem is standard knowledge in Convex optimization and the focus of the
thesis lies upon quantum phenomena, a proof is not presented. Moreover, the survey
from Vanderberghe and Boyd [VB96] discusses many different ways of tackling sample
SDPs at the state of art. At start the equivalence of different formulations of one
SDP might cause similar questions on first sight as in linear programming. But these
problems vanish as one gets used to the application of SDPs. Moreover, since SDPs are
solvable by generalizations of interior point methods polynomial-time SDP algorithms
exist. Therefore, all polynomial sized SDPs can be solved in PSPACE. In the main
part the problem will be the pure size of the input, which is O(2n) for n-qubit systems.
Here interior point methods would need exponential time, but might possibly yield an
exponential usage of space as well. Therefore, these methods cannot be used. Instead we
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will rely upon the MMW method, which was introduced in the previous section. More
information on convex optimization is available in the book from Boyd and Vanderberghe
[BV04]. The above thoughts conclude the preliminaries. In the next step the thesis
explores the path to the latest advances in complexity theory of quantum computation
concerned with interactive protocols.
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5 Quantum interactive proofs

Before we start to examine the results leading to the proof of QIP=PSPACE by Jain,
Ji, Upadhyay and Watrous [JJUW09], we give an overview of some quantum complexity
classes and the previously known relations between these classes. The complexity theo-
retic boundaries of quantum computation are not known yet. Even though it is widely
believed that BQP, the quantum analogue to P, and P are if not the same at least close
to each other. Only few relations between quantum and classical complexity classes were
known before 2010.
Some of the quantum complexity classes we are about to examine are not defined for-
mally yet. But their classical counterparts are standard knowledge in complexity theory
and the generalization to quantum complexity classes can be achieved by allowing quan-
tum computation and messages instead of classical computation and information. The
only classes not derived from standard classical ones are SQG and DQIP. SQG stands
for short quantum games. In these refereed two-player games each player is asked a
question separately, opposed to this the players in a standard quantum refereed game
with two turns (QRG(2)) are questioned at the same time. DQIP stands for double
quantum interactive proofs. It is a generalization of SQG, in which the referee can ex-
change a constant number of messages with each player. But the communication of the
two players with the referee is separated just like in SQG.
Examining Figure 5.1 we observe that most relations are either trivial or rely upon

well known classical facts. Exceptions are the subset relations QAM ⊆ BP·PP and
QMA ⊆ PP, which were proven in 2005 [MW05]. Notice that many relations between
the presented quantum complexity classes are uncertain. There is for example an or-
acle O for which AMO is not a subset of QMAO. On the other hand the upper part
of the diagram will collapse to PSPACE, as a proof for DQIP = PSPACE [GW11] will
be presented in the next chapter of this thesis. Prior to this the celebrated proof of
QIP = PSPACE [JJUW10] will be explained completely in section 5.3. This was one of
the first general results on the boundaries of quantum computation in terms of classical
complexity classes. Combined with IP = PSPACE it even establishes an equivalence of
quantum and classical computation in interactive proofs: IP = QIP.
In order to understand the state of the discussion, before QIP = PSPACE was proven,
we will start to examine the proof of QIP = QIP(3) from Kitaev and Watrous [KW00], as
well as the one of QMAM = QIP(3) from Marriott and Watrous [MW05]. The number
in brackets refers to the number of rounds a game is played, as in classical complexity
theory involving round-based games. An intermediate results will not be discussed in
detail, but at least mentioned here. In 2009 Jain and Watrous presented a proof for
QIP(2) ⊆ PSPACE.
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Figure 5.1 Relations between quantum complexity classes
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5.1 QIP = QIP(3)

Most of this section is due to Kitaev and Watrous, who surprisingly proved, that quan-
tum interactive proofs can be reduced to three rounds of communication, without de-
creasing its computational potential at all [KW00]. In order to present a complete proof
QIP is defined initially. Afterwards the completeness is increased and the number of
rounds is reduced by parallelization. Finally, the soundness error is decreased appro-
priately. Especially in the proofs of Theorem 8 and Theorem 9 important details were
added. Moreover, notice that an equivalent classical statement is unlikely to hold, since
it would collapse the polynomial hierarchy at the second level. Therefore, one of the few
key differences between classical and quantum computation is pointed out here.

5.1.1 Definition of QIP

Following the classical interactive proofs, the omniscient prover P tries to persuade a
computationally bounded verifier V of some statement. Unlike in the classical version
messages contain quantum information and V may use a quantum computer to verify or
discard the statement. In order to formalize the notion of quantum interactive proofs let
Σ∗ = {0, 1}∗ be the standard language set. Then a quantum verifier is a polynomial-time
computable mapping V such that

∀x ∈ Σ∗,∃k ∈ poly : V(x) =
(
V1(x), . . . , Vk(|x|)(x)

)
.
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Each Vi(x) represents a quantum circuit acting on qV(x) + qM(x) qubits, where qV(x)
and qM(x) are polynomially bounded functions referring to the qubits of the verifier and
the qubits of the message, respectively.
Analogously, we denote by P(x) = (P1(x), . . . , Pl(|x|)(x)) a prover. Here each Pi(x) acts
on qP(x)+qM(x) qubits, where qP(x) refers to the private qubits of the prover. Sometimes
we will drop the index or the variable x for simplicity. As in a classical interactive proof
V and P exchange m messages. Of course, they have to agree on the number of messages
and their size to be compatible as quantum circuits are always constructed for a certain
number of qubits. In this case V and P are called m-message verifier and m-message
prover, respectively. Furthermore, both apply unitary operations to their memories and
the messages. In the end V measures the initial part of his memory and accepts if the
output is one.
If the prover starts to send messages the total number of messages is odd and one has
to choose l = (m + 1)/2 and k = (m− 1)/2. On the other hand if the verifier starts to
send messages the total number of messages is even and one has to choose l = k = m/2.
Notice that an interactive proof with an even number of messages can be simulated by
one with an odd number of messages. The verifier and the prover simply agree on the
first message and V rejects immediately if it differs. Generally the output is denoted
by the function outV,P : Σ∗ → {0, 1}. In a quantum setting all the circuits describing
V and P are applied to qV(x) + qM(x) + qP(x) qubits, which are in state |0〉, initially.
Therefore, the operators the verifier applies are tensored with the identity on the qubits
of the prover’s workspace and vice versa.
These definitions enable us to describe the complexity class, QIP(m, c, s), where m
represents the number of messages, c the completeness probability, and s the soundness
probability.

Definition 2. If m : Z+ → N and c, s : Z → [0, 1], then a language L ⊆ Σ∗ is in
QIP(m, c, s) if ∃ a m-message verifier V, such that

∀x ∈ L : ∃ m-message prover P : Pr[outV,P(x) = 1] ≥ c(|x|) (completeness)

∀x /∈ L : ∀ m-message prover P : Pr[outV,P(x) = 1] ≤ s(|x|) (soundness).

Furthermore, we will use the following notation

QIP(poly, c, s) =
⋃

m∈poly

QIP(m, c, s).

Analogously to its classical counterpart, IP = IP(poly, c, s), the equation, QIP =
QIP(poly, c, s), holds, if c and s are separated polynomially, meaning ∃p ∈ poly : (c−s) <
1/p. Despite the fact that quantum information is shared, Definition 2 is analogous to
the classical one for IP(m, c, s). But the boundaries on the size of the registers are very
tight, since both V and P have to know the exact size of the others register. Otherwise
their unitary operators could not be applied. Classically the size of the message is of
little importance as both participants have to able to process the information consec-
utively. Therefore, the size of the workspaces is not essential for classical interactive
proofs.
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5.1.2 Perfect completeness

This section describes how perfect completeness can be achieved by only two additional
rounds of communication. Kitaev and Watrous found a suitable postprocessing protocol
for the verifier in case he rejects, even though the input was a yes-instance. Perfect
completeness will be guaranteed on cost of a high soundness error:

Theorem 8. Let m ∈ poly. Observe for a : Z → [0, 1] the family of polynomial-time
uniformly generated quantum circuits, whose members perform a unitary transformation
Φc(n) with the following effect on pure states:

Φc(n)(|0〉) =
√
c(n)|0〉 −

√
1− c(n)|1〉,

Φc(n)(|1〉) =
√

1− c(n)|0〉 −
√
c(n)|1〉.

Let b : Z+ → [0, 1] satisfy s(n) < c(n)∀n ∈ N then
QIP (m, c, s) ⊆ QIP (m+ 2, 1, 1− (c− s)2).

Notice that the transformations Φc(n) can perform a reflection among the y-axis for
c(n) = 1 and even a 3/2π-rotation for c(n) = 0. But this second extreme situation can
be ruled out, as 1/2 < c(n).

Proof. Observe a protocol which verifies L ∈ QIP(m, c, s). Without loss of generality
one can assume, that the completeness condition in Definition 2 is satisfied with equality
by such a protocol. In order to prove L ∈ QIP (m+2, 1, 1−(c−s)2) the original protocol
is modified in the following way:

1. The original protocol is executed, but the verifier does not accept or reject. Instead
he holds two additional one-qubit registers B and B′, both initially zero. Let R
be the verifiers register after the original protocol was executed. Now if and only
if V would reject originally he increments both B and B′.

2. V→ P: Register (B′,R) and the prover performs U on (B′,R).

3. P→ V: Register B′. V applies a CNOT operation to (B,B′) and performs Tc(n)

on B. Finally, V accepts if and only if B is in the zero state, |0〉.

The notation V → P : B′ symbolizes V sending the message B′ to P. Let |ψ〉 be the
state of register R together with any of the prover’s private registers. Then after step 1
the entire system is in the mixed state

αacc|00〉|ψacc〉+ αrej|11〉|ψrej〉,

where αacc, αrej ∈ [0, 1] and |ψ〉 = αacc|ψacc〉 + αrej|ψrej〉 Here |ψacc〉 and |ψrej〉 are the
normalized projections of |ψ〉 onto accepting and rejecting states, respectively. There-
fore, right before the application of Φa(n) in step 3 the system’s state is

αacc|0〉|φacc〉+ αrej|1〉|φrej〉,
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where |φacc〉 = U(|0〉|ψacc〉 and |φrej〉 is equivalent to U(|1〉|ψrej〉, but with B′ flipped.
The flip is due to the application of the CNOT gate as B is in state |1〉 in this case.
Finally, after the verifier applied Φc(n) the probability of acceptance is∥∥∥αacc√c(n)|φacc〉+ αrej

√
1− c(n)|φrej〉

∥∥∥2

.

In case of x ∈ L we have αacc =
√
c(n) and αrej =

√
1− c(n). Now if the prover chooses

U , such that U(|0〉|ψacc〉 = |0〉|γ〉 and U(|1〉|ψrej〉 = |1〉|γ〉, for arbitrary |γ〉, we get
|φacc〉 = |φrej〉. Since |0〉|ψacc〉 and |1〉|ψrej〉 are orthonormal, and U is norm preserving
the probability of acceptance is

‖c(n)|0〉|γ〉+ (1− c(n))|0〉|γ〉‖2 = 1.

In case of x /∈ L the probability of acceptance is bounded by(
αacc

√
c(n) + αrej

√
1− c(n)

)2

, (5.1)

since ‖U |ζ〉‖ = ‖ζ〉‖ = 1 holds for every pure state |ζ〉. Furthermore, substituting
αrej =

√
1− αacc and leaving away the index of αacc and the argument of c, implies the

following equivalent formulation of (5.1):

1 + 2α2c− α2 − c+ 2α
√
c(1− α2)(1− c).

In order to proof an upper bound of 1 − (c − α2)2 for this term it is sufficient to proof
the following inequality for all α and c under consideration

1 + 2α2c− α2 − c+ 2α
√
c(1− α2)(1− c) ≤ 1− (c− α2)2.

This can be formulated equivalently as

2α
√
c(1− α2)(1− c) ≤ α2 + c− c2α4.

By squaring the whole inequality and subtracting the left side we end up with

0 ≤ (−α2 + c− c2 + α4)2,

which holds for all α, c ∈ R in general. The reverse direction holds because 0 ≤ α, c ≤ 1
and squaring is monotone in this case. This argument completes the proof, since the
soundness condition implies

1− (c(n)− α2
acc)

2 ≤ 1− (c(n)− s(n))2,

as required.
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If c′(n) ≤ c(n),∀n ∈ N the subset relation, QIP (m, c, s) ⊆ QIP (m, c′, s), holds.
Therefore, the remaining problem is to find a suitable c′(n). This would allow us to
come up with a family of polynomial-time uniformly generated quantum circuits in the
Shor basis, performing the transformation Tc′(n) exactly. One can find such a function
c′, obeying s(n) < c′(n) ≤ c(n) ∀n ∈ N. It can even be chosen exponentially close to c
in a pointwise sense, as all unitary transformations can be approximated appropriately
according to Theorem 3. Therefore,

QIP(m, c, s) ⊆ QIP(m+ 2, 1, 1− poly−1)

holds for c−s ∈ poly−1. This means only two additional messages are needed to achieve
perfect completeness. Moreover, the completeness and the soundness are still separated
polynomially.

5.1.3 Parallelization

This section is concerned with the reduction of quantum interactive proofs to three
rounds. A reduction to a constant number of rounds is unlikely to hold classically, as
mentioned before. The following theorem reduces the number of rounds, such that the
completeness remains perfect and the soundness does not increase to much.

Theorem 9. For m ∈ poly and any function ε : Z→ [0, 1] the following holds

QIP(m, 1, 1− ε) ⊆ QIP

(
3, 1, 1− ε2

4m2

)
.

The proof will just cover the case of m being odd, since a protocol where m is even can
be simulated by one with an odd number of messages, as discussed before in Section 5.1.1.
Choose k = (m + 1)/2 and let P1, . . . , Pk ∈ U(M⊗P) and V1, . . . , Vk ∈ U(V ⊗M) be
the circuits the prover P and the verifier V apply to the initial state |ψinit〉 ∈ V ⊗M⊗P .
Since the input x is fixed we can drop the arguments of Pi and Vi for notational ease. If Π0

denotes the projection on zero states, concerning the verifiers register, and Πacc denotes
the projection on accepting states we define the maximum acceptance probability as

MAP(V1, . . . , Vk) = max
P1...Pk∈U(M⊗P)

‖ΠaccVkPk . . . V1P1|ψinit〉‖2 .

In order to prove Theorem 9 we need the following lemma:

Lemma 12. Let ρ1, . . . ρk ∈ D(V ⊗M) satisfy ρk = (V †k ΠaccVk)ρk(V
†
k ΠaccVk), ρ1 =

Π0ρ1Π0, and MAP(V1, . . . , Vk) < 1− ε. Then

k−1∑
j=1

√
F
(

trMVjρjV
†
j , trMρj+1

)
≤ (k − 1)− ε2

8(k − 1)
.

The condition on ρk implies that it represents an accepting state, the condition on ρ1

implies that it represents the first unit vector in V ⊗M. Therefore, ρ1 is the matrix E1,
where only the first entry is one all others are zero.
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Proof. In order to proof Lemma 12 let |ψ1〉, . . . , |ψk〉 ∈ V ⊗M⊗P be purifications of
ρ1, . . . , ρk, meaning trP |ψj〉〈ψj| = ρj for all j ∈ {1, . . . , k}. According to Corollary 1,
which is a version of Uhlmann‘s theorem, there exist unit vectors |ζj〉, |φj〉 ∈ V ⊗M⊗P
and numbers ηj ∈ R, satisfying trM⊗P |ζj〉〈ζj| = trMVjρjV

†
j , trM⊗P |φj〉〈φj| = trMρj+1,

and ‖|ζj〉 − |φj〉‖ ≤ ηj, such that

F
(

trMVjρjV
†
j , trMρj+1

)
=

(
1−

η2
j

2

)2

,

for each j ∈ {1, . . . , k − 1}. The following consideration holds for each j ∈ {1, . . . , k −
1}: Since trM⊗P |φj〉〈φj| = trM⊗P |ψj+1〉〈ψj+1|, the unitary equivalence of purifications
stated in Theorem 1 ensures the existence of operators Qj+1 ∈ U(M⊗P), which sat-
isfy Qj+1|φj〉 = |ψj+1〉. Analogously, operators Rj+1 ∈ U(M⊗P) exist such that
Rj+1(Vj|ψj〉) = |ζj〉. Moreover, Pj+1 = Qj+1Rj+1 and choose P1 such that P1|ψinit〉 =
|ψ1〉. Now, we can conclude the following inequality for each j ∈ {1, . . . , k − 1}

‖Pj+1Vj|ψj〉 − |ψj+1〉‖ = ‖|ζj〉 − |φj〉‖ ≤ ηj,

which is due to the fact that Qj+1 is norm preserving. Therefore, the difference between
|ψk〉 and the execution of the protocol on the initial state is bounded as

‖PkVk−1 · · ·P1|ψinit〉 − |ψk〉‖ = ‖PkVk−1 · · ·P2V1|ψ1〉 − |ψk〉‖ ≤
k−1∑
j=1

ηj. (5.2)

Together with the initial property of ρk, which implies ‖ΠaccVk|ψk〉‖ = 1, one concludes

‖ΠaccVkPk . . . V1P1|ψinit〉‖ ≥ 1−
k−1∑
j=1

ηj.

By plugging in the provided bound on the maximum acceptance probability, we end up
with

k−1∑
j=1

ηj ≥ 1−
√

1− ε ≥ ε/2.

Maximizing
∑

j η
2
j under this condition yields

k−1∑
j=1

(
1−

η2
j

2

)
= (k − 1)− 1

2

k−1∑
j=1

η2
j ≤ (k − 1)− ε2

8(k − 1)
,

since every summands in
∑

j ηj are bounded by ε/(2(k − 1)) in average and one factor
(k − 1) cancels out as the sum is estimated.

Now we utilize Lemma 12 for a proof of Theorem 9. To this end we consider the
following verification procedure:
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1. P→ V : Registers V1, . . . ,Vk and M1, . . . ,Mk.
The verifier V rejects if V1 does not contain all zeros. Otherwise he applies Vk
to (Vk,Mk) and rejects if (Vk,Mk) does not contain an accepting state. If no
rejection occurs he performs V †k on (Vk,Mk).

