
Key Distribution

Kathrin Sayk

Geboren am 23. Oktober 1988 in Oldenburg

30th September 2011

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Nitin Saxena

Hausdorff Center for Mathematics

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 Introduction 3
1.1 Motivation . 3

Overview. 4
1.2 Basics of Cryptography . 4

1.2.1 Private Key Cryptography 4
Security Requirements. 5

1.2.2 Public Key Cryptography 6
Security Requirements. 6
Classical Cryptography today. 7

2 Classical Key Distribution 8
2.1 The DH Secret Key Exchange . 8

2.1.1 The DH-Protocol . 8
2.1.2 Security of the DH-Protocol 9

Equivalence of the DHP and the DLP 10
Authentication poses a problem. 10

2.1.3 Computing the most significant bits of the DH-function . 10
How is this connected to the DHP? 11

2.1.4 The small Generator Case 14
2.1.5 A modified DH-Protocol 15

2.2 Applications to various cryptographic Primitives 16
2.2.1 ElGamal’s Public Key Cryptosystem 16
2.2.2 Okamoto’s Conference-Key Sharing System 17
2.2.3 Shamir’s Message Passing Scheme 18

Remark. 19
2.3 Authentication . 19

2.3.1 Message Authentication Codes 19
Security Requirements. 20

2.3.2 Digital Signatures . 21
Security Requirements. 21

2.4 Session Key Distribution . 22
Security Requirements. 22

2.4.1 Two-Party-Protocols . 23
The symmetric setting. 23
The asymmetric Setting. 23

2.4.2 Three-Party-Protocols . 24

1

2.5 Conclusions . 25

3 Quantum Key Distribution 27
Overview. 27

3.1 Concepts and Definitions . 28
3.1.1 Single Qubits . 28
3.1.2 Higher Dimensional Quantum States 30

The No-Cloning Theorem. 32
3.2 Introducing Errors . 35

3.2.1 Models in Classical Computation 36
3.2.2 Models in Quantum Computation 36
3.2.3 Error Correction . 37
3.2.4 Classical Linear Codes . 37
3.2.5 Calderbank-Shor-Steane-Codes 38
3.2.6 Distance Measures for Quantum Information 39

3.3 The BB84 Protocol . 41
3.3.1 The Prepare-and-Measure Version 41
3.3.2 The intercept-and-resend attack 42
3.3.3 Notion of security . 43
3.3.4 The Entanglement-based Version 44
3.3.5 Proof of Security . 45
3.3.6 Equivalence of the two versions 46

3.4 Conclusions . 48

2

Chapter 1

Introduction

1.1 Motivation

The overall goal of cryptography is to secure communication. Since this is a
very general statement, let us try to break it down in order to get closer to a
solution. There are two main ingredients here: secrecy and authenticity.
Secrecy means, that it should not be possible for anybody but the intended
receiver to read our message. This is where encryption schemes come into play.
Instead of sending the original message or the plaintext, we encrypt it to a
ciphertext, in a way that only someone with the right key can decrypt it again.
Authenticity is just as important, but easily overlooked. One might assume,
that the possession of the valid decryption key, is enough to confirm the iden-
tity of the receiver. As we will see later it turns out that it is not. There are
different ways to achieve authenticity, namely authentication codes and digital
signatures.
The tasks of providing secrecy and authenticity are very different from each
other, which is why we will analyze them separately. For secure communication
it will be necessary to use both, encryption and authentication schemes.
At first glance it seems to be sufficient to require secrecy and authenticity, but
since the goal is to actually communicate, i.e. transfer information from one
party to another, we also need to keep an eye on practicality. Usually we will
assume that any party involved can run polynomial time and space algorithms,
no matter whether we are talking about the legitimate parties or an adversary.

We also just mentioned keys. We need keys to encrypt, decrypt, sign and
verify. There are schemes, where the key is private, i.e. known only to the
legitimate parties, and there are schemes that involve public keys as well.
The problem we are trying to solve here is, how to distribute such secret keys.
That is how two parties A and B come into possession of a shared secret key
and how can they be sure who they share this key with. So again the goal is
achieving secrecy and authenticity.

3

Overview. In the following sections of this chapter we will introduce the ba-
sics of cryptography. We will define what private and public key encryption
schemes are and take a closer look on security requirements.
In the second chapter we will start by introducing the Diffie-Hellmann key
distribution protocol and then discuss its security and possible improvements.
Section 2.2 gives some examples on how to use the idea behind the DH key
exchange to tackle various cryptographic primitives, including public key cryp-
tography and conference key sharing. We then turn to the issue of authenticity.
We define message authentication codes and digital signature schemes and then
use those in section 2.4 to describe key distribution protocols that, based on
a set of reasonable assumptions give us both secrecy and authenticity in the
setting of adversaries with polynomial time and space resources. Section 2.5
concludes the chapter on classical key distribution.
In chapter 3 we deal with the opportunities that quantum computation offers
for key distribution. The first section contains the basic mathematical concepts
and definitions in quantum computation. Section 3.2 is dedicated to modeling
errors and defining measures to judge how well a quantum state is preserved
during quantum computations. In section 3.3 we look at ways to detect and
correct errors. We will do that by starting out with classical error correction
and then use similar concepts to apply in quantum computation. Once we
have all that, we are ready to introduce the BB84 protocol, a quantum key
distribution protocol, in section 3.4. We will prove the security of the BB84
protocol, without making any assumption on the computational capabilities of
the adversary.

1.2 Basics of Cryptography

The very basic setting where cryptographic schemes become necessary is this:
Two (or sometime more) parties A and B want to communicate some private
information, but they only have access to public or insecure communication
channels, like the internet or a telephone line. Depending on the properties of
the channel an eavesdropper E may be able to listen in on the conversation of
A and B or even inject messages on to the channel.
So any cryptographic scheme should achieve two things: Privacy and Authen-
ticity. We will now take a look on different approaches to achieve privacy and
then turn to authenticity later in chapter two. This section is based on chapters
six and seven of [1].

1.2.1 Private Key Cryptography

Definition 1.2.1 (Private Key Encryption Scheme). Let P denote the set of
possible plaintexts and C be the set of possible ciphertexts, both finite. A private
key encryption scheme is a triple (K, E ,D) of polynomial time algorithms with
the following properties:

1. K generates random keys of a certain length l. The set K of all possible
outputs of K is finite and called the keyspace.

4

2. On input of a key k0 ∈ K and a plaintext p0 ∈ P the encryption al-
gorithm E computes a ciphertext c0 ∈ C. c0 is not necessarily unique, i.e.
encryption algorithm may be probabilistic.+

3. On input of a key k0 ∈ K and a ciphertext c0 ∈ C the decryption al-
gorithm D recovers the plaintext p0 ∈ P , i.e.

D(k, E(k, p)) = p ∀ k ∈ K, p ∈ P.

In private key cryptography the parties involved all need to be in possession of
the same secret key in order to be able to successfully communicate. But how
do we distribute such a secret key? We cannot just send it over an insecure
channel and encrypting it also does not work, since then the receiving party will
not be able to decrypt it. There are quite a few variations of this problem. We
will start out assuming that there is no previously shared information between
the participating parties. Diffie and Hellman proposed a solution to that setting
and also gave rise to public key cryptography in their truly revolutionary paper
[2].

Security Requirements. The objective of cryptography is to exchange secret
messages that are safe from any eavesdropper. We assume that the encryption
and decryption algorithms are publicly known. So we definitely want it to be
impossible to recover the plaintext or the key from any exchanged ciphertexts,
even partial information on both the key and the plaintext should not be ac-
cessible to the eavesdropper. The notion of perfect secrecy implies just that:

Definition 1.2.2 (Perfect Secrecy). For p ∈ P , c ∈ C let Pr[p] denote the
probability that the plaintext p was encrypted and Pr[p|c] denote the probability
of p being encrypted, knowing the ciphertext c was communicated. Then a
private key encryption scheme (K, E ,D) achieves perfect secrecy if and only if

Pr[p] = Pr[p|c] ∀ p ∈ P, c ∈ C

The idea behind perfect secrecy is, that the knowledge of the ciphertext bears
no advantage in recovering the plaintext or the key.

Example (One Time Pad). The one time pad was first introduced by Frank
Miller in 1882. The idea behind it is rather simple: K, P and C are all given
by the same set {1, 0}n of all binary n-bit strings.
To encrypt a plaintext p ∈ P choose a random key k ∈ K. For a p ∈ P and
k ∈ K the corresponding ciphertext is given by c = E(k, p) := p ⊕ k, where
⊕ denotes bit-wise addition modulo 2. To decrypt c again simply calculate
p = D(k, c) := c⊕ k.

The one time pad is proven to achieve perfect secrecy. The only information
an adversary can derive from the the ciphertext, is the length of the key, which
is not really an advantage, since all keys have the same length. The downside

5

here however is that the one time pad is not really practical: The key has to
be as long as the message and for every message a new key is necessary.

1.2.2 Public Key Cryptography

The first published public key encryption scheme was developed by Diffie and
Hellman in their paper [2]. In public key schemes it is not necessary for the
participants to be in posession of a shared secret key. Here each party holds
pair of keys (e, d), that is a public key e for encryption and a private key d for
decryption. So encryption can be performed by anyone, but only the designated
recipient to whom the used encryption key belongs, knows the corresponding
decryption key and can decrypt the message.
Public key schemes are especially practical when more than two parties are
involved, since all it takes to receive secret messages is a pair of keys and sending
is not a problem either, since all the encryption keys and the algorithms are
public anyway.
Formally a public key encryption scheme looks a lot like a private key scheme:

Definition 1.2.3 (Public Key Encryption Scheme). Let P denote the set of
possible plaintexts and C be the set of possible ciphertexts, both finite. A pub-
lic key encryption scheme is a triple (K, E ,D) of probabilistic polynomial time
algorithms with the following properties:

1. K generates random key pairs (e0, d0), each key of a certain length le and
ld respectively. e0 and d0 are corresponding encryption and decryption
keys with respect to E and D. e0 is called the public key and d0 the
private key. The set K of all possible outputs of K is finite and called the
keyspace.

2. On input of a public key e0 and a plaintext p0 ∈ P the encryption al-
gorithm E computes a ciphertext c0 ∈ C. c0 is not necessarily unique.

3. On input of a private key d0 ∈ K and a ciphertext c0 ∈ C the decryption
algorithm D recovers the plaintext p0 ∈ P , i.e.

D(d, E(e, p)) = p ∀ (e, d) ∈ K, p ∈ P.

Since both the encryption and the decryption algorithm can be probabilistic
here, the equality in the third condition only holds with high probability for
certain schemes.

Security Requirements. What we require of a public key encryption scheme
is basically the same as what we require in private key cryptography, namely
secrecy and authenticity. The main differences are that here the eavesdropper
cannot only read the ciphertexts sent on the channel, but also knows the public

6

key. So it should not be possible to retrieve the private key from the public key
or get any information on how to decrypt from encryption, since the adversary
can encrypt any plaintext he likes now.

A ”secure” public key scheme is often compared to sending messages in non-
transparent envelopes, that can only be opened by a designated recipient. From
the outside every envelope looks the same, i.e. it is impossible to distinguish
between the envelopes of two different plaintexts. This property is called indis-
tinguishability. For a formal definition check [1, p. 125]

In chapter two we will introduce a public key encryption scheme based on
the Diffie-Hellmann secret key exchange.

Classical Cryptography today. Most private and public key encryption
schemes in use today rely on the hardness of solving some mathematical prob-
lem, like integer factoring or computing discrete logarithms. Their security
relies on the assumption that the underlying problem is hard, which has usu-
ally not been proven and there are known ways for computationally unbounded
adversaries to break those schemes.
That does not mean, that classical cryptography is insecure in general. Luckily
there are no computationally unbounded adversaries so far. Scheme are con-
sidered to be secure, if adversaries with polynomial resources in time and space
can only break them with a small probability.
The rise of quantum computers makes things worse for classical cryptography
though: There are already polynomial time algorithms to solve integer factoring
and discrete logarithms on quantum computers. What seems to still be safe in
the sense, that it is hard to break even with the help of quantum computation,
is lattice based cryptography.

7

Chapter 2

Classical Key Distribution

As we have seen in chapter 1, private key encryption schemes require a private
key. So how do we get one? The Diffie-Hellman (DH) secret key exchange is
one way to do it. The problem with that protocol is, that it does not achieve
authenticity. In a symmetric setting, where the legitimate parties do not have
any kind of information advantage over the adversary, it is simply not possible to
perform an authenticated and secret key exchange. The DH protocol achieves
secrecy, but not authenticity. The DH protocol also gives rise to public key
encryption scheme, in fact Diffie and Hellman were among the first to introduce
public key cryptography in [2]. We will also see how to distribute the same key
to a number of different parties using ideas of the DH protocol.
Authenticated key exchange however requires a preexisting secret between A
and B, usually a secret key. We will see some protocols to share secret keys in
an authenticated manner in that setting.

2.1 The DH Secret Key Exchange

The DH Secret Key Exchange Protocol enables two parties A and B to obtain
a shared secret key. It does not require any previously shared information and
is generally assumed to be secure, since the only known way to break it so far
is to compute discrete logarithms in Z∗p for some large prime p.

