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CHENNAI MATHEMATICAL INSTITUTE

Abstract
Nitin Saxena

Department of Computer Science

Master of Science

Sum of Powers of Univariate Polynomials in Algebraic Complexity Theory

by Abhiroop SANYAL

In this thesis, we study the representation of specific families of univariate polyno-
mials as the Sum of Powers (SOP) of other univariates :

f =
s
∑
i=1

lr
i

We present two sparsity based measures UF(⋅) and SF(⋅) for this representation and
provide upper and lower bounds for specific cases for the families fd ∶= (x + 1)d

and gd ∶=
d
∑
i=0

2i2
xi. We also show an unconditional lower bound over localized integer

rings for both these families.

We also claim that when the families fd and gd are represented in the SOP form,
then the measures UF(⋅) and SF(⋅) should be large with respect to this representation
(Conjecture 2). We prove that Conjecture 2 implies Valiant’s Hypothesis (Conjecture
1) for the family gd. We also show that if Conjecture 2 is true for the family fd, then
either CH ≠ #P/Poly or VNP is exponentially separated from VP. This is in spirit of
the famous "derandomization implies hardness" result of [Kabanets and Impagliazzo,
2003]. Much more improved versions of the results proved in this thesis have been
shown in [Dutta, Saxena, and Thierauf, 2020] and [Dutta and Saxena, 2020].

We also study the special case of r = 2, i.e the Sum of Squares model and show ex-
amples of dense candidate polynomials that admit sparse sum of squares represen-
tations. We also formulate a few plausible conjectures, Conjecture 3 and Conjecture
4, both of which would imply a stronger version of Conjecture 2, for the measure
SF(⋅). However, we show a systematic procedure to generate counterexamples to
these conjectures and in the process, come up with a few surprising polynomial
identities.

HTTPS://WWW.CMI.AC.IN/
https://www.cse.iitk.ac.in/users/nitin/
https://www.cmi.ac.in//people/academic.php




xi

Acknowledgements
I would like to begin by thanking Prof. Nitin Saxena for his masterful guidance
throughout this project. My first internship in computational complexity during my
undergraduate years was with him. That period of two months convinced me that I
would like to continue on the path of studying arithmetic circuits and I could think
of no one but Nitin to help me tread that path. This work was carried out when he
hosted me as a visiting student at IIT Kanpur for a whole year during my Master’s
studies. Nitin not only helped me develop a crucial understanding of the subject
matter but taught me the art of asking the right questions at the right time. If I have
become any better at that, all the credit goes to him. I am also extremely grateful to
him for offering me the position of a Senior Student Research Associate under his
guidance, for the summer of 2019 and hosting me for a week during December 2019.

I would like to thank Prof. Partha Mukhopadhyay at CMI, for introducing me to
the wonderful world of computational complexity and for the elegant introduction
to the beautiful Schwartz-Zippel Lemma. It was the beauty of that proof which led
me to seek an internship under Nitin in order to further explore arithmetic circuits.
I would thank Partha for the two courses on classical complexity and pseudoran-
domness that I took with him. I am grateful to him for offering me the position of
teaching assistant for a second course in complexity. He was always enthusiastic
and ready to help circumvent any dilemma that I might have had during the five
years I spent at CMI.

I would like to thank Pranjal da, my senior at CMI and one of the people I have
always looked up to. We worked on the same problem and throughout this journey,
he has acted as an informal co-advisor and a loving elder brother. I always battered
him with numerous questions, ranging from stupid to outright preposterous and he
answered every single one with a calm enthusiasm. I will never forget the academic
and non-academic discussions that carried on late into the night. I will always be
thankful to him for making this journey so memorable. If possible, someday I’d like
to be able to emulate his brilliant ability to tackle hard problems by breaking it down
into simpler pieces.

My life at CMI and IIT Kanpur would have been a lot more pale if it hadn’t been
for all my friends. First and foremost, I would like to thank Subhayan, for being my
roommate, lab partner and closest friend during this entire period. Thank you for
all the wonderful time we have spent over the past 5 years at CMI and IITK. Thank
you for teaching me how to bowl straight and how to swim, although I suppose I let
you down on both occassions :( . Love you, man ! Also, I must thank Abhibav, for
introducing me to a lot of exciting math and theoretical CS. His cheerful enthusiasm
during academic discussions was one of the crucial ingredients that made life in the
MTech Lab at IITK so great. I suppose we are going to end up working together
very soon and I’m looking forward to that ! Of course, I can never forget Subhasis
da, for his wonderful friendship is a treasured possession. Thank you for trying
to teach me karate moves, playing billiards and making me feel better by showing
me that I’m not the only horrible swimmer at IITK (XD)! I would also like to thank
my close friends at CMI : Ritankar, Krishnendu, Srijan, Soham, Arnab and so many
others. I apologise for not being able to name you all and like Fermat, I’d like to



xii

shield myself with the excuse that the margin is indeed too small to list the names of
all of you wonderful people.

I’d like to thank the administration at CMI and IIT Kanpur for being very sup-
portive and helpful throughout. I thank IITK for sponsoring my visit to WACT, 2019
at ICTS, Bangalore.

There is no possible way in which I could list all the reasons for which I would
like to thank my parents, for that list is exponentially larger than the entirety of this
thesis itself. I just want to tell them that I love them and hope I’ve made them proud
and will continue to do so. I fondly dedicate this thesis to them. I would also like to
tell my grandparents that I love them for pampering me when my parents wouldn’t.

Lastly, I’d thank Anushka for putting up with all my eccentricities and for her love
and support. Making this possible would have been much harder without you.



xiii

Contents

Declaration of Authorship iii

Abstract ix

Acknowledgements xi

1 Introduction 1
1.1 A first look . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 5
2.1 Arithmetic Circuits : Our model of computation . . . . . . . . . . . . . . 5
2.2 Valiant’s Algebraic Complexity Classes . . . . . . . . . . . . . . . . . . . 6
2.3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Some results on lower bounds . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Univariate Lower bounds . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Defining the Sparsity-based Measures . . . . . . . . . . . . . . . . . . . . 13
2.4.1 The Support-Union Measure . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 The Sparsity-Sum Measure . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Depth-Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Some useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Sparsity Measures and Unconditional Lower Bounds 15
3.1 Completeness of the Sum of Powers model . . . . . . . . . . . . . . . . . . 15
3.2 Analysis of the Support-Union measure for specific cases . . . . . . . . 19

3.2.1 Upper and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The Sparsity-Sum Measure is large for random polynomials . . . . . . . 23
3.4 The Main Conjecture and an Unconditional Lower Bound . . . . . . . 24

4 Depth Reduction, Explicitness Criterion and Valiant’s Hypothesis 29
4.1 Depth Reduction - Outline of Reduction to log depth . . . . . . . . . . 29
4.2 The Universal/Normal Form Circuit . . . . . . . . . . . . . . . . . . . . . 31
4.3 Counting Hierarchy and Explicitness of Polynomial families . . . . . . 32

4.3.1 The Counting Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 The meaning of explicitness . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 The Kronecker and Inverse Kronecker Maps . . . . . . . . . . . 33
4.3.4 Are our polynomial families explicit ? . . . . . . . . . . . . . . . 34

4.4 Depth-4 Reduction and the connection with Valiant’s Hypothesis . . . 36

5 The Sum of Squares Model and Counterexample Generation 43
5.1 Some useful and some refutable choices of polynomials . . . . . . . . . 43
5.2 Counterexample generation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 The case k = 3, d = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 The algorithm for general d and k . . . . . . . . . . . . . . . . . . 48



xiv

6 Conclusion 53

Bibliography 55



xv

List of Symbols

Z The ring of integers

R The field of real numbers

C The field of complex numbers

R Any commutative ring

F Any field

F The algebraic closure of a field F

GLn(C) The group of invertible matrices over C

SLn(C) The group of invertible matrices over C with determinant 1

[m] The set {0, 1, 2, ..., m}





xvii

Dedicated to my Parents, for their unwavering support,
unconditional love and occasional helpful criticism





1

Chapter 1

Introduction

1.1 A first look

The central objective of Computer Science is to consider various reasonable models
of computation and answer, fundamentally, two sets of questions with respect to
a model : what it can achieve and what it cannot. The first set of questions are
algorithmic questions while the second set are questions pertaining to lower bounds.

In Algebraic Complexity Theory, the chief goal is to understand computation of
polynomials, where the basic operations are addition and multiplication. For this,
the model of computation that is used are known as arithmetic circuits. Roughly,
arithmetic circuits are directed acylic graphs with leaf nodes being either variables or
field constants, the internal nodes being + or × gates with each internal node having
multiple incoming edges and only one outgoing edge and one output node known
as the root that outputs the polynomial computed by the circuit. The size of the
circuit is defined as the number of edges in it. While studying arithmetic circuits, we
are mainly interested in the syntactic computation of polynomials.