2. V prepares the register (B,B′) in state |φ+〉 = 1√
2
(|0〉|0〉 + |1〉|1〉) and chooses

r ∈R {1, . . . , k − 1}. Then he applies Vr to (Vr,Mr) and performs a controlled
swap between Vr and Vr+1 with control bit B.
V→ P : Registers Mr,Mr+1,B

′ and r.

3. P→ V : Register B′.
V performs a controlled not operation (CNOT) on (B,B′) and a Hadamard trans-
formation on B. If B is in state |0〉 he accepts, else he rejects.

Observe that the verifier measures V1 with respect to Π0 and (Vk,Mk) with respect
to ΠaccVk in step 1. Let ρj ∈ D(V ⊗M), such that ρj is the state of (Vj,Mj). We
describe a prover P, who would cause a verifier following the above protocol, to accept
with certainty, assuming MAP(V1, . . . , Vk) = 1. The prover prepares (V1,M1,P1) in
state P1|ψinit〉 and (Vj+1,Mj+1,Pj+1) in state Pj+1PjVj · · ·V1P1|ψinit〉 for j ≥ 1. In
step 2 the prover applies Pr+1 to (Mr,Pr) and performs a controlled swap on (Mr,Pr)
and (Mr+1,Pr+1), using control bit B′. Such a prover would also cause a 3-message
verifier to accept with certainty in case MAP(V1, . . . , Vk) = 1. In the part concerning
the register (B,B′) all operators under consideration are tensored with identity, except
the CNOT gate which applied in step 3. Therefore, only a Hadamard gate is applied to
B, resulting in an output of |0〉 before measuring as

H ⊗ 1B′(CNOT|φ+〉) =
1√
2


1 0 1 0
0 1 0 0
1 0 −1 0
0 0 0 1

 1√
2

(|0〉|0〉+ |1〉|0〉) = |0〉|0〉.

Remember the entries of the matrix are due to lexicographical order of the basis as
discussed in Section 4.1.3. Therefore, the verifier accepts with certainty.
Now we consider the general case MAP(V1, . . . , Vk) = 1− ε. Let (|0〉|φ0〉+ |1〉|φ1〉)/

√
2,

with |φ0〉, |φ1〉 ∈ V ⊗ K be the state of the entire system after the CNOT gate was
applied in step 3. Here |φ0〉 and |φ1〉 are unit vectors, whose V component describes the
state of Vr and whose K component includes the other parts of the system besides B
and Vr. In the end the verifier performs a Hadamard transformation on B and accepts
if the resulting qubit is in state |0〉. Therefore, the probability of acceptance is∥∥∥∥1

2
|0〉 (|φ0〉+ |φ1〉)

∥∥∥∥2

=

(
1

2

√
(〈0|0〉) (〈φ0|φ0〉+ 2〈φ0|φ1〉+ 〈φ1|φ1〉)

)2

=
1

2
+

1

2
|〈φ0|φ1〉|.

Now because the equations trK|φ1〉〈φ1| = trMρr+1 and trK|φ0〉〈φ0| = trMVrρrV
†
r hold,

Uhlmann‘s theorem implies

|〈φ0|φ1〉|2 ≤ F
(
trMVrρrV

†
r , trMρr+1

)
.
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Therefore, the right hand side of the above equality is bounded by the following proba-
bility

pr =
1

2
+

1

2

√
F (trMVrρrV

†
r , trMρr+1).

Moreover, using Lemma 12 we can calculate the total probability

k−1∑
r=1

pr
k − 1

≤ 1− ε2

16(k − 1)2
= 1− ε2

4(m− 1)2
.

Taking into account that m was assumed to be odd, one has to increase m by one if it
is even. Finally, the required soundness is achieved.
This completes the reduction of QIP to three rounds. We only have to decrease the
soundness error appropriately to achieve QIP = QIP(3).

5.1.4 Soundness error reduction

In order to reduce the soundness error, one needs the following lemma connecting the
diamond norm of a superoperator to the maximum acceptance probability of a 3-message
protocol:

Lemma 13. For V1, V2,Πacc and Π0 as before, let Φ ∈ T (V ⊗M,M) respect Φ(X) =
trV(V1Π0XΠaccV2). Then MAP(V1, V2) = ‖Φ‖2

�.

Proof. Let |ψ〉, |φ〉 ∈ V ⊗M⊗P be unit vectors then

MAP(V1, V2) = max
|ψ〉,|φ〉∈V⊗M⊗P
U∈U(M⊗P)

{
|〈φ|ΠaccV2UV1Π0|ψ〉|2

}
.

The definition of the diamond applied to the case at hand gives

‖Φ‖� = max
Y ∈L(V⊗M⊗P)

{∥∥Φ⊗ 1L(P)(Y )
∥∥

tr
: ‖Y ‖tr = 1

}
,

if the prover holds enough private qubits, meaning P is large enough. Moreover, for all
Y ∈ L(V ⊗M⊗P) with ‖Y ‖tr = 1 there exist αj ∈ R, satisfying

∑
j |αj| = 1, and

unit vectors |ψj〉, |Π(j)〉 ∈ V ⊗M⊗P , such that Y =
∑

j αj|ψj〉〈Π(j)|. Therefore, the
maximum is achieved by an operator of the form |ψ〉〈φ| and we can conclude

‖Φ‖� = max
|ψ〉,|φ〉∈V⊗M⊗P

{∥∥Φ⊗ 1L(P)(|ψ〉〈φ|)
∥∥

tr

}
= max
|ψ〉,|φ〉∈V⊗M⊗P

{‖trV(V1Π0|ψ〉〈φ|ΠaccV2)‖tr} .

The last equality is due to the condition on Φ(X) the lemma demands. Since unitary

55



operators can simulate the trace norm according to Lemma 3 we end up with

‖Φ‖2
� = max

|ψ〉,|φ〉∈V⊗M⊗P
U∈U(M⊗P)

{|tr (UtrV(V1Π0|ψ〉〈φ|ΠaccV2))|}2

= max
|ψ〉,|φ〉∈V⊗M⊗P
U∈U(M⊗P)

{|tr (U(V1Π0|ψ〉〈φ|ΠaccV2))|}2

= max
|ψ〉,φ〉∈V⊗M⊗P
U∈U(M⊗P)

{|〈φ|ΠaccV2UV1Π0|ψ〉|}2 = MAP (V1, V2).

Here the second inequality utilizes the fact that the repeated application of the trace
does not change the value: tr(trXA) = tr(A),∀A ∈ L(X ⊗ Y). The third equality is due
to the fact that tr(A|ψ〉〈φ|B) = 〈φ|BA|ψ〉 holds for any linear operators A,B and states
|φ〉, |ψ〉, where these products exist.

The idea is now to run several protocols in parallel and to accept only if all individual
protocols accepted. Moreover, Lemma 13 and Lemma 5 enable the description of the
maximum acceptance probability in terms of diamond norms, if we choose suitable
superoperators.

Theorem 10. Let p ∈ poly and s : Z+ → [0, 1] be any function, then
QIP(3, 1, s) ⊆ QIP(3, 1, sp).

Proof. Let L ∈ QIP(3, 1, s) and let V1, V2 be the description of a verifier V witnessing
this fact. Then the choice of Φ, namely Φ(X) = trV(V1Π0XΠaccV2),∀X ∈ L(VM)
implies

‖Φ‖2
� = 1 for x ∈ L and

‖Φ‖2
� ≤ s for x /∈ L,

(5.3)

according to Lemma 13 which states MAP(V1, V2) = ‖Φ‖�. Now we define a new verifier
V′, who runs p protocols of the original verifier V in parallel. He accepts if and only if
all p single protocols accept. Moreover, we generalize V1, V2,Π0 and Πacc as follows

V ′i = Vi ⊗ · · · ⊗ Vi for i ∈ {1, 2}
Π′0 = Π0 ⊗ · · · ⊗ Π0

Π′acc = Πacc ⊗ · · · ⊗ Πacc,

where each tensor product has p factors. These definition allow a compact description
of Φ′:

Φ′(X) = trV (V ′1Π′0XΠ′accV
′

2) ∀X ∈ L(VM⊗ · · · ⊗ VM),

where the tensor product has p factors again. Thus, we have Φ′ = Φ ⊗ · · · ⊗ Φ and by
Lemma 5, we can conclude

‖Φ′‖� = ‖Φ⊗ · · · ⊗ Φ‖� = ‖Φ‖p� .
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Finally, Lemma 13 implies MAP(V ′1 , V
′

2) = ‖Φ′‖2
� and by (5.3) we get

MAP(V ′1 , V
′

2) = ‖Φ‖p� = 1 for x ∈ L and

MAP(V ′1 , V
′

2) = ‖Φ‖p� ≤ sp for x /∈ L.

Combining the results of Theorem 8, Theorem 9, and Theorem 10), we finally conclude
the following corollary:

Corollary 2. Let p ∈ poly, ε ∈ poly−1, and let c, s : Z+ → [0, 1] be functions, such that
c and s satisfy c(n) − s(n) ≥ ε(n) for every n. Then QIP(poly, c, s) ⊆ QIP(3, 1, 2−p)
holds.

Since it is one of the most important facts about quantum computation we can not
stress this conclusion enough. The above statement, QIP = QIP(3), reveals a difference
between quantum and classical computation. If classical interactive proofs could be
reduced to a constant number of rounds, the polynomial hierarchy would collapse at
the second level. Thus P/poly, the class of decision problems, which can be solved in
polynomial time by a Turing machine using polynomial advice, might contain the class
NP as the Karp-Lipton theorem would not suggest the opposite statement anymore.
This would actually be quite strong evidence for P=NP. For detailed information on
this classical topic see for example [AB09].

5.2 QIP(3) = QMAM

In order to prove QIP = PSPACE we have to express the class QIP(3) in terms of
quantum Arthur-Merlin classes. Therefore, we have to examine the class QMAM first.
Afterwards we utilize a suitable protocol to prove QIP ⊆ QMAM. This section is mostly
due to a paper from Marriott and Watrous [MW05]. Nevertheless, a couple of details
were added, explaining Corollary 3, Corollary 4 and their usage.

5.2.1 Definition of QMAM

In the class QMAM the prover is the magician Merlin (M). Since he can see Arthur’s
actions they play a public coin game. Furthermore, Arthur can only send random bits
as messages. Sending only one bit does not decrease the computational power of this
game. In this interactive protocol Merlin sends the first message, Arthur responds with
some random bit and then Merlin sends a second message. Finally, Arthur can apply
quantum circuits and a measurement.
In order to define QMAM(c, s) formally let m1,m2 ∈ poly be the functions that specify
the number of qubits in Merlin’s first and second message register, respectively. In
addition to the message space M1 and M2 Merlin also holds a private work space
P , which is not presented to Arthur at any point of the game. Moreover, denote by
s ∈ poly the number of random bits Arthur sends. Additionally, Arthur holds a uniformly
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polynomial-time generated family of quantum circuits,whose elements are called Ax,y,
where x ∈ Σ∗ is the input and y ∈ Σs are the coin tosses. These elements are the actions
Arthur performs conditioned on the input and the outcome of the coin tosses.
Note that Merlin can not change the information he sent to Arthur in the first message,
after he received the coin tosses. Therefore, his only freedom lies in selecting the initial
state |ψ〉 ∈ M1 ⊗M2 ⊗ P and applying unitary operators of the form

1M1 ⊗ Uy,

which are conditioned on the results of the coin tosses. Obviously he is also free to choose
the dimension of his workspace, defined by p = dim(P). Therefore, the number p the
collection of unitary operators {Uy : y ∈ Σs} and the initial state |ψ〉 completely specify
the prover Merlin. These definitions and considerations enable a compact definition of
the class QMAM. Analogously to other interactive classes we have to introduce soundness
and completeness.

Definition 3. A language L ⊆ Σ∗ belongs to QMAM(c, s) if the following conditions
hold:

1. If x ∈ L then a prover Merlin exists, who can convince Arthur with a probability
of at least c, meaning ∃p ∈ N, |ψ〉 ∈ M1 ⊗M2 ⊗P , {Uy : y ∈ Σs} ⊆ U(M2 ⊗P):

1

2s

∑
y∈Σs

Pr[outAx,y((1M1 ⊗ Uy)|ψ〉) = 1] ≥ c.

2. If x /∈ L then no prover Merlin can convince Arthur with a probability higher than
s, meaning ∀p ∈ N, |ψ〉 ∈ M1 ⊗M2 ⊗ P , {Uy : y ∈ Σs} ⊆ U(M2 ⊗ P):

1

2s

∑
y∈Σs

Pr[outAx,y((1M1 ⊗ Uy)|ψ〉) = 1] ≤ s.

Moreover, Arthur acts on m1 +m2 + p qubits. But since Merlin keeps the last p qubits
of |ψ〉, Arthur cannot change them. Therefore, he applies the identity on these qubits.

Notice that the sum is taken over all possible coin tosses. Furthermore, the left sides
of both inequalities are bounded by one, since the probability of acceptance is at most
one for each outcome of the coin tosses, whereas 2s is the number of possible outcomes
for s coin tosses and therefore the amount of summands.

5.2.2 QIP(3) ⊆ QMAM

In order to prove QMAM = QIP(3), we only need to discuss QIP(3) ⊆ QMAM. The
other containment is trivial, since quantum Arthur-Merlin-Games are a restricted form
of quantum interactive proof systems. The following theorem nearly suffices to show
QIP(3) ⊆ QMAM. It only remains to reduce the soundness error.
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Theorem 11. Let L ∈ QIP(3, 1, 2−2p) and p ∈ poly. Then L ∈ QMAM(1, 1/2 + 2−p)
with s = 1, meaning Arthur only sends one random bit.

Proof. Let P ,M, V be the prover’s work space, the message space and the verifier’s work
space respectively with dimensions, p, m and k, and let P,M,V be the corresponding
registers. Furthermore, let |ψ〉 be the first message of the prover, Πacc ∈Meas(VM) the
projection onto accepting states, U ∈ U(MP) the unitary operator the prover applies,
and V1, V2 ∈ U(VM) the unitary operators the verifier applies, then the maximum
probability a verifier can be forced to accept in a QIP(3)-protocol is∥∥(Πacc ⊗ 1P)(V2 ⊗ 1P)(1V ⊗ U)(V1 ⊗ 1P)(|0k〉|ψ〉)

∥∥2
.

Suppose Arthur acts the following way in a QMAM-protocol:

1. M → A: Register V

2. Arthur flips a coin. A → M: The result of the coin.

3. M → A: Register M. If the coin shows heads Arthur applies V2 to (V,M) and
accepts if the first qubit of V is in state |1〉, else he rejects. If the result of the
coin is tails he applies V ∗1 to (V,M) and accepts if all qubits of V are in state |0〉,
otherwise he rejects.

If x ∈ L, there exists a prover, Merlin, who can convince Arthur to accept always. Let
the state |ψ〉 and the unitary operator U describe the prover. Then Merlin can force
Arthur to accept with certainty as follows:

1. Prepare state |0k〉 in register V and state |ψ〉 in register (M,P). Apply V1 to
(V,M). M → A: Register V.

2. If the coin shows heads apply U to (M,P): M → A: Register M, otherwise M →
A: Register M.

In step 2 Merlin applies U only if the coin shows heads, in case of tails M is sent
unchanged. Thus, we get exactly the same accepting probability as in the QIP(3)-
protocol if the coin shows heads∥∥(Πacc ⊗ 1P)(V2 ⊗ 1P)(1V ⊗ U)(V1 ⊗ 1P)(|0k〉|ψ〉)

∥∥2
. (5.4)

On the other hand if the coin shows tails one gets V ∗1 (V1(|0k〉,M)) = (|0k〉,M). Since
the hole register V is in the state |0〉 Arthur also accepts with certainty in this case.
For the soundness (x /∈ L) we need some more definitions and lemmas. The following
notation is not really standard in quantum computation, even though it is used in
some papers. But it enables a compact description of accepting probabilities and will
therefore be explained in detail. Notice that the paper of Kitaev and Watrous used a
similar description without adding the notation, we are about to examine.
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Let S(Π) denote the set of all mixed states ρ ∈ D(VM), satisfying ρ = ΠρΠ for some
projection Π ∈ Pro(VM), and define

SV (Π) = {trMρ : ρ ∈ S(Π)}.

Notice that SV (Π) is the collection of states whose support is contained in the space
onto which Π projects. Moreover, we can connect such sets to the accepting probability
by a corollary, which follows from Uhlmann‘s theorem (Theorem 2).

Corollary 3. Let the register (V,M) be in a mixed state τ , such that trMτ = σ. If
(V,M) is measured with respect to the binary-valued measurement {Πrej,Πacc}, the
probability of acceptance is less than F (ρ, σ)2 for some ρ ∈ SV (Πacc).

First note that SV (Πacc) is the set of accepting states. Furthermore, let |ζ〉 ∈ XVM
be a purification of τ . Since |ζ〉 is also a purification of σ Uhlmann‘s theorem implies

F (σ, ρ)2 = max
|φ〉
|〈ζ|φ〉|2, (5.5)

where the maximum is taken over purifications |φ〉 of ρ. Moreover, due to the mono-
tonicity of the trace we can conclude the following for the probability of acceptance:

〈Πacc, τ〉 = tr(ΠacctrX (|ζ〉〈ζ|)) = 〈ζ|Πacc|ζ〉.

This term is clearly bounded by the right hand side of (5.5). The next corollary is con-
cerned with the acceptance probability in a QIP(3)-protocol. It is also due to Uhlmann’s
theorem.

Corollary 4. A verifier, who applies V1 and V2, can be forced to accept with a maximum
probability of

max{F (ρ, ζ)2 : ρ ∈ SV (V1Π0V
∗

1 ), ζ ∈ SV (V ∗2 ΠaccV2)}.

Here we use Π0 = |0k〉〈0k| ⊗ 1M and Πacc = |1〉〈1| ⊗ 1V ′M, where V ′ is the space V
without the first qubit.