2.1.1 The DH-Protocol

In this protocol A and B communicate over a public channel. For now we as-
sume that the adversary E only has passive access, i.e. E is able to listen, but
cannot inject any messages onto the channel. In that setting, the DH-Protocol
also achieves authenticity, since the adversary has no way of communicating
with the legitimate parties. This restriction is not always realistic however, and
therefore it does not solve the key distribution problem entirely. For now we
focus on achieving secrecy.

8

The protocol:

1. A and B agree on some prime p and a generator g of Z∗p. Both g and p
are publicly known.

2. A chooses a ∈R Zp−1 and sends ga mod p to B.

3. B chooses b ∈R Zp−1 and sends gb mod p to A.

4. A and B compute gab mod p = (ga)b mod p = (gb)a mod p.

Most private key encryption schemes require a key of a certain length l. Since
a and b are chosen at random from Z∗p the length of gab mod p varies. Hence
it will be necessary to agree on a way to extract an l-bit key from the resulting
DH-key gab, for example one might use the l most significant bits. But while
assuming, that retrieving the whole DH-key from the values ga mod p or gb

mod p is hard, making that assumption for subsets or even single bits of gab

mod p is a different story.

2.1.2 Security of the DH-Protocol

Any adversary E knows ga mod p, gb mod p, g and p. Therefore the security
of the secret key depends on the hardness of computing gab mod p on those
inputs.
The obvious and so far only known way to approach this problem is to compute
either a or b from ga mod p or gb mod p respectively, but that requires solving
the discrete log problem in Z∗p, which is believed to be hard. It is still an open
question, whether breaking the DH-protocol is equivalent to computing discrete
logarithms in mathbbZ∗p . For a more detailed examination of this question, see
[4].

Definition 2.1.1 (The DH-Problem). Computing the function DH(ga mod p, gb

mod p) := gab mod p on inputs ga mod p and gb mod p for a prime p and a
generator g of Z∗p is called the DH-Problem (DHP) in Z∗p.

Definition 2.1.2 (The Discrete Log Problem). Computing the function DLOG(ga

mod p) := a on input ga mod p for a prime p and a generator g of Z∗p is called
the discrete log problem (DLP) in Z∗p.

Both of the above problems can be generalized to arbitrary finite groups, for
the purpose of this paper however it suffices to consider the DHP and the DLP
in Z∗p.
The DHP and the DLP are assumed to be hard for suitable choices of the prime
p, i.e. it is believed that there is no algorithm, which can solve the DLP or the
DHP in polynomial time in the size of p. The most efficient algorithms to solve
the DLP so far have a runtime of O(

√
p).

Ideally p should be at least a 1024 bit prime, s.t. p = 2q + 1 for a prime q.
For a lower bound on computing discrete logarithms using generic algorithms,
check [5].

9

Equivalence of the DHP and the DLP In his paper [4] Maurer showed
that the DHP is equivalent to the DLP, if some additional string of information
S is given. S has length 2 log(p) and depends solely on p. The equivalence even
holds for arbitrary finite groups G, with S depending on the size of G.

Authentication poses a problem. For the DH-Protocol, we assumed, that
E only has passive access to A and B’s channel. If we allow E to also inject
messages onto the channel authentication becomes a problem. E could simply
take A’s or B’s place in the protocol by intercepting all of B’s messages and
sending her own instead. Therefore the legitimate parties can never be sure,
who they are communicating with.
A possible solution to this problem would be using digital signatures in com-
bination with time stamps. There are also several protocols that provide secure
authentication and key distribution, then the parties involved already share a
secret key. We will take a closer look on how to authenticate messages in section
2.3.

2.1.3 Computing the most significant bits of the DH-function

As mentioned above not every bit of DH(ga mod p, gb mod p) = gab mod p
will necessarily be used to serve as the secret key of A and B. In the following
we are going to examine the bit security of the DH-function to check, under
which conditions using only subsets of bits of gab mod p is secure under the
DH-assumption. Indeed it will turn out, that recovering the k most significant
bits of gab mod p is as hard as computing the whole thing, where k is an in-
teger depending on the length of p. To prove that, we first need some further
definitions. Sections 2.1. and 2.2., including definitions, theorems and proofs,
is based on the paper [6] by Boneh and Venkatesan.

Definition 2.1.3 (The Most-Significant-Bit function). Let p be a prime,
n := dlog(p)e and k ∈ N. Define MSBk(x) := t to be the integer t, such
that t p

2k
≤ x < (t+ 1) p

2k
.

This also gives us an integer t′ such that | x − t′ |< p
2k

by setting t′ := dt p
2k
e.

In later calculations MSBk(b) will denote t′ for simplicity.

Definition 2.1.4 (The Hidden Number Problem). Define Oα,g(x) :=
MSBk(αg

x mod p) to be an oracle that computes the k most significant bits
of MSBk(αg

x mod p) on input x. Then computing the hidden number α given
access to Oα,g(x) in polynomial time in log(p) is called the hidden number prob-
lem in Z∗p.

There are two versions of the HNP:

1. The sampling version: Oα,g(x) can only be queried on random inputs
x ∈ Z∗p.

2. The chosen-value version: Oα,g(x) can only be queried on any chosen
value x ∈ Z∗p.

10

How is this connected to the DHP? An efficient algorithm computing
MSBk(g

ab) from ga mod p and gb mod p can be used to evaluate the function
Ogab,gb(x) = MSBk(g

ab(gb)x mod p) for arbitrary x.

Set α := gab and h := gb. Once we can compute O(x) = MSBk(αh
x mod p),

we can also compute O′(t) = MSBk(αt mod p) for a number of values of t ,
which we will use to compute α = gab itself.

Lemma 2.1.5. Let k = d
√
ne+dlog ne, given an efficient algorithm to compute

MSBk(g
ab mod p) on inputs ga mod p, gb mod p, we can evaluate the func-

tion O(x) = MSBk(αh
x mod p), where α = gab and h = gb for any x ∈ Zp−1.

Proof. Clear.

Theorem 2.1.6. Let α ∈ Zp−1, O′(t) = MSBk(αt mod p) as above with k =
d
√
ne+dlog ne and d = 2

√
n. Then there exists a deterministic polynomial time

algorithm A such that

Pr
t1,...,td

[A(t1, ..., td,O(t1), ...,O(td)) = α] ≥ 1

2
,

where the probability is taken over random values t1, ..., td ∈ Zp−1.

To prove the theorem, we first need some further definitions and lemmata:

Definition 2.1.7 (Lattice). A d-dimensional lattice with base {b1, ..., bd} is a

set of points L = {
d∑
i=1

tibi | ti ∈ Z ∀ i}, where b1, ..., bd ∈ Rm are linearly

independent vectors. L is called a full rank lattice if m = d.

The following lemma was discovered by Babai in [7] using the lattice basis
reduction algorithm of Lenstra, Lenstra and Lovasz [8]. It allows us to find a
lattice point which is approximately the closest to some vector v, given a lattice
L.

Lemma 2.1.8. Given a full rank lattice L ⊆ Rd and a point v ∈ Rd there is an
algorithm with polynomial runtime in d to find a lattice point w ∈ L such that

||v − w|| ≤ 2
d
4 min{||v − b|| | b ∈ L}.

We will construct a lattice L and a vector u, such that we can recover the
hidden number α. We do this by showing that any vector sufficiently close to
u is of a certain form with probability ≤ 1

2 , this form makes it easy to retrieve α.

Let t1, ..., td be chosen uniformly and independently at random from [1, p − 1]
and a1 = O(t1), ..., ad = O(td) the corresponding numbers such that
∀ i |(αti mod p)− ai|.
Let L be the (d+1)-dimensional lattice with basis

B = {(p, 0, ..., 0, 0)T , (0, p, ..., 0, 0)T , ..., (0, 0, ..., p, 0)T , (t1, t2, ..., td,
1
p)T }

11

It can easily be seen, that the vector vα = (αt1 mod p, αt2 mod p, ..., α
p)T

lies in L by multiplying the last basis vector with α and subtracting the right
multiples of the other vectors .
Notice that ∀ i ≤ d | αti mod p− ai | < p

2k
. Define u := (a1, ..., ad, 0)T ,

then ||vα − u|| ≤
√
d+ 1 p

2k
and therefore min{||u− w|| | w ∈ L} ≤

√
d+ 1 p

2k
.

We need one last lemma for the proof of the theorem 2.1.6.:

Lemma 2.1.9. Let d := 2d
√
ne, λ := 1

2

√
n+3 and α ∈ [1, p−1] fix. Let L be the

lattice constructed above, vα = (αt1 mod p, αt2 mod p, ..., α
p)T with integers

t1, ..., td ∈ [1, ..., p − 1] and u = (a1, ..., ad, 0)T . Let v be a vector satisfying
||u− v|| < p

2λ
, then v is of the form

v = (t1β mod p, ..., tdβ mod p, β
p) and α ≡ β mod p.

with probability at least 1
2 .

Proof. Define the modular distance between two integers β and γ as

distp(β, γ) = min
b∈Z
|(β−γ)−bp| = min

b∈Z
[min{(β−γ) mod p, p−(β−γ) mod p}]

e.g. distp(1, p) = min
b∈Z
|1− p− bp| = 1.

For β, γ ∈ {1, ..., p − 1}, β 6= γ mod p and integers t chosen uniformly at
random from [1, p− 1] consider

Pr
t

[distp(βt, γt) >
2p

2λ
] = Pr

t
[
2p

2λ
< t(β − γ) mod p < p− 2p

2λ
]

=
bp− 2p

2λ
c − d 2p

2λ
e

p− 1
≥
p− 2p

2λ
− 2p

2λ
− 2

p− 1

=
p

p− 1
(1− 4

2λ
− 2

p
) > 1− 5

2λ
.

This follows, since (β − γ)t mod p 6= 0 ∀ t ∈ {1, ..., p − 1} and therefore
for every x ∈ {dp − 2p

2λ
e, dp − 2p

2λ
e + 1, ..., b 2p

2λ
c} ⊆ {1, ..., p − 1} there is a

t ∈ {1, ..., p− 1} with (β − γ)t mod p = x.

Recall that every lattice point has the form

v = (βt1 − b1p ... βtd − bdp
β

p
)

for some β, b1, ..., bd ∈ Z.

Consider v ∈ L with ||u− v|| < p
2λ

and β ≡ α (mod p). Then
αti ≡ βti − bip (mod p) and αti − (βti − bip) ∈ pZ.

12

Since |αti mod p− ai| < p
2λ

and |βti− bip− ai| < ||v−u|| < p
2λ

, it follows that
|βti − bip| ∈ {0, ..., p− 1} ∀ i.

Now examine the probability, that there exists a lattice point contradicting
the theorem:
For α 6≡ β (mod p), we have

Pr[||u− v|| > p

2λ
] ≥ Pr[∃ i : distp(tiβ, tiα) >

2p

2λ
]

= 1− (1− Pr
t

[distp(βt, γt) >
2p

2λ
])d

≥ 1− (
5

2λ
)d,

hence Pr[||v − u|| < p
2λ

] ≤ (5
2λ

)d.

Since there are p − 1 values for β mod p such that α 6≡ β(mod p), we ob-
tain

Pr[∃ v ∈ L : ||v − u|| < p

2λ
and β 6≡ α mod p] ≤

≤ (p− 1)(
5

2λ
)d =

p− 1

2d(λ−log(5))
<

p− 1

2log(p)+1
<

1

2
.

Proof of Theorem 2.1.6. Recall λ = 1
2

√
n + 3, d = 2d

√
ne and k = d

√
ne +

dlog ne. With the lattice construction from above we can now find a vector
v ∈ L such that

||v − u|| ≤ 2
d
4 min{||b− u|| : b ∈ L}

in polynomial time.

Since

min{||b− u|| | b ∈ L} ≤ 2
d
4

√
d+ 1

p

2k
= 2

d
4
+ 1

2
log(d+1)−kp

= 2
1
2
log(2d

√
ne+1)− 1

2
d
√
ne−dlognep

< 2−(
1
2

√
n+3)p =

p

2λ
,

we have ||v − u|| < p
2λ

and therefore

Pr[v = vα = (r1, ..., rd,
α

p
)T] >

1

2
,

so that we can recover the hidden number α in polynomial time.

13

2.1.4 The small Generator Case

We just showed, that the k most significant bits of the DH-key are as hard
to compute as the entire secret, given an adversary who is able to query an
MSB-oracle on random inputs.
Now we allow the adversary to query a slightly modified MSB-oracle on chosen
values. For this setting, the length of the fixed generator g of Z∗p makes all the
difference. The result will give rise to a modified version of the DH-protocol,
which uses small generators in order to increase bit-security.
For a generator g of Z∗p let the significant bit function SBg(x mod p) := t,
where t is an integer satisfying

t
p

g
≤ x mod p ≤ (t+ 1)

p

g
.

Then t ∈ {0, ..., g − 1} and SBg returns at most log2(g) bits. So for g = 2 we
have SBg(x) = MSB1(x).

Theorem 2.1.10. Let α ∈ Zp−1 and O be the function defined by O(x) :=
SBg(αg

x mod p), where g is a generator of Z∗p. Then there exists an algorithm
A, which finds α in polynomial time in the size of p, given oracle access to O.