The major algorithmic goal of studying arithmetic circuits is to provide an answer
to the polynomial identity testing problem which is :

Definition 1. For a circuit family C of size s computing a polynomial family
fC (x1, x2, ..., xn) of degree d (C ∈ C), the Polynomial Identity Testing (PIT) prob-
lem asks to find an algorithm, that determines, in time poly(s, n, d), whether
fC ≡ 0 or not ?

However, in this thesis, we will focus mainly on lower bounds, specifically uni-
variate lower bounds. What is a lower bound ? A lower bound is simply a statement
of the following form : for a specific polynomial family { fn}n∈N of degree d, the size of the
smallest circuit family Cn computing fn is ≥ ψ(n, d) for some bivariate function ψ. One can
easily show, via a simple counting argument, the following lower bound for "most"
circuits, over a finite field F.
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Theorem 1. [Folklore] Let Smin( f ) denote the size of the minimal arithmetic
circuit computing f . Then,

Smin( f ) ≥ Ω
⎛

⎝

√

(
n + d

d
)
⎞

⎠

One can show that the same result as 1 holds for infinite fields as well. For proofs,
we refer to [Kayal and Saptharishi, 2014] and [Chen, Kayal, and Wigderson, 2011].
The above number is a lower bound on the number of multiplications in any circuit
computing a random polynomial, which was complemented by an upper bound due
to [Lovett, 2011], who showed that for any polynomial f of degree d on n variables,

∃ a circuit C computing f that has at most (
√

(
n+d

d )) ⋅ (nd)O(1) many multiplications.

However, the lower bound proofs above are existential i.e they do not point to
any specific polynomial family for which the said lower bound holds. The main
challenge is to find lower bound statements for explicit families of polynomials. The
first seminal result in this direction was obtained by [Baur and Strassen, 1983], which
still remains the best lower bound for general circuits. This was improved recently,
for the case of Arithmetic Branching Programs by [Chatterjee et al., 2019].

In this thesis, we will mostly focus on lower bounds for univariate polynomials.
We will specifically focus on the Sum of Powers model i.e we will consider specific
univariate polynomial families and investigate the representation of these families as
sum of powers of univariate polynomials. Measure-based approaches in the lower
bound regimes have been considered in [Raz, 2009], [Nisan and Wigderson, 1995],
[Gupta et al., 2014] and specifically for univariate polynomials in [Kayal et al., 2015].
We look at two different measures based on the sparsity of polynomials used in the
representation. The following is the equational representation of the sum of powers
model :

f =
s
∑
i=1

lr
i

1.1.1 Contributions of this Thesis

• In Chapter 3, we consider candidate families fd ∶= (x + 1)d and gd ∶=
d
∑
i=0

2i2
xi

and consider two sparsity based measures SR(⋅) and UR(⋅) for these polyno-
mial families. We show that the Sum of Powers model is a complete model over
fields of zero or large characteristic i.e any polynomial can be computed in this
model unless restrictions on the size of the expression (in this case, the arity
of the sum) are imposed. This is proved in two ways, the first proof is via in-
terpolation while the second, more complicated proof, uses the idea of sumsets
from additive combinatorics. Following this, we obtain a strong lower bound
for a restricted class of representations i.e representation as sum of powers of
two polynomials (s = 2) and an upper bound for the case of small s . We fur-
ther state our main conjecture, Conjecture 2, which speaks of establishing a
lower bound on the measures SF(⋅) and UF(⋅) and present an unconditional
lower bound in the case where we are looking at representations over localized
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integer rings. We also show that the measure SF is large for random polynomi-
als. These results were partly obtained during private communication of the
author with Saxena and Dutta and were published recently in [Dutta, Saxena,
and Thierauf, 2020].

• In Chapter 3, we consider the phenomenon of depth-reduction, first estab-
lished in [Valiant et al., 1983], which allows us to to construct a shallow depth
circuit computing the same polynomial as the original circuit. We further use
the depth-4 reduction technique in [Agrawal and Vinay, 2008] to show that
proving Conjecture 2 for the family gd implies Valiant’s Hypothesis and for
the family fd we obtain a result akin to the famous derandomization Ô⇒

hardness result of Kabanets-Impagliazzo [Kabanets and Impagliazzo, 2003].
This is a special subcase of the stronger result proved in [Dutta, Saxena, and
Thierauf, 2020].

• In Chapter 4, we consider the Sum of Squares model, a special case of the Sum
of Powers model. We investigate a few candidate families and conjectures to
solve this special case of Conjecture 2 but show that most of these ideas do
not work. However, while proving why they don’t work, we come up with a
systematic procedure to produce counterexamples and exhibit some striking
polynomial identities.
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Chapter 2

Preliminaries

2.1 Arithmetic Circuits : Our model of computation

The goal of this thesis is to formulate and understand the implications of certain
sparsity measure based conjectures for univariate polynomials, with respect to lower
bounds. Sparsity, for a univariate polynomial, is simply the number of non-zero
monomials in it. We mostly work with modified versions of sparsity, the details of
which will be outlined in the following chapter. The model that we work with in this
setting is the most natural model of computation for polynomials : arithmetic circuits.
We define this model below [Shpilka and Yehudayoff, 2010].

Definition 2. An arithmetic circuit is a directed acyclic graph with a unique sink
vertex called the root. The source vertices are labelled by either formal variables or
field constants, and each internal node of the graph is labelled by either + or ×. Nodes
compute formal polynomials in the input variables. The edges entering + nodes may also
have field constants on them in order to allow the computation of F-linear combinations.
The polynomial computed by the circuit is the polynomial computed at the root.

Without loss of generality, we can assume the circuit to be layered, with edges
only between successive layers. If we denote the polynomial computed by a circuit
as f , then we shall denote the polynomial computed at any internal node g as fg. Let
us now consider some parameters with respect to a given circuit C with which we
will work frequently.

• The size of a circuit is the number of nodes and edges in the circuit.

• The depth of a circuit is given by the length of the longest path from the leaf
layer to the root.

• The degree of any node g is the total degree of the polynomial fg computed at
the node (The total degree of a polynomial is defined as the degree of the highest
degree monomial it contains in a dense representation. For example, the total
degree of x3

1x2
3 + x4

4x2
1 + x2

1 + 1 is 6). We can assume that the root is a + gate, since
we do not make any assumptions about the reducibility of the polynomial.

• The degree of a circuit is the maximal degree of a gate in the circuit. Note that
this is the syntactic degree of the polynomial computed at the root and may not
be equal to the total degree.



6 Chapter 2. Preliminaries

2.2 Valiant’s Algebraic Complexity Classes

We shall now introduce some of the complexity classes that we would be referring
to quite often. These algebraic complexity classes were introduced by Leslie Valiant
[Valiant, 1979], [Valiant, 1982] to be the algebraic analogues of the classical complex-
ity classes P and NP (which are defined with respect to Turing Machines as models of
computation, as opposed to arithmetic circuits). Let us define the algebraic analogue
of P below.

Definition 3. VP (also called class of p-bounded or p-computable polynomials)

A family of polynomials { fn} over a base field F, is said to be p-computable if
∃ a polynomial g ∶ N Ð→ N, such that ∀ n , the number of variables as well as
the degree of fn is upper bounded by g(n) and there is an arithmetic circuit of
size at most g(n) computing fn. The class of all p-computable polynomial over
a field F is known as VPF (abbreviation for Valiant’s P).

Notice that for a polynomial to be in VP, we need both the degree and the circuit
size to be polynomially bounded. Valiant also defined the algebraic analogue of NP,
capturing the notion of a "witness" instance by that of a "witness" polynomial. We
define this class below.

Definition 4. VNP (also called class of p-definable polynomials)

A family of polynomials { fn} over a base field F is said to be p-definable if ∃ a
polynomial family {gn} ∈ VP, gn ∈ F [x1, x2, ..., xu(n)], such that ∀ n :

fn (x1, x2...., xr(n)) = ∑
t∈{0,1}s(n)−r(n)

gn (x1, x2, ..., xr(n), t1, t2, ..., tr(n)−s(n))

The class of p-definable polynomials over a field F, is known as VNPF (abbre-
viation for Valiant’s NP).

The following inclusion is obvious from the above definitions :

VPF ⊆ VNPF

for any field F.

The degree restriction for the polynomials in VP is imposed because the model
wishes to capture the notion of efficient evaluation of polynomials at points in the
base field. For example, consider a polynomial of exponential degree such as x2n

y2n

over F2. This can be computed by a polynomial sized arithmetic circuit by repeated
squaring but the value of the polynomial at (2, 2) cannot be computed by a polyno-
mial sized Boolean circuit (with standard Boolean operations). Also, the following
lemma due to Strassen [Strassen, 1973] shows that we can assume, without loss of
generality, that an arithmetic circuit does not compute intermediate polynomials of
degree superpolynomial in the size of the output.
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Theorem 2 (Homogenization). Let f be an degree d n-variate polynomial com-
puted by a circuit C of size s. Then, for every 0 ≤ i ≤ d, there is a homogeneous
arithmetic circuit Ci of size at most O (sd2), that computes the degree i homoge-
neous part of f (the sum of all monomials of degree i in f ).