In order to understand this corollary observe that the maximum acceptance probability
can be formulated in the following way:

max
|φ〉,|ψ〉,U

|〈φ|ΠaccV2UV1Π0|ψ〉|2 ,

where the maximum is taken over all unit vectors |φ〉, |ψ〉 ∈ VMP and all U ∈ U(MP).
Notice that the tensored identities are skipped to present a simple notation. Now, we
utilize the fact that tr(trXA) = tr(A) as we did in the proof of Lemma 13 and Uhlmann’s
theorem to end up with the desired formulation in terms of the fidelity.
Furthermore, the fidelity function satisfies (4.16):

∀ρ, ζ, σ ∈ D(X ) : F (ρ, σ)2 + F (σ, ζ)2 ≤ 1 + F (ρ, ζ).
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Suppose x /∈ L, then no prover can convince the verifier with a higher probability than
ε = 2−2p. Let σ be the reduced density matrix of the register V Merlin sends. By
Corollary 3 the probability that Arthur accepts is less than

1

2
F (ρ, σ)2 +

1

2
F (ζ, σ)2 ≤ 1

2
+

1

2
F (ρ, ζ), (5.6)

maximized over ρ ∈ SV (V1Π0V
†

1 ) and ζ ∈ SV (V †2 ΠaccV2). The inequality holds according
to (4.16), while the factor 1/2 is due to the coin flip. Moreover, the reduced state ρ
corresponds to the case where the coin shows tails as Arthur applies V ∗1 and accepts if
and only if all qubits of register V are in state |0〉. On the other hand the reduced state
ζ corresponds to the case where the coin shows heads as Arthur applies V2 and accepts
if the first qubit is in state |1〉. By Corollary 4 we find the following upper bound on
the right side of (5.6):

1

2
+

√
ε

2
≤ 1

2
+ 2−p.

This implies for any p ∈ poly QIP ⊆ QMAM(1, 1/2 + 2−p) due to QIP ⊆ QIP(3),
stated in Corollary 2.
In order to reduce the soundness error, we just repeat the protocol n times in parallel and
accept if and only if all n repetitions accept. Merlin gains no advantage over playing the
repetitions independently, since this was already proven for a general 3-message quantum
interactive proof system.
Finally, we can conclude QIP ⊆ QMAM(1, 2−p) for any p ∈ poly, which implies QIP =
QMAM(1, 2−p). Actually, the weaker equality QIP = QMAM(1, 1/2+2−p), which follows
directly from Theorem 11, will enable us to establish the equivalence of classical and
quantum computation in interactive proof systems.

5.3 QMAM = PSPACE

In this section we consider the proof of QIP = PSPACE, which was published in 2009
by Jain, Ji, Upadhyay and Watrous [JJUW09]. They reviewed their paper and did
another version in 2010 [JJUW10]. Even though they skipped some details, their proof
was accepted and celebrated by the audience. Initially, a SDP formulation for problems
in QMAM(1, 1/2 + ε) is provided. Afterwards we use a parallel algorithm based upon
the multiplicative weight update method (see Section 4.5) to solve this SDP. Finally, we
discuss the NC implementation and the precision issues. Concretizing the stated papers
a lot of details were added.

5.3.1 SDP formulation for QMAM

First we explain how a single-coin quantum Arthur-Merlin game can be expressed by a
semidefinite program. Let X,Y be the quantum registers Merlin sends in his first and
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second message and let X , Y be the corresponding complex vector spaces. Furthermore,
{Πa

acc,Π
a
rej : a ∈ {0, 1}} ⊂ Pos(X ⊗ Y) are projection operators on X ⊗ Y representing

Arthur’s binary-valued measurement for each outcome of the coin a. After Arthur
received the first message from Merlin he sends the result of the coin toss to Merlin. In
the end he measures the register (X,Y) with respect to {Πa

rej,Π
a
acc}. In the previous

section we proved, that perfectly complete QMAM-games with a soundness error, which
is bigger than 1/2 by an exponentially small amount are powerful enough to decide any
language, which belongs to QIP: QIP ⊆ QMAM(1, 1/2 + ε). Therefore, the maximum
probability a verifier can be forced to accept in such a game, is the optimal value of the
following SDP:

maximize :
1

2
〈Π0

acc, ρ0〉+
1

2
〈Π1

acc, ρ1〉

subject to : trY(ρ0) = trY(ρ1)

ρ0, ρ1 ∈ D(X ⊗ Y),

where ρ0 and ρ1 are density operators representing the possible states of the register-
pair (X,Y) conditioned on the outcome of the coin toss. Moreover, the factor 1/2 is
due to the coin toss, while the description of the acceptance probability in terms of the
Hilbert-Schmidt inner product was initially mentioned in Section 4.3.1. Therefore, it
only remains to explain the constraints. The necessity of the condition

trYρ0 = σ = trYρ1 (5.7)

is clear, since Merlin does not know the outcome of the coin-flip, when he sends X to
Arthur. Therefore, ρ0 and ρ1 have to agree on X. The sufficiency follows from the
unitary equivalence of purifications: If Merlin holds a purification of state σ he is free
to set the state of (X,Y) to any choice of ρ0 and ρ1, satisfying (5.7), without having
access to X. Let A be the 2 dimensional complex vector space corresponding to Arthur‘s
random bit a. Once we define

ρ =

(
1
2
ρ0 0
0 1

2
ρ1

)
∈ D(A⊗X ⊗ Y),

we can conclude

trY(ρ) =
1

2
1A ⊗ σ (5.8)

from (5.7). The other direction follows from the fact that for any ρ ∈ Pos(A⊗X ⊗ Y)
satisfying (5.8), the operators ρa = (〈a| ⊗ 1X⊗Y)2ρ(|a〉 ⊗ 1X⊗Y), a ∈ {0, 1} are in
Pos(X ⊗ Y) and satisfy (5.7). Therefore, the following relaxation of the above SDP
can be considered:

maximize : 〈P−2
α , ρ〉

subject to : trY(ρ) ≤ 1

2
1A ⊗ σ,

ρ ∈ Pos(A⊗X ⊗ Y),

σ ∈ D(X ),
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where Pα satisfies

Pα =

(
Π0
acc + αΠ0

rej 0
0 Π1

acc + αΠ1
rej

)
.

The optimal value of this SDP is at least the optimal value of the original SDP but
at most 1/α2 plus that value. Now an equivalent SDP that is suitable for a parallel
algorithm can be expressed in the following way:

Primal problem Dual problem

maximize : tr(ρ) minimize :
1

2
‖trA(Q)‖

subject to : trY(PαρPα) ≤ 1

2
1A ⊗ σ, subject to : Pα(Q⊗ 1Y)Pα ≥ 1A⊗X⊗Y ,

tr(σ) ≤ 1, Q ∈ Pos(A⊗X ).

ρ ∈ Pos(A⊗X ⊗ Y),

σ ∈ Pos(X ).

The primal SDP differs from the relaxation of the initial SDP in the sense that the mul-
tiplication with Pα is performed in the constraints, rather than the objective. However,
the solution remains unchanged. Furthermore, the equality tr(σ) = 1, which was hidden
in σ ∈ D(X ) before, is changed to an inequality. This does not affect the value of the
maximum, because it is attained for tr(σ) = 1 in any case as the first ”inequality” in
the primal constraints allows a wider choice of ρ And this wider choice can only increase
the optimal value of the primal SDP. We used quotation marks to highlight the fact
that we do not consider an inequality in the usual sense but rather a statement about
the hermiticity of a matrix. Due to the extensive use of such statements, this thesis will
continue with the above terminology without using quotation marks anymore.
In order to get insight into the formulation of the dual SDP we compare it to the def-
inition of the dual SDP in Section 4.6: First notice that we could have defined the
primal and dual SDP in Section 4.6 equivalently by exchanging the minimum with the
maximum and reversing the inequalities, to end up with Ψ(X) ≤ B and Ψ∗(Y ) ≥ A.
Moreover, the hermiticity preserving superoperator Ψ(·) corresponds to trY(Pα · Pα) in
the case at hand. The matrices A and B correspond to 1A⊗X⊗Y and 1/21A ⊗ σ, re-
spectively. Carefully observing the above SDP one notices that neither the inequality
tr(σ) ≤ 1 in the primal SDP nor the supremum, which is due to the application of the
matrix norm in the objective of the dual SDP, have been explained yet. But since we
only need to understand that weak duality holds an extensive discussion will be skipped
here.
The weak duality can be verified as follows. Once primal feasible operators σ ∈ Pos(X ),
ρ ∈ Pos(AXY) and a dual feasible operator Q ∈ Pos(AX ) exist we have

tr(ρ) ≤ 〈Pα(Q⊗ 1Y)Pα, ρ〉 = 〈Q, trY(PαρPα)〉 ≤ 1

2
〈Q,1A ⊗ σ〉 =

1

2
〈trA(Q), σ〉

≤ 1

2
‖trA(Q)‖,
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where the inequalities are due to the constraints on Q, ρ and σ, respectively. These
considerations complete the SDP formulation for problems in QMAM(1, 1/2+ ε). In the
next section we will provide a discussion of the algorithm solving the above SDP up to
sufficient accuracy.

5.3.2 Parallel SDP algorithm for QMAM

The parallel algorithm relies upon Kale’s matrix multiplicative weight update method
[Kal07]. It is finally used to prove QMAM(1, 1/2 + ε) ⊆ PSPACE. Since the com-
pleteness is perfect and the soundness is close to 1/2 we can consider the following
promise problem: The probability of acceptance and thus the value of the SDP is
not in the interval (5/8,7/8). It is either 1/2 + ε + 1/α2 < 5/8, in case of rejection,
or it is exactly 1 > 7/8, in case of acceptance. The algorithm of Figure 5.2 solves
the SDP from the previous section up to the desired accuracy. Its input consists of
four projection operators, Π0

rej,Π
0
acc,Π

1
rej,Π

1
acc ∈ Pos(X ⊗ Y). These operators satisfy

Π0
acc + Π0

rej = 1X⊗Y = Π1
rej + Π1

acc, where X and Y are complex vector spaces with
dimension N.
Observing the algorithm of Figure 5.2 it is clear that X(t) and Y (t) are positive semidefi-
nite throughout the whole process, since the exponential function preserves this property.
Therefore, ρ(t) and σ(t) remain density operators ∀t ∈ {1, . . . , T − 1}. In order to prove
the correctness of this algorithm, we have to keep in mind that the algorithm should
accept if the optimal value of the SDP is greater than 5/8, and it should reject if the
optimal value is smaller than 7/8. Since we will examine several statements regard-
ing the semidefiniteness of certain matrices we will call these statements inequalities as
mentioned in the discussion of Lemma 1, for instance.

Proof. First we assume the algorithm of Figure 5.2 accepts during some iteration t in
step 2. Define ρ′ ∈ Pos(A⊗X ⊗ Y) and σ′ ∈ Pos(X ) as

ρ′ =
ρ(t)

γ + 4β(t)
, σ′ =

γσ(t) + 4trA[Π(t)trY(Pαρ
(t)Pα)Π(t)]

γ + 4β(t)
.

Assume (ρ′, σ′) is a primal feasible pair of the SDP. Then its objective value is greater
than 5/8 since tr(ρ(t)) = 1 implies

tr(ρ′) =
1

γ + 4β(t)
≥ 1

γ + 4ε
=

48

67
>

5

8
.

Therefore, remains to prove that (ρ′, σ′) is a primal feasible pair. By the definition of
Π(t) and the positive semidefiniteness of σ(t) the following inequalities hold:

trY(Pαρ
(t)Pα)− γ

2
1A ⊗ σ(t) ≤ Π(t)

(
trY(Pαρ

(t)Pα)− γ

2
1A ⊗ σ(t)

)
Π(t)

≤ Π(t)trY(Pαρ
(t)Pα)Π(t).

64



Figure 5.2 Parallel SDP algorithm for QMAM(1, 1/2 + ε)

1. Initialize:

γ =
4

3
, ε =

1

64
, δ =

ε

16
, T =

⌈
8 logN

ε2δ

⌉
X(0) = 1A⊗X⊗Y , ρ(0) =

X(0)

(2N + 2)
, Y (0) = 1X , and σ(0) =

Y (0)

N
.

2. Repeat the following steps for each t = 0, . . . , T − 1.

a) Compute the projection Π(t) onto the positive eigenspaces of

trY(Pαρ
(t)Pα)− γ

2
1A ⊗ σ(t).

b) If
β(t) = 〈Pα(Π(t) ⊗ 1Y)Pα, ρ

(t)〉 ≤ ε

holds, stop and accept.

c) Prepare the following operators for the next iteration:

X(t+1) = exp

(
−εδ

t∑
j=0

Pα(Π(j) ⊗ 1Y)Pα/β
(j)

)
,

Y (t+1) = exp

(
εδ

t∑
j=0

trA(Π(j)/β(j))

)
,

ρ(t+1) =
X(t+1)

tr(X(t+1))
and σ(t+1) =

Y (t+1)

tr(Y (t+1))
.

3. If acceptance did not occur in step 2, stop and reject.

Thus, we utilize Lemma 4 to find an upper bound for the right hand side of the above
inequalities as

Π(t)trY(Pαρ
(t)Pα)Π(t) ≤ 21A ⊗ trA[Π(t)trY(Pαρ

(t)Pα)Π(t)]. (5.9)

Combining these inequalities one concludes

trY(Pαρ
(t)Pα) ≤ 1

2
1A ⊗ (γσ(t) + 4trA[Π(t)trY(Pαρ

(t)Pα)Π(t)]). (5.10)

Finally, the primal feasibility,

trY(Pαρ
′Pα) ≤ 1

2
1A ⊗ σ′,
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is due to (5.10) and the definitions of ρ′ and σ′. Since the optimal value of the SDP
is close to one the element under consideration is in the language and the algorithm
accepts as desired. On the other hand we assume the algorithm rejects. Define a dual
feasible operator Q ∈ Pos(A⊗X ), whose dual objective value is provably less than 7/8:

Q =
1 + 4ε

T

T−1∑
t=0

Π(t)/β(t).

Since Q is positive semidefinite we have to prove Pα(Q ⊗ 1Y)Pα ≥ 1A⊗X⊗Y in order to
claim dual feasibility. Observe that

tr(X(T )) = tr

(
exp

(
−εδ

T−1∑
t=0

Pα(Π(j) ⊗ 1Y)Pα/β
(j)

))

≥ exp

(
−εδλmin

(
T−1∑
t=0

Pα(Π(j) ⊗ 1Y)Pα/β
(j)

))
,

(5.11)

where λmin(·) denotes the smallest eigenvalue of its argument. Furthermore, for β(t) > ε
it suffices to require α = 4 to achieve∥∥∥∥ δ

β(t)
Pα(Π(j) ⊗ 1Y)Pα

∥∥∥∥ ≤ α2δ

ε
≤ 1.

The first inequality is due to the submultiplicativity of the spectral norm, and the fact,
that Π(t) is a projection. Therefore, we can apply (4.4) from Lemma 1 to end up with

exp

(
− εδ

β(t)
Pα(Π(j) ⊗ 1Y)Pα

)
≤ 1− εδexp(−ε)

β(t)
Pα(Π(j) ⊗ 1Y)Pα,

and thus,

tr(X(t+1)) = tr

(
exp

(
−εδ

t∑
j=0

Pα(Π(j) ⊗ 1YPα/β(j))

))

≤ tr

(
X(t)

(
1− εδexp(−ε)

β(t)
Pα(Π(j) ⊗ 1Y)Pα

))
≤ tr(X(t))

(
1− εδexp(−ε)

β(t)
〈Pα(Π(j) ⊗ 1Y)Pα, ρ

(t)〉
)

= tr(X(t))(1− εδexp(−ε))
≤ tr(X(t))exp(−εδexp(−ε)).

Notice that the second line is due to the Golden-Thompson inequality, namely tr(exp(A+
B)) ≤ tr(exp(A) · exp(B)). In the third line we inserted the definition of ρ(t) from step
2c of the algorithm at hand. Moreover, the last inequality follows from the estimation
1 + x ≤ exp(x), which holds for all real numbers x. Therefore, we can conclude

tr(X(t)) ≤ tr(X(0))exp(−Tεδexp(−ε)) = 2N2exp(−Tεδexp(−ε)).
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by induction. Notice that such a recursion was already provided in Section 4.5 and
we are actually using the MMW method here. Plugging the result at hand into (5.11)
implies

exp

(
−εδλmin

(
T−1∑
t=0

Pα(Π(j) ⊗ 1YPα/β(j))

))
≤ 2N2exp(−Tεδexp(−ε)).

Since applying the logarithm to both sides provides

λmin

(
T−1∑
t=0

Pα(Π(j) ⊗ 1YPα/β(j))

)
≥ T exp(−ε)− log(2N2)

εδ
,

we utilize the definition of Q to finally conclude

λmin(Pα(Q⊗ 1Y)Pα) ≥ (1 + 4ε)

(
exp(−ε)− log(2N2)

Tεδ

)
≥ 1.

As N ≥ 2 the last inequality is due to(
1 +

1

16

)(
exp(−ε)− ε(log2 + 2logN)

8logN

)
≥
(

17

16

)(
1− ε− ε

8
− ε

4

)
≥
(

17

16

)(
501

512

)
.

Since every eigenvalue of the matrix Pα(Q⊗1Y)Pα is therefore greater than 1 we conclude
Pα(Q ⊗ 1Y)Pα ≥ 1A⊗X⊗Y . Therefore, both conditions of the dual SDP are satisfied.
Hence Q is dual feasible and it remains to establish an upper bound on the objective
value of Q. To this end we observe

tr(Y (t)) = tr

[
exp

(
εδ

T−1∑
t=0

trA(Π(t)/β(t))

)]
≥ exp

(
εδ

∥∥∥∥∥
T−1∑
t=0

trA(Π(t)/β(t))

∥∥∥∥∥
)
. (5.12)

The facts that the trace is the sum of the eigenvalues and the spectral norm can be
expressed in terms of the maximum eigenvalue, imply (5.12) once we utilize the spectral
decomposition of

∑
t trA(Π(t)/β(t)). In order to find a recursion formula for the left hand

side of the above inequality observe that∥∥trA(Π(t)/β(t))
∥∥ =

ε

16β(t)

(∥∥(〈0| ⊗ 1X )Π(t)(|0〉 ⊗ 1X )
∥∥+

∥∥(〈1| ⊗ 1X )Π(t)(|1〉 ⊗ 1X )
∥∥) < 1,

is due to the fact that Π(t) is a projection and β(t) > ε holds, as the algorithm rejects.
This inequality allows the application of (4.3), stated in Lemma 1 to end up with

exp(εδ · trA(Π(t)/β(t))) ≤ 1+ εδexp(ε)trA(Π(t)/β(t)).