Proof. The algorithm to recover α, given oracle access to the function O(x), is
quite simple. The idea is to define a lower bound L and an upper bound U , so
that L ≤ α < U and U − L = p

gi+1 .
In every iteration i increases by one, the algorithm stops, when U − L < 1, so
we get polynomial runtime in log p. The algorithm:

1. Query O(0) = t0 and set L0 := t0
p
g , U0 := (t0 + 1)pg , i := 0.

2. If Ui − Li < 1 return α = dLie, else i := i+ 1.

3. Query O(i) =: ti and set Li := Li−1 + ti
p

gi+1 , Ui := Li−1 + ti
p

gi+1 ,
go to 2.

In step 1 we have

t0
p

g
≤ αg0 mod p < (t0 + 1)

p

g

⇔ 0 ≤ αg − t0p < p

⇔ αg mod p = αg − t0p = αg − gL0.

For i = 1 we have O(1) = t1, such that

t1
p

g
≤ αg mod p < (t1 + 1)

p

g

⇔ t1
p

g
≤ αg − t0p < (t1 + 1)

p

g

⇔ 0 ≤ αg2 − t0pg − t1p < p

⇔ αg2 mod p = αg2 − t0pg − t1p = αg2 − g2L1.

14

Iteratively we get αgi mod p = αgi − giLi−1. In step 3 the oracle function O
returns ti, such that

ti
p

g
≤ αgi mod p < (ti + 1)

p

g

⇔ ti
p

g
≤ αgi − giLi−1 < (ti + 1)

p

g

⇔ Li−1 + ti
p

gi+1
≤ α < Li− 1 + (ti + 1)

p

gi+1

⇔ Li ≤ α < Ui.

The fact, that Ui − Li = p
gi+1 completes the proof of the theorem.

It is important to notice, that we deal with the chosen-value version of the HNP
here. The algorithm only works, if the oracle O can be queried on any chosen
value x ∈ Zp−1.

2.1.5 A modified DH-Protocol

In the algorithm above an output of at most log2(g) already suffices to effi-
ciently recover the hidden number α, i.e. the log2(g) most significant bits of
gab mod p are already as hard to compute, as gab mod p in whole.
It directly follows from Artin‘s conjecture [12] that there are infinitely many
primes p, for which 2 is a primitive root mod p, that is for which 2 is a generator
of Z∗p. This gives rise to a modified version of the DH-Protocol, first suggested
by Boneh and Venkatesan in [6]. Here computing the most significant bit of the
hidden number is as hard as computing the entire secret.
In the following protocol 2 will be fixed as the generator of Z∗p. A will choose
a second generator g, such that she knows an x ∈ Z∗p with 2x mod p = g and
gcd(x, p−1) = 1. The gcd-condition ensures that there exists an x−1 ∈ Z∗p such
that xx−1 mod p− 1 = 1, hence A can compute 2y mod p on input gy.

The protocol:
As in the original version of the DH-Protocol A and B first fix a prime p, which
is public knowledge.

1. A chooses x ∈R Zp−1 with gcd(x, p− 1) = 1 and sends g := 2x mod p to
B.

2. B chooses y ∈R Zp−1 and sends gy mod p to A.

3. A and B compute α = DH(gy, 2) = DH(gy, gx
−1

) = 2y mod p.

The shared secret key α is safe in the way, that it s not efficiently computable
from the messages sent by A and B, even the most significant bit of DHg(g

y, 2)
is as hard to recover, as the whole DH-key. The following corollary states this:

15

Corollary 2.1.11. If there exists a polynomial time algorithm A to compute
MSB1(DHg(g

y, 2)) from g and gy, then there is an algorithm to compute DHg(g
y, 2)

itself in polynomial time and thereby break the modified DH-Protocol.

Proof. The corollary follows directly from Theorem 2.1.10.

2.2 Applications to various cryptographic Primitives

We will now take a look at a number of different cryptographic primitives. First
there is a public key encryption scheme, ElGamal’s public key cryptosystem.
Then we introduce Okamoto’s conference key sharing system, which enables
one party A to distribute the same secret key to any number of parties, who
want to participate in the conference. The last primitive we will be looking at
is a way to directly pass a message, without sharing a private key, or publishing
a public key beforehand.
All of the following protocols are based on the DH-Protocol. Therefore their
security also relies on the assumption, that the DH-function is hard to compute.
In conclusion they can also be reduced to the HNP for special choices of the
hidden multiplier α. Thus we can show that computing the k most significant
bits of any of the following functions is as hard as computing the function in
its entirety by applying Theorem 2.1.6.
In this section the prime p and the generator g of Z∗p will be fixed and publicly
known. All calculations are done in Z∗p.

2.2.1 ElGamal’s Public Key Cryptosystem

This public key encryption scheme provides a way for two parties A and B to
directly and securely communicate. A shared secret key is not necessary, but
in order for A to send a message to B, B needs to publish a public key first.

The protocol:

1. B chooses b ∈R Zp−1 as his secret key and publishes (g, gb, p) as his public
key.

2. A chooses a ∈R Zp−1 and sends (ga,m(gb)a) to B.

3. B computes the original message m = m(gb)a

(ga)b
.

We define the ElGamal-function ELg(g
b, ga,mgab) := m. Breaking this scheme

is equivalent to evaluating the ElGamal-function at arbitrary values.
Any eavesdropper can observe ga, gb and mgab, so computing DH(ga, gb) suffices
to recover the secret message m. It is also possible to recover m using an
algorithm, which computes MSBk(ELg(.)):

Corollary 2.2.1 (Boneh, Venkatesan). Let k = d
√
ne+ dlog ne. If there exists

a polynomial time algorithm A to compute MSBk(ELg(g
b, ga,mgab)), there is a

polynomial time algorithm to compute the function in its entirety.

16

Proof. The idea is, to use the algorithm A to compute the function O(x) =
MSBk(αh

x mod p). That reduces the problem to an HNP, which can be solved
in polynomial time by applying Theorem 1.1.6.

Set h := gb and α := m, then

O(−x) = MSBk(αh
−x mod p) = MSBk(m(g−xb mod p))

= MSBk(ELg(g
a+x, gb, (mg−xb)g(a+x)b)) = MSBk(ELg(g

a+x, gb,mgab))

= A(ga+x, gb,mgab)

Using O(x) as an oracle, we can find the hidden multiplier α = m.

2.2.2 Okamoto’s Conference-Key Sharing System

Here one of the parties, e.g. A, would like to share the same secret key with
multiple parties in order to have a conference. This cannot be achieved by the
DH-protocol, since random choices of both parties influence the outcome of the
DH-key and therefore the outcome of the shared secret key α. In the setting of
more than two parties wanting to communicate, it is a lot easier if every party
uses the same key for encryption. Otherwise it would be necessary for every
pair of participants to share a secret key.

The protocol:

1. Any party B that wants to partake in the conference chooses b ∈R Zp−1
and sends gb to A.

2. A chooses a ∈R Zp−1 and sends (gb)a to B.

3. B computes ga = (gba)b
−1

, which will serve as the conference key.

Because A can fully control the outcome of the secret key, she can distribute
the same key to every party. As above in the DH-protocol, the conference key
will only be a subset of the bits of ga. In that case, the participants also need
to agree on a procedure to extract the conference key from ga beforehand.

We define the Okamoto-function OKg(g
ba, gb) := g. Breaking this scheme is

equivalent to evaluating the Okamoto-function at arbitrary values.

Corollary 2.2.2. Let k = d
√
ne + dlog ne. If there exists a polynomial time

algorithm A to compute MSBk(OKg(g
ba, gb)), there is a polynomial time al-

gorithm to compute the function in its entirety.

Proof. In analogy to the proof above, we use an algorithm A to compute the
oracle-function O(x) in the following way:

17

Let α := ga and h := g, then

O(x) = MSBk(αh
x mod p) = MSBk(g

agx mod p)

= MSBk(OKg(g
b(a+x), gb)) = A(gb(a+x),g

b
)

gb(a+x) = gba(gb)x is easily computable, since gba, gb and x are known. As above
we can recover α = ga by applying Theorem 1.1.6.

2.2.3 Shamir’s Message Passing Scheme

Like ElGamal’s scheme the Shamir Message Passing Scheme enables two parties
A and B to safely communicate without a previously existing shared secret. This
protocol even works without publishing a public key first. We assume A wants
to send a message m to B.

The protocol:

1. A chooses a ∈R Zp−1 and sends ma to B.

2. B chooses b ∈R Zp−1 and sends (ma)b) to A.

3. A computes ((ma)b)a
−1

and sends it to B.

4. B computes m = (((ma)b)a
−1

)b
−1

.

We define the Shamir-function SH(mab,ma,mb) := m. Breaking this scheme is
equivalent to evaluating the Shamir-function at arbitrary values.

Corollary 2.2.3 (Boneh, Venkatesan). Let k := d
√
ne+ dlog ne. If there exists

a polynomial time algorithm A to compute MSBk(SH(mab,ma,mb)), there is a
polynomial time algorithm to compute the function in its entirety.

Proof. Again we use the same idea as above.

Define α := m and h := mb, then

O(x) = MSBk(αh
x mod p)

= MSBk(m(mb)x mod p)

= MSBk(m
1+bx mod p)

= MSBk(SH((m1+bx)
ab

1+xb , (m1+bx)
a(1+xb)
1+xb , (m1+bx)

b
1+xb))

= MSBk(SH(mab,ma(1+bx),mb))

= A(SH(mab,ma+xab,mb))

ma+xab = ma(mab)x is easily computable, since ma, mab and x are known.
Again we recover α = m by applying Theorem 2.1.6.

18

Remark. While all of these protocols provide the secrecy of either the message
or the key, none of them achieves authentication in the process. In the next
section we examine in which settings authentication is possible and how to do
it.

2.3 Authentication

As mentioned in the first chapter the main goals of cryptographic schemes are
providing secrecy and authenticity. Up to now we have seen how to obtain
a joint secret key and even how to communicate using public key encryption.
Now we still need to figure out how to authenticate.
Consider a setting with two legitimate parties A and B who communicate over
an insecure channel. Now we have an adversary E, who is in full control of the
channel. She can intercept anything sent on the channel and also send messages
to A and B or just block the channel. Suppose A and B are not in possession of
any joint secrets. So all in all we have three parties with symmetrical inform-
ation and therefore it is not possible for any of the parties to identify any of
the other parties. No matter what A might do to identify herself to B, E can
simply intercept A’s message and use it to pass herself off as A.
In this section we will briefly introduce two approaches to authenticate mes-
sages, namely message authentication codes and digital signatures. This section
is based on chapters 9 and 10 of [1].

2.3.1 Message Authentication Codes

Let us describe the setting, in which message authentication is needed. A wants
to send a message m to B in a way, that B can be sure that m originated with
A and that the message B received is exactly the same as A intended to send.
Message authentication codes make that possible. The basic idea is to send a
certificate or tag with each message, which depends on the sender as well as
the message and can only be produced by the legitimate sender.
As discussed before in order to be able to use message authentication codes, A
and B need to already share some secret key k.

Definition 2.3.1 (Message Authentication Code). Let M denote the set of
possible messages and T be the set of possible tags, both finite. A message
authentication code is a triple (K,MAC,V) of polynomial time algorithms with
the following properties:

1. K generates random keys of a certain length l. The set K of all possible
outputs of K is finite and called the keyspace.

2. On input of a key k0 ∈ K and a message m0 ∈ M the tag-generation
algorithm MAC computes a tag ∈ T . tag is not necessarily unique, i.e.
the encryption algorithm may be probabilistic.

3. On input of a key k0 ∈ K, a tag ∈ T and a message m the verification
algorithm V returns either 1, if the tag is valid for the received message

19

and the legitimate sender and 0 otherwise, i.e.

∀ k ∈ K, m ∈M : V(k, tag,m) = 1, if tag =MAC(k,m),

V(k, tag,m) = 0, if tag 6=MAC(k,m).

Security Requirements. To understand what properties we want for mes-
sage authentication codes, let us look at possible attacks first.
The obvious and easiest one is for E to wait, until A initiates a conversation by
sending some authenticated message. Then E could simply copy the message
with the tag and later use it to make B believe, he was talking to A, when he is
really talking to E. This is called a replay attack. Anticipating replay attacks
can easily be achieved by adding a timestamp to each message, so that the
receiver can immediately detect it, when E tries to replay a message and if A
really wants to send some message twice, she will use different timestamps. It
may be argued, that adding timestamps is not safe, since E might also know
the exact time, a message is sent and therefor have some extra information she
could use to break the code. So instead of timestamps A might use a random
integer instead. B will accept the message as authentic, only if the integer has
not been used in any previous message.
Since E controls the channel, she can observe valid pairs of messages and tags.
In some settings she might even be able to have tags for her own messages com-
puted and it may also be possible for her to query the verification algorithm on
any message-tag-pair she created. Of course those tags then also identify her
as the origin of the message, but access to this kind of information may be very
useful in forging a tag and thereby breaking the message authentication code.
In fact it should not be possible for E to find any valid message-tag-pair, that
identifies A as the sender and passes verification.
Another issue is message integrity: Even small changes to the original message
by E should be detectable.