A very important family in VP is the determinant family, denoted by DETn. This
is the symbolic determinant of an n × n matrix with the (i, j) − th entry being xij.
Explicitly, this polynomial can be written as :

DETn = ∑
σ∈Sn

sgn(σ)
n
∏
i=1

xiσ(i)

The class VNP has been defined to mimic NP in the sense that the {0, 1}-vector t
can be thought of as a "witness" and summing over all the witnesses can be thought
of as the arithmetic analogue of searching for a witness. Perhaps the most important
class of polynomials in VNP is the family of symbolic permanents, which we denote
as PERn, which is the permanent of a symbolic n × n matrix. Formally, the dense
representation of the permanent is written in the form :

PERn = ∑
σ∈Sn

n
∏
i=1

xiσ(i)

The permanent function has a very nice combinatorial interpretation : the permanent
of the adjacency matrix of an bipartite graph equals the number of perfect matchings
on the graph. Another interesting family in VNP is the class of hamilton cycle polyno-
mials, denoted by HCn. This is defined as :

HCn =∑
σ

n
∏
i=1

xiσ(i)

where the sum is over all cycles σ ∈ Sn of length n. The HCn evaluated at the adja-
cency matrix of a digraph equals the number of its hamiltonian cycles.

Just like we have the notion of reduction between algorithms/Turing Machines
in classical complexity in the form of Turing or Karp reducibility, we also have the
notion of reducibility between polynomials in the form of projections, which we
define below.
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Definition 5. A polynomial f in m variables (over a base field F) is called a
projection of a polynomial in n variables g (over a field extension K of F) (m ≤ n)
, which we denote as f ≤ g, if f can be written as :

f (x1, x2, ..., xm) = g (y1, y2, ..., yn)

where yi ∈ F∪ {x1, x2, ..., xm}.

The following is a natural extension of the above definition to families of polyno-
mials.

Definition 6. A polynomial family f = { fn} is said to be a p-projection (short
for polynomial projection) of another polynomial family g = {gm} (written as
f ≤p g) if ∃ a polynomially bounded (on both sides) function s ∶ N → N , such
that for large enough n0 :

fn ≤ gs(n) ∀ n ≥ n0

The classes VP and VNP are clearly closed under p-projections i.e if f is a polyno-
mial in VP (or VNP), then any p-projection of f is also in VP (or VNP). Now, anal-
ogous to the notion of NP-completeness, we define completeness in the arithmetic
setting.

Definition 7. A family g in VNP is said to be VNP-complete if f ≤p g ∀ families
f ∈ VNP.

The following result due to Valiant [Valiant, 1979], [Valiant, 1982] is one of the
most central to algebraic complexity.

Theorem 3. The family HC of hamiltonian cycle polynomials is VNP-complete.
If the base field F does not have characteristic 2, then the family of symbolic
permanents PER is also VNP-complete.

Valiant also showed that the family of symbolic determinants is VP-complete with
respect to quasi-polynomial projections. Precisely stated, the theorem is as follows.
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Theorem 4. For any family { fn} in VP, ∃ a function s ∶ N →N, satisfying s(n) =
nO(log n) such that fn is a projection of DETs(n).

The notion of projection is one that captures "hardness" of one problem relative
to the other. Stated this way, the family PER and HC are the "hardest" polynomial
families in VNP.

The celebrated conjecture in classical complexity is the P vs. NP problem. An
analogue was suggested by Valiant and is now known as Valiant’s Hypothesis.

Conjecture 1. VP ≠ VNP.

It is clear that Valiant’s Hypothesis is true iff PER is not p-computable. In fact,
showing any VNP-complete family is not p-computable proves Valiant’s Hypothe-
sis.

2.3 Lower Bounds

One of the major goals of algebraic complexity theorists is to prove lower and upper
bounds on the size of circuits computing a given family of polynomials. The state
of lower bounds for general circuits has not improved since the following result of
Baur and Strassen [Baur and Strassen, 1983].

Theorem 5. Any fan-in 2 circuit that computes the polynomial f = xd+1
1 + xd+1

2 +

⋯+ xd+1
n has size Ω (n log d).

A fan-in 2 circuit is one in which each node has indegree 2. However, recently in
[Chatterjee et al., 2019] an improvement over this bound was given for a large class
of circuits called arithmetic branching programs (ABP). Let us define this model first.
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Definition 8. An algebraic branching program (ABP) is a layered graph with a
unique source vertex (call is s) and a unique sink vertex (call it t). All edges
move from layer i to layer i+ 1 and each edge is labelled by a linear polynomial.
The following is the polynomial computed by the ABP :

f = ∑
p∶s→t

weight(p)

where the sum is over all paths p from the source to the sink and the weight of a
path is defined as the product of the labels over the edges in p.

The following is the relevant theorem from [Chatterjee et al., 2019]. that improves
on the lower bound of Strassen for the special case of ABPs :

Theorem 6. Let F be a field and let char (F) ≠ n. Then any ABP over F comput-

ing the polynomial f =
n
∑
i=1

xn
i is of size at least Ω (n2).

Furthermore, when the ABP’s edge labels are allowed to be polynomials of de-
gree at most d, then the ABP computing f has size at least Ω (n2

d ).

Existing lower bound proofs mostly follow the same template, which we outline
below. The outline was first followed by a a seminal result of Kalorkoti [Kalorkoti,
1985]. Note that if the underlying graph in an arithmetic circuit class is a tree, rather
than a directed acyclic graph, then such circuits are known as arithmetic formulas.

Theorem 7. Any arithmetic formula computing PERn or DETn requites Ω (n3)

size.

The proof follows the following main steps steps :

1. Setup : Suppose we have a polynomial f ∈ F [X] and a subset of varables Y ⊆ X.

Write f as f =
t
∑
i=1

figi, where g′is are monomials in the variable set Y and fi’s

are polynomials in the complement set X ∖ Y. The transcendence degree of

{ f1, f2, ..., ft} is denoted by tdY( f ). For a fixed partition X =
r
⊍
i=1

Xi , the measure

is defined as :
Ψ[Kal] ∶ F [X]Ð→Z

Ψ[Kal] ( f ) =
r
∑
i=1

tdXi ( f )

2. Show that Ψ[Kal] ( f ) measure is small for every f that can be computed by a
small formula.

3. Show that Ψ[Kal] (PERn) and Ψ[Kal] (DETn) is large.
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Clearly, steps 2 and 3 imply that the formula-size of determinant/permanent is
large. Here, the notions of small and large are of course subjective, tailored to the kind
of lower bound one might wish to prove. Most major lower bound proofs until now
have followed this same template, albeit with different notions of measure [Kayal
and Saptharishi, 2014] :

1. Basic Decomposition : Consider a circuit class C. For every polynomial com-
puted by a circuit C ∈ C, decompose f as a small sum of building blocks.

For example, in the ΣΠΣ circuits, the building blocks are the products of lin-
ear polynomials that make up the bottom ΠΣ part.

2. Constructing the Complexity Measure : Construct a map Ψ ∶ F [X] Ð→ Z≥0
which is sub-additive :

Ψ ( f1 + f2) ≤ Ψ ( f1)+Ψ ( f2)

More often than not, Ψ is the rank of a large matrix with entries being linear
functions in the coefficients of f . Thus, the sub-additive condition is satisfied
for free.

3. Potential Usefulness of Measure : After constructing the measure Ψ, we need
to show that it is small on the building blocks. Also, show that Ψ ( f ) is large on
a random polynomial f .

4. Explicit Lower Bound : Find an explicit polynomial f for which Ψ ( f ) is large.

There are a couple of remarks that are to be made here. Firstly, we have not made
precise what we mean by an explicit polynomial, in step 4. In the case of our prob-
lem, which we shall investigate in this thesis, we will show that this requires deep
thought and an extensive calculations. So, we shall shed more light on this in the
later chapters.

Secondly, one may be curious about the usefulness of showing that the measure is
large on a random polynomial. While this is not an important step in the proof, this
shows the potential usefulness of a measure as it means that there are a large number
of probable candidate polynomials for which the measure attains a large value and
showing any one of them to be explicit would work.

Let us consider a simple example from [Saptharishi, 2020] to demonstrate the

above steps. We look at lower bounds on the size of ΣΠ circuits. Suppose f =
r
∑
i=1

mi

where mi’s are monomials. Let Ψ denote the measure that simply counts the number
of monomials. Clearly, Ψ ( f ) ≤ r for any f that is computed by a ΣΠ circuit of size s.
Now, consider a polynomial g = (x1 + x2 + ...+ xn)

n. The number of monomials in g
is (

2n−1
n−1 ) which is nΩ(n) by Stirling’s approximation. Thus, this gives a lower bound

of nΩ(n) on ΣΠ circuits computing f .