Therefore, we get the following multiplicative recursion formula:

tr(Y (t+1)) ≤ tr(Y (t))(1 + εδexp(ε)〈trA(Π(t)/β(t)), σ(t)〉)

= tr(Y (t))

(
1 +

εδexp(ε)

β(t)
〈Π(t),1A ⊗ σ(t)〉

)
.

(5.13)
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The definition of Π(t) implies〈
Π(t), trY(Pαρ

(t)Pα)− γ

2
1A ⊗ σ(t)

〉
≥ 0,

and equivalently

〈Π(t),1A ⊗ σ(t)〉 ≤ 2

γ
〈Π(t), trY(Pαρ

(t)Pα)〉 =
2β(t)

γ
.

by the definition of β(t). Therefore, we obtain a constant recursion factor

tr(Y (t+1)) ≤ tr(Y (t))

(
1 +

2εδexp(ε)

γ

)
≤ tr(Y (t))exp

(
2εδexp(ε)

γ

)
,

and thus,

tr(Y (T )) ≤ Nexp

(
2εδexp(ε)

γ

)
.

Combining this inequality with (5.12), taking logarithms, and dividing by εδ we end up
with ∥∥∥∥∥

T−1∑
t=0

trA(Π(t)/β(t))

∥∥∥∥∥ ≤ 2T exp(ε)

γ
+

logN

εδ
.

This provides an upper bound on the value of the dual SDP

1

2
‖trA(Q)‖ ≤ (1 + 4ε)

(
exp(ε)

γ
+

logN

2Tεδ

)
<

27

32
<

7

8
.

Plugging in the values defined in step 1 of the algorithm the second inequality is due to(
exp(ε)

γ
+

ε

16

)
≤ 102/100

4/3
+

1

1024
<

27

32
.

Since the objective value is less than 7/8 the probability of acceptance is close to 1/2.
Therefore, the element under consideration is not in the language and the algorithm
rejects, as desired.

Since the correctness of the algorithm of Figure 5.2 is proven, it remains to examine
its running time and space usage. Note that the input are projection operators acting
on the N2-dimensional Hilbert space X ⊗ Y . The steps 1, 2b and 3 can be performed
exactly in NC, since these steps only require standard matrix operations. Moreover, the
calculations of ρ(t+1), σ(t+1) and trY(Pαρ

(t)Pα)− (γ/2)1A⊗ σ(t) can be performed in NC,
as the trace and the partial trace can be implemented efficiently in parallel according to
Section 4.2. Therefore, we only have to discuss the projection onto positive eigenspaces in
step 2a and the matrix exponentials in step 2c. But since we assume both calculations to
be exact, postponing precision issues to the next section, those steps can be implemented
in NC as well according to Section 4.5. Since the maximal number of iterations, T , is
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bounded by O(logN) the whole algorithm can be implemented efficiently in parallel.
Due to the fact that functions in NC compose well the result is a polynomial-sized
circuit of polylogarithmic depth. It is perhaps easier to understand if we focus on the
alternative definition of NC, which states that NC is the class of problems computable
in polylogarithmic time by polynomially many parallel processors. For example we can
calculated the matrix exponentials in each iteration on a independent set of parallel
processors, which communicate appropriately to get access to the intermediate results
the individual set of processors needs. This completes the analysis of the algorithm of
Figure 5.2 under the assumption that all calculations are exact. The next section is
dedicated to precision issues, which result from dropping this assumption.

5.3.3 Precision issues

In order to find an NC implementation of the above algorithm, keep in mind NC in-
cludes all functions computable by logarithmic-space uniform Boolean circuits of poly-
logarithmic depth. Therefore, NC circuits are polynomial in size and represent polyno-
mial time computations. We can assume the entries of the matrices to be rational in
both their real and imaginary part, which are encoded as pairs of integers in binary nota-
tion. Consequently elementary matrix operations such as iterated sums, products, tensor
products and the inverse of matrices can be computed in NC as mentioned in Section
4.2. Moreover, the class NC(Poly) describes all functions computable by polynomial-
space uniform Boolean circuits of polynomial depth. The polynomial many quantum
gates, Arthur uses to measure, can be represented by their explicit matrix description
of length polynomial in N. Since N is exponential in the size of an element x of the
language, Arthur’s measurement operators, Π0

acc,Π
1
acc,Π

0
rej and Π1

rej, can be computed
in NC(Poly) as elementary matrix operations produce these operators.
Since functions in NC(poly) compose well, it only remains to prove that the presented
parallel SDP algorithm has an NC implementation. One has to consider the two parts
of the algorithm, which cannot be implemented exactly in NC: the projection onto the
positive eigenspaces Π(t), and the matrix exponentials defining X(t+1) and Y (t+1). But as
stated in the preliminaries in Section 4.2 matrix exponentials, spectral decompositions,
and projections onto the positive eigenspaces can be approximated up to high precision
in NC. Therefore, only step 2 of the algorithm has to be adjusted to deal with these
precision issues. We achieve sufficient accuracy in the following way, using the notation
of the original algorithm of Figure 5.2.

1. Let
√

Λ(t) be a positive semidefinite operator approximating Π(t), such that Λ(t) ≤ 1
and ∥∥∥√Λ(t) − Π(t)

∥∥∥ < ε2

8α2N
,

for each t ∈ {0, . . . T − 1}.
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2. Redefine the two density operators ρ(t+1) and σ(t+1) to achieve∥∥∥∥ρ(t+1) − X(t+1)

tr(X(t+1))

∥∥∥∥ < ε2

2α2N2
,∥∥∥∥σ(t+1) − Y (t+1)

tr(Y (t+1))

∥∥∥∥ < ε2

4N

for all t ∈ {0, . . . T − 1}.

3. All the other variables and constants can be stored exactly. Therefore, β(t) as
defined in the previous section in step 2b can be computed exactly for all t ∈
{0, . . . , T − 1}.

In order to prove that these accuracy issues do not affect the algorithms capability of
deciding the SDP, one concludes the following estimation from the definition of

√
Λ(t)

√
Λ(t)

(
trY(Pαρ

(t)Pα)− γ

2
1A ⊗ σ(t)

)√
Λ(t)

≥Π(t)
(

trY(Pαρ
(t)Pα)− γ

2
1A ⊗ σ(t)

)
Π(t) − ε2

4N
1A⊗X .

(5.14)

If the algorithm accepts we find a primal feasible pair (ρ′, σ′) by redefining

ρ′ =
ρ(t)

γ + 4β(t) + ε
, σ′ =

γσ(t) + 4trA[
√

Λ(t)trY(Pαρ
(t)Pα)

√
Λ(t)] + (ε2/N)1X

γ + 4β(t) + ε
.

Utilizing (5.9) we conclude the following inequality analogously to (5.10):

trY(Pαρ
(t)Pα) ≤ 1

2
1A ⊗ (γσ(t) + 4trA[

√
Λ(t)trY(Pαρ

(t)Pα)
√

Λ(t)] + (ε2/N)1X ),

proving primal feasibility. Therefore, we can guarantee a primal objective value of at
least

1

γ + 5ε
=

192

271
>

5

8

In case the algorithm rejects, we use the bound on
∥∥ρ(t+1) −X(t+1)/tr(X(t+1))

∥∥ to obtain
a slightly different recursion formula

tr(X(t+1)) ≤ tr(X(t))exp(−εδ(1− ε)exp(−ε)),

for all t ∈ {0, . . . , T −1}. The calculations utilized to find this inequality are completely
analogous to the error-free case. Therefore, we can proceed as in the error-free case to
observe

λmin(Pα(Q⊗ 1Y)Pα) ≥ (1 + 4ε)

(
(1− ε)exp(−ε)− log(2N2)

Tεδ

)
≥
(

1 +
1

16

)(
(1− ε)2 − ε(log2 + 2logN)

8logN

)
≥
(

17

16

)(
1− 2ε+ ε2 − ε

8
− ε

4

)
≥
(

17

16

)(
493

512

)
≥ 1.
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This consideration proves Q’s dual feasibility.
In order to find an upper bound on the objective value of the dual SDP observe that
the error of

∥∥σ(t+1) − Y (t+1)/tr(Y (t+1))
∥∥ and (5.12) imply the following slightly different

recursion formula

tr(Y (t+1)) ≤ tr(Y (t))exp

(
2εδ(1 + ε)exp(ε)

γ

)
.

The calculations leading to the above formula are analogous to the calculations in the
error-free case, which imply (5.13). Therefore, we conclude

1

2
‖trA(Q)‖ ≤ (1 + 4ε)

(
(1 + ε)exp(ε)

γ
+

log(N)

2Tεδ

)
≤ 1 + 8ε

γ
<

7

8
,

where the second inequality is due to(
(1 + ε)exp(ε)

γ
+

ε

16

)
≤ (65/64)(102/100)

4/3
+

1

1024
<

27

32
.

This completes the error-tolerant NC implementation of the algorithm of Figure 5.2.
Keep in mind that the input to this algorithm consists of projections in Pos(X ⊗ Y) on
N -dimensional vector spaces. Since N is exponential in the size of the input x of the
decision problems in QMAM, these problems can be decided by functions in NC(poly).
Due to Borodin’s result, namely NC(poly) = PSPACE, the above consideration is the
last piece in the proof of QIP ⊆ PSPACE

5.3.4 QIP = PSPACE

Finally, consider Corollary 2 and Corollary 5, which state QIP ⊆ QIP(3) and
QIP(3) ⊆ QMAM(1, 1/2 + 2−p), respectively. Together with the result of the previous
section, QMAM(1, 1/2 + ε) ⊆ PSPACE, and with PSPACE ⊆ QIP, which is a simple
consequence of IP = PSPACE [Sha92], we conclude QIP = PSPACE. Therefore, in in-
teractive proofs a quantum verifier has no advantage at all over a classical verifier. Both
can only solve problems in PSPACE. Nevertheless it remains remarkable that using a
quantum computer decreases the number of rounds of interaction from polynomial many
to three. The next chapter is concerned with quantum refereed games, a generalization
of quantum interactive proofs.
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6 Quantum refereed games

This chapter is mainly concerned with a recent advancement in quantum refereed games,
namely the paper from Gutoski and Wu [GW11] proving DQIP = PSPACE. Initially,
we provide an explanation of the original problem this thesis tried to solve, whether
QRG(2) = PSPACE holds. Later on we discuss the quantum complexity class SQG and
its generalization DQIP, as well as the fact that any problem in these two classes ad-
mits a semidefinite programming formulation. Afterwards an approximation algorithm
for such SDPs and a discussion of the precision issues is presented. Finally, we prove
DQIP = PSPACE . Compared to the proof of Gutoski and Wu, several explanations
are added and some errors are corrected. Moreover, the calculations, concerning the
precision, were generalized and a decision rule is formulated and proven.
The simplest version of a refereed game involves one referee and two players. First the
referee posts questions to each player. Then both players respond. Afterwards the ref-
eree processes their answers and declares a winner. Since classical refereed games with
private communication and two turns were known to be equivalent to PSPACE due to
Uriel Feige and Joe Killian [FK97], the chances seemed promising to prove the same for
quantum refereed games. Moreover, quantum computers can simulate classical ones and
therefore the class RG(2) is included in QRG(2). Thus, PSPACE ⊆ QRG(2) was known
due to RG(2) = PSPACE [FK97]. Note the different notation: Feige and Killian used
RG(private,1) instead of RG(2). This indicates one round of communication instead of
two turns.
Before (6.3), representing Quantum refereed with one round of communication, was
solved efficiently an even stronger statement, namely SQG = PSPACE, was proven by
Gutoski and Wu [GW10]. Since part of the scientific audience does not trust Gutoski
and Wu they are still trying to solve the more specific problem concerning QRG(2).
Therefore, prior to the explanation of their work an explanation is given why the mul-
tiplicative weight update method, which was used to prove QIP = PSPACE, does not
work in this case directly. To this end we need the definition of QRG(2).
A referee R posts two questions to the players Alice and Bob. Let A0 and B0 denote their
input spaces and A1 and B1 their output spaces, respectively. Furthermore, Alice plays
strategy A ∈ S(A0,A1), whereas Bob plays strategy B ∈ S(B0,B1). The formulation
S(B0,B1) refers to a one turn non-measuring strategy. Such a strategy includes a mem-
ory space Z, and an admissible superoperator Φ : L(B0)→ L(B1⊗Z) on Z. In general
an admissible superoperator Φ ∈ T (X ) are trace preserving, tr(Φ(X)) = tr(X), ∀X ∈
L(X ) and completely positive, meaning Φ⊗ 1L(X )(X) is positive semidefinite for every
X ∈ Pos(X ).
On the other hand the referee is a measuring co-strategy in co-S(X ,Y). The role of
input and output spaces is exchanged, since a co-strategy is designed to interact with
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a strategy, meaning the output space of the co-strategy is the input space of the strat-
egy and vice versa. Moreover, two memory spaces V0,V1, an admissible superopera-
tor Ψ : L(Y ⊗ V0) → L(V1), a measurement {Πa,Πb}, and a initial density operator
ρ0 ∈ D(X ⊗ V0) are needed to achieve a co-strategy. Actually a measuring strategy or
co-strategy allows any measurement, not just a binary valued one. But we can restrict
our view to such measurements, as they suffice to describe QRG(2), SQG and DQIP.
For more details on these topics see [GW07].
The interaction starts as the referee sends part of his first register, X = A0 ⊗ B0 to
Alice and Bob, respectively. Then he combines their individual answers to Y = A1⊗B1.
Such a compact description is possible as the players are not allowed to share entangled
states before the game starts. This assumption is backed by the fact that the players
are competing provers who try to persuade the computationally bounded referee of their
cause. After the communication the referee has to decide who won, by measuring his
last memory space V1 according to {Πa,Πb}. Here a indicates a victory for Alice, and
b indicates a victory for Bob. Alice wins with probability 〈A ⊗ B,Πa〉, whereas Bob
wins with probability 〈A⊗B,Πb〉. Now we can formulated a min-max theorem for this
zero-sum quantum game as

max
A∈S(A0,A1)

min
B∈S(B0,B1)

〈A⊗B,Πa〉 = min
B∈S(B0,B1)

max
A∈S(A0,A1)

〈A⊗B,Πa〉. (6.1)

Since Alice and Bob can choose their strategies from compact convex sets and 〈A⊗B,Πa〉
is linear in A and B, this min-max theorem is a direct consequence of Theorem 4.
Furthermore, we define two linear functions, which extend to unique superoperators:

Φa(A) = trA1⊗A0((A⊗ 1B1⊗B0)Πa),

Φb(A) = trA1⊗A0((A⊗ 1B1⊗B0)Πb).

We should think of {Φa(A),Φb(A)} as the co-strategy, which already includes Alice’s
strategy. Therefore, the probability for a victory of Bob can be formulated as

max{〈B,Φb(A)〉 : B ∈ S(B0,B1)}.

Due to the theorem with number 9 in the paper of Gutoski and Watrous [GW07] the
above maximum can be formulated equivalently as

min{p ≥ 0 : Φb(A) ≤ pQ,Q ∈ co-S(B0,B1)}. (6.2)

Therefore, a language L can be decided by a two-turn quantum refereed game (QRG(2)),
if there exists a polynomial time referee, such that

1. ∀x ∈ L∃A ∈ S(A0,A1) : 〈A⊗B,Πa〉 ≥ 2/3

2. ∀x /∈ L∃B ∈ S(B0,B1) : 〈A⊗B,Πb〉 ≥ 2/3
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An algorithm solving the following SDP would prove the reverse containment QRG(2) ⊆
PSPACE. Consider the SDP formulation of a language in QRG(2), which is due to (6.2)

minimize: tr(P )

subject to: Φb(A) ≤ Q,

trA1(A) = 1A0 ,

Q = P ⊗ 1B1 ,
A ∈ P(A1 ⊗A0),

Q ∈ P(B1 ⊗ B0),

P ∈ P(B0).

(6.3)

A proof for the transformation of the strategy constraints in (6.2) to the linear and
semidefinite constraints in (6.3) can also be found in [GW07]. The fact that (6.3) is not
defined on a whole space but a subset of the density operators is due to the equality
conditions. Therefore, the multiplicative weight update method has to be modified. To
this end Gutoski and Wu smartly used the separation of the communication and an un-
usual algorithm design. The class SQG was under consideration but their multiplicative
weight update algorithm calls an oracle, which is solved by some easy case of the algo-
rithm itself. Perhaps it would have taken much longer to answer the question, whether
or not QRG(2) = PSPACE holds, without these ideas. Moreover, they also generalized
their proof to double quantum interactive proofs, referred to by the class DQIP.

6.1 Short quantum games

Before the process of adjusting the multiplicative weight update method from Kale to
prove QRG(2) = PSPACE ended, the paper [GW10] from Gutoski and Wu was pub-
lished. Their results go even further, as they proved SQG = PSPACE. SQG stands
for short refereed quantum games. It is trivial to observe that this class contains
QRG(2) and is contained in QRG(4). Therefore, the result , SQG = PSPACE implies
QRG(2) ⊆ PSPACE. Combining this subset relation with RG(2) = PSPACE [FK97]
leads to the equivalence of two-turn quantum refereed games with classical two-turn
refereed games, namely RG(2) = QRG(2).
In short quantum games the referee privately talks to Alice first, processes her response,
and afterwards asks Bob a question. Therefore, opposed to QRG(2) the referee can
condition the question to Bob on Alice’s answer. Finally, when Bob answered the ref-
eree decides who won. In order to formalize the notion of short quantum games we
need some definitions. Let A,B,V be the Hilbert spaces corresponding to A,B,V,
where A,B are the message registers of the two players, Alice (A) and Bob (B), and
V is the referee’s workspace. The name of the referee’s workspace emphasizes that the
referee acts as a verifier. He is computationally bounded, whereas the players are com-
putational unbounded competing provers, trying to persuade the referee of their cause.
Moreover, let |ψ〉 ∈ A ⊗ B ⊗ V be a pure state, U ∈ U(A⊗ B ⊗ U) a unitary operator
and {Πb,Πa} ⊆ Meas(A⊗ B ⊗ V) a binary valued measurement. The outcomes a and
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b indicate the winner, Alice or Bob, respectively. The players can apply the arbitrary
channels, Φ : L(A)→ L(A) and Ψ : L(B)→ L(B), to the registers they receive.
These definitions allow the following description of a protocol for a short quantum game:

1. R initializes registers (A,V,B) in the state |ψ〉.

2. R→ A : Register A, Alice applies channel Φ to register A and
A→ R : Register A.

3. R applies U to register (A,V,B).

4. R→ B : RegisterB , Bob applies channel Ψ to register B and
B→ R : Register B.

5. R measures (A,V,B) with respect to the binary valued measurement {Πb,Πa}.

Therefore, the referee R of such a game is completely specified by the triple (|ψ〉, U,Πb).
Now we are able to define the complexity class SQG. Analogously, to the previous
definitions of QIP and QMAM we have to introduce soundness and completeness.