If we have a computationally unbounded adversary, she will eventually be able
to forge tags, after seeing some valid message-tag-pairs. In modern crypto-
graphy security against computationally unbounded adversaries can usually not
be provided. Provably secure schemes, such as the one time pad, are the ex-
ception.
We are content with the security of a scheme, if an adversary has a low chance
of breaking it, using only polynomial time and space.

Informally a message authentication code is said to be secure, if the probability
of an adversary succeeding to create a valid message-tag-pair is small. The
probability is taken over any probabilistic choices K, MAC and the adversary
might make. The adversary is allowed black-box-access to MAC and V, i.e.
she can compute signatures for messages of her choice, that identify her as the
sender, and she can check the validity of any attempted forgery. For a formal
definition of security and examples, check chapter 9 of [1].

20

2.3.2 Digital Signatures

The setting in which digital signatures are used is slightly different. Here A
and B do not need to have a joint secret key. It sort of works like public key
cryptography, only that everything works the other way around:
Digital signatures allow for the sender to sign her messages, in such a way that
anyone can verify the signature, but only the sender can create it. Just like
in public key cryptography there are two keys involved here. The sender will
use her private key s to compute a signature for her message and the receiver,
or anyone else for that matter, can use the sender‘s public key v to verify the
signature.

Definition 2.3.2 (Digital Signature Scheme). Let M denote the set of possible
messages and S be the set of possible signatures, both finite. A digital signature
scheme is a triple (K,S,V) of polynomial time algorithms with the following
properties:

1. K generates random key pairs (sk0, vk0). sk0 and vk0 are corresponding
signing and verification keys with respect to S and V. vk0 is called the
public key and sk0 the private key The set K of all possible outputs of K
is finite and called the keyspace.

2. On input of a private signing key sk0 and a message m0 ∈M the signing
algorithm S computes a signature s0 ∈ S. s0 is not necessarily unique,
i.e. the signing algorithm may be randomized.

3. On input of a public key vk0 and a message m0 with signature s0 ∈ S the
verification algorithm V returns either 1, if the signature is valid for the
received message and the legitimate sender and 0 otherwise, i.e.

∀ (sk, vk) ∈ K, m ∈M : V(vk, s,m) = 1, if s = S(sk,m),

V(vk, s,m) = 0, if s 6= S(sk,m).

Security Requirements. Since digital signature schemes serve the same
purpose as message authentication codes, the security requirements are almost
the same. Only now the adversary has one more piece of information - the
public verification key of the sender. As before it should not be possible for
anyone but the legitimate sender to compute any valid message-signature-pair.
Again we do not ask that a digital signature scheme be secure against computa-
tionally unbounded adversaries. It suffices, that the probability of an adversary
breaking it in polynomial time and space is small. The probability is taken
over any probabilistic choices of K, S and the adversary. The adversary is al-
lowed black-box-access to S and V and has knowledge of the public key vk0, i.e.
she can compute signatures for messages of her choice, that identify her as the
sender, and she can check the validity of any attempted forgery. For a formal
definition of security and examples, check chapter 10 of [1].

21

2.4 Session Key Distribution

As mentioned above there is no way to achieve an authenticated key exchange
in a setting, where there is no information advantage of some kind between the
legitimate parties. But if there already exists a shared secret, why do we need
another one? There are a couple of good reasons:
Most of the encryption and authentication schemes in use are only secure with a
certain probability, i.e. there is a small probability, that an adversary succeeds
in breaking them; the more messages are encrypted or authenticated with the
same key, the higher is the chance of an adversary to recover that key. It would
be a lot safer to use a new key for every new communication session.
One could also imagine a setting, where a user wants to use a number of dif-
ferent applications, which all require secret keys. Now it is possible, that some
applications reveal the key, when it is not needed anymore. So if we only have
one shared secret key, we will not get very far.
This is where session keys distribution comes into play. It provides us with
methods to obtain new secret keys, given that there is already some joint secret.
We will take a look at two different approaches: The first approach is to assume
that there is an information advantage between the legitimate parties, who wish
to communicate. The second approach involves a third party, a trusted server,
that shares a secret key with each of the legitimate parties.

Security Requirements. Encryption and authentication schemes already
provide us with secrecy and authenticity. The only thing needed to use them
is one secret key. In the case of private key encryption and message authen-
tication there needs to be a shared secret key, in public key encryption and
digital signature schemes only public keys need to be shared. Depending on
the nature of the information, that is being communicated however, it may be
possible that a supposedly secret key is compromised. Maybe the secret in-
formation only remains secret for a while and then gets published for example.
If it was encrypted using a one time pad, that compromises the key, since then
the ciphertext and the plaintext are available to the adversary.
Either way it cannot hurt, to have a few back up keys, or in our case, to not
use the long lived key for encryption or authentication at all. Only use it in
key distribution protocols and then use a fresh key for every new communica-
tion session, hence the term session key distribution. Of course there are some
properties, we desire for those keys. Again the most important ones are secrecy
and authenticity. The key should not be retrievable from any messages sent
during the execution of the distribution protocol and it should be impossible
for an active adversary to trick one of the legitimate parties into sharing a key.
In addition to that, we also require, that the session keys, even if compromised
do not leak any information on the long lived key or any other key outputted
by the key distribution protocol, i.e. the session keys need to be independent
of each other and the long lived key.

Now we introduce protocols for two-party and three-party models. Both of
these work with public or private key encryption schemes, but we only consider

22

both cases in the two-party-setting.
The three-party-model is especially interesting since it can easily be generalized
to a multi-party-model with any number of participants. The protocols in this
section are all taken from chapter 11 of [1].

2.4.1 Two-Party-Protocols

We introduce two settings here, symmetric and asymmetric. The symmetric
setting applies private key encryption and message authentication codes, i.e.
requires that there is a preexisting shared secret key between A and B. The
asymmetric setting uses public key encryption and digital signatures instead.
No private secret key is needed, but A and B both possess key pairs of a private
and a public key, one for encryption and one digital signatures.

The symmetric setting. Symmetric two-party-models are used, when the
two legitimate parties already share a long-lived secret key. The goal here is
to securely exchange an authenticated secret session key. Since we need both
secrecy and authenticity, we are going to use a private key encryption scheme
as well as a message authentication code.

Example. In this protocol A and B first need to agree on a private key en-
cryption scheme (K, E ,D) and a message authentication code (K′,MAC,V). A
and B are already in possession of a key pair (ke, ka), where ke is a key for the
encryption scheme and ka is a key for the message authentication code. We as-
sume that every message, sent over the channel, is accompanied by the identity
of its sender. However any adversary has the ability to forge that identity, so
that it cannot be used for authentication.

The protocol:

1. A chooses a random bit string RA and sends it to B.

2. B chooses a bit string RB and a session key α at random, encrypts α
to E(ke, α) and computes the corresponding tag = MAC(ka,m) for the
message m = (E(ke, α), RA, RB, A,B). He sends RB, E(ke, α) together
with the tag to A.

3. A checks V(ka, tag,m)
!

= 1, if so A computes a tag tag′ = MAC(ka,m′)
for the message m′ = (A,RB) and sends it to B.

4. B checks V(ka, tag
′,m)

!
= 1, and if so accepts to enter in a conversation

with A using α as the session key.

The asymmetric Setting. In the asymmetric setting we revert to public
key cryptography, namely public key encryption schemes to provide secrecy
and digital signature schemes to provide authenticity. Accordingly each of the
legal parties holds two key pairs: a pair (ek,dk), where ek is a public encryption
key and dk is the corresponding private decryption key, and a pair (sk,vk) where

23

sk is a private signing key and vk is the corresponding public verification key.
As in the example above, every sent message is linked to an unsecured identity.

Example. Let (K, E ,D) denote a public key encryption scheme and (K′,S,V)
denote a digital signature scheme. Let (ekA, dkA), (skA, vkA), (ekB, dkB) and
(skB, vkB) be the keys for the encryption and the signature scheme of A and B
respectively.

The protocol:

1. A chooses a random bit string RA and sends it to B.

2. B chooses a bit string RB and a session key α at random, encrypts α
to E(ekA, α) and computes the corresponding signature s = S(skB,m)
for the message m = (E(ekA, α), RA, RB, A,B). He sends RB, E(ekA, α)
together with the signature s to A.

3. A checks V(vkB, s,m)
!

= 1, if so she computes a signature s′ = S(skA,m
′)

for the message m′ = (A,RB) and sends both to B. A retrieves the secret
session key by decrypting D(dkA, E(ekA, α)) = α.

4. B checks V(vkA, s,m)
!

= 1, and if so accepts to enter in a conversation
with A using α as the session key.

In both examples the random bit strings RA and RB make sure, that a re-
play attack becomes highly unlikely to succeed. Although the adversary, who
is imitating one of the legitimate parties, gets to choose one of the random
bit-strings, she has no influence on the choice of the party she is trying to trick
into sharing a session key. Since we do not require the random strings to have
a certain length or structure, the chance of the same bit string being chosen
twice is negligibly small.
Choosing the session key α at random ensures, that different session keys are
independent of each other and also of the long-lived keys. The encryption
schemes then takes care of the secrecy and the message authentication code or
the digital signature scheme allows for the legitimate parties to be sure of who
they are exchanging keys with.
Notice, that in step two not only B and RB are authenticated, but also A,
RA and the encrypted session key. Therefore any party, that the adversary E
tried to imitate will be informed about the attempt and any tampering with
the encrypted session key will be detected, unless E is able to break both the
encryption and the authentication scheme.

For a more extensive and thorough discussion of two-party-protocols and a
formal definition of security, check [9].

2.4.2 Three-Party-Protocols

Three-party-models are often referred to as trust-models. Besides the legitimate
users A and B, there is a third trusted party S involved here. The problem A

24

and B have is still the same: they need to come in possession of a joint secret
session key. So any protocol they might use has to offer authenticity and secrecy.
Instead of sharing some information advantage with each other, A and B now
share secret keys with the trusted server S. If A wants to initiate a conversation
with B, she will contact B, who then request a session key from S. In response
to the received request S generates a random session key and distributes it to
the parties, named in the request.
It is easy to extend this model to any number of users or applications. All it
takes is a shared key with the trusted party to obtain a session key with any
other legitimate party. Some protocols, like the widely used Kerberos-protocol,
are a lot more complicated. They involve requesting so-called tickets at different
servers.
Multi-party-session key distribution can be realized in both the private and the
public key setting. We now take a look at a simple example, that uses a private
key encryption scheme and a message authentication code.

Example. Fix a private key encryption scheme (K, E ,D) and a message authen-
tication code (K′,MAC,V). Each party I ∈ {A,B} shares a pair of long-lived
keys (kIe , k

I
a) with S. kIe denotes a key for the encryption scheme and kIa denotes

a key for the message authentication code.

The protocol:

1. A chooses a random bit string RA and sends it to B.

2. B chooses a bit string RB and sends (A,RA, RB) to S.

3. S generate a random session key α and computes E(kIe , α) with the corres-
ponding tagI = MAC(ka,m) for the message mI = (E(kIe , α), RI , A,B)
for I ∈ {A,B}.
S distributes α by sending E(kIe , α) and tagI to I ∈ {A,B}.

4. Every I ∈ {A,B} checks V(kIa, tag
I ,mI)

!
= 1, and if so accepts to enter

in the conversation using α as the session key.

As remarked earlier this protocol can be extended to a conference key sharing
protocol. S has full control over the choice of the session key, so S can easily
distribute it to more than two parties, given those parties share a secret key
with S.
A more detailed discussion of three-party-models can be found in [10]. All of
the examples in this section are taken from chapter 11 of [1].

2.5 Conclusions

So up to this point we have seen different ways to safely exchange keys, that
is if the DH-assumption holds. The security of the DH-protocol and all related
schemes, is based on that assumption. In today’s world almost all of the cryp-
tography schemes in use rely on the hardness of some mathematical problem,

25

usually either integer factoring or computing discrete logarithms. Quantum
algorithm, that efficiently solve integer factoring and discrete logarithms, have
already been developed. The only thing preventing application is the absence
of quantum computers, that are up for the task.
So far, no one has succeeded in constructing a quantum computer, that can be
used to break today’s encryption schemes, but quantum computers certainly
pose a big threat to complexity-based cryptography. The one time pad makes
an exception of course, but it is also rather impractical. There is another ex-
ception: lattice-based cryptography. It is also complexity-based, i.e. relies on
the hardness of a mathematical problem. The big difference is, that security,
at least in regard to classical computers, is actually provable. Also there are
no known quantum algorithms that can break lattice-based schemes so far. In
fact, lattice-based cryptography is believed to be secure, even with quantum
computers around. For more information on lattice-based cryptography, see
[11].
So up to now classical cryptography is still reasonably safe, but with quantum
computers on the rise, it is wise to look for provably secure methods to distrib-
ute keys.
Luckily quantum computers not only bear threats, but also provide possibil-
ities in key distribution. In the next chapter we will see, that quantum key
distribution is not only possible, but also secure without any assumption on
complexity. The security of the protocol we are going to study is solely based
on the laws of physics.