2.3.1 Some results on lower bounds

The following are some seminal results on lower bounds (other than the one men-
tioned already) that use this measure-based approach :
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1. The 2Ω(n) lower bound of [Grigoriev and Karpinski, 1998] for depth-3 circuits com-
puting DETn or PERn over a finite field F with char(F) ≠ 2 : This method con-
sidered the matrix Mk ( f ) of the k-th order partial derivatives of F : the rows
are indexed by elements of Fn2

, the columns are indexed by the k-th order
partial derivatives and the (i, j)-th entry is given by the evaluation of the k-th
order partial derivative w.r.t xj at the point of the row index i. For any set
S ⊆ Fn2

, denote the matrix Mk (S, f ) to be matrix that takes only those rows
from Mk ( f ) whose indices are in S . The complexity measure was defined to
be rank (Mk (S, f )).

2. The nΩ(log n) lower bound of [Raz, 2009] for multilinear formulas computing DETn
or PERn : Consider the polynomial f ∈ F [X]. For a partition of variables X =

Y⊍Z, let MY,Z denote the following matrix : rows indexed by monomials in Y,
columns indexed by monomials in Z and the MY,Z(i, j) = coeff f (mi(Y) ⋅mj(Z))

where coeff f (m) denotes the coefficient of the monomial m in f . The measure
was defined as rank (MY,Z( f )).

3. The 2Ω(
√

n) lower bound of [Gupta et al., 2014] for any depth-4 ΣΠO(
√

n)ΣΠ
√

n

circuit computing DETn or PERn : Denote by ∂=k ( f ), the set of al k-th order
partial derivatives of f and x≤l , the set of all monomials of degree at most l. The
shifted partials of f , denoted by (⟨∂=k( f )⟩≤l), is the vector space V spanned by
{x≤l ⋅ ∂=k ( f )}. The measure is defined as dim (V).

2.3.2 Univariate Lower bounds

[Bürgisser, Clausen, and Shokrollahi, 1997] showed that for explicit polynomials
d
∑
i=0

√pixi requires circuits of size Ω (
√

d/ log d), where pi is the i-th prime. [Strassen,

1974] showed that for integral coefficients, the polynomial
d
∑
i=0

22i
xi requires circuits of

size Ω (
√

d/ log d). However, while these polynomials can be converted to exponen-
tially hard multilinear polynomials, which is what we need for a proof of Theorem
19, they fail to be explicit (in what exact sense, will be pointed out in Chapter 4).
Thus, we consider different polynomial families in our study.

[Koiran, 2011] implicitly showed that if there exists a univariate polynomial family

fd(x) of degree d, such that any representation of the form fd(x) =
s
∑
i=1

ci p
ei
i where

sparsity of pi ≤ t and arbitrary ei’s requires s ≥ (d/t)Ω(1) , then VP ≠ VNP. In the case,
where deg(pi) ≤ t , a lower bound of Ω (

√
d/t) is known due to [Kayal et al., 2015]

(where one proof they give uses the shifted partial derivative approach mentioned
earlier). However, notice that this is not even close to the original hypothesis, where
t is the sparsity (Consider a polynomial of the form xd +1. It has degree d but sparsity
only 2. Thus, the asymptotic sparation between degree and sparsity could be infinite
for a polynomial family). For deg(pi) ≤ 1, Ω(d) lower bounds are known for certain
special families [Garca-Marco and Koiran, 2017].
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2.4 Defining the Sparsity-based Measures

2.4.1 The Support-Union Measure

We recall the Sum of Powers model representation over a univariate polynomial ring
R[x]:

f =
s
∑
i=1

cilr
i (2.1)

In the context of arithmetic circuits, note that s is the top fan-in when f is considered

to be a circuit. For a fixed representation f of the above form, ∣
s
⋃
i=1

supp (li) ∣, repre-

sents the number of distinct monomials used in the above representation. We define
the support-union measure, denoted by UR ( f , r, s), as follows :

UR ( f , r, s) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

min
f=

s
∑
i=1

ci lr
i

∣
s
⋃
i=1

supp (li) ∣ if such a representation exists for fixed r and s

∞ otherwise

Clearly, this measure is subadditive. Also, over fields, note that U
F
( f , r, s) ≤ UF ( f , r, s),

since a representation over a field extension might allow a smaller representation be-
cause of possible larger number of cancellations.

2.4.2 The Sparsity-Sum Measure

We define a second, coarser measure for the SOP representation. The Sparsity-Sum
measure for the SOP representation of a polynomial f over a ring R, denoted by
SR ( f , r, s), is defined as follows :

SR ( f , r, s) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min
f=

s
∑
i=1

ci lr
i

(
s
∑
i=1

∣li∣1) if such a representation exists for fixed r and s

∞ otherwise

Here, ∣li∣1 denotes the sparsity of the polynomial l1 and hence, the name of the mea-
sure. Notice that SR (⋅) ≥ UR (⋅), for any polynomial f and fixed r, s, over any ring
R.

2.5 Depth-Reduction

In Chapter 3, we use depth reduction results to establish a striking connection be-
tween Conjecture 2 and Valiant’s Hypothesis. Depth-reduction of any given formula
to an equivalent (i.e computing the same polynomial) formula of depth logarithmic
in the size of the original formula was obtained by [Brent, 1974]. Later on, in a land-
mark paper, Valiant, Skyum, Berkowitz and Rackoff [Valiant et al., 1983] showed that
any arithmetic circuit of size s computing a polynomial of degree d in n-variables
can be converted into an equivalent circuit of depth O(log d) and size poly(s, n, d)
i.e only at a cost of polynomial blow up in size. This will be an important starting
point for our proof of Theorem 19.
A further striking result was obtained by [Agrawal and Vinay, 2008] and further im-
proved by [Koiran, 2012] and [Tavenas, 2015] who showed a reduction to circuit of
constant depth (depth-4) with only a super polynomial blow up in size. The proof
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technique used here will be crucial in our proof of Theorem 19.
The current state of the art in depth reduction is the result obtained [Gupta et al.,
2016] who showed that any n-variate degree d polynomial over rationals, that can
be computed by a circuit of size s can also be computed by an equivalent depth-3

circuit of size sO(
√

d).

2.5.1 Some useful results

We shall use the following inequality involving binomials in our work :

Lemma 1. For n ≥ k > 0, we have :

k
∑
i=0

(
n
k
) ≤ (

en
k
)

k

For sake of completion, we include a proof.

Proof. For x = k
n :

k
∑
i=0

(
n
i
) ≤

1
xk

k
∑
i=0

(
n
i
)xi

≤
(1+ x)n

xk

However, (1+ x) ≤ ex ∀ x ≠ 0. This gives us :

k
∑
i=0

(
n
i
) ≤

exn

xk

Plugging in the value of x in the R.H.S gives us the desired bound.

We will also use the following result for asymptotic analysis.

Lemma 2. [Bertrand’s Postulate] For any n ∈ N, there exists a prime in the inter-
val [n, 2n].
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Chapter 3

The Sparsity Measures and
Unconditional Lower Bounds

In the previous chapter, we mostly spoke of polynomials over a field. However, in
this chapter, we will mostly adopt the more general setting of polynomials over a
ring R. Consider a univariate polynomial f ∈ R [x] and a positive integer r. We say
that f is a sum of r-th powers of polynomials if ∃ constants ci ∈ R, such that f admits
the following representation, which we shall call the Sum of Powers (SOP) model :

f =∑
i

cilr
i

for some li ∈ R[x]. Firstly, we note that this representation is not unique. Consider

the polynomial expression x4 + 4x2 = ( 1√
2
(x2 + 2x))

2
+ ( 1√

2
(x2 − 2x))

2
, which is the

sum of two squares written in two different ways.

We wish to investigate two measures on the SOP model in this thesis : the support-
union measure and the sparsity-sum measure. We will mostly focus on two candidate

polynomial families fd ∶= (x + 1)d and gd ∶=
d
∑
i=1

2i2
xi. These two polynomials have

nice behavior in the sense that they are explicit under no/mild standard complexity
theoretic assumptions.

In this chapter, we’ll show that the SOP model is complete for a fixed r, using the
two different proofs. The first representation, using interpolation, will be crucial in
the proof of an upper bound in this chapter (Theorem 10) and when we establish the
connection between Conjecture 2 and Valiant’s Hypothesis. The second proof brings
the idea of sumsets into play which we will revisit in Chapter 5, where we study the
special case of Sum of Squares representation.

We present Conjecture 2, which claims that if we represent specific explicit families
of polynomials as sum of slow -growing powers of polynomials, then the measures
that we define must be large with respect to such a representation. We further prove
an unconditional lower bound for our two measures over any localized integer ring.