Definition 4. Let c, s : Z→ [0, 1], then a language L ⊆ {0, 1}∗ is in SQG(c, s), if there
exists a polynomially bounded function f(|x|) and a polynomial-time uniform referee
Rx = (|ψ〉, U,Πb), who acts according to the above protocol, such that ∀x ∈ {0, 1}∗ :
c(|x|)− s(|x|) ≥ 1/f(|x|) and:

x /∈ L⇒ game-value(Rx) ≥ c(|x|)
x ∈ L⇒ game-value(Rx) ≤ s(|x|).

Compared to the standard notation in probabilistic classes the role of yes- and no-
instances is exchanged due to the definition of the referee, which relies upon Πb instead of
Πa. We will follow Gutoski and Wu with this construction, since it eases the application
of the MMW method. Moreover, we examine the game-value in the next section.

6.1.1 SDP formulation for SQG

If Alice, Bob and the referee act according to the above protocol the probability that
Bob wins is given by

Pr[outR,Φ,Ψ(x) = b] = 〈Ψ (UΦ (|ψ〉〈ψ|)U∗) ,Πb〉. (6.4)

Remember |ψ〉〈ψ| was the density matrix of the initial state. First it is transformed
by Alice’s channel Φ. Second the referee applies U and afterwards Bob uses channel
Ψ. Finally, the Hilbert-Schmidt inner product gives the probability of the measurement
result being b.
Since the set of channels acting on some register is compact and convex the set of
strategies available to Alice and Bob is also compact and convex. Because the above
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inner product is bilinear in (Φ,Ψ) we can apply Sion’s Min-Max Theorem (Theorem 4)
to prove the existence of an equilibrium value

game-value(R) = min
Φ∈T (A)

max
Ψ∈T (B)

〈Ψ (UΦ (|ψ〉〈ψ|)U∗) ,Π〉

= max
Ψ∈T (B)

min
Φ∈T (A)

〈Ψ (UΦ (|ψ〉〈ψ|)U∗) ,Π〉.

The minimum is taken over all channels Φ : L(A) → L(A) and the maximum over all
channels Ψ : L(B)→ L(B). Note that the index of Πb was dropped. The first min-max-
expression relates to Bob acting first. Of course he tries to maximize the probability for
his victory, (6.4), opposed to Alice who tries to minimize this value. On the other hand
in the max-min-expression Alice minimizes first , before Bob maximizes his chances of
winning.
Although this definition of the game-value in terms of channels is intuitive, it does not
meet our needs. The MMW method cannot be applied immediately. But we find an
equivalent formulation using the following equality

〈Ψ (UΦ (|ψ〉〈ψ|)U∗) ,Π〉 = 〈Φ (|ψ〉〈ψ|) , U∗Ψ∗ (Π)U〉,

implying

game-value(R) = min
ρ∈D(AVB)

max
P∈Meas(AVB)

〈ρ, U∗PU〉 = max
P∈Meas(AVB)

min
ρ∈D(AVB)

〈ρ, U∗PU〉,

where the minimum is over all ρ, such that a channel Φ exists with ρ = Φ(|ψ〉〈ψ|).
The maximum is over all measurement operators P such that a channel Ψ exists with
P = Ψ(Π).
This formulation would allow the usage of the MMW method. But due to the equality
conditions the minimum and the maximum are taken over strict subsets of the set of
density operators. Therefore, the MMW method has to be adjusted to this task, since
it was originally designed to solve equilibrium problems on the whole set of density op-
erators. To tackle this problem we will need further definitions and a rounding theorem.
But this discussion is postponed to Section 6.2.2 since it is also necessary to provide
a MMW-suitable SDP formulation of double quantum interactive proofs which will be
explained in the following section.

6.2 Double quantum interactive proof

As Gutoski and Wu presented a paper in 2011 [GW11], they also included a general-
ization to a new complexity class DQIP. The class DQIP contains all problems solvable
by a double quantum interactive proof. In opposition to SQG the referee is allowed to
exchange a constant number of messages with Alice and Bob. But the communication
with each player is still separated by a time line. This means the referee can not talk to
Bob, before he finished his conversation with Alice.
Because of the multiple rounds of interaction the formulas get more complicated, as sums
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over all rounds have to be included. But Gutoski and Wu did not need many new ideas
to generalize their original paper [GW10]. Moreover, they skipped even more details
in the new version [GW11], especially regarding the precision issues. Thus, they only
present the pure complexity theoretic core of their proof. On first sight this might seem
nice, but the whole complexity of the thought process one has to follow, to understand
this proof, is not clear any more. The precision issues, arguably hardest to calculate not
purely because of the vast size of the formulas, are a necessary part to take care about
before new complexity theoretic theorems emerge. If the author leaves to much space
for interpretation, the reader. who is not deeply concerned with the topic looses the
confidence in himself fully understanding the presented matters.
As their new paper goes even further than the original, it seems uncertain that it actually
helps Gutoski and Wu to establish the equivalence of PSPACE and SQG or DQIP, respec-
tively. Therefore, a different approach was chosen for this thesis. Initially, DQIP is de-
fined and a SDP formulation, which suits the MMW method is presented. Additionally,
their new algorithm, which is used to prove DQIP = PSPACE, and all precision issues
are discussed in detail. Moreover, this yields a different proof for QIP = PSPACE. As
stated at the beginning of this chapter most of the remaining sections are due to [GW10]
and [GW11]. Besides several additional explanations a couple of mistakes were corrected
and the oracle algorithm is completely stated in a compact way. Moreover, the precision
issues were generalized to multiple rounds of interaction and a decision rule is formulated
and proven in the last subsection.

6.2.1 Definition of DQIP

In double quantum interactive proofs the referee R holds a message register M and a
private memory register V, with the corresponding spacesM and V , respectively. Note
that V is used since the computationally bounded referee acts as a verifier. Furthermore,
he holds a pure state |ψ〉 ∈ M⊗ V , unitary operators V1, . . . , Va+b ∈ U(CMV) and a
projective measurement operator Π ∈ Meas(MV). Here a is the number of rounds of
communication between Alice (A) and the referee, whereas b is the number of rounds of
communication between Bob (B) and the referee. The two players hold private memory
registers A and B, with the corresponding spaces A and B, respectively. Their actions
can be described by unitary operators A1 . . . Aa ∈ U(AM) and B1 . . . Bb ∈ U(MB).
These definitions suffice to present a protocol for double quantum interactive proofs:

1. Initially, the referee prepares register (M,V) in state |ψ〉, whereas A and B are
initially in state |0〉.

2. For i = 1 . . . a : R → A : Register M and Alice applies Ai to the register (A,M).
Afterwards A → R : Register M and the referee applies Vi to the register (M,V)

3. For i = 1 . . . b : R→ B : Register M and Bob applies Bi to the register (M,B).
Afterwards B→ R : Register M and the referee applies Va+i to the register (M,V)

4. The referee applies the binary valued measurement {Π,1MV − Π} to the register
(M,V).
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Analogously to Section 6.1.1 Π indicates a victory for Bob. Therefore, the probability
for a victory of Bob is given by

‖Π′V ′a+bB
′
bV
′
a+b−1B

′
b − 1 · · ·B′1V ′aA′aV ′a−1A

′
a−1 · · ·A′1|ψ〉|0〉|0〉‖2, (6.5)

where A′i = Ai⊗1MVB for i = 1, . . . a, B′i = 1AMV⊗Bi for i = 1, . . . b, Π′ = 1A⊗Π⊗1B,
and V ′i = 1A ⊗ Vi ⊗ 1B for i = 1, . . . a + b. The tensored identities will be skipped
throughout this thesis to keep the notation as simple as possible. Moreover, maximizing
(6.5) over the actions of Bob and minimizing it over the actions of Alice defines the
game value, λ(Rx), which is explained in detail in the next section. Once we choose
a = b = 1 the above protocol is identical to the protocol for short quantum games,
except the fact that the actions of the players are specified by unitary operators here
instead of admissible quantum channels. But this is only a notational matter as both
mappings are trace-preserving and do not affect the positive semidefiniteness of their
argument. Therefore, a = b = 1 yields equality between (6.5) and (6.4). The above
protocol enables the formal definition of the quantum complexity class DQIP:

Definition 5. Let c, s : Z→ [0, 1], then a language L ⊆ {0, 1}∗ is in DQIP(c, s), if there
exists a polynomially bounded function p(|x|) and a polynomial-time uniform quantum
referee Rx = (|ψ〉, V1, . . . , Va+b,Π), who acts according to the above protocol, such that
∀x ∈ {0, 1}∗ : c(|x|)− s(|x|) ≥ 1/p(|x|) and:

x /∈ L⇒ λ(Rx) ≥ c(|x|)
x ∈ L⇒ λ(Rx) ≤ s(|x|).

Just like in the definition of SQG the role of yes- and no-instances is exchanged. The
reason for this is the definition of the referee in terms of the measurement Π, which
indicates a victory for Bob. We follow the suggestion of Gutoski and Wu in this case,
since it facilitates the use of the MMW method.

6.2.2 SDP formulation for DQIP

In this section we examine a key differences between the SDP formulation for DQIP
and the SDP formulation for QMAM from Section 5.3.1. The reason for this difference
is due to the primal dual approach Jain, Ji, Upadhyay and Watrous chose, whereas
Gutoski and Wu used the equilibrium value approach. Actually, QIP = PSPACE was
also proven with the equilibrium value approach by Wu [Wu10]. Since Bob tries to
maximize the game value (6.5) while Alice tries to minimize it, we already obtained a
min-max-expression, just like in the case of short quantum games. But the problem
formulation does not suit the MMW method again. At first we have to use the Min-
Max Theorem for zero-sum quantum games [GW07], which follows from Theorem 4 to
conclude

λ(R) = min
(A1,...,Aa)

max
(B1,...Bb)

‖ΠVa+bBbVa+b−1Bb − 1 · · ·B1VaAaVa−1Aa−1 · · ·A1|ψ〉‖2

= max
(B1,...,Bb)

min
(A1,...Aa)

‖ΠVa+bBbVa+b−1Bb − 1 · · ·B1VaAaVa−1Aa−1 · · ·A1|ψ〉‖2,
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where the minimum is taken over all possible memory spaces A and actions A1, . . . Aa ∈
U(AM) from Alice, while the maximum is taken over all possible memory spaces B
and actions B1, . . . Bb ∈ U(MB) from Bob. Notice that the tensored identities and
the zero states are already skipped here. To enable the usage of the MMW method
let ρ ∈ D(MV) be the reduced state of register (M,V) after the final unitary Aa was
applied by Alice. Furthermore, we combine Va, the whole conversation between Bob
and the referee as well as the final measurement Π to a single measurement operator
P ∈Meas(MV). This allows us to rewrite the game-value in the following way

λ(R) = min
ρ∈C(R)

max
P∈P(R)

〈ρ, P 〉 = max
P∈P(R)

min
ρ∈C(R)

〈ρ, P 〉,

where

C(R) = {trA(|α〉〈α|) : |α〉 = AaVa−1Aa−1 · · ·A1|ψ〉 for some (A1, . . . , Aa)} (6.6)

P(R) = {U∗ΠU : U = Va+bBbVa+b−1Bb − 1 · · ·B1Va for some (B1, . . . Bb)} . (6.7)

In order to understand this new formulation of the game-value, observe that for fixed
choices A1, . . . , Aa and B1, . . . , Bb we can reformulate (6.5) in the following way:

‖ΠU |α〉‖2 = 〈α|U∗Π∗ΠU |α〉 = tr(ΠU |α〉〈α|U∗) = tr(ΠUtrA(|α〉〈α|)U∗)
= 〈UρU∗,Π〉 = 〈ρ, P 〉,

(6.8)

where α and U are defined as in (6.6) and (6.7), respectively. Note that C(R) is the set
of admissible states after the communication with Alice. Moreover, the whole commu-
nication between Bob and the referee takes place in the set P(R). Since the minimum
is not taken over the whole set of density operators, one has to rely upon finding nearly
optimal approximations on the game value. Therefore, we have to provide a suitable
relaxation of λ(R) and a rounding theorem. In order to achieve this task a couple of
lemmas are needed:

Lemma 14. For a referee R = (|ψ〉, V1, . . . Va+b,Π) of a double quantum interactive
proof, a given state ρ ∈ D(MV) and C(R) as above in (6.6), ρ ∈ C(R) holds if and only
if ∃ρa, . . . , ρ1 ∈ D(MV) with ρa = ρ and

trM(ρi+1) = trM (ViρiV
∗
i ) for i = 0, . . . , a− 1,

where V0 = 1MV and ρ0 = |ψ〉〈ψ| is used to shorten the notation.

The states ρ1, . . . ρa are called consistent with R if they obey the equations in Lemma
14. The concept of consistent states was initially introduced by Kitaev [Kit02]. In order
to understand this lemma note that the unitary matrices A1, . . . , Aa only act upon AM
and are therefore tensored with the identity on V . Thus, under the partial trace (trM)
only the actions of V1, . . . , Va have to be taken under consideration. This consideration
implies the following choice of ρi :

ρi = ViAi · · ·V1A1|ψ〉〈ψ|A∗1V ∗1 · · ·A∗iV ∗i .
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for i ∈ {1, . . . , a−1}. Obviously, these density operators fulfill the consistency condition.
On the other hand we assume the consistency equations hold on the whole space MV
not just on V . Then we would have

ρa = Va−1 · · ·V1ρ0V
∗

1 · · ·V ∗a−1

by induction. But since the consistency conditions only hold under the partial trace we
have to consider purifications of the states at hand in a large enough space like XMV ,
with dim(X ) ≥ dim(MV) for example. Due to the unitary equivalence of purifications
there exist unitary operators, which map the purifications of trM(ρi) to purifications of
ρi. This works since trM(ρi) is the reduced state of ρi. A formal proof of this statement
can be found in a paper of Gutoski [Gut05]. But note that his proof is different from
the one presented here.
Moreover, we have to examine the following lemma about the parallel computability of
consistent states:

Lemma 15. For any referee R = (|ψ〉, V1, . . . Va+b,Π) and any ρa, . . . , ρ1 ∈ D(MV)
∃ρ†1, . . . , ρ†a ∈ D(MV) consistent with R, such that

∠(ρa, ρ
†
a) ≤

a−1∑
i=0

∠ (trM(ρi+1), trM (ViρiV
∗
i )) (6.9)

and ρ†1, . . . , ρ
†
a can be computed in parallel time O(apolylog(dim(MV))). Furthermore,

for any ε > 0 the bound can be reformulated in terms of the trace norm

1

2
‖ρa − ρ†a‖tr < ε+

a

ε

a−1∑
i=0

1

2
‖trM(ρi+1)− trM (ViρiV

∗
i ) ‖tr. (6.10)

Proof. First let ρ†0 = ρ0. By Lemma 7 there exists a ρ†i+1 for each i = 0, . . . a − 1 such

that trM(ρ†i+1) = trM

(
Viρ
†
iV
∗
i

)
and

∠(ρi+1, ρ
†
i+1) = ∠(trM(ρi+1), trM

(
Viρ
†
iV
∗
i

)
)

≤ ∠(trM(ρi+1), trM (ViρiV
∗
i )) + ∠(trM(ViρiV

∗
i ), trM

(
Viρ
†
iV
∗
i

)
)

≤ ∠(trM(ρi+1), trM (ViρiV
∗
i )) + ∠(ρi, ρ

†
i )

The equality follows from the preservation of the fidelity. The first inequality is just the
triangle inequality all metrics obey while the second inequality is due to the contractive-
ness of the Bures angle for any quantum channel. Since ∠(ρ0, ρ

†
0) = 0 holds trivially the

first part of the lemma follows inductively from the non-negativity of the Bures angle.
Moreover, the parallel implementability of (ρ†1, . . . , ρ

†
a) follows from the implementation

of Lemma 7. In order to prove (6.10) observe the following consequence of Lemma 8
and (6.9)

1

2
‖ρa − ρ†a‖tr ≤

a−1∑
i=0

√
π

2
‖trM(ρi+1)− trM (ViρiV ∗i ) ‖tr.
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Using the abbreviation αi = ‖trM(ρi+1)− trM (ViρiV
∗
i ) ‖tr and the fact that

√
(πx)/2 <

x/(2δ) + δ holds for all x ≥ 0 and all δ > 0 one gets

a−1∑
i=0

√
παi
2

<
a−1∑
i=0

(αi
2δ

+ δ
)

= aδ +
1

δ

a−1∑
i=0

αi
2
.

Therefore, choosing δ = ε/a completes the proof of (6.10).

Lemma 14 allows the following reformulation for the game value

λ(R) = min
(ρa,...,ρ1)

consistent with R

max
P∈P(R)

〈ρa, P 〉. (6.11)

Moreover, Lemma 15 enables a suitable relaxation µε(R) of the game value λ(R)

µε(R) = min
(ρa,...,ρ1)

max
P∈P(R)

(Π1,...,Πa)

〈ρa, P 〉+
a

ε

a−1∑
i=0

〈trM(ρi+1)− trM (ViρiV
∗
i ) ,Πi+1〉

= min
(ρa,...,ρ1)

max
P∈P(R)

〈ρa, P 〉+
a

ε

a−1∑
i=0

1

2
‖trM(ρi+1)− trM (ViρiV

∗
i ) ‖tr.