26

Chapter 3

Quantum Key Distribution

Although the concept of quantum computers has been around for more than
30 years now, there still is no quantum computer powerful enough to break the
cryptography in use today. There are however a great number of papers on the
subject of quantum computation
and the theoretical results certainly pose a threat to most fields of classical
cryptography.
Even though it is an open problem, whether quantum computers are strictly
more powerful than classical computers, the fact that there are algorithms to
efficiently solve integer factoring and the DLP on quantum computers strongly
suggests that quantum computation has some real advantages. We will show
that even having unlimited computational power does not help an adversary to
break the key distribution protocol, we will be looking at. The security is based
on physics laws, not on assumed complexity of some mathematical problem.
Nonetheless quantum computers still have a long way to go. The technology
today is far too expensive and requires dedicated hardware. Due to the in-
stability of quantum states distances also pose a problem. Here we concentrate
on the chances of quantum computation for key distribution.

Overview. In this chapter we will first introduce the basics of quantum com-
putation. We start by introducing qubits, short for quantum bits, and examine
their behaviour. We give formal definitions of what it means to measure or
transform qubits.
Then we move on to systems with more than one qubit. Unlike in classical
computation, the step from one qubit to many qubits is a rather big one, since
qubits can interact with each other in very different ways than classical bits.
Once we obtained a mathematical model to describe quantum systems, we try
to get a little closer to reality by also modeling errors in the quantum world and
see how we can correct those errors in sections 3.2 and 3.3. That provides us
with all the tools to introduce a quantum key distribution protocol, the BB84
protocol, and prove its security. In terms of security we omit talking about
authenticity and focus on secrecy solely.

27

3.1 Concepts and Definitions

While in classical computation the state of a bit can only be one of the values 0
or 1, quantum computers have more options: They operate on qubits which can
be regarded as two dimensional complex vectors. The state of a qubit can be
any linear superposition of the base vectors. So really a qubit can be any point
in a two-dimensional complex vector space, that is infinitely many different
possible states for just one qubit. One might jump to the conclusion that this
allows us to store an infinite amount of information in just one qubit as well.
But the problem with that is, that we can just read or measure the value of a
qubit like we read the value of a classical bit. Measuring a qubit affects its state
and depending on the measurement we choose to perform, there will usually be
more than one possible outcome. A measurement cannot be reversed, so if we
are given a qubit in an unknown state, there is no way to find out what state
it is in, if we do not have any previous information.
The section is based on chapters 2, 4 and 5 of [14] and [15]. The no-cloning
theorem, including the proof, is taken from [13, p. 532]. A more extensive
treatment of this topic can be found in chapters 1 and 2 of [13].

3.1.1 Single Qubits

Definition 3.1.1 (Qubit). A representation |Ψ〉 of a qubit is a vector in C2. For
an arbitrary base {|0〉 , |1〉} the state of |Ψ〉 can be written as |Ψ〉 = α |0〉+β |1〉.

For simplicity we only allow normalized states, i.e. || |Ψ〉 || = 1 where ||.||
denotes the standard vector norm in C2. So for |Ψ〉 = α |0〉 + β |1〉 we get
|α |2 + |β |2 = 1.

Quantum computers can perform two different types of operations on a qubit:
Unitary transformations and measurements. In general only the unitary trans-
formations are reversible.

There are a number of particles, such as photons, ions or electrons, that can
serve as qubits in quantum computation. To get a better intuition for the be-
havior of a qubit, we can take a look at photons for example.

The state of a photon would be its polarization. Let |0〉 denote vertical po-
larization and |1〉 horizontal polarization.
A unitary transformation on |Ψ〉 is nothing else than a rotation of the polariz-
ation. After a rotation by 45 degrees a horizontally polarized photon |Ψ〉 = |1〉
has diagonal polarization |Ψ〉 = 1√

2
(|0〉+ |1〉).

A measurement can be compared to letting the photon through a filter. A filter
that lets vertically polarized light through, will always let |0〉 through, never
|1〉 and |Ψ〉 = 1√

2
(|0〉+ |1〉) with probability 1

2 . Any photon that has passed the

28

filter will then be in state |0〉, regardless of the state it was in beforehand.
If we take a different filter, the probabilities will also change.

Definition 3.1.2 (Unitary Transformation). A unitary transformation on a
qubit |Ψ〉 is a unitary matrix U ∈ C2×2, i.e. UU∗ = U∗U = I where U∗ denotes
the conjugate transpose of U and I the identity matrix.
Performing U on |Ψ〉 yields the state U |Ψ〉.

Unitary matrices preserve the norm of a vector, so the condition that all
quantum states be normalized is not a problem.

Example. A frequently used unitary transformation in quantum key distribu-
tion is the Hadamard transformation

H :=
1√
2

(
1 1
1 −1

)
Applying H to the orthonormal basis B := {|0〉 , |1〉} with |0〉 := (1 0)T ,
|1〉 := (0 1)T yields

H |0〉 =
1√
2

(|0〉+ |1〉) =: |0〉×

H |1〉 =
1√
2

(|0〉− |1〉) =: |1〉×

We call a pair of bases B and B′ conjugate if a measurement in B necessarily
randomizes the outcome of a measurement in B′, i.e. if measuring one of the
basis states |b〉 ∈ B in B′ yields any result |b′〉 ∈ B′ with equal probability.

Measuring a qubit is a little more complicated. For a qubit in an arbitrary
unknown state |Ψ〉 = α |0〉+β |1〉 it is impossible to find out in which state |Ψ〉
is in exactly, i.e. recover the coefficients α and β
Moreover any measurement destroys the original state of a qubit and forces it
to collapse onto one of state in a set of states, defined by the measurement.

Definition 3.1.3 (Orthogonal Measurement). An orthogonal measurement on
a single qubit is defined by its possible outcomes |m1〉 , |m2〉 ∈ C2, which are
orthonormal states . The probability to obtain the result |mi〉 when measuring
a qubit in state |Ψ〉is
Pr[mi] = 〈Ψ| |mi〉 〈mi| |Ψ〉 = | 〈mi |Ψ〉 |2,
with Pr[m1] + Pr[m2] = 1. If the result of the measurement is |mi〉, the qubit
then is in state |mi〉 and we say |Ψ〉 collapsed onto the vector |mi〉.

Example. Let B := {|0〉, |1〉} and B× := {|0〉×, |1〉×},then those two orthonor-
mal bases of C2 each define an orthogonal measurement.
Measuring the state |0〉 in B yields |0〉 with certainty, since | 〈0 | 0〉 |2 = 1.
When measuring |0〉 in B× both possible outcomes |0〉× and |1〉× occur with

probability 1
2 , since | 〈0× | 0〉 |2 = | 〈1× | 0〉 |2 = 1

2

29

A qubit |Ψ〉 is said to be in a pure state with respect to a fixed basis B, when
measuring the state in B has a certain outcome with probability 1, i.e. |Ψ〉 is
one of the base vectors.
|Ψ〉 is said to be in a mixed state, if both base vectors of B occur with strictly
positive probabilities.

3.1.2 Higher Dimensional Quantum States

In classical computation the step from a single bit to an n-bit string is rather
unspectacular. The bit string is already defined by the values of each single
bit, increasing the number of bits by 1 simply increases the number of possible
different bit strings by the factor 2.
With qubits we the situation gets a lot more complicated, as soon as more
than one qubit is involved: In certain cases the outcomes of individual meas-
urements of a number of qubits become correlated. This phenomenon is called
entanglement.

Definition 3.1.4 (Quantum State). A representation |Ψ〉 of an n-dimensional
quantum state is a vector in Cn, where Cn = C2m ≡ (C2)⊗m for some integer
m.
Again we require, that || |Ψ〉 || = 1.

Example. Let |Ψ〉 = α1 |0〉+α2 |1〉 and |Φ〉 = β1 |0〉+β2 |1〉 be two qubits, each
living in a Hilbert space H = C2. Then the composite system C2⊗C2 is in the
4-dimensional quantum state

|Ψ〉⊗ |Φ〉 = α1β1 |0〉 |0〉+α1β2 |0〉 |1〉+α2β1 |1〉 |0〉+α2β2 |1〉 |1〉
= α1β1 |00〉+α1β2 |01〉+α2β1 |10〉+α2β2 |11〉

C2⊗C2 has the orthonormal base B × B = {|00〉, |01〉, |10〉, |11〉}. Any super-
position of the base states, like |Ψ〉⊗ |Φ〉 is a mixed state, the only pure states
are the base states.

Of course this construction can be extended to higher dimensional quantum
systems.

Definition 3.1.5 (Composite Systems). Consider two quantum systems
H1 = Cn and H2 = Cm. Then the tensor product H1⊗H2 is called the com-
posite system of H1 and H2.
For bases B1 = {|bi〉}i=1,...,n and B2 = {|b′j〉}j=1,...,m of H1 and H2 respectively,
B := B1 ×B2 = {|bib′j〉}i=1,...,n; j=1,...,m is a base of H1⊗H2.

30

The composite state of two quantum states |Ψ1〉 ∈ H1 and |Ψ2〉 ∈ H2 is defined
as

|Ψ1〉 ⊗ |Ψ2〉 =
n∑
i=1

m∑
j=1

αiβj |bib′j〉 ,

if |Ψ1〉 =
∑n

i=1 αi |bi〉 and |Ψ2〉 =
∑m

j=1 βj |b′j〉.

Analogous to unitary transformations on qubits, a unitary transformation on
a quantum state is described by a unitary matrix U ∈ Cn×n and for two unit-
ary transformations U1 and U2 of Hilbert spaces H1 and H2 respectively and
quantum states |Ψ1〉 ∈ H1, |Ψ2〉 ∈ H2 we obtain a unitary transformation
U1 ⊗ U2 on the tensor product H1⊗H2 by

(U1 ⊗ U2)(|Ψ1〉 ⊗ |Ψ2〉) := U1 |Ψ1〉 ⊗ U2 |Ψ2〉 .

Any unitary transformation on H1 can be extended to a unitary transformation
on H1⊗H2 by tensoring it with the identity on H2.

In the same way we can extend measurements of single qubits to measurements
on the composite system. Interpreting the identity matrix I as a projector
allows us to perform a measurement M on the subsystem H1 by performing
M ⊗ I on the composite state of H1⊗H2.

Definition 3.1.6 (Positive Operator valued Measurement). A positive operator
valued measurement (POVM) is a family of positive-semidefinite, hermitian
operators M := {Mx}x∈X on the vector space of a quantum state such that∑

x∈X
Mx = I,

where X is the set of possible outcomes of M. Performing M on a quantum
state |Ψ〉 results in x ∈ X with probability Pr[x] = 〈Ψ|Mx |Ψ〉 and again we
have

∑
x∈X Pr[x] = 1.

For an orthonormal basis B := {|b1〉 , ..., |bn〉} of Cn we can construct a POVM
MB := {Mi}i=1,...,n where Mi := |bi〉 〈bi| ∀ i are orthogonal projectors onto the
basis states. Measuring |Ψ〉 in a basis B denotes performing the POVM MB.
A POVMMB where B is an orthonormal basis is called complete measurement.

Pure and mixed quantum states with respect to a basis B are defined analog
to the one qubit case:
For a pure quantum state we have Pr[bi] = 1 for exactly one i ∈ {1, .., n}. |Ψ〉
is in a mixed quantum state if at least two of the probabilities {Pr[bi]}i=1,...,n

are strictly positive.

31

The No-Cloning Theorem. In classical computation it is a fairly common
practice to copy bits. It can easily be done, there is nothing special about it.
Quantum computation in contrast does not allow for that in general. While
it is possible to prepare multiple qubits in the same known state, copying an
unknown state just does not work. The tools we have in quantum computation
are measurements and unitary transformations. So if one tries to copy a qubit,
it would have to be done by applying a unitary transformation. We now show,
why this does not work.

Theorem 3.1.7. Given a quantum system H and quantum system H′ with the
same state spaces. Let |h′〉 denote the state H′ is in. Then there is no unitary
transformation U on the composite system H⊗H′, such that U(|Ψ〉⊗ |h′〉) =
|Ψ〉⊗ |Ψ〉 for arbitrary unknown states |Ψ〉 of H.

Proof. Let |Ψ〉, |Φ〉 ∈ H be two arbitrary unknown states. Assume that U is
the unitary transformation we are looking for, i.e.

U(|Ψ〉⊗ |h′〉) = |Ψ〉⊗ |Ψ〉 and

U(|Φ〉⊗ |h′〉) = |Φ〉⊗ |Φ〉 .

Then

〈U(Ψ⊗ h′)|U(Φ⊗ h′)〉 = 〈Ψ⊗Ψ|Φ⊗ Φ〉
〈Ψ⊗ h′|Φ⊗ h′〉 =(〈Ψ|Φ〉)2

〈Ψ|Φ〉 〈h′|h′〉 =(〈Ψ|Φ〉)2

〈Ψ|Φ〉 =(〈Ψ|Φ〉)2,

so either 〈Ψ|Φ〉 = 0, which means that |Ψ〉 and |Φ〉 have to be orthogonal, or
〈Ψ|Φ〉 = 1. which means |Ψ〉 = |Φ〉. It follows, that cloning arbitrary states is
not possible.