3.1 Completeness of the Sum of Powers model

For a fixed r, sum of r-th powers of polynomials is a complete model in the case R = F,
where F has 0 or large characteristic [Dutta, Saxena, and Thierauf, 2020]. By a com-
plete model, we mean that any polynomial can be computed in this model, without
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any restrictions on size of the expression (in this case, the arity of the sum). For a
simple example, notice that since every polynomial is a sum of monomials the ΣΠ
representation is trivially complete. We present the proof , by explicitly showing
how to represent a polynomial in the SOP (sum of powers) model, in two different
ways. The first proof is based on interpolation and the second is based on the idea of
sumsets. First, we need the following well known lemma for special matrices known
as Vandermonde matrices.

Lemma 3. Consider an n × n matrix M of the form :

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 α0 α2
0 ⋯ αn−1

0
1 α1 α2

1 ⋯ αn−1
1

⋮ ⋮ ⋮ ⋮ ⋮

1 αn−1 α2
n−1 ⋯ αn−1

n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then,
det (M) = ∏

0≤i<j≤n−1
(αj − αi)

Theorem 8. Let F be a field of zero or large characteristic. There exists distinct
λi ∈ F such that for any f (x) ∈ F[x] and i ∈ [r], we have :

f i
(x) =

r
∑
j=0

cij ( f (x)+ λj)
r cij ∈ F

Proof. Consider the polynomial ( f (x)+ t)r. Here t is another different indetermi-
nate. Using the binomial theorem, we can write :

( f (x)+ t)r
=

r
∑
i=1

(
r
i
)ti f r−i (3.1)

As usually done in interpolation, we choose r + 1 different λj and get r + 1 equations
from (1), by plugging in t = λj. This can be represented in the matrix form as Ay = b,
where :

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
r
0)λ0

0 (
r
1)λ0 ⋯ (

r
r)λr

0
(

r
0)λ0

1 (
r
1)λ1 ⋯ (

r
r)λr

1
⋮ ⋮ ⋮ ⋮

(
r
0)λ0

r (
r
1)λr ⋯ (

r
r)λr

r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
f
⋮

f r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( f (x)+ λ0)
r

( f (x)+ λ1)
r

⋮

( f (x)+ λr)
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The determinant is invariant under the operation of adding scalar multiples of rows/columns
to rows/columns respectively. This, coupled with the property of Vandermonde ma-
trices, we get :

det (A) =
r
∏
i=0

(
r
i
) ∏

0≤i<j≤r
(λj − λi)
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Since the λj’s are distinct, det (A) ≠ 0. Thus, A is invertible. Hence, we have y =

A−1b. Let the (i + 1)-th row in A−1 be [ci0 ci1 ⋯ cir]. Then, we have :

f i
(x) =

r
∑
j=1

cij ( f (x)+ λj)
r

The second representation uses the idea of sumsets. The notion is central to the
field of additive combinatorics [[Lovett, 2017] is a good survey for appplications of
additive combinatorics to Theoretical Computer Science].

Definition 9. Let A and B be subsets of G, an additive group. The sumset of A
and B is defined as :

A + B ∶= {g ∈ G ∶ ∃ a ∈ A and b ∈ B, such that g = a + b}

Usually, the sets that are considered are Z, Z/nZ or R. When considering a field
F, we simply consider the underlying abelian group structure. Also, by nA, we
denote the n-fold iterated sumset of A :

nA ∶= A + A +⋯+ A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

We wish to construct a small-support union representation of a d-degree polynomial
f as a sum of r-th powers, where r is a constant. The idea is to consider a set B such
that rB covers [d]. In particular, ∃ a unique non-negative integer t such that :

(t − 1)r
≤ d + 1 ≤ tr (3.2)

We consider the following set B :

B = {aitk
∣ ai ∈ [t − 1], b ∈ [r − 1]}

For each t and k, we have a distinct element of B, hence ∣B∣ = rt. From (2), we get
t = O (d1/r). So, ∣B∣ = O (r ⋅ d1/r). Pick any integer a ∈ [d]. The base-t representation of
a has at most r elements from B. Thus, rB ⊇ [d].

Also, notice that the largest element of B is (t − 1) ⋅ tr−1. Since, (d+ 1) ≤ tr, we have
that, for any δ > 0 :

t ≤ (1+ δ) (d + 1)1/r

Thus, for any c ≥ 0, we have :

(t − 1) tr−1
≤ c (d + 1)

Thus, the largest element of rB is r ⋅ (t − 1) tr−1 = O (d). We now prove a lemma that
demonstrates how to use this setup to find a small-support union of f .
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Lemma 4. Let F be a field of zero or large characteristic. Let m ∶= (t − 1) tr−1. For
any f ∈ F[x] of degree d, ∃ li supported on B and ci ∈ F such that :

f (x) =
mr
∑
i=0

cilr
i

Proof. Write li (zi, x) = ∑
j∈B

zijxj, for distinct intermediates zij ∀ i, j. We have degx (li) =

m. There are mr + 1 polynomials Qj over ∣B∣ many variables of degree r such that we
have :

li (zi, x)r
= ∑

j∈[mr]
Qj (zi) xj

∀i ∈ [d]

Clearly, Qj’s are F-linearly independent. Now, suppose f = ∑
i∈[d]

fixi. Define f̂ to be a

mr × 1 row-vector over F and consider A ∈ F[z](mr+1)×(mr+1) as follows :

f̂ = [ f0 f1 ⋯ fd 0 ⋯ 0]

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q0 (z0) Q1 (z0) ⋯ Qmr (z0)

Q0 (z1) Q1 (z1) ⋯ Qmr (z1)

⋮ ⋮ ⋮ ⋮

Q0 (zmr) Q1 (zmr) ⋯ Qmr (zmr)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We want to find the zij = αij ∈ F, and ĉ = [c0 c1 ⋯ cmr] ∈ F1×mr such that :

∑
i∈[mr]

cili (α, x)r
= ∑

i∈[d]
fixi

⇐⇒ ĉ ⋅ A∣z=α ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
x
⋮

xmr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= f̂ ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
x
⋮

xmr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒ ĉ ⋅ A∣z=α = f̂

Since, zi are distinct variables, the first column of A consists of different variables at
each co-ordinate and the Qj’s are F-linearly independent, therefore det(A) is not the
identically zero polynomial. Thus, by the Schwartz-Zippel lemma, for random αij,
plugging in zij = αij gives us an invertible matrix A∣z=α. Since a random α works, at
least one such α exists. Pick such α.Thus, we get :

ĉ = (A∣z=α)
−1
⋅ f̂

Thus, we get our required identity :

f (x) = ∑
i∈[mr]

ci ⋅ li (α, x)r
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3.2 Analysis of the Support-Union measure for specific cases

We recall the Sum of Powers model representation over a univariate polynomial ring
R[x]:

f =
s
∑
i=1

cilr
i (3.3)

We recall the support-union measure, denoted by UR ( f , r, s), :

UR ( f , r, s) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

min
f=

s
∑
i=1

ci lr
i

∣
s
⋃
i=1

supp (li) ∣ if such a representation exists for fixed r and s

∞ otherwise

We wish to investigate this measure for the polynomial family : fd ∶= (x + 1)d.
First we make a couple of small observations about this measure :

• In the minimal representation, consider the number of distinct monomials
used in the representation. This is exactly the measure defined above. Note
that, we have the following very simple inequality for sumset estimates :

∣A + B∣ ≤ ∣A∣ ⋅ ∣B∣

By, induction :
∣nA∣ ≤ ∣A∣

n

Let S be the set of indices of distinct monomials in a univariate g. To consider
the number of monomials in gk, we need to consider the set kS. But, this is
upper bounded by ∣S∣k. By a simple extension, this argument shows :

UR ( f , r, s)r
≥ ∣supp ( f ) ∣

⇐⇒ UR ( f , r, s) ≥ ∣supp ( f ) ∣1/r

This the first trivial lower bound that we obtain on the measure U for any f .

• For large s, i.e for any s ≥ c(d+1), for any c > r, Lemma 4 shows that, UF ( fd, r, s) ≤
O (d1/r). The above argument gives a matching lower bound. So, for large s,
we have UF ( fd, r, s) = Θ (d1/r).

Notice that one might wonder if the case that UR ( f , r, s) = ∞ is ever possible ?
Of course, we have shown that for s ≥ r + 1, this measure is finite by Theorem 8.
However, it is indeed possible that such a representation might not exist. To see this,
consider the following, which is a polynomial analogue of the legendary Fermat’s
Last Theorem.

Theorem 9. [Polynomial Fermat’s Last Theorem] Let f (x), g(x), h(x)) ∈ C[x] be
co-prime polynomials satisfying

f n
+ gn

= hn

for some n ≥ 3. Then, these polynomials are constant.
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Proof. To prove this, we need to prove the following Lemma, known as the Mason-
Stother’s Theorem.