The minimization over the density operators ρa, . . . , ρ1 ∈ D(MV) is adjusted as not
consistent operators are penalized by the terms in the summation. Furthermore, the
factor a/ε increases this penalty and will finally guarantee the approximation of the
game value

lim
ε→0

µε(R) = λ(R).

In the second equality the maximum over all P ∈ P(R) and over all measurement
operators Π1, . . .Πa ∈Meas(V) is reformulated using the equality

1

2
‖ρ− σ‖tr = max

0≤Π≤1V
〈ρ− σ,Π〉, (6.12)

which holds for all density operators ρ, σ. For a proof of (6.12) let UDU∗ be the diago-
nalization of ρ−σ. Then we can split up D into a diagonal matrix D+, whose entries are
the positive entries of D and a diagonal matrix D− whose entries are the absolute values
of the negative entries of D. Using the abbreviations, τ+ = UD+U∗ and τ− = UD−U∗

we can define the projectors Π+ and Π− onto the eigenspaces corresponding to τ+ and
τ−, respectively. In terms of formulas this means

Π+(ρ− σ)Π+ = τ+ and Π−(ρ− σ)Π− = τ−.

Since τ+ and τ− have orthogonal supports we can conclude |ρ − σ| = tr(|τ+ − τ−|) =
τ+ + τ−. Therefore, we have

‖ρ− σ‖tr = tr(|ρ− σ|) = tr(τ+ + τ−) = tr(τ+) + tr(τ−) and

tr(τ+) + tr(τ−) = tr(τ+ − τ−) = tr(ρ− σ) = tr(ρ)− tr(σ) = 0,
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implying tr(τ+) = tr(τ−) and thus, ‖ρ − σ‖tr = tr(τ+). Finally, we conclude that Π+

achieves the maximum in (6.12) from

2tr(Π+(ρ− σ)) = 2tr(Π(τ+ − τ−)) = tr(τ+) = ‖ρ− σ‖tr and

2 max
0≤Π≤1V

〈ρ−σ,Π〉 = 2 max
0≤Π≤1V

tr(Π(τ+−τ−)) ≤ 2 max
0≤Π≤1V

tr(Π(τ+)) ≤ tr(τ+) = ‖ρ−σ‖tr.

Moreover, we will need some new terminology to formulate the rounding theorem con-
cisely. For any equilibrium value λ satisfying a min-max theorem for some function
f(x, y), with x ∈ X and y ∈ Y , a pair (x′, y′) is called δ-optimal for λ if

max
y∈Y

f(x′, y) ≤ λ+ δ and min
x∈X

f(x, y′) ≤ λ− δ. (6.13)

Similarly, any value λ′ is δ-optimal for λ if |λ′ − λ| ≤ δ holds. In order to provide a
intuitive notation δ-optimal elements are marked with prime. On the other hand optimal
elements for λ are in general marked with the index λ displayed on top. For example if
δ = 0 the above x′, which is optimal for λ in this case, is referred to as xλ. Moreover,
we generalize Gutoski’s and Wu’s definition to the single elements of the pair, namely
x′ and y′. We also call them δ-optimal for λ, once they satisfy the associated inequality
in (6.13). Now we are able to formulate the rounding theorem in a concise fashion:

Theorem 12. Using the notation above the following statements hold for any referee
R and any δ, ε > 0

1. λ(R) ≥ µε(R) ≥ λ(R)− ε.

2. If (P µ,Πµ
1 , . . . ,Π

µ
a) is δ-optimal for µε(R) then P λ ∈ P(R) is also (δ + ε)-optimal

for λ(R).

3. If (ρµ1 , . . . , ρ
µ
a) is δ-optimal for µε(R) then ∃(ρλ1)†, . . . (ρλa)

† consistent with R, such
that (ρλa)

† is (δ + ε)-optimal for λ(R). Moreover (ρ′a)
† is computable in parallel in

time O(a polylog(dim(MV)))

Proof. In order to prove the first inequality of item 1 let (ρλ1 , . . . , ρ
λ
a) achieve the minimum

for λ(R) in (6.11). Moreover, let (P µ,Πµ
1 , . . . ,Π

µ
a) achieve the maximum for µε(R). We

have to keep in mind that this notation should not suggest an exponent, but rather
another index correlating the term below to the expression it optimizes. Thus, we get

λ(R) ≥
〈
ρλa, P

µ
〉

=
〈
ρλa, P

µ
〉

+
a

ε

a−1∑
i=0

〈
trM(ρλi+1)− trM

(
Viρ

λ
i V
∗
i

)
,Πµ

i+1

〉
≥ µε(R),

where the equality is due to the consistency of (ρλ1 , . . . , ρ
λ
a) with R. The inequality on

the right side follows from the optimal choice of (P µ,Πµ
1 , . . . ,Π

µ
a). Using the notation
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from Lemma 15 we can prove the second inequality of item 1. For any measurement
operator P we have

〈ρa, P 〉 =
〈
ρ†a, P

〉
+
〈
ρa − ρ†a, P

〉
≥
〈
ρ†a, P

〉
− 1

2
‖ρa − ρ†a‖tr

> 〈ρ†a, P 〉 − ε−
a

ε

a−1∑
i=0

1

2
‖trM(ρi+1)− trM (ViρiV

∗
i ) ‖tr.

(6.14)

The first inequality is a direct consequence of (6.12), the second inequality follows from
(6.10) in Lemma 15. Moreover, let (ρµ1 , . . . ρ

µ
a) be optimal for µε(R) and P λ be optimal

for λ(R) to conclude

µε(R) ≥ 〈ρµa , P λ〉+
a

ε

a−1∑
i=0

1

2
‖trM(ρµi+1)− trM (Viρ

µ
i V
∗
i ) ‖tr >

〈
(ρµa)†, P λ

〉
− ε ≥ λ(R)− ε.

Here the first inequality is due to the minimal choice of the density operators while the
last inequality is due to the maximal choice of the measurement. The strict inequality
in the middle is (6.14) with the substitutions (ρ1, . . . ρa) = (ρµ1 , . . . ρ

µ
a) and P = P λ. This

establishes the lower bound on the relaxation of the game value µε(R) completing the
proof of item 1.
Now we can utilize item 1 to prove the remaining statements of Theorem 12. For a proof
of item 2 consider the following inequality, which holds for any ρa, . . . , ρ1 consistent with
R

λ(R)− ε− δ < µε(R)− δ ≤
〈
ρa, P

λ
〉
.

The first inequality follows directly from the second inequality of item 1. The second
inequality is due to δ-optimality of (P ′,Πµ

1 , . . . ,Π
µ
a).

Item 3 follows from the same construction item 1 was proven with. In order to establish
the (δ + ε)-optimality of (ρλa)

† observe for any P ∈ P(R)

λ(R) + δ ≥ µε(R) + δ ≥ 〈ρµa , P 〉+
a

ε

a−1∑
i=0

1

2
‖trM(ρµi+1)− trM (Viρ

µ
i V
∗
i ) ‖tr ≥

〈
(ρλa)

†, P
〉
− ε,

where the first inequality is due to item 1. The second inequality is due to the δ-
optimality of (ρµ1 , . . . , ρ

µ
a) and the not necessarily optimal choice of P . Moreover the last

inequality immediately follows from (6.14) by substituting (ρµ1 , . . . , ρ
µ
a) = (ρa, . . . , ρ1).

The parallel implementability of ρ†a is due to the implementability of Lemma 15 and the
fact that standard matrix operations like the trace or the partial trace can be computed
efficiently in parallel according to Section 4.2.

Note again that the terminology of δ-optimality was defined less general by Gutoski
and Wu [GW11]. Even though they used it in the same way their definition only included
optimal pairs for a min-max expression. Since each inequality in (6.13) defines the δ-
optimality of one part of the optimal pair, the individual entries of the tuple are also
called δ-optimal, once they satisfy the associated inequality.
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6.2.3 Algorithm for δ-optimal approximation on the game-value

input : A referee R = (|ψ〉, V1, . . . Va+b), an oracle algorithm O providing a P ′,

such that 〈ρ, P ′〉 ≥ 〈ρ, P 〉 − δ/2,∀P ∈ P , and an accuracy parameter

δ = Ω (1/polylog (dim(M⊗V)) .

output : A δ-optimal approximation λ′ for λ(R), a density operator ρλa ∈ D(MV)

, and a measurement P λ ∈Meas(MV), both (3δ/2)-optimal for λ(R).

The condition on the error parameter δ is essentially a promise on the value of δ. Due to
Theorem 12 it suffices to compute a δ/2-optimal solution for µε(R) in order to achieve
δ-optimal solutions for λ(R), once epsilon is chosen appropriately.

On the other hand the algorithm of Figure 6.1 (ρλa)
† and P λ are both 3δ/2-optimal

for λ(R) since (ρλ1 . . . ρ
λ
a) and

(
P λ,Πλ

a, . . .Π
λ
1

)
are δ-optimal for µε(R). Furthermore, the

parameter γ of the MMW method is εδ/16a2 in this case and each loss matrix M
(t)
i

satisfies 0 ≤M
(t)
i ≤ (1/a)1MV accounting for the multiple rounds of interaction.

Moreover, the following linear map will allow a compact description of the relaxation of
the game value, µε(R). For ε > 0 consider the corrected definition

fR,ε : (ρa, . . . , ρ1)→
(
ρa,

a

ε

(
trM(ρa)− trM(Va−1ρa−1V

∗
a−1)

)
,

. . . ,
a

ε
(trM(ρ2)− trM(V2ρ2V

∗
2 ))

a

ε
(trM(ρ1)− tr(ρ1)trM(|ψ〉〈ψ|))

)
Using the definition of fR,ε : L(MV)× · · ·×L(MV)→ L(MV)×L(V)× · · ·×L(V) we
restate the relaxation of the game value

µε(R) = min
(ρa,...,ρ1)

max
P∈P(R)

(Π1,...,Πa)

〈fR,ε(ρa, . . . , ρ1), (P,Πa, . . . ,Π1)〉.

Moreover, we define the adjoint map as

f ∗R,ε : (P,Πa, . . . ,Π1)→
(
P+

a

ε
Πa ⊗ 1M,

a

ε

(
Πa−1 ⊗ 1M − V ∗a−1(Πa ⊗ 1M)Va−1

)
,

. . . ,
a

ε
(Π2 ⊗ 1M − V ∗2 (Π3 ⊗ 1M)V2)

a

ε
(Π1 ⊗ 1M − V ∗1 (Π2 ⊗ 1M)V1 − 〈ψ|Π1|ψ〉1MV)

)
.

Since the inner product in a Cartesian product of Hilbert spaces is the sum of the inner
products in the individual Hilbert spaces we can prove the correctness of the above
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Figure 6.1 Algorithm for a δ-optimal approximation on the game value for DQIP

1. Initialize

ε = δ/2 T =

⌈
28a4ln(dim(M⊗V))

ε2δ2

⌉
W

(1)
i = 1M⊗V .

2. For t = 1, . . . , T

a) For i = 1 . . . a update ρ
(t)
i = W

(t)
i /tr(W

(t)
i ).

b) For i = 0, . . . a− 1 compute the projection Π
(t)
i+1 onto the positive eigenspaces

of trM(ρ
(t)
i+1)− trM(Viρ

(t)
i V

∗
i )

c) Call the oracle O on input ρ
(t)
a and δ, to get a δ/2-optimal response P (t) to

ρ
(t)
a .

d) Compute the loss matrices(
M

(t)
1 , . . . ,M (t)

a

)
=

ε

4a2

(
f ?R,ε(P

(t),Π(t)
a , . . . ,Π

(t)
1 ) +

2a

ε
(1MV , . . .1MV)

)
.

e) Update the weight matrices:

W
(t+1)
i = exp

(
− εδ

16a2

(
M

(1)
i + · · ·+M

(t)
i

))
.

3. Compute

λ′ =
1

T

T∑
t=1

〈
fR,ε

(
ρ

(t)
1 , . . . ρ(t)

a

)
,
(
P (t),Π(t)

a , . . . ,Π
(t)
1

)〉
,

(ρλ1 . . . ρ
λ
a) =

1

T

T∑
t=1

(
ρ

(t)
1 , . . . , ρ(t)

a

)
,
(
P λ,Πλ

a, . . .Π
λ
1

)
=

1

T

T∑
t=1

(
P (t),Π(t)

a , . . .Π
(t)
1

)
.

4. Compute
(
(ρλ1)†, . . . (ρλa)

†) from (ρλ1 . . . ρ
λ
a) according to the construction in item 3

of Theorem 14.

5. Return
(
(ρλa)

†, P λ
)

and λ′.

adjoint map straightforward. Initially, we have to use the definition of fR,ε to get

〈fR,ε(ρa, . . . , ρ1), (P,Πa, . . . ,Π1)〉 =

〈ρa, P 〉+
〈a
ε

(
trM(ρa)− trM

(
Va−1ρa−1V

∗
a−1

))
,Πa

〉
+ · · ·

+
〈a
ε

(trM(ρ2)− trM (V1ρ1V
∗

1 )) ,Π2

〉
+
〈a
ε

(trM(ρ1)− tr(ρ1)trM (|ψ〉〈ψ|)) ,Π1

〉
.
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Utilizing 〈trM(ρ),Π〉 = 〈ρ,Π⊗1M〉 and 〈tr(ρ)trM(|ψ〉〈ψ|),Π〉 = 〈ρ, 〈ψ|Π|ψ〉1MV〉, which
hold for all ρ ∈ D(MV), |ψ〉 ∈ MV , and Π ∈ Meas(V), we can convert the right hand
side of the above equality to

〈ρa, P 〉+
〈
ρa − Va−1ρa−1V

∗
a−1,

a

ε
(Πa ⊗ 1M)

〉
+ · · ·

+
〈
ρ2 − V1ρ1V

∗
1 ,
a

ε
(Π2 ⊗ 1M)

〉
+
〈
ρ1,

a

ε
(Π1 ⊗ 1M)

〉
− 〈ρ1, 〈ψ|Π1|ψ〉1MV〉 .

(6.15)

Therefore, rearranging the terms in (6.15) and plugging in the definition of f ∗R,ε gives〈
ρa, P +

a

ε
(Πa ⊗ 1M)

〉
+
〈
ρa−1,

a

ε

(
Πa−1 ⊗ 1M − V ∗a−1(Πa ⊗ 1M)Va−1

)〉
+ · · ·

+
〈
ρ2,

a

ε
(Π2 ⊗ 1M − V ∗2 (Π3 ⊗ 1M)V2)

〉
+〈

ρ1,
a

ε
(Π1 ⊗ 1M − V ∗1 (Π2 ⊗ 1M)V1 − 〈ψ|Π1|ψ〉1MV)

〉
=
〈
(ρa, . . . , ρ1), f ∗R,ε(P,Πa, . . . ,Π1)

〉
The above considerations enables us to prove the efficiency and correctness of the algo-
rithm presented in Figure 6.1.

Theorem 13. Assuming unit cost for the oracle the algorithm in Figure 6.1 finds a δ-
optimal approximation on the game value. Moreover it can be implemented in parallel
with run time polynomial in (a+ b), 1/δ and log(dim(MV)).

Proof. Initially, we have to check the bounds on the loss matrices. We know that mul-
tiplying any matrix A with a unitary matrix U and its adjoint only changes the basis in
the representation of A. In addition with the definition of f ∗R,ε and the general bounds
on measurement operators: ∀Π ∈Meas(MV) : 0 ≤ Π ≤ 1MV this implies

0 ≤ P +
a

ε
Πa ⊗ 1M ≤

(
1 +

a

ε

)
1MV

−a
ε
1MV ≤

a

ε
(Πi ⊗ 1M − V ∗i (Πi+1 ⊗ 1M)Vi) ≤

a

ε
1MV , ∀i ∈ {2, . . . , a− 1}

−2
a

ε
1MV ≤

a

ε
(Π1 ⊗ 1M − V ∗1 (Π2 ⊗ 1M)V1 − 〈ψ|Π1|ψ〉1MV) ≤ a

ε
1MV

Combining these inequalities leads to(
0,−a

ε
1, . . . ,−a

ε
1,−2

a

ε
1

)
≤ f ∗R,ε(P,Πa, . . . ,Π1) ≤

((
1 +

a

ε

)
1,
a

ε
1, . . . ,

a

ε
1

)
. (6.16)

Here and from now on the identity operator 1 always refers to the neutral element of
multiplication in L(MV). Together with the definition of the loss matrices in step 2d,
(6.16) implies

0 ≤
(

1

2a
1,

1

4a
1, . . . ,

1

4a
1, 0

)
≤ ε

4a2

[(
0,−a

ε
1, . . . ,−a

ε
1,−2

a

ε
1

)
+

2a

ε
(1, . . . ,1)

]
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≤
(
M

(t)
1 , . . . ,M (t)

a

)
≤ ε

4a2

[((
1 +

a

ε

)
1,
a

ε
1, . . . ,

a

ε
1

)
+

2a

ε
(1, . . . ,1)

]
≤
(
ε+ 3a

4a2
1,

3

4a
1, . . . ,

3

4a
1

)
≤ 1

a
(1, . . . ,1)

for all , t ∈ {1, . . . , T}. Furthermore, due to the definition of W
(t+1)
i in step 2e and the

normalization in step 2a all ρ
(t)
i satisfy the conditions of the MMW method. Therefore,

applying the adjusted version of Theorem 5, namely (4.24) any density operator ρi ∈
D(MV) obeys

1

T

T∑
t=1

〈
ρ

(t)
i ,M

(t)
i

〉
≤

〈
ρi,

1

T

T∑
t=1

M
(t)
i

〉
+

1

a

(
εδ

16a2
+

16a2ln(dim(MV))

εδT

)
. (6.17)

Notice that the factor γ in the MMW method is εδ/16a2 in this case. For notational
purposes the last term will be abbreviated by β = (εδ)/(16a2)+16a2ln(dim(MV))/(εδT ).
Moreover, the summation of all these inequalities gives

1

T

T∑
t=1

〈(
ρ(t)
a , . . . , ρ

(t)
1

)
,
(
M

(t)
1 , . . .M (t)

a

)〉
≤

〈
(ρa, . . . , ρ1),

1

T

T∑
t=1

(
M

(t)
1 , . . . ,M (t)

a

)〉
+β,

(6.18)
for any (ρa, . . . , ρ1) ∈ (D(MV))a. Due to the definition of the loss matrices the left side
of (6.18) can be reformulated as

ε

4a2T

T∑
t=1

〈(
ρ(t)
a , . . . , ρ

(t)
1

)
, f ∗R,ε

(
P (t),Π(t)

a , . . .Π
(t)
1

)
+

2a

ε
(1MV , . . .1MV)

〉

=
ε

4a2

(
λ′ +

1

T

T∑
t=1

2a

ε

a∑
i=1

tr(ρ
(t)
i )

)
=

ε

4a2

(
λ′ +

2a2

ε

)
.