Quantum states can be interpreted as statistical ensembles {|bi〉 ,Pr[bi]}i=1,...n

where the |bi〉 are orthonormal vectors and
∑n

i=1 Pr[bi] = 1.
We call {|bi〉 ,Pr[bi]}i=1,...n a quantum ensemble.
Extending a quantum system H in state {|bi〉 ,Pr[bi]}i=1,...n by a system H′ in
state |Ψ〉 results in the ensemble {|bi〉 ⊗ |Ψ〉,Pr[bi]}i=1,...n over H⊗H′.

Although at first glance the notation of a quantum sate |Ψ〉 as an ensemble
contains less information than the notation as a linear superposition of the
basis states, it does not really, since there is no way to distinguish two states
with the same statistical ensemble by performing any number of unitary trans-
formations, measurements and extensions.

Say we have a quantum ensemble {|bi〉 ,Pr[bi]}i=1,...n and POVMM := {Mx}x∈X .
Then the probability of an outcome x of M is

Pr[x] =
n∑
i=1

Pr[bi] 〈bi|Mx |bi〉 = tr
(
Mx

n∑
i=1

Pr[bi] |bi〉 〈bi|
)
,

32

where trA denotes the trace of a matrix A.

Definition 3.1.8 (Density Matrix). For an ensemble {|bi〉 ,Pr[bi]}i=1,...n the
density matrix ρ is defined as

ρ :=
n∑
i=1

Pr[bi] |bi〉 〈bi| .

ρ is also called a density operator.

Density matrices are a very convenient way to represent a quantum state, since
they facilitate computing the outcome probabilities of arbitrary measurements.
From now on, we will represent quantum states |Ψ〉 by their density matrix ρ
acting on a Hilbert space H, where H denotes the vector space |Ψ〉 lives in.
By extending a quantum system H in state ρ by a system H′ in state described
by the density matrix σ we obtain the density matrix ρ⊗ σ over H⊗H′.

In classical computation measuring the value of a bit simply means reading it.
The procedure does not change the state of the bit being measured and has no
effect whatsoever on other bits.
Given a quantum system with more than one qubit, we say it is in a separable
state if measuring one qubit does not affect the states of the other qubits in the
system.

Definition 3.1.9 (Entanglement and Separability). Let H1 be a Hilbert space
with base B = {|bi〉}i=1,...,n and H2 be Hilbert spaces with base B′ = {|b′i〉}j=1,...,m.
A state |Ψ〉 =

∑
i,j γij |bib′j〉 of H1⊗H2 is called separable if and if only there

are quantum states |Ψ1〉 =
∑n

i=1 αi |bi〉 ∈ H1 and |Ψ2〉 =
∑m

j=1 βj |b′j〉 ∈ H2

such that |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉, i.e. γij = αiβj ∀ i, j.
Let ρ be a density matrix operating on H1⊗H2. Then ρ is separable if it is of
the form

ρ =
n∑
i=1

m∑
j=1

Pr[bib
′
j] |bib′j〉 〈bib′j | =

n∑
i=1

m∑
j=1

Pr[bib
′
j] |bi〉 〈bi| ⊗ |b′j〉 〈b′j | ,

with
∑

i,j Pr[bib
′
j] = 1, i.e. it can be written as a sum of projectors onto product

states.
A quantum state is said to be an entangled state, if it is not separable.

Example (The Bell States). The four Bell states in C2⊗C2 are defined as

|Φ+〉 :=
1√
2

(|00〉+ |11〉), |Φ−〉 :=
1√
2

(|00〉− |11〉)

|Ψ+〉 :=
1√
2

(|01〉+ |01〉), |Ψ−〉 :=
1√
2

(|01〉− |01〉).

33

To check whether the Bell states are entangled states, consider an arbitrary
separable state |Γ〉 ∈ C2⊗C2. Then |Γ〉 is of the form

|Γ1〉 ⊗ |Γ2〉 = α1β1 |00〉+α1β2 |01〉+α2β1 |10〉+α2β2 |11〉,

for some |Γ1〉 , |Γ2〉 ∈ C2.
For |Φ+〉 and |Φ−〉 we have γ11 6= 0 and γ22 6= 0. Separability then requires
α1β1 6= 0, α2β2 6= 0 and therefore γ12 = α1β2 6= 0, which is not the case.
Analogously we can show, that |Ψ+〉 and |Ψ−〉 are entangled states.

We have already seen, that given state spaces H1 and H2 in a states given by
density operators ρ1 =

∑n
i=1 Pr[bi] |bi〉 〈bi| and ρ2 =

∑m
j=1 Pr[b′j] |b’j〉 〈b′j |, we

obtain a higher dimensional separable quantum state ρ1⊗ ρ2 ∈ H1⊗H2. Then
given ρ1⊗ρ2 it is easy attribute states to the subsystemsH1 andH2 ofH1⊗H2,
i.e. to reduce ρ1 ⊗ ρ2 to ρ1 or ρ2.
However it is not obvious how to do that with a quantum system in an en-
tangled state.

In the following let S(H) denote the set of density operators on a Hilbert space
H.

Definition 3.1.10 (Partial Trace). Let Hi and Hj be two Hilbert spaces. Then
the partial trace tri over the subsystem Hi is the linear map of operators from
S(Hi⊗Hj) to S(Hj) defined by

tri(|v1〉 〈v2| ⊗ |w1〉 〈w2|) := tr(|v1〉 〈v2|) |w1〉 〈w2|
= 〈v2|v1〉 |w1〉 〈w2| ,

for |v1〉 , |v2〉 ∈ Hi and |w1〉 , |w2〉 ∈ Hj.

Definition 3.1.11 (Reduced Density Operator). Let H =
⊗n

i=1Hi be a com-
posite quantum system in a state, described by ρ. Then the state of a subsystem
U =

⊗
j∈J Hj with J ⊂ {1, ..., n} is represented by the reduced density operator

ρU = trV (ρ), with V := H\U .

Tracing out a subsystem V ⊂ H means calculating the reduced density operator
ρH\V = trV (ρ).

Example. Let us take a look at the Bell state |Φ+〉 = 1√
2
(|00〉+ |11〉). As

mentioned above |Φ+〉 is an entangled state in C2⊗C2. The density operator
of |Φ+〉 is given by

ρ =
(1√

2
(|00〉+ |11〉)

)(1√
2

(|00〉+ |11〉)
)

=
1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|).

34

Tracing out the first qubit yields

ρ2 = tr1(
1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|))

=
1

2
(tr1(|00〉 〈00|) + tr1(|00〉 〈11|) + tr1(|11〉 〈00|) + tr1(|11〉 〈11|))

=
1

2
(|0〉 〈0| 〈0|0〉+ |0〉 〈1| 〈0|1〉+ |1〉 〈0| 〈1|0〉+ |1〉 〈1| 〈1|1〉)

=
1

2
(|0〉 〈0|+ |1〉 〈1|).

We will now introduce purifications. They allow us to associate an entangled
state ρ of a Hilbert space H with a pure state ρ′ of a larger system H′. H′
is a composite system, consisting of H and a so-called reference system R, i.e.
H′ = H⊗R. Purifications are not unique.

Definition 3.1.12 (Purification). Let H be a quantum system in an entangled
state ρ. Then a system H′ = H⊗R in state ρ′ is called a purification (system)
of ρ, if ρ′ is a pure state and ρ = trR(ρ′)

For a system H in an arbitrary quantum state ρ we can construct a purification
in the following way:
Let {|hi〉}i∈I be an orthonormal basis ofH, then we can write ρ =

∑
i∈I αi |hi〉 〈hi|.

Now we need a reference system. Let R be a quantum system with the same
state space as H and let {|ri〉}i∈I be an orthonormal basis of R.
Then |Φ〉 :=

∑
i∈I
√
αi |hi〉 |ri〉 is a purification on ρ.

To check, whether this is actually true, let us trace out the reference system
again:

trR(|Φ〉 〈Φ|) =
∑
i,j

√
αiαj |hi〉 〈hj | tr(|ri〉 〈rj |)

=
∑
i,j

√
αiαj |hi〉 〈hj | δij =

∑
i

αi |hi〉 〈hi|

=ρ.

3.2 Introducing Errors

In the previous section we explained how quantum systems work in theory in
an ideal world. In reality however, it is not that easy to build perfectly closed
quantum system, i.e. systems that do not interact with their environment at
all.
In this section we introduce methods to model such quantum noise.

35

3.2.1 Models in Classical Computation

In the classical world errors are usually modeled using Markov processes. Since
classical bits only take values in {0, 1} there is only one type of error to consider,
the bit-flip error. Assume that p is the probability that a bit-flip error occurs in
a certain period of time, assume a bit-flip error appears with equal probability
in every period and that at most one error occurs per period. So depending
on the value i ∈ {0, 1} of a bit in one period, we can calculate the conditional
probabilities Pr[j | i] of the bit taking the value j ∈ {0, 1} in the following
period. Those probabilities are called transition probabilities. All in all we have
a stochastic multi-stage process. We can capture it in the following equation:(

p0i+1

p1i+1

)
=

(
1− p p
p 1− p

)(
p0i
p1i

)
where pji denotes the probability of the bit value j in period i.
This also allows us to calculate the outcome probabilities, if there is more than
one period difference to the input probabilities, by multiplying with higher
powers of the matrix of transition probabilities. So no matter how many periods
pass between the starting state and the final state, we still have a linear relation
between the two.

3.2.2 Models in Quantum Computation

We model an open quantum system as a principal system H, our original basic
quantum system, together with another quantum system Henv, we call envir-
onment. Since we do not require the environment to be of a certain dimension,
we can assume, that it starts in a pure state |env〉. Otherwise we could simply
extend it to a purification system. Let ρ denote the state of the principal sys-
tem.
Together the principal system and the environment are a closed system in state
ρ⊗ |env〉. Interactions between the principal system and the environment can
thus be described as unitary transformations on H⊗Henv. While starting out
in a separable state ρ⊗|env〉 applying a unitary transformation U might result
in an entangled state σ of H⊗Henv. Tracing out the environment then results
in a state ρ′ 6= ρ. We model this process with quantum operations. Formally a
quantum operation E can be captured in the following equation:

E(ρ) = trenv
[
U(ρ⊗ |e〉)UT

]
(3.1)

There are different approaches to introducing quantum operations. While the
one we just stated is a nice way to give an intuition of quantum noise, it is a little
complicated to handle in calculations. Thus we now introduce the operator-sum
representation of a quantum operation.
Set n := dimHenv, then

E(ρ) =

n∑
i=1

EiρE
T
i .

The Ei are called operation elements. They are operators on the principal
system, that satisfy

∑n
i=1Ei = I, where I denotes the identity on H. This

36

condition guarantees, that quantum operations preserve the trace, i.e. the E(ρ)
is a density matrix on H.

Notice, that in this representation the environment is not explicitly mentioned,
which makes it a lot more practical then the representation in (1.1). For a more
extensive examination of quantum operations, we refer to chapter 8 of [13].

In contrary to the classical world, quantum states are not only vulnerable to bit
flip errors, but to a whole variety of errors, like bit flips, phase flips, rotations
and of course arbitrary combinations of those.
At first glance this may look like a serious obstacle to error correction, but as
it turns out, it can be overcome. If a quantum error-correcting-code is able
to correct bit flips, phase flips and bit-phase flips, it can also deal with any
other error, at least when we consider single qubits. For composite systems the
situation is a bit more complicated, but also manageable. Further information
can be found in chapters 8 and 10 of [13].

3.2.3 Error Correction

Besides the greater variety of possible errors, there are a few other facts, that
prevent us from using classical error correction strategies. In the classical world,
one strategy to detect and correct errors is repetition. Instead of just sending a
bit once, we can send it multiple times. Then taking the ”majority vote” of all
the bits will give us the right value with high probability. In the quantum world
however the no-cloning theorem prevents us from applying similar strategies and
even if it were possible to copy quantum states, finding out the ”majority vote”
is a problem, since any measurement would destroy the original state. Luckily
efficient quantum error correction is still possible though.
This section starts with introducing classical linear codes, that then give rise
to quantum codes, namely Calderbank-Shor-Steane-codes.
It is based on chapter 10 of [13].

3.2.4 Classical Linear Codes

Definition 3.2.1 (Linear Code). A linear [n,k]-code C consists of a set C of
2k n-dimensional binary vectors, the codewords and an (n × k)-dimensional
generator matrix G, mapping a k-bit message x to the encoded n-bit message
Gx. Hence the columns of G span the set of codewords as a vector space and
we require them to be linearly independent.