Lemma 5. [Mason Stother’s Theorem] Suppose that f (x), g(x) and h(x) are co-
prime polynomials and not all of them are constant. If f + g + h = 0, then :

max (deg( f ), deg(g), deg(h)) ≤ Z( f gh)− 1

where Z( f ) denotes the number of distinct complex roots of f .

Proof. Note that if f (x) = (x − α1)
e1(x − α2)

e2⋯(x − αr)
er then :

gcd ( f , f ′) = (x − α1)
e1−1

(x − α2)
e2−1

⋯(x − αr)
er−1

Thus,
deg (gcd ( f , f ′)) = deg( f )− Z( f )

Notice that taking the derivative on both sides of f + g+ h = 0, and doing some trivial
compuation, one can obtain f h′ − f ′h = f ′g− f g′. Without loss of generality, assume f
and g are non-constant. Also, since f and g are co-prime, we must have f g′ − f ′g ≠ 0.

Note that gcd ( f , f ′) and gcd (g, g′) divide f ′g − f g′ and from that and the discus-
sion in the earlier paragraph, we can conclude gcd (h, h′) divides f ′g − f g′. Also, we
have :

f , g, h co-prime Ô⇒ gcd ( f , f ′) , gcd (g, g′) , gcd (h, h′) are co-prime.

So gcd ( f , f ′)× gcd (g, g′)× gcd (h, h′) divides f ′g − g′ f . Thus, we can conclude :

(deg( f )− Z( f ))+ (deg(g)− Z(g))+ (deg(h)− Z(h)) ≤ deg ( f ′g − f g′) ≤ deg( f )+deg(g)− 1

Ô⇒ deg(h) ≤ Z( f )+ Z(g)+ Z(h)− 1 ≤ Z( f gh)− 1

Similarly, we can obtain exactly the same inequalities for f and g. This gives us :

max (deg( f ), deg(g), deg(h)) ≤ Z( f gh)− 1

We will now prove Theorem 9 using the above lemma. Assume that such a rep-
resentation is possible. Then, we have the following equations, using Lemma 5 for
f n, gn and −hn :

ndeg( f ) ≤ Z ( f ngnhn
)− 1 ≤ Z( f gh)− 1 ≤ deg( f )+deg(g)+deg(h)− 1

ndeg(g) ≤ Z ( f ngnhn
)− 1 ≤ Z( f gh)− 1 ≤ deg( f )+deg(g)+deg(h)− 1

ndeg(h) ≤ Z ( f ngnhn
)− 1 ≤ Z( f gh)− 1 ≤ deg( f )+deg(g)+deg(h)− 1
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Adding all the above inequalities, we get :

n (deg( f )+deg(g)+deg(h)) ≤ 3 (deg( f )+deg(g)+deg(h))− 3

which is a contradiction, since n ≥ 3 ! Thus, our proof is complete.

Notice that for the representation :

(x + 1)3r
= l6r

1 + l6r
2 r ≥ 1

Theorem 9 is applicable. This is because if l1 = (x + 1)e1 g(x) and l2 = (x + 1)e2 h(x)
(gcd(g(x), x + 1) = gcd(h(x), x + 1) = 1), then e1 = e2 , otherwise we’ll get (x + 1)e3

divides h(x), where e3 ≥ 1. which is clearly a contradiction ! Thus, without loss of
generality, we may assume that l1, l2 and x + 1 are co-prime . Thus, Theorem 9 is
applicable and there is no such representation. Hence,

UC ( f3r, 6r, 2) =∞

for any r ≥ 1.

3.2.1 Upper and Lower Bounds

For s = 2, we present a strong lower bound of Ω (d/r) and for s = (r + 1) (which is
a case of small s), we present an upper bound of O (d/r + r) on UF ( fd, r, s) [Dutta,
Saxena, and Thierauf, 2020].

Theorem 10. [Upper Bound] For any d ∈N and r ≤ d, we have UF ((x + 1)d, r, r + 1)
≤ d

r + r.

Proof. Suppose d = r ⋅ k + t, where t ≡ d (mod r) and k ∈ [ d
r ]. From Theorem 8, it

follows that ∃ ci, λi ∈ F, such that :

(x + 1)d
= ((x + 1)k

)
r
⋅ (x + 1)t

= ((x + 1)k
)

r
⋅
⎛

⎝
∑

i∈[r]
ci ((x + 1)t

+ λi)
r⎞

⎠

= ∑
i∈[r]

ci ((x + 1)t+k
+ λi (x + 1)k

)
r

= ∑
i∈[r]

cilr
i

Here, li = (x + 1)t+k
+ λi (x + 1)k. We have :

∣ ⋃
i∈[r]

supp (li) ∣ ≤ t + k + 1 ≤
d
r
+ r

Hence, we are done.
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As mentioned before, U
F
( f , r, s) ≤ UF ( f , r, s), so for the sake of proving a lower

bound on the measure, we can assume, without loss of generality, that F is alge-
braically closed. Let us assume we are working over C. Note that, over C, the r-th
root of -1 exists, for any r. We present the following lower bound :

Theorem 11. [Lower Bound] For any d ≥ 1 and any r ≥ 2, we have :

UC ( fd, r, 2) ≥
⎧⎪⎪
⎨
⎪⎪⎩

⌈d/r⌉+ 1 if r∣d or r = 2
∞ otherwise

To prove this theorem we prove a couple of lemmas first.

Lemma 6. For a fixed d ≥ 1 and r ≥ 3, if (x + 1)d
= lr

1 − lr
2 for some li ∈ C[x], then

l1 and l2 share a non-tivial g.c.d .

Proof. Assume l1 and l2 are co-prime. We have the following factorization :

lr
1 − lr

2 =
r−1

∏
i=0

(l1 − ζ i
rl2)

where ζr is a primitive r-th root of unity. Since, lr
1 − lr

2 = (x + 1)d, (x + 1) must divide
some of the factors. Suppose, it divides, for i ≠ j, (l1 − ζ i

rl2) and (l1 − ζ
j
rl2). Thus,

(x + 1) divides their linear combinations, particularly (x + 1) ∣l1, l2. Since, l1 and l2
are co-prime, it implies that (l1 − ζ i

rl2) = c ⋅ (x + 1)d for a unique i ∈ [r − 1] and for

every j ≠ i, (l1 − ζ
j
rl2) must be a constant. Again, by taking an appropriate linear

combination, it implies that l1 and l2 are constants. This is a contraction, since we
assumed that d ≥ 1.

An immediate corollary is as follows which resolves Theorem 11, for r ≥ 3.

Lemma 7. Consider 3 ≤ r ≤ d. Then, (x + 1)d
= lr

1 − lr
2 iff r∣d. Also, ∃ c1 and c2 ∈ F,

such that li = ci (x + 1)d/r.

Proof. Denote by g(x), the non-trivial g.c.d of l1 and l2 (Lemma 6 guarantees it’s
existence). This implies gr∣(x + 1)d. Thus, g(x) is a power of (x + 1). By dividing out
the g.c.d, we get a new equation :

(x + 1)d′
= l̂r

1 − l̂r
2

which has exactly the similar form as the initial equation. Thus, by doing this repeat-
edly, we get that r∣d. Also, this implies that ∃ c1 and c2 such that li = ci (x + 1)d/r.
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Now, we complete the proof of Theorem 11.

Proof. The case for r ≥ 2 is resolved by Lemma 7. For r = 2, we have :

(x + 1)d
= (l1 + l2) ⋅ (l1 − l2)

Thus, ∃ c1, c2 ∈ F such that (l1 + l2) = c1 (x + 1)k and (l1 − l2) = c2 (x + 1)d−k. Clealy,

UC ( fd, 2, 2) ≥ max (k + 1, d − k + 1) ≥ ⌈d/2⌉+ 1

This concludes the proof.

3.3 The Sparsity-Sum Measure is large for random polyno-
mials

Recall the Sparsity-Sum measure for the SOP representation of a polynomial f over
a ring R, denoted by SR ( f , r, s):

SR ( f , r, s) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min
f=

s
∑
i=1

ci lr
i

(
s
∑
i=1

∣li∣1) if such a representation exists for fixed r and s

∞ otherwise

From Theorem 8, we get that both the measures S and U are finite if s ≥ r + 1.
An important property of the measure S is that S is large for random polynomials.
In particular, for a random polynomial, we can consider it’s coefficients being repre-
sented by random variables that are algebraically independent. Now, consider the
SOP representation f for random f :

f =
s
∑
i=1

cilr
i (3.4)

This shows that we can consider each li having coefficients represented by polyno-
mials in the random variables making up the coefficient of f . Before we continue, we
want to define what we mean by the transcendence degree of a set of polynomials.

Definition 10. The transcendence degree of a set of polynomials S = { f1, f2, ..., fm}

∈ F [x1, x2, ..., xn] is defined as the maximal number of algebraically independent
polynomials in S.