The last equality is a consequence of the fact that tr(ρ
(t)
i ) = 1, which holds for all

i ∈ {1, . . . , a}, t ∈ {1, . . . , T}. Analogously, we can simplify the right side of (6.18):

ε

4a2

〈
(ρa, . . . , ρ1),

1

T

T∑
t=1

f ∗R,ε

(
P (t),Π(t)

a , . . .Π
(t)
1

)
+

2a

ε
(1MV , . . .1MV)

〉
+ β

=
ε

4a2

(〈
(ρa, . . . , ρ1),

1

T

T∑
t=1

f ∗R,ε

(
P (t),Π(t)

a , . . . ,Π
(t)
1

)〉
+

2a2

ε

)
+ β

Plugging these simplifications into (6.18), subtracting the 2a2/ε-term and multiplying
by (4a2)/ε leads to

λ′ =
1

T

T∑
t=1

〈(
ρ(t)
a , . . . , ρ

(t)
1

)
, f ∗R,ε

(
P (t),Π(t)

a , . . .Π
(t)
1

)〉
≤

〈
(ρa, . . . , ρ1),

1

T

T∑
t=1

f ∗R,ε

(
P (t),Π(t)

a , . . . ,Π
(t)
1

)〉
+

4a2β

ε
.

(6.19)
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Due to the definition of β and the initialization of T the following estimation holds:

4a2β

ε
=

4a2

ε

(
εδ

16a2
+

16a2 ln(dim(MV))

εδT

)
≤ δ

4
+

(
4a2

ε

)
εδ

16a2
=
δ

2
.

The inequality is necessary since T is rounded up. The parameter T is actually chosen in
such a unnatural way to satisfy this inequality as sharply as possible. Since (6.19) holds
for an arbitrary choice of (ρa, . . . , ρ1) it also holds for an optimal choice (ρλ1 , . . . , ρ

λ
a).

Thus, the right hand side of (6.19) is bounded by µε(R) + δ/2. Moreover, the oracle call

in step 2c guarantees that (P (t),Π
(t)
a , . . . ,Π

(t)
1 ) is a δ/2-best response to (ρ

(t)
1 , . . . , ρ

(t)
a )

and therefore λ′ ≥ µε(R) + δ/2. Combining these results with the choice of ε = δ/2, and
item 1 of Theorem 12 leads to

λ(R)− δ < µε(R)− δ/2 ≤ λ′ ≤ µε(R) + δ/2 ≤ λ(R) + δ/2 < λ(R) + δ.

Finally, these inequalities establish the δ-optimality of λ′ for λ(R) as |λ′ − λ(R)| < δ.
Next we prove the δ-optimality of (ρλ1 , . . . , ρ

λ
a) for µε(R) to establish the 3δ/2-optimality

of (ρλa)
† for λ(R) according to item 3 of Theorem 12. First choose any (P,Π1, . . . ,Πa).

Since each (P (t),Π
(t)
1 , . . . ,Π

(t)
a ) is a δ/2 best response to (ρ

(t)
a , . . . , ρ

(t)
1 )〈(

ρ(t)
a , . . . , ρ

(t)
1

)
, f ∗R,ε (P,Π1, . . . ,Πa)

〉
≤
〈(
ρ(t)
a , . . . , ρ

(t)
1

)
, f ∗R,ε

(
P (t),Π

(t)
1 , . . . ,Π(t)

a

)〉
+
δ

2

holds for all t ∈ {1, . . . , T}. Combining the expression for λ′ in (6.19), the choice of ε
and the linearity of the trace, the summation of these inequalities implies〈

1

T

T∑
t=1

(
ρ(t)
a , . . . , ρ

(t)
1

)
, f ∗R,ε (P,Π1, . . . ,Πa)

〉
≤ λ′ +

δ

2
≤ µε(R) + δ,

leading to the δ-optimality of (ρµa , . . . , ρ
µ
1) for µε(R).

To establish the 3δ/2-optimality of P λ for λ(R) it suffices to prove the δ-optimality of
(P µ,Πµ

a , . . . ,Π
µ
1) for µε(R) according to item 2 of Theorem 12. Again the expression for

λ′ in (6.19), the choice of ε and the linearity of the trace imply for any (ρa, . . . , ρ1)〈
(ρa, . . . , ρ1), f ∗R,ε (P µ,Πµ

a , . . . ,Π
µ
1)
〉
≥ λ′ − δ

2
≥ µε(R)− δ.

This proves the δ-optimality of (P µ,Πµ
a , . . . ,Π

µ
1) for µε(R) as desired.

Therefore, it only remains to provide an efficient parallel implementation of the algorithm
presented in Figure 6.1. First observe that the steps 1, 2a 2d 3 and 5 can be computed
exactly in NC. Moreover, the steps 2b 2c and 2e can be approximated in NC up to
sufficient accuracy according to Section 4.2. Step 4 uses the construction of Lemma 7
and can therefore be implemented in NC as well. This completes the proof of Theorem
13 as all non-oracle steps can be computed by circuits in NC and these circuits compose
well. This analysis still assumes that real numbers can be stored exactly postponing
precision issues to Section 6.2.5.

Since the algorithm of Figure 6.1 uses an oracle we have to present a suitable algorithm
which can be implemented efficiently. The next section is dedicated to this task.
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6.2.4 Oracle algorithm

In this section we will construct an oracle algorithm using the original algorithm for
the special case of P(R) being a singleton. Initially, we will provide an exact Problem
formulation for the oracle:

Input: A referee R = (|ψ〉, V1, . . . , Va+b,Π), a density operator ρ ∈ D(M⊗V), and an

accuracy parameter δ = Ω(1/polylog(dim(M⊗V))) > 0.

Output: A measurement operator P ′ ∈ P(R), such that 〈ρ, P ′〉 ≥ 〈ρ, P 〉 − δ ∀P ∈ P(R).

In order to motivate the oracle algorithm consider the previous problem, stated at the
beginning of Section 6.2.3 for the special case b = 0. In this case no messages are
exchanged between Bob and the referee and therefore the set P(R) becomes a singleton:
P(R) = {V ∗a ΠVa}. Therefore, we can simplify (6.11) as follows:

λ(R) = min
(ρa,...,ρ1)

consistent with R

〈ρa, V ∗a ΠVa〉.

Remember that the condition consistent with R can be substituted with the equalities
of Lemma 14.
Moreover, Theorem 13 already guarantees an efficient computable solution of this SDP,
because P(R) is a singleton and therefore the oracle is trivial to implement. Since b = 0
holds this SDP actually represents all single-prover quantum interactive proofs. Thus,
our considerations are a direct proof of QIP ⊆ PSPACE. As stated before we will reduce
the above oracle problem to an instance of such a SDP leading to a general polynomial
space algorithm for the original problem of double quantum interactive proofs.
In order to understand the algorithm for the oracle algorithm of Figure 6.2 remember
the definition of ρ in Section 6.2.2: ρ is the reduced state of the register (M,V) after
the last unitary Aa was applied by Alice. We also have to recall the definitions of
C(R) ⊆ D(MV) and P(R) ⊆Meas(MV):

C(R) = {trA(|φ〉〈φ|) : φ = AaVa−1Aa−1 · · ·A1|ψ〉 for some (A1, . . . , Aa)}
P(R) = {U∗ΠU : U = Va+bBbVa+b−1Bb − 1 · · ·B1Va for some (B1, . . . Bb)} .

Moreover, without loss of generality the player’s memory spaces A and B can be chosen
large enough to admit the purifications needed since the players are computationally
unbounded. Alternatively we could introduce new state spaces A′ and B′. But we will
skip this additional notation to reduce the complexity of the formulas.

In order to extend the considerations of Theorem 13 we drop the assumption on the
costs of the oracle and calculate its actual costs in the following theorem.

Theorem 14. The algorithm of Figure 6.2 computes a δ-best response P ′ to ρ and it can
be implemented in parallel with run time polynomial in a+ b, 1/δ and log(dim(MV)).

Proof. First examine an expression for the probability that Bob wins, which is due to
(6.5), using the purification |φ〉 defined in step 1 of the algorithm:∥∥Π′V ′a+bB

′
bV
′
a+b−1B

′
b − 1 · · ·B′1V ′a|φ〉|0B〉

∥∥2
, (6.20)
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Figure 6.2 Algorithm for the oracle in a double quantum interactive proof

1. Define a new referee R̃:

a) Compute a purification |φ〉 ∈ AMV of ρ and a new measurement operator

Π̃ = 1A ⊗ (1MV − Π)

b) For i = 1, . . . , b compute unitary operators Ṽi = 1A ⊗ Va+i

c) Combine the results of the steps 1a and 1b

R̃ = (Va|φ〉, Ṽ1, . . . , Ṽb, Π̃)

2. Compute Q = Ṽ ∗b Π̃Ṽb and use the algorithm of Figure 6.1 to solve the following
SDP

min
ζ∈C(R̃)

〈ζ,Q〉 .

The algorithm also provides 3δ/2-optimal density operators (ζ1, . . . , ζb) for λ(R̃).

3. To compute purifications of (ζ1, . . . , ζb) in AMVB and optimal B1, . . . , Bb, define
|σ0〉 = |φ〉|0B〉 and Ṽ0 = Va ⊗ 1A.

4. For each i=1,. . . ,b:

a) Compute a purification |σi〉 ∈ AMVB of ζi.

b) Compute a unitary matrix Bi ∈ U(MB) that maps Ṽi−1|σi−1〉 to |σi〉.

5. Compute

U = (Ṽb ⊗ 1B)(1AV ⊗Bb)(Ṽb−1 ⊗ 1B)(1AV ⊗Bb−1) · · · (1AV ⊗B1)(Ṽ0 ⊗ 1B).

and return P ′ = trAB(U∗(1A ⊗ Π⊗ 1B)U).

where B′i = 1AV ⊗Bi for i = 1, . . . b, Π′ = 1A ⊗Π, and V ′i = 1A ⊗ Vi for i = 1, . . . a+ b.
To simplify the notation the tensor products will be skipped from now on and the original
notation is used again. The probability for Bob’s victory, (6.20), just used the matrices
B′i, Π′ and V ′i to provide a complete description. But carrying on the index prime would
only complicate the notation even more.
We will now interpret (6.20) as the probability of a victory in a one-player game with a
different referee R̃:

R̃ = (Va|φ〉,1A ⊗ Va+i, . . . ,1A ⊗ Va+b,1A ⊗ (1MV − Π))

Note that in such a one-player game the referee exchanges b messages with one player
and zero messages with the other player. Therefore the unitary matrices B1, . . . , Bb
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could specify either Alice or Bob. This choice depends only upon how the components
of the referee are labeled.
The memory register of the the new referee is extended to (V,A), the message register
remains unchanged. Nevertheless, this construction does not affect the actions the referee
performs on A as all the unitary matrices are tensored with the identity on this space.
But the measurement outcomes are exchanged as (1MV −Π) is used instead of Π. Step
1 is only designated to define the desired referee R̃.
Furthermore, the operator Q, defined in step 2 of the algorithm, is the only element of
P(R̃). Note that only one player is left and his communication with the referee is done
in C(R̃). Therefore, no Bi remains to choose from. Moreover, we can find a measurement
operator P ∈ P(R) and a state ζ ∈ C(R̃) for any actions of Bob, such that

〈ρ, P 〉 = ‖ΠVa+bBbVa+b−1Bb − 1 · · ·B1Va|φ〉|0B〉‖2 = 1− 〈ζ,Q〉. (6.21)

Here the first equality is due to (6.8) and the definition of |φ〉 as a purification of ρ ∈ C(R).
Moreover, the new space of admissible states after the communication with Bob is

C(R̃) =
{

trB(|α〉〈α|) : |α〉 = BbṼb−1Bb−1 · · ·B1|φ̃〉 for some (B1, . . . , Bb)
}
,

with |φ̃〉 = Va|φ〉. Combining the definition of Q from step 2 of the algorithm, namely
Q = V ∗a+b((1MV − Π)⊗ 1A)Va+b, and

‖ΠU |φ〉‖2 = 1− ‖(1MV − Π)U |φ〉‖2

proves the second equality of (6.21). The above equality is due to the fact that any
partial trace within a trace has no effect at all, which was already used in (6.8). Thus,
we can conclude

max
P∈P(R)

〈ρ, P 〉 = 1− λ(R̃) = 1− min
ζ∈C(R̃)

〈ζ,Q〉. (6.22)

In step 2 the algorithm provides an optimal (ζb, . . . , ζ1) correspond to ((ρλa)
†), . . . , (ρλ1)†

in the algorithm of Figure 6.1. Therefore, we can utilize (6.21) and (6.22) to compute an
optimal P , maximizing the left hand side of (6.22) from ζ, which is the optimal choice
on the right hand side of (6.22). In order to understand this, keep in mind that the Bi,
defined in step 4b of the algorithm, are an intermediate result for this calculation. To
this end observe that each Bi is chosen, such that each purification |σi〉 is the state of
the system after Bi and Ṽi−1 were applied. This justifies the choice of P ′ in step 5 of
the algorithm.
Since we proved the algorithms correctness we will now consider its run time. Remember
from the preliminaries, Section 4.2, that standard operations like addition, multiplication
and partial trace can be performed exactly in NC. On the other hand we only assume
matrix exponentials, singular value decompositions and positive eigenspace projections
to be exact, handling precision issues later on in Section 6.2.5. Additionally, we already
proved that the matrices establishing the unitary equivalence of purifications can be
computed in NC in Theorem 1. Moreover, the following lemma will provide suitable
purifications of mixed states in NC:
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Lemma 16. Let σ ∈ D(X ) be any density operator, and let σ =
∑m

i=1 λi|i〉X 〈i|X be
the spectral decomposition of σ. Furthermore, define the canonical purification of σ
as µ =

∑m
i=1

√
λi|i〉X ⊗ |i〉Y ∈ X ⊗ Y , where Y is an isomorphic copy of X . Then,

µµ∗ ∈ D(X ⊗ Y) can be computed in NC on input σ.

Proof. According to Section 4.2 the spectral decomposition, σ = UDU∗ can be computed
in NC. Let P = UD1/2 then the canonical purification of σ is µ = vec(P ). Finally, µµ∗

can be computed directly from µ in NC.

Now, we are able to provide NC implementations of every step for the algorithm of
Figure 6.2:
Obviously the steps 1b, 1c, 3 and 5 can be implemented in NC as they only use stan-
dard matrix operations. Step 2 can be implemented efficiently in parallel according to
Theorem 13 as it applies the algorithm of Figure 6.1. Moreover, the purifications in step
1a and 4a can be computed by circuits in NC due to Lemma 16. Finally, Theorem 1
guarantees the existence of an efficient parallel algorithm for step 4b.

Combining Theorem 13 and Theorem 14 with the fact that circuits in NC compose
well we can conclude the following corollary:

Corollary 5. The algorithm of Figure 6.1 admits an efficient parallel algorithm with
run time polynomial in a+ b, 1/δ and log(dim(MV)).

This corollary will finally enable us to prove DQIP = PSPACE. But we have to discuss
the accurate implementation before, dropping the assumption that all calculations are
exact.

6.2.5 Precision issues

Analogously to the discussion in Section 5.3.3, we truncate the real numbers at some
point to end up with a storable rational number. Since we also have to handle complex
values, we store two rational numbers referring to the real and imaginary part. For a
decent notation the actual values will be marked with a bar. For example ρ̄

(t)
i is the

actual density operator not its idealized value ρ
(t)
i .

Initially, the main algorithm of Figure 6.1 is considered. The steps 1, 2d, 2e, 3 and 5
can be computed exactly in NC. Actually W

(t)
i is never stored in the memory but ρ

(t)
i is

stored instead, causing the first precision issue. According to Section 4.2 the exponential
function can be approximated in NC. Thus, for a rational parameter δ1 we can find a
ρ̄

(t)
i , such that ∥∥∥∥∥ρ̄(t)

i −
W

(t)
i

tr(W
(t)
i )

∥∥∥∥∥
tr

< δ1.

Moreover, the projection onto positive eigenspaces can be computed in NC as stated in
Section 4.2. Therefore, we can find a measurement operator Π̄

(t)
i , such that∥∥∥Π̄

(t)
i − Π

(t)
i

∥∥∥
tr
< δ1.
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Both inequalities hold for all i ∈ {1, . . . , a} and t ∈ {1, . . . , T}. In order to ensure the
δ-optimality of λ it will suffice to choose δ1 = Ω(1/polylog(dim(MV)). This choice
guarantees the existence of NC circuits for both steps 2a and 2b. To extend the proof
of Theorem 13 to the actual values observe that no idealized values for M

(t)
i exist. But

0 ≤ M
(t)
i ≤ (1/a)1 still holds for all i and t, due to the assumption that the oracle

outputs a measurement operator and the above fact: Π̄
(t)
i ∈Meas(MV) for all i and t.

Therefore, only the second version of Theorem 5, (4.24), has to be adjusted:

Theorem 15. Consider the MMW algorithm of Section 4.5 and let ρ̄
(t)
i and M̄

(t)
i be the

actual values as above then

1

T

T∑
t=1

〈
ρ̄

(t)
i , M̄

(t)
i

〉
≤

〈
ρi,

T∑
t=1

M̄
(t)
i

〉
+

1

a

(
γ +

ln(dim(MV))

γT
+
δ1

2

)
,

where γ = εδ/(16a2) in the case at hand.