When we use linear codes to encrypt data, error correction can easily be
achieved through a so-called parity check matrix H. H is an ((n − k) × n)
matrix, such that Hc = 0 ∀ c ∈ (C). If an error e occurs, i.e. a message
x is encoded to c, but the receiver gets a codeword c′ = c + e instead, then
Hc′ = Hc + He = He. He is called the error syndrome. The error e can be
corrected by using information provided by its syndrome. Naturally there is a
limit to the amount of errors a liner code can correct. Single bit flip errors are
not a problem, the corrupted codeword is still ”close enough” to the original

37

one to correct it. Closeness or distance in this setting is usually measured by
the Hamming weight. The Hamming weight of an n-dimensional binary vec-
tor v = (v1, ..., vn) is defined as H(v) :=

∑n
i=1 vi. The Hamming distance of

two vectors v and w is defined as the Hamming weight of v + w := (v1 + w1

mod 2, ..., vn + wn mod 2). The easiest approach to correct errors now, is to
find the codeword c ∈ C with the shortest Hamming distance to the corrupted
codeword c′. The only problem is, that if too many errors occurred the closest
valid codeword may not be the original codeword, we intended to send.
Let d be the minimal Hamming distance between two codewords of C, then we
can correct up to t := d−1

2 errors, just by replacing c′ by the closest codeword
in C.

Any linear [n,k] code C with generator matrix G and parity check matrix H
gives rise to a dual code C⊥ with generator matrix G⊥ := HT and parity check
matrix H⊥ := GT . The set of codewords C⊥ of C⊥ are all vectors, that are
orthogonal to every codeword in C.

Using classical linear codes and corresponding dual codes, we can now define
Calderbank-Shor-Steane-Codes, or short CSS-Codes. CSS-Codes allow for error
correction in the quantum world.

3.2.5 Calderbank-Shor-Steane-Codes

Given classical linear [n1, k1] and [n2, k2] codes C1 and C2, respectively, with
C2 ⊂ C1, then for every x ∈ C1 we can define a quantum state

|x+ C2〉 :=
1√
|C2 |

∑
y∈C2

|x+ y〉

Here + denotes bitwise addition mod 2. This construction gives rise to an
[n, k1 − k2] quantum code, called the CSS-code of C1 over C2.

Definition 3.2.2 (CSS-Code). An [n, k1 − k2] CSS-code CSS(C1, C2) is the
|C1 |/|C2 |-dimensional vector space spanned by the n-qubit quantum states |x+ C2〉
defined above.

If C1 and C⊥2 can both correct up to t errors, then CSS(C1, C2) corrects max-
imally t bit and phase flip errors. Quantum error correction using CSS-Codes
works like this:

In order to make error detection possible, without interfering with the quantum
state, we extend the original codewords |x+ C2〉 by a qubit in state |0〉, which
gives us a state

|x+ C2〉′ :=
1√
|C2 |

∑
y∈C2

|x+ y〉 |0〉 .

Suppose instead of |x+ C2〉′ we obtain a state

1√
|C2 |

∑
y∈C2

(−1)(x+y)·e2 |x+ y + e1〉 |0〉,

38

where e1 and e2 denote binary n bit vectors. The entries of e1 correspond to
bit flip errors and the entries of e2 to phase flip errors. If an error occurred on
the i-th qubit of our quantum state, then the i-th entry of the corresponding
error vector is 1, otherwise it is 0.
We start with correcting the bit flip errors by computing the syndromes for the
linear code C1 using its parity check matrix H1. For a quantum state |Ψ〉 |0〉
there is a transformation to compute |Φ〉 |HΦ〉. For more details on how this
works, check [13, p. 451]. Since H1 |x+ y + e1〉 = |H1e1〉, we can now compute

1√
|C2 |

∑
y∈C2

(−1)(x+y)·e2 |x+ y + e1〉 |H1e1〉 .

Measuring |H1e1〉 gives us all the information we need to correct the bit flip
errors. The quantum state then is

1√
|C2 |

∑
y∈C2

(−1)(x+y)·e2 |x+ y〉 .

Phase flip errors can be dealt with in the same way. First we turn our phase
flip errors into bit flip errors by applying the Hadamard transformation, then
we correct the bit flip errors as described above, and apply the Hadamard
transformation again to recover the original state |x+ C2〉. A more detailed
description of the calculations can be found in [13, p. 451].

For two n-dimensional binary vectors w 6∈ C1 and v ∈ C2 we can define a CSS-
code
CSSv,w(C1, C2). For x ∈ C1/C2 the codeword is given by

|x, v, w〉 :=
1√
|C2 |

∑
y∈C2

(−1)v·y |x+ y + w〉 .

So any CSS-code CSS(C1, C2) gives rise to a family {CSS(v,w)(C1, C2)}v,w of
CSS-codes with the same error correcting properties. Notice, that the {|x, v, w〉}
form a basis of a 2n dimensional vector space.

3.2.6 Distance Measures for Quantum Information

Now that we have established quantum noise, the question of how to meas-
ure the distance from a desired quantum state to the actual resulting state of
quantum computation arises. This section is based on chapter 9 of [13], the
focus lies on the trace distance and fidelity and the relationship between the
two. The trace distance and the fidelity function are both distance measures
for probability distributions in the classical world. So we will start with the
definitions in the classical case.

Definition 3.2.3 (Classical Trace Distance). Let X denote some finite set and
p = {px}x∈X , q = {qx}x∈X be two probability distributions on X . The trace
distance between p and q is defined as

D(p, q) :=
1

2

∑
x∈X
| px − qx | .

39

The trace distance defines a metric on the set of probability distributions on
X .

Definition 3.2.4 (Classical Fidelity). Let X denote some finite set and p =
{px}x∈X , q = {qx}x∈X be two probability distributions on X . The fidelity of p
and q is defined as

F (p, q) :=
∑
x∈X

√
pxqx

While the fidelity is not a metric, it still is a good measure for the distance
of probability distributions. It is easy to see from the definition, that 0 ≤
F (px, qx) ≤ 1 and 0 = F (px, qx), iff px = qx ∀ x ∈ X .
Now we turn to the quantum world. The question we are trying to answer here
is, how close two quantum states are. Here the notion of density matrices comes
in especially handy and it will also become clear, what the trace distance has
to do with the trace function. We will later use the trace distance for a notion
of secrecy in quantum key distribution.

Definition 3.2.5 (Trace Distance). Let ρ and ρ′ be two density operators of
quantum states with the same state space. Then the trace distance of ρ and ρ′

is defined as

D(ρ, ρ′) :=
1

2
tr | ρ− ρ′ |,

where |A | :=
√
ATA denotes the positive square root of a matrix ATA.

Unitary transformation leave the trace distance unchanged, i.e. D(UρUT , Uρ′UT) =
D(ρ, ρ′)

Definition 3.2.6 (Fidelity). Let ρ and ρ′ be two density operators of quantum
states with the same state space. Then the fidelity of ρ and ρ′ is defined as

F (ρ, ρ′) := tr

√
ρ

1
2 ρ′ρ

1
2 .

Again the fidelity is not a metric, but it is symmetric in its inputs. A case we
will be paying special attention to later, is the fidelity between a pure state |Ψ〉
and an arbitrary state ρ:

F (|Ψ〉, ρ) = tr
√
〈Ψ| ρ |Ψ〉 |Ψ〉 〈Ψ|

=
√
〈Ψ| ρ |Ψ〉

The fidelity and the trace distance are closely related, which is reflected in the
following equation

1− F (ρ, ρ′) ≤ D(ρ, ρ′) ≤
√

1− F (ρ, ρ′)2

40

3.3 The BB84 Protocol

The BB84 protocol is named after Charles H. Bennett and Gilles Brassard, who
introduced it in 1984. Just like the DH-protocol it allows two parties A and B
to share a secret key, without sharing any secrets previously. It is probably the
best known key distribution protocol in quantum cryptography.
The main advantage of the BB84 protocol is, that it is provably secure. We
will define what security means in quantum cryptography later.

In this section we first introduce the prepare-and-measure-version of the BB84
protocol, followed by a notion of security. In order to prove, that the prepare-
and-measure-version fulfills this notion, we then present an entanglement-based
version of the BB84 protocol. So why not start with that in the first place?
While proving security is a lot easier for the entanglement-based version, the
advantage of the prepare-and-measure version is its realizability.
As you will see the prepare-and-measure version only requires the parties to
perform measurements. A prepares the necessary qubits in some state at the
beginning, after that no unitary transformation needs to be applied. The
entanglement-based version in contrast requires both parties to perform the
Hadamard transformation on all of their qubits at some point, which is rather
impractical, considering how rare and expensive even small quantum computers
are.

The bigger part of this section is based on [15]. The proof of security follows
[15], but also includes additional material from chapter 12 of [13].

3.3.1 The Prepare-and-Measure Version

Two parties A and B need to obtain a joint secret key. They have access to a
quantum channel and a classical channel. The eavesdropper E can only listen
to the classical channel, but both inject or alter messages. Let B+ := {|0〉, |1〉}
and B× := {|0〉×, |1〉×} the conjugate bases from above, with

|0〉× := H |0〉 =
1√
2

(|0〉+ |1〉)

|1〉× := H |1〉 =
1√
2

(|0〉− |1〉)

The protocol:

1. A prepares 2n qubits, each in a random state |xi〉 ∈ {|0〉, |1〉, |0〉×, |1〉×}
and sends them to B.

2. For every received state |xi〉 B chooses a bases B ∈ {B+, B×} at random
and measures |xi〉 in the chosen basis.

3. A announces her base choices. A and B only keep those bits, where they
used the same base. This is called the sifted key s.

41

4. To estimate the error-rate the bit-values of a random subset of bits of
s are compared. The protocol is aborted, if a certain threshold of the
error-rate is surpassed, that is if too many values differ.

5. A and B perform error correction and privacy amplification on those bits
of s whose bit values have not been announced and take the resulting bit
string as their joint secret key.

In step 2 the result of B’s measurement is perfectly correlated with the state
A prepared if B chooses the bases the state was prepared in. If the base of
preparation does not coincide with the base the state is measured in, B’s result
is perfectly random.
Step 3 reduces the number of qubits roughly by half and then error-estimation,
-correction and privacy amplification shorten it further. Assuming that each of
these operations also expends about half of the qubits left, the joint key of A
and B will be of expected length n

8 .

A’s state |0〉 |0〉× |0〉× |0〉× |1〉× |1〉 |0〉 |1〉 |1〉 |0〉×
B’s base choice B+ B× B+ B× B× B× B+ B× B+ B×
B’s result |0〉 |0〉× ? |0〉× |1〉× ? |0〉 ? |1〉 |0〉×
sifted key 0 0 0 1 0 1 0

3.3.2 The intercept-and-resend attack

In order to get knowledge of the joint key E would need to somehow achieve
listening to the quantum channel. That is a tricky task though, since it is not
possible to copy qubits and measuring them alters the state.
A very simple attack on the BB84 protocol is to try just that. The adversary
intercepts all of the qubits sent by A in step 1 and guesses bases to measure
them. For about half of the bits E’s guess will coincide with the base A pre-
pared the qubit in. In those case the state of the qubit remains unchanged.
Whenever E guesses the wrong bases, the state of the qubit will be changed. So
if E now sends the measured qubits to B, who is expecting to receive 2n qubits
from A, only about half of the qubits are still in the original state.
Now A and B continue with steps 2 and 3. They will still choose the same
base roughly half of the time, but because of E’s interference B will get random
results for half of the bases where he and A used the same bases.
The error-estimation in step for should therefore detect an error-rate around
25%, which will lead to aborting the protocol.

42

A’s state |0〉 |0〉× |0〉× |0〉× |1〉× |1〉 |0〉 |1〉 |1〉 |0〉×
E’s base choice B+ B+ B× B+ B× B+ B× B× B+ B×
E’s result |0〉 ? |0〉× ? |1〉× |1〉 ? ? |1〉 |0〉×
B’s base choice B+ B× B+ B× B× B× B+ B× B+ B×
B’s result |0〉 ? ? ? |1〉× ? ? ? |1〉 |0〉×
sifted key 0 ? ? 1 ? 1 0

3.3.3 Notion of security

The basic setting we assume for a quantum key distribution protocol is usually
this: Two parties A and B communicate over an authenticated classical channel
and a quantum channel. The quantum channel is noisy and possibly under the
control of an eavesdropper.

Let us see what qualities a quantum key distribution protocol should have
ideally. The first thing, that comes to mind here obviously is provable secur-
ity. While classical key distribution relies on the assumed hardness of some
mathematical problem, the laws of quantum mechanics guarantee the security
of quantum key distribution. The downside however is that quantum channels
are noisy, which allows for an eavesdropper to pass himself off as white noise
and makes it necessary, that the protocol still works with a certain amount
of error. Since the noise on a quantum channel increases with the distance,
communication over arbitrary distances still poses a problem.
Another problem is, that quantum computers are still being developed and very
expensive, so a protocol should work without requiring the parties to perform
unitary transformations.
To sum it up we need a quantum key distribution protocol to be provably
secure, error tolerant, executable over arbitrary distances and of course real-
izable in the way that it should only require transmitting and measuring qubits.

Definition 3.3.1 (Perfect Secrecy). Let SP denote the set of all possible key-
outputs of a key distribution protocol P. Then P is said to achieve perfect
secrecy if and if only the following two conditions hold:

1. Any key s ∈ SP is equally likely to be the outcome of P.

2. Any adversary has no information on the outcome s of P, i.e. the state
of any quantum system controlled by the adversary is independent of s.