We outline the formal proof below :

Lemma 8. Consider a random polynomial f and it’s SOP representation as in (4).
Then,

s
∑
i=1

∣li∣1 ≥ Ω (∣ f ∣1)

implying that SF is large.
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Proof. As mentioned in the prior discussion, we can view the li as univariate poly-
nomials in x, with coefficents in the ring F [yi1, yi2, .., yiti], where the transcendence
degree of the coefficent polynomials in li is ti (this is achieved through the vari-
able reduction lemma of [Pandey, Saxena, and Sinhababu, 2018, Lemma 2.8]). This
clearly implies ∣li∣1 ≥ ti. Coefficients of lr

i are generated by algebraic combinations
of coefficients of li, thus the transcendence degree of the coefficients of lr

i is at most
ti + 1. Since, the coefficients of f are represented by random variables that are alge-
braically independent, the transcendence degree of the coefficients of f is ∣ f ∣1. Thus,
we get :

s
∑
i=1

(∣li∣1 + 1) ≥
s
∑
i=1

(∣ti∣1 + 1) ≥ ∣ f ∣1

by which we obtain SF ( f , r, s) ≥ Ω (∣ f ∣1).

Open Question 1 : Can we show UF ( f , r, s) ≥ Ω (∣ f ∣1) for random f ? The proof
from Lemma 8 does not directly go through .

3.4 The Main Conjecture and an Unconditional Lower Bound

The goal of this thesis is to study the measures UF (⋅) and SF (⋅) for very specific

special polynomials fd = (x + 1)d and gd ∶=
d
∑
i=0

2i2
xi. The aim is to see the behavior of

the measure with changing d. We had outlined the resolution of certain special cases
in the earlier section. We now make the central conjecture that is the focus of this
thesis.

Conjecture 2. Fix any arbitrarily small growing prime function r (⋅) over N such
that r (d) ≤ log∗ d-th prime . Then, ∃ a constant δ > 0 such that UF (gd, r(d), s(d)) ≥
Ω (d/rδ) for an arbitrarily small growing function s(d) = do(1).

Restricting r(⋅) to a prime function is not a very stringent requirement because
from Bertrand’s postulate, ∃ a prime in the interval [n, 2n] for every n ≥ 1 . So,
for any asymptotic argument, this extra requirement does not lead to any loss of
generality, because of the sandwich lemma.

We expect this conjecture to be true even for the family fd or the family hd =
d
∏
i=1

(x − i)d [Dutta, Saxena, and Thierauf, 2020]. It is noteworthy that the conjectured

lower bound is very tight for the family (x+1)d because we had outlined in Theorem
8 that UF ( fd, r, r + 1) ≤ O (d/r) for d and small r. The main aim of the next chapter
will be to shed light on the explicitness of the polynomial families fd and gd and to
show that Conjecture 2, if true, implies that Valiant’s hypothesis is true.

We now focus our attention to localized integer rings. First, let us define each of
those two terms.
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Definition 11. Consider a ring R. A subset S ⊂ R is said to be multiplicatively
closed if 1 ∈ S and ab ∈ S ∀ a, b ∈ S. Let S ⊂ R be a multiplicatively closed set.
Then, the relation :

(a, s) ∼ (a′, s′) ∶⇐⇒ there is an element u ∈ S such that u (as′ − a′s) = 0.

is an equivalence relation on R × S. We denote the equivalence class of a pair
(a, s) ∈ R × S as a

s . The set of all equivalence classes

S−1R ∶= {
a
s
∶ a ∈ R, s ∈ S}

is called localization of R at S.

As a primary example of localization, and the most relevant in our case, consider
when P ⊂ R is a prime ideal. The set S = R ∖ P is multiplicatively closed, because a
/∈ P and b /∈ P, implies ab /∈ P as P is a prime ideal. the resulting localization S−1R ,
denoted as RP, is called the localization of R at the prime ideal P.

Definition 12. The ring of integers of an algebraic number field K
(finite extension of Q) is the set of all integral elements contained in K. An inte-
gral element is the root of a monic polynomial with integer coefficients. This ring
is usually denoted by OK.

The simplest possible template to keep in mind is the ring Z. Also, since any
integer ∈ K and is the root a monic (linear) polynomial, the ring Z is always a subring
of OK.

Let P be a prime ideal of OK. Consider the localization (OK)P. Notice that this is
strictly larger than OK. For example, if we consider the localized ring Zp (not the
ring of p-adic integers ), it a subring of Q that has all fractions except those whose
denominators are divisible by p.

Now, we state the unconditional lower bound, proven in [Dutta, Saxena, and
Thierauf, 2020] :

Theorem 12. Consider the family gd ∶=
d
∑
i=0

2i2
xi. Fix any odd prime r and any

s ≥ 1. Fix a number field K and prime ideal P over OK such that P∣⟨r⟩OK . Then,

U(OK)P
(gd, r, s) ≥ Ω (d)

Proof. It is clear that 2i2
/∈ ⟨r⟩(OK)P

for any i ∈ [d]. To see this, assume, for the sake of

contradiction, that 2i2
∈ ⟨r⟩(OK)P

for some i ∈ [d]. Then, this implies that ∃ s ∈ (OK)P
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such that 2i2
= sr. However, this implies that s = 2i2

/r which cannot be in (OK)P as

P∣⟨r⟩OK . Thus, we get :

gd (x) =
s
∑
i=1

lr
i

Ô⇒ gd (mod ⟨r⟩(OK)P
) =

s
∑
i=1

li (xr
) (mod ⟨r⟩(OK)P

)

Ô⇒ ∣
s
⋃
i=1

supp (li (xr
)) ∣ = d + 1

Ô⇒ ∣
s
⋃
i=1

supp (li) ∣ = d + 1

Hence, we are done.

We can also prove that the same conclusion holds for fd = (x + 1)d, for specific
forms of d. Fix d = (r−1)rl−1+(r−1)rl−2+⋯+(r−1), for some prime r. The following
result is key to the proof.

Lemma 9 (Lucas’ Theorem). For non-negative m and n and a prime p, the fol-
lowing relation holds :

(
m
n
) ≡

k
∏

i=1
(

mi
ni
) (mod p)

where mi =
k
∑
i=0

mi pi and ni =
k
∑
i=0

ni pi are the base p representations of m and n

respectively.

For the sake of completion, we include a proof using generating functions, due to
[Fine, 1947].

Proof. From the property of binomial coefficients of the form (
p
i) for a prime p, we

get :
(1+X)

p
≡ 1+Xp mod p

By induction, for every non-negative integer i,

(1+X)
pi

≡ 1+Xpi
mod p
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Now, notice that :

n
∑
m=0

(
m
n
)Xn

= (1+X)
m
=

k
∏

i=0
((1+X)

pi
)

mi

≡

k
∏

i=0
(1+Xpi

)
mi

mod p

≡

k
∏

i=0

⎛

⎝

mi

∑
ni=0

(
mi

ni
)Xni pi⎞

⎠
mod p

≡

k
∏

i=0

⎛

⎝

p−1

∑
ni=0

(
mi

ni
)Xni pi⎞

⎠
mod p

≡

m
∑

n=0

⎛

⎝

k
∏
i=0

(
mi

ni
)
⎞

⎠
Xn mod p

Comparing and equating coefficients, the proof is complete.

Notice that, since (
m
n) = 0, whenever m < n, looking at the base r representation of

the given form of d and applying Lemma 9, immediately gives us :

Theorem 13. For a prime r, suppose d =
l
∑
i=0

airi where 0 ≤ ai ≤ r − 1. Then, we

have ∣(x + 1)d mod r∣1 =
l
∏
i=0

(ai + 1).

Using this theorem, the desired conclusion is obvious by using the exact steps
used in the proof of Theorem 12.
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Chapter 4

Depth Reduction, Explicitness
Criterion and Valiant’s Hypothesis

In this chapter, we focus on the striking connection between Conjecture 2 and Valiant’s
Hypothesis (Theorem 19). To do so, we use depth-reduction ideas due to [Valiant et
al., 1983] and [Agrawal and Vinay, 2008]. We give an outline of reduction of a circuit
to an equivalent log-depth (logarithmic in the degree of polynomial computed) circuit
by [Valiant et al., 1983] which only causes a polynomial blow up in size. We use this
fact to point out that in order to prove a lower bound, it is enough to assume that our
circuit is already in the form given in [Valiant et al., 1983], which has certain special
properties. We mention these properties and call such circuits as universal circuits or
circuits in normal-form.

Once, we have circuits in normal form, we use the proof technique in [Agrawal
and Vinay, 2008], particularly by slicing the circuit at a certain depth t and then
analyzing each of the top and bottom parts separately and optimizing over t.