The factor (1/2)T is multiplied to δ1, since the above accuracy issues do not allow the
substitution ρ(t) = W (t)/tr(W (t)) in the beginning of the proof of Theorem 5. Therefore,
the recursion formula changes to

tr
(
W

(t+1)
i

)
≤ tr(W

(t)
i ) exp

(
tr
(

(e−γ − 1)M̄
(t)
i ρ̄

(t)
i

))
exp

(
δ1γ

2

)
,

leading to a new version of (4.21):

tr
(
W

(T+1)
i

)
≤ tr

(
W

(1)
i

)
exp

(
(e−γ − 1)tr

(
T∑
t=1

M̄
(t)
i ρ̄

(t)
i

))
exp

(
δ1γT

2

)
Since the other considerations in the proof of Theorem 5, which are stated in Section
4.5, do not have to be adjusted, we can formulate analogously to (4.23):

(1− γ)
T∑
t=1

tr
(
M̄

(t)
i ρ̄

(t)
i

)
≤ tr

(
T∑
t=1

M̄
(t)
i ρi

)
+

1

a

(
ln(dim(MV))

γ
+
δ1T

2

)
. (6.23)

Therefore, the steps performed in Section 4.5, leading to (4.24) completes the proof of
Theorem 15. Moreover, the summation of the inequalities in (6.23) gives

1

T

T∑
t=1

〈(
ρ̄(t)
a , . . . , ρ̄

(t)
1

)
,
(
M̄

(t)
1 , . . . , M̄ (t)

a

)〉
≤

〈
ρi,

1

T

T∑
t=1

(
M̄

(t)
1 , . . . , M̄ (t)

a

)〉
+ β′,

where β′ = γ+ln(dim(MV))/(γT )+δ1/2. We can take this new error term into account
by choosing a smaller δ′ instead of the original δ such that

4a2β′

ε′
=

4a2

ε′

(
ε′δ′

16a2
+

16a2 ln(dim(MV))

ε′δ′T ′
+
δ1

2

)
≤ δ′

2
+

2a2δ1

ε′
=
δ

2
,
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still holds. Here ε′ and T ′ refer to the adjustment of the constants ε and T from the
original algorithm of Figure 6.1. In their definitions δ is just replaced by δ′. To achieve
the above task it suffices to choose

δ′ = δ +
a2δ1

ε′
.

Since δ and δ1 are inverse polylogarithmic in the dimension of MV the same holds for
δ′, namely δ′ = Ω(1/polylog(dim(MV)). Therefore, λ′ is computable in NC and its
δ-optimality is still guaranteed according to the arguments in the proof of Theorem
13. The proof of the 3δ/2-optimality of ((ρλ1)†, . . . , (ρλa)

†) and (P λ) in this situation
is postponed to the following discussion of the oracle, since the output of an optimal
strategy is only required for the oracle.
It remains to prove the robustness of the oracle against precision issues. The goal is to
show that the oracle algorithm of Figure 5.3 runs in NC up to sufficient accuracy on
input R, ρ = ρ

(t)
a and δ′, namely

∀P ∈ P
〈
ρ, P̄

〉
≥ 〈ρ, P 〉 − δ′.

Since most of the steps of the oracle algorithm involve precision issues, the analysis is
quite elaborate. Fortunately, the errors of the individual steps are additive under the
trace norm. Therefore, the individual errors sum up to the whole algorithms error.
In order to extend Theorem 14 to inexact computation we have to extend Theorem
1, Lemma 7 and Lemma 16. All steps, which do not need the application of these
considerations, can be implemented to any desired accuracy. Therefore, these steps do
not cause any problems.
At first we will consider the precision issues in Lemma 16. According to Section 4.2 the
spectral decomposition of Uρ̄

(t)
a U∗ can be calculated in NC, such that

‖Uρ̄(t)
a U

∗ − U1DU
∗
1‖tr < 2δ′/3. (6.24)

And even an exact purification |φ〉 of U1DU
∗
1 can be found in NC. In order to state

U1DU
∗
1 in terms of |φ〉 we have to split the players workspace into the original space A

and an additional space A′, which is large enough to admit purifications. The error for
the whole oracle increases only by δ′/3 because

〈UρU∗, P 〉 = 〈trA′(|φ〉〈φ|), P 〉+ 〈(UρU∗ − trA′(|φ〉〈φ|), P 〉 ≥ 〈trA′(|φ〉〈φ|), P 〉 − δ′/3,

for any U∗PU ∈ P(R). Obviously trA′(|φ〉〈φ|) = U1DU
∗
1 holds and from (6.12) we can

easily conclude

〈σ − ρ,Π〉 ≥ −1

2
‖σ − ρ‖tr,

for all measurement operators Π and density operators ρ, σ, implying the above inequal-
ity by (6.24).
The second step can be performed in NC up to sufficient accuracy according to the
discussion above regarding the main algorithm of Figure 6.1, since the oracle is trivial
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as P(R̃) is a singleton. Step 3 can be done in NC according to Lemma 7. Observe that
the analysis of Lemma 7 is very similar to the analysis of the oracle itself as the lemma
only uses constructions, which are discussed here anyways, namely the unitary opera-
tor establishing the unitary equivalence of purifications and the spectral decomposition.
Therefore, the combined additive error of step 2 and step 3 can be assumed to be less
than δ′/3. And thus, it remains to prove that step 4 can be implemented up to an error
of δ′/3 in NC.
Theorem 1 states the computability of the unitary matrices establishing the equivalence
of purifications of the same state in NC. In the case at hand the states |φ〉|0〉B and |σi〉
of step 4 are not purifications of the same state, we can only make a statement about
their image under the inverse vector mapping. We will restrict our analysis to the case
i = 1, since all other iterations for i ∈ {2, . . . , b} can be proven analogously and we are
free to choose a smaller (δ2)′, which accounts for the multiple rounds. To this end we
define A = vec−1(1A ⊗ Va|φ〉|0〉B) and B = vec−1(|σ1〉). Due to the precision issues we
have

‖AA∗ −BB∗‖tr < δ′1/3 for some δ′1 = Ω(1/poly(|x|),
instead of AA∗ = BB∗ as in Theorem 1. The error parameter δ′1 will be chosen appro-
priately later on. Moreover, A and B can be computed exactly in NC. According to
Section 4.2 the spectral decompositions with diagonal matrices D1 and D2 of A and B
respectively can be found in NC up to the following accuracy

‖A− S1D1T1‖tr < δ′1/6 and ‖B − S2D2T2‖tr < δ′1/6.

Thus, we get
‖S1D1D

∗
1S
∗
1 − S2D2D

∗
2S
∗
2‖tr < δ′1,

according to the triangle inequality all norms obey. Now the Fuchs-van de Graaf in-
equalities imply

F (S1D1D
∗
1S
∗
1 , S2D2D

∗
2S
∗
2) ≥ 1− 1

2
‖S1D1D

∗
1S
∗
1 − S2D2D

∗
2S
∗
2‖tr > 1− 1

2
δ′1,

Notice that the above fidelity is equal to ‖S1

√
D1D∗1S

∗
1S2

√
D2D∗2S

∗
2‖tr. Remember from

the NC implementation of Theorem 1 that V was supposed to guarantee the positive
semidefiniteness of S2D

∗
2S
∗
2S1D1S

∗
1V . Moreover, we have to split the players workspace

in its original one B and a additional space B′, which is only necessary to admit the purifi-
cations. Therefore, we can conclude from the choice of U2, namely (U2)t = T ∗1S

∗
1V
′S2T2,

‖(1B′ ⊗ U2)|ϕ〉〈ϕ|(1B′ ⊗ (U2)∗)− |σ1〉〈σ1|‖tr = ‖vec(AU t
2)vec(AU t

2)∗ − vec(B)vec(B)∗‖tr

= 2
√

1− |〈vec(B), vec(AU t
2)〉|2,

where we used the abbreviation vec(A) = |ϕ〉. The last equality is due to the argument
presented in the proof of Lemma 6 and the fact that unitary matrices do not affect the
length of a vector. Therefore, we chose U ′ correctly to end up with

F (S1D1D
∗
1S
∗
1 , S2D2D

∗
2S
∗
2) = |〈vec(B), vec(AU t)〉|.
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Without loss of generality we can assume D1 and D2 to have only real entries, leading
to

‖(1B′ ⊗ U2)|ϕ〉〈ϕ|∗(1B′ ⊗ U∗2 )− |σ1〉〈σ1|‖tr ≤ 2

√
1− (1− 1

2
δ′1)2.

It remains to choose a δ′1 ∈ R such that the right hand side of the last inequality is
bounded by δ′/3. Therefore, the following choice will suffice our needs:

δ′1 ≤ 2−
√

4− (δ′)2

9
.

Analogous considerations hold for the unitary matrices, which map Ṽi−1|σi−1〉 to |σi〉.
Moreover, the sum of these errors is polynomial in δ′1 and linear in b. Therefore this sum
can be combined in a new error parameter, which is still inverse polylogarithmic in the
dimension of MV .
Thus, the algorithms of Figure 6.2 and Figure 6.1 can be implemented in NC up to
sufficient accuracy. Finally, it remains to explain, why this algorithm is good enough to
solve double quantum interactive poofs in polynomial space.

6.2.6 DQIP = PSPACE

In this section we finally prove the result DQIP = DIP = PSPACE [GW11], a new
complexity theoretic equality, which is a generalization of the previous results, SQG =
PSPACE from Gutoski and Wu [GW10]. One direction, namely PSPACE ⊆ DQIP,
holds due to Shamir’s result, PSPACE = IP, and the trivial fact that IP ⊆ DQIP.
Thus, it remains to prove the reverse containment:

Theorem 16. For c, s as stated in Definition 5, DQIP(c,s) ⊆ PSPACE holds.

Proof. For any decision problem L in DQIP and any instance x ∈ L the following
short algorithm can distinguish between yes-instances and no-instances up to sufficient
accuracy. Analogously to the definition of DQIP, we denote the referee by Rx.

1. Compute a referee Rx = (|ψ〉, V1, . . . , Va+b,Π) from x.

2. Choose δ = (c−s)/3 and run the algorithm of Figure 6.1 with the oracle implemen-
tation of Figure 6.2 to get a δ-optimal approximation λ′(Rx) for the game-value
λ(Rx).

3. If |λ′(Rx)− c| < |λ′(Rx)− s|, then x /∈ L otherwise x ∈ L.

Initially, we have to check the correctness of this algorithm. Essentially the algorithm
decides if the game-value is closer to c or to s in step 3. If we would have the exact
game-value only two cases could occur, λ(Rx) ≥ c or λ(Rx) ≤ s. Both cases could
clearly be distinguished by the decision rule in step 3. Therefore, we just have to check
that the approximation of the game-value does not cause any problems. Remember
from Definition 5 that the completeness and soundness of any language L in DQIP obey
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c− s ≥ 1/poly(|x|).
First notice that if λ′(Rx) ≥ c holds, then c > s implies λ′(Rx) − c < λ′(Rx) − s and
the algorithm answers no, x /∈ L. But since δ can only make up for one third of the
difference between c and s this also implies λ(Rx) − c < λ(Rx) − s. Therefore, the
promise λ(Rx) /∈ (s, c) leads to λ(Rx) ≥ c implying that x really is a no-instance.
On the other hand if λ′(Rx) ≤ s, then λ′(Rx) is closer to s than it is to c, meaning
c − λ′(Rx) > s − λ′(Rx). Thus, the algorithm answers yes, x ∈ L. Analogously to the
above consideration, δ can only make up for one third of the difference c − s implying
c − λ(Rx) > s − λ(Rx). Therefore, the promise λ(Rx) /∈ (s, c) leads to λ(Rx) ≤ s and
therefore x is a yes-instance.
Now, it only remains to prove the algorithm’s correctness for the case s < λ′(Rx) < c.
In this case the inequality in step 3 is c − λ′(Rx) < λ′(Rx) − s. First we assume that
x /∈ L but the algorithm does not answer correctly, meaning c − λ′(Rx) > λ′(Rx) − s.
Then c+ s > 2λ′(Rx) implies

c+ s > 2λ′(Rx) ≥ 2(λ(Rx)− δ) ≥ 2(c− δ) =
4

3
c+

2

3
s, (6.25)

where the second inequality is due to the δ-optimality of λ′(Rx) and the third inequality
is due to λ′(Rx) ≥ c, which follows from the assumption x /∈ L. But inequality (6.22)
leads to the contradiction s > c.
Secondly we assume that x ∈ L but the algorithm does not answer correctly, meaning
c− λ′(Rx) < λ′(Rx)− s. Then c+ s < 2λ′(Rx) implies

c+ s < 2λ′(Rx) ≤ 2(λ(Rx) + δ) ≤ 2(s+ δ) =
4

3
s+

2

3
c, (6.26)

where the second inequality is due to the δ-optimality of λ′(Rx) and the third inequality
is due to λ′(Rx) ≤ s, which follows from the assumption x ∈ L. But inequality (5.35)
leads to the contradiction c < s.
Since we have proven the algorithms correctness we can examine the run time. The
first step can be implemented by simple matrix multiplications. Therefore, it can be
implemented by classical parallel algorithms with run time polynomial in the dimension
of the matrices, log(dim(MV)). Moreover, Corollary 5 gives an analogous bound for the
second step, since a and b are constants, δ = Ω(1/polylog(dim(MV))) and c−s ≥ 1/poly.
Notice that the input size of the NC algorithms is exponentially bigger than the size of the
input x of the decision problem in DQIP and step 3 is easy to implement. Therefore, the
algorithm at hand can be implemented in NC(poly) and NC(poly) = PSPACE completes
the proof.

Now the characterization of DQIP in terms of PSPACE allows an equivalent definition
of DQIP with c = 2/3 and s = 1/3 or c = 1 and s = ε just like it is known for IP. Here
ε can be chosen exponentially small since problems in PSPACE are fully robust with
respect to the choice of c and s. This leads to an open question regarding DQIP:
Are there direct methods to decrease the soundness error. Since the field of quantum
complexity theory is still being explored we will end the last section with this question.

97



7 Conclusions

The major goal of this thesis is to present the advances in quantum complexity theory in
a complete fashion. Therefore, this work is a self-contained detailed analysis of the two
major results QIP = PSPACE and DQIP = PSPACE. Hopefully this thesis will help to
establish SQG = DQIP = PSPACE as a generally accepted theorem. To this end the
arguments of Gutoski and Wu are concretized and some mistakes are corrected. The
different versions of both papers, [JJUW10] and [GW11], underline the uncertainty of
research in this field, especially how to present results, due to the variety of mathemat-
ical tools used. Therefore, this thesis tries to establish standards in scientific research
presentation of quantum complexity theory. To fully understand the presented matters
on first sight one needs experience in classical computation, especially approximation
algorithms on convex programs, in game theory, and in quantum computation. Since
only very few people are experts in all these fields it is of high importance to explain
the results in full detail.
To achieve its major goal this thesis concretized the proofs of the main part in many
ways. One important example is the explicit formulation of the decision rule in Section
6.2.6 and the explanation, why it works. Gutoski and Wu just stated the existence of
such a rule. In addition the major proofs QIP(3) = QIP,QMAM = QIP,QIP = PSPACE
and DQIP = PSPACE are discussed in detail in Section 5.1, 5.2.2, 5.3.2, 6.2.3 and 6.2.4,
where many explanations are added. Moreover, the precision issues are concretized in
Section 5.3.3 and generalized in Section 6.2.5. For example proofs of (4.24) and (6.23)
are provided, whereas Gutoski and Wu just stated that a generalization of the precision
issues discussed in their original paper [GW10] is possible.
To emphasize the need of this thesis observe that a paper where a careful reader is not
able to understand all problems and ideas needed, does not help future researchers. But
one should enable young researchers to tackle the most recent and seemingly difficult
problems in quantum computation. As a matter of fact it is quite common to skip de-
tails, which the reader is supposed to know or understand without a hint. However, a
self-contained and readable presentation is more adequate to guarantee complete insight
into complex proofs. But such a detailed presentation is hardly realizable in a short
research paper. Since the number of pages of a thesis is also limited, scripts and books
should be published on the discussed matters, to enable students to understand the
state of research in quantum computation, as several problems in this field need further
investigation.
In fact we do not even know, whether quantum computers represent just a small interme-
diate step in securing cryptographic systems against potential threats, or if a “quantum
jump”, enabling powerful physical quantum computers, might take place. Despite the
fact, that this thesis is concerned with the limits of quantum computation, new quantum
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algorithms should emerge, emphasizing the need for physical quantum computers. Using
Shor’s algorithm one could hack every RSA-based cryptosystem offering the wrong profit
perhaps. Nevertheless, for the sake of humanity, hopefully no real quantum computer
is built before at least the important secrets are protected in a more sophisticated way
than storing prime factorizations of large numbers. Actually, the RSA cryptosystem
was invented by Clifford Cocks but published by Ron Rivest, Adi Shamir and Leonard
Adleman [RSA78].
Unfortunately, up to now the most significant result on quantum computation is an
algorithm that allows quantum computers to factorize faster than classical ones. This
was initially proven by Shor in 1997 [Sho97]. However, the quantum analogue of the
Church Turing thesis suggests, that every physically realizable computing device might
essentially be a quantum computer, like every classical computer is supposedly a Turing
machine. Therefore, quantum computation might be the best chance we get in devel-
oping more powerful computers. Moreover, from a theoretical point of view quantum
complexity theory might even help resolve P versus NP.
The issues mentioned above emphasize the importance of the discussed problems for the
real world. It is important to theoretically understand quantum computers in order to
make valid decisions in the development of physical quantum computing devices. One
of today’s biggest problems of quantum computers, the noisy environment, might be
solved by theoretical methods namely better error correcting codes. Since noise occurs
when any particle interacts with a computing device, causing the application of a CNOT
gate, it is difficult to find an experimental solution for this physical problem.
Therefore, one can only encourage the audience to improve the theory of quantum com-
putation, as this might yield huge benefits for mathematical research and for the real
world.
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