At the end of the entanglement-based version of the BB84 protocol, which we
will use to proof the security of the prepare-and-measure version, A and B share
some quantum state ρAB, that they will then measure. Each party measures
its half of the qubits in order to obtain a classical bit string - the shared secret
key. Ideally the quantum state A and B share is pure, i.e. not entangled with
any quantum system an adversary E might hold. As mentioned in section 3.2.
it is unrealistic to assume, that A and B possess a perfectly closed quantum
system. So what is the worst case scenario here? - E being in full control of

43

the quantum channel translates into her holding a reference system ρE , that is
part of a purification |Ψ〉ABE , i.e. ρE = trAB(|Ψ〉ABE) and ρAB = trE(|Ψ〉ABE).

The ideal outcome of ρAB would be the pure state |Φ+〉⊗n. In that case the
purifying system is of the form |Ψ〉ABE = ρAB ⊗ ρE , i.e. E cannot gain any
information on the secret key through her reference system ρe.
If A and B each measure their part of |Ψ〉ABE , the outcome will be a pair of keys
|sA〉 ⊗ |sB〉 ⊗ ρE together with a reference system depending on the outcomes
sA and sB. Notice that the output-keys sA and sB do not necessarily have to
be equal to one another.
Let SP be the set of all possible key-outputs of a protocol P. Then ρABE can
be expressed in the following way:

ρABE =
∑

sA,sB∈S
Pr[sA, sB] |sA〉 〈sA| ⊗ |sB〉 〈sB| ⊗ ρsa,sBE

If P were to achieve perfect secrecy, the output state that A and B share, should
be independent of any system E holds, only key pairs with sA = sB should have
a positive probability, moreover every key pair with that property should be the
outcome of a measurement with equal probability. The desired output state of
the purification system looks like this:

ρideal =
∑
s∈S

1

| S |
|s〉 〈s| ⊗ |s〉 〈s| ⊗ ρE

Achieving perfect secrecy will hardly be possible in the real world, but, as we
shall see, we can get arbitrarily close to it. With the help of the fidelity function,
we now introduce the notion of ε- security from [15].

Definition 3.3.2 (ε-Security). Let ρABE be the outcome state of the key dis-
tribution protocol P shared by A, B and E defined above. The key pairs, that
are output of P are said to be ε-secure with respect to, iff

D(ρABE , ρideal) ≤ ε.

3.3.4 The Entanglement-based Version

In order to prove the perfect secrecy of the BB84 protocol, we now introduce
the entanglement-based version of it. For the entanglement-based version, the
proof of security will be much simpler, but the protocol itself is not practical,
since it requires the involved parties to perform unitary transformations.
After proving the security, we will show that both versions of the BB84 protocol
are equivalent in the sense, that they require the same operations.

Here A and B use the one of the Bell states, namely |Φ+〉 = 1√
2
(|00〉+ |11〉), to

transmit the information via entanglement.
Notice, that |Φ+〉 has the same coefficients with respect to the bases B+ and
B×, that is

|Φ+〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉) =
1√
2

(|0〉× |0〉×+ |1〉× |1〉×).

44

Therefore when the first and the second qubit are measured in the same base,
the results will be perfectly correlated, measuring in different bases yields com-
pletely uncorrelated random results. For both bases the outcomes 0 and 1 have
the same probability when only one of the qubits is measured.

The protocol:

1. A prepares 2n qubit pairs in the state |Φ+〉⊗2n = |Φ+〉⊗...⊗|Φ+〉 and se-
lects random 2n-bit strings c = (c1, ..., c2n) with

∑2n
i=1 n and b = (b1, ..., b2n).

2. A performs the Hadamard transformation H on her half of the i-th qubit
pair, if bi = 1 and sends the other half of each pair to B.

3. Once B received all 2n qubits, A announces b and c.

4. B applies H to his i-th qubit if bi = 1.

5. A and B both measure their i-th qubit in B+, if ci = 1 and compare the
values to estimate the error rate. They abort, if it surpasses a certain
threshold.

6. A and B perform error correction on the remaining qubits, i.e. those with
ci = 0 and measure them in B+ to obtain the joint secret key.

The Hadamard transformation in steps 2 and 4 is necessary make the intercept-
and-resend attack detectable. Otherwise an eavesdropper could just intercept
and measure all of the qubits A sends to B with respect to B+ without causing
any disturbance.
For the error correction A and B use a CSS-code, thus in step 6 A and B first
measure the error syndrome for each of their qubits and then correct errors,
where necessary.

3.3.5 Proof of Security

In this section we will proof the entanglement-based version of the BB84 pro-
tocol to be ε-secure.
In the last step of the entanglement-based version A and B share a state ρAB,
may or may not be entangled with some reference system ρE E is holding.
It is clear, that, if ρAB is not entangled with E’s system, any key pair resulting
from measuring ρAB is by definition ε-secure for every ε > 0. Unfortunately
we have to assume, that ρAB is in fact entangled with some other state ρE , be
that because of an adversary, or simply because of unwanted interaction with
the environment. The following lemma will give us a way to link the fidelity
ρAB and the ideal state |Φ+〉⊗n to the security of the key pairs, generated by
the BB84 protocol. We will state it here without proof. A proof can be found
in [16].

45

Lemma 3.3.3. Let ρAB be a quantum state shared by two parties A and B. Any
2n-bit string resulting from locally measuring ρAB in B+ is an ε-secure key with
respect to an adversary holding a reference system, that is part of a purification
of ρAB, if ε > 0 and

F (AB, |Φ+〉⊗n) ≥
√

1− ε2.

Now we only need to make sure, that we can estimate the error rate from
determining the error rate on the check qubits. For that purpose we will fall
back on classical probability theory. Again we will state the lemma without
proof. A sketch of the proof can be found in chapter 12 of [15].

Lemma 3.3.4. Let s denote a random n-bit string and c be a random subset
of n bits of s. Assume that s may contain some errors and that those errors
occur with equal probability on each bit. Then for any ε, δ > 0 the probability
of finding fewer than δn errors in c and more than (δ + ε)n errors in s \ c is
upper-bounded by e−O(ε

2n), for sufficiently large n.

So by increasing the number of check qubits, we can estimate the error rate
exponentially well. This allows us to estimate the fidelity of ρAB with an expo-
nentially small rate of error, which concludes the proof of security.

There is still a downside however. While we can determine rather well how
safe a key is, making it arbitrarily safe is a different story. As previously men-
tioned, an adversary is not the only source of quantum noise. Therefore A and
B will need to establish a threshold on the error rate, which then gives the
adversary the chance to attack undetected.

3.3.6 Equivalence of the two versions

To prove the security of the prepare-and-measure version, we now show the
equivalence of the two versions. Equivalence here means, that it does not make
a difference to an adversary which version of the protocol is executed, i.e. the
information accessible is the same for both versions.
This section is based on chapter 12 of [13] and [15].
Starting with the entanglement-based version, we will simplify the protocol step
by step to get to the prepare-and-measure version.
A major difference between the two versions is when the measurements take
place. The first step is to justify, why A can perform all her measurements in
the first step, i.e. that it is not necessary for A and B to share pairs of entangled
qubits.
Sharing a state |Φ+〉 and then measuring it later essentially provides B with
a state |0〉 or |1〉 with equal probability. Hence A can just as well create 2n
qubits, each at random in state |0〉 or |1〉 and send those to B.

To clarify why the measurement of the syndrome can also be done right in
the beginning, let us take a closer look at how the CSS-code is used here.

46

Recall that for a family of CSS-codes {CSSv,w(C1, C1)}, the set

{|x, v, w〉}x∈C1/C2,v,w, with |x, v, w〉 =
1√
|C2 |

∑
y∈C2

(−1)v·y |x+ y + w〉 ,

forms a basis of the 2n-dimensional vector space. This allows us to write our
shared state |Φ+〉 as

|Φ+〉⊗n =
2n−1∑
i=0

|i〉 i =
1√
2

∑
x,v,w

|x, v, w〉 |x, v, w〉 , (3.2)

where i is in binary notation. So measuring the syndromes for bit and phase
flip errors provides A with random results for v and w. A last measurement
with respect to the basis {|0〉, |1〉} then yields a random codeword x.
Of course all those measurements do not leave B’s qubits untouched. Let x0,
v0 and w0 denote the results of A’s measurement. Then after the last measure-
ment of A, B holds a state |x0, v0, w0〉, as we can deduce from (3.2). |x0, v0, w0〉
is a random quantum state encoded in a random CSS-code.
So instead of preparing Bell states, A can choose random n-bit strings x, v and
w to encode x with CSSv,w(C1, C1). This gives us a random n-bit string, which
A can then extend to a random 2n bit string by inserting check bits in random
positions. Executing the second step of the entanglement-based version then
puts us in the same position, we are in after the first step of the prepare-and-
measure version.

In the prepare-and-measure version we use the state |Φ+〉, because of its prop-
erties regarding measurements in the bases B+ and B×. Since the state |Φ−〉 =
1
2(|00〉− |11〉) has exactly the same properties, phase flip errors make no differ-
ence for A and B and do not need to be corrected, thus A does not need to
send the v to B.
So really A can just create the state ρ = 1

2n
∑

v |x, v, w〉 〈x, v, w| and send that
to B. This can be simplified even further to

ρ =
1

2n

∑
v

|x, v, w〉 〈x, v, w|

=
1

|C2 |
∑
z∈C2

|x+ z + w〉 〈x+ z + w|

We already chose x at random from C1/C2, choosing x at random from C2 has
the same effect as the summation over all z ∈ C1, i.e. sending a state |x+ e〉
with x ∈ C1. Now y := x+ w is an entirely random n bit string.
At this point A sends |y〉 to B who receives a state |y + e〉 due to noise on
the channel or disturbance by an adversary. Measuring that state yields the
classical bit string y + e, A then announces y − x so that B can calculate x+ e
and use error correction to obtain x.

47

The last difference between the two versions now is the Hadamard transforma-
tion. If A, instead of choosing a classical random bit string, just goes through
steps 1 to 3 of the prepare-and-measure version, the equivalence of the two
versions becomes clear.

3.4 Conclusions

Quantum cryptography is a two-edged sword. While it makes provably secure
key distribution possible, it also breaks most of the encryption schemes in use
today, that is in theory.
Although quantum computation has been the subject to much investigation over
the past 30 years, it still is in its infancy. To this day the opinions diverge on
whether it is physically possible to build quantum computers, powerful enough
to keep up with the classical computers we have today. Although there have
been a number of experiments, proving that quantum communication works,
even over long distances, it still is far too expensive for the private sector and
while the important questions in classical computation are of a rather theoretical
nature, the most pressing question of the quantum world remains, whether and
when it will reach a stage, where quantum computers become affordable and
up to the tasks they can theoretically handle today.

48

Bibliography

[1] S. Goldwasser and M. Bellare, Lecture Notes on Cryptography. Notes, July
2008.

[2] W. Diffie and M. E. Hellman, New directions in cryptography. IEEE Trans.
Inform. Theory IT-22:644-654, November 1976.

[3] D. Bru, G. Erdlyi, T. Riege and J. Rothe, Quantum cryptography: A
survey. ACM Computing Surveys, 39(2), 2007, pp.1-27.

[4] U. M. Maurer Towards the equivalence of breaking the Diffie-Hellman pro-
tocol and computing discrete logarithms. In Proc. CRYPTO ’94, pp. 271-
281, Springer 1994.

[5] V. Shoup, Lower bounds for discrete logarithms and related problems. In
Proc. Eurocrypt ’97, Lecture Notes in Comp. Sci., pp. 256-266, Springer
1997.

[6] D. Boneh and R. Venkatesan, Hardness of computing the most signific-
ant bits of secret keys in Diffie-Hellman and related schemes. In Proc.
CRYPTO ’96, Lecture Notes in Comp. Sci., Springer 1996.

[7] L. Babai, On Lovasz’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica, Vol. 6,1986, pp. 1-13.

[8] A. Lenstra, H. Lenstra and L. Lovasz, Factoring polynomial with rational
coefficients, Mathematische Annalen, Vol. 261, 1982, pp. 515-534.

[9] M. Bellare and P. Rogaway, Entity authentication and key distribution. In
Proc. CRYPTO ’93, pp. 232-249, Springer, 1994. Lecture Notes in Comp.
Sci. No. 773.

[10] M. Bellare and P. Rogaway, Provably secure session key distribution - the
three party case. In Proc. 27th ACM Symp. on Theory of Computing, pp.
57-66, Las Vegas, 1995. ACM.

[11] D. Micciancio and O. Regev, Lattice-based cryptography. In Proc.
PQCrypto 2008, Lecture Notes in Comp. Sci., Springer 2008.

[12] R. Gupta and M. Ram Murty, A remark on Artin’s conjecture, Invent.
Math., 78(1984), pp. 127-130

49

[13] M. Nielsen and I. Chuang, Quantum Computation and Quantum Inform-
ation. Cambrigde University Press, 2000.

[14] D. Unruh, Short Notes for Quantum Cryptography, 2008.

[15] D. Bru, G. Erdlyi, T. Riege and J. Rothe, Quantum cryptography: A
survey. ACM Computing Surveys, 39(2), 2007, pp.1-27.

[16] R. Konig, R. Renner, A. Bariska and U. Maurer, Locking of accessible
information and implications for the security of quantum cryptography.
Computing Research Repository (CoRR), 2006.

50