In this chapter, we also explain in detail what we mean by explicitness of a polyno-
mial family. We do so by considering the Counting Hierarchy introduced by [Wagner,
1986] and using the setup in [Bürgisser, 2009] and [Koiran, 2011]. Roughly, we want
the j-th bit of the i-th coefficient in each polynomial of the family { fn}n∈N be com-
putable in reasonable time (i.e they belong to a reasonably small complexity class),
as a function of the parameter n, i, j.

4.1 Depth Reduction - Outline of Reduction to log depth

Depth-reduction results allow us to show that we can simulate general circuits with
low-depth circuits. The first significant result [Valiant et al., 1983], [Allender et al.,
1998] in this area is as follows :

Theorem 14. Let f be an n-variate degree d polynomial computed by an arith-
metic circuit C of size s. Then, there is an arithmetic circuit C′ computing f and
has size s′ = poly (s, n, d) and depth O (log d).

We give a short proof sketch below, following [Saptharishi, 2020].

Proof Sketch. As pointed out in [Saptharishi, 2020], we can assume, without loss
of generality, that C is a homogeneous circuit, all multiplication gates have fan-in at
most 2 and that the degree of the right child of any multiplication gate is at least as
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large as the degree of its left child (such circuits are called right-heavy circuits). For
any gate u in C, let us denote by [u], polynomial computed at the gate u. We also
denote by uL and uR, the left and right child of u, respectively. The following gate
quotients are defined :

Definition 13. For any pair of gates u, v, we define the polynomial [u ∶ v] as
follows :

• If u and v are the same nodes, then [u ∶ v] = 1.

• If u is a leaf and u ≠ v, then [u ∶ v] = 0.

• If u = u1 + u2 (i.e u is an addition gate), then [u ∶ v] = [u1 ∶ v]+ [u2 ∶ v].

• If u = u1 × u2 (i.e u is a multiplication gate), then [u ∶ v] = [u1] ⋅ [u2 ∶ v].

One can easily show since we are working with a homogeneous circuit C, [u ∶ v] is a
homogeneous polynomial of degree deg(u)−deg(v) respectively. We now define a
notion that is central to our proof.

Definition 14. For any parameter m, define the frontier at degree m, as :

Fm = {v ∶ deg(v) ≥ m, deg (vL) , deg (vR) < m}

So, Fm are the deepest nodes in the circuit that have degree at least m.

Since, we are working with homogeneous circuits, note that the degree of the poly-
nomial computed by a parent can be greater than that of the maximum degree of
polynomials computed by the children only if the gate is a multiplication gate. So,
all frontier gates are multiplication gates. The following is the crucial lemma that is
used to prove depth reduction, which can be proved by induction on the depth of
the node u.

Lemma 10. Suppose C is a homogeneous, right heavy circuit. Let m be a param-
eter such that deg(u) ≥ m. Then,

[u] = ∑
w∈Fm

[u ∶ w][w] (4.1)

Also, if u, v are nodes such that deg(u) ≥ m > deg(v), then

[u ∶ v] = ∑
w∈Fm

[u ∶ w][w ∶ v] (4.2)

The idea, thereafter, is to compute [u] and [u ∶ v] from nodes of lower degree.
adopting a top-down approach. This approach is similar to that of [Allender et al.,
1998] but contrary to that of [Valiant et al., 1983], who followed a bottom-up ap-
proach instead. We consider any u and fix m =

deg(u)
2 . Denote Fm as F(u). Using
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Lemma 10, we can write [u] as :

[u] = ∑
w∈F(u)

[u ∶ w] ⋅ [wL] ⋅ [wR]

All the terms on the R.H.S has degree at most deg(u)
2 . Note that [u] is an addition gate

and the multiplication gates feeding into it have fan-in 3 and the gate itself has fan-in
at most s. Now that we have computed [u], we need to figure out how to compute
[u ∶ v]. Since, [u ∶ v] is a homogeneous polynomial of degree deg(u)−deg(v), we set
m =

deg(u)−deg(v)
2 and consider Fm. To avoid any blowup in degree of the left child,

Lemma 10 is applied twice to obtain :

[u ∶ v] = ∑
w∈Fm

∑
x∈F(wL)

[u ∶ w] ⋅ [wL ∶ x] ⋅ (xL) ⋅ (xR) ⋅ [wR ∶ v]

The terms of R.H.S has degree at most m. Also, note that the multiplication gates
feeding into [u ∶ v] have fan-in 5 and the gate itself has fan-in at most s2.
As the degree halves at every level, it is obvious that the resulting circuit C′ that
is built in the top-down fashion has depth O (log d). For further proof details, see
[Saptharishi, 2020].

4.2 The Universal/Normal Form Circuit

The log-depth reduction procedure allows us to convert a circuit C to a shallow circuit
C′ having the following important properties :

1. alternative layers of multiplication and addition gates with the root (top-gate)
being an addition gate

2. below each multiplication layer, the associated polynomial degree at least halves

3. fan-in of each multiplication gate is at most 5

4. depth of the circuit C′ is at most O (log d) , where d is the degree of the polyno-
mial computed by the circuit C.

Definition 15. A circuit C that has the 4 properties listed above is called a uni-
versal cicuit/normal-form circuit.

We call this circuit universal because any algebraic circuit is expressible in this form
with only a polynomial blow-up in size. Each homogeneous part of a circuit of size
s computing a polynomial of degree d can be computed by another circuit of size
at most s′ = O (sd2) [Strassen, 1973]. The depth-reduction result shows that we can

compute an equivalent log-depth circuit of size at most (s′
3
). Hence, the resulting

universal circuit has size at most O (s3d6) which is a poly blow-up.

This notion will be important later in this chapter when we draw the connection
between Conjecture 2 and Valiant’s Hypothesis, since we will mostly assume that
we already have a circuit in normal-form.
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4.3 Counting Hierarchy and Explicitness of Polynomial fam-
ilies

In Chapter 2, when we had outlined the usual template that is followed by lower
bound proofs, we had mentioned the importance of finding an explicit polynomial
family f such that the measure is large on that family. Here, we shall shed more light
on what we mean by the explicitness criterion.

4.3.1 The Counting Hierarchy

The counting hierarchy was introduced by [Wagner, 1986] in order to classify the
complexity of specific combinatorial problems where counting is involved. Let us
make a few notations clear first.

Consider a pairing function denoted by ⟨, ⟩ :

{0, 1}∗ × {0, 1}∗ Ð→ {0, 1}∗

(x, y)Ð→ ⟨x, y⟩

One simple way to construct a pairing function is to duplicate each bit and insert
01 in between. We now define a counting operator C to make notation less cumber-
some.

Definition 16. Let K be a complexity class. We define C ⋅ K to be the set of all
languages A such that ∃ a language B ∈ K, a polynomial p and a polynomial-time
computable function f ∶ {0, 1}∗ →N such that ∀ x ∈ {0, 1}∗ :

x ∈ A ⇐⇒ ∣ {y ∈ {0, 1}∣p(x)∣
∣ ⟨x, y⟩ ∈ B} ∣ > f (x)

Definition 17. [The Counting Hierarchy / CH] The k-th level CkP of the count-
ing hierarchy is recursively defined by C0P ∶= P and Ck+1P ∶= C ⋅CkP. Then, we
define :

CH ∶=
∞
⋃
i=0

CkP

This construction is very similar to that of the Polynomial Hierarchy (PH), whose
constituting complexity classes are constructed by iterative and alternating applica-
tion of the operators ∃ and ∀ on the class P. Since, it is obvious that ∃ ⋅K ⊆ C ⋅K and
∀ ⋅K ⊆ C ⋅K, for any complexity class K, we get that PH ⊆ CH.

4.3.2 The meaning of explicitness

To define explicitness in our setting, let us begin by defining which integer sequences
are definable in the Counting Hierarchy, following [Bürgisser, 2009] and [Koiran,
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2011]. Let us consider sequences of integers s(n, k) , defined for n, k in unary ∈ N

and a polynomially bounded function q, such that 0 ≤ k ≤ 2q(n) and :

∀n > 1, ∀k ≤ 2q(n)
∣s(n, k)∣ ≤ 22nc

for some constant c. When we think of n and k being represented in unary, sequences
s = (s(n, k)) obeying the aforementioned inequality are referred to as sequences of
exponential bitsize.

Let ∣s∣ ∶= (∣s(n, k)∣) denote the sequence of absolute values of s. Consider the fol-
lowing languages associated with a sequence s = s(n, k) of exponential bitsize :

Sgn(a) ∶= {(1n, k) ∣ s(n, k) ≥ 0}

Bit (∣a∣) ∶= {(1n, k, j, b) ∣ the j-th bit of ∣s(n, k)∣ equals b}

Definition 18. [CH definability] A sequence s of integers of exponential bitsize
are called definable in the Counting Hierarchy iff Sgn(s) and Bit (∣s∣) ∈ CH. If both
Sgn(s) and Bit (∣s∣) ∈ CH/Poly, then we say that s is definable in CH/Poly.

Here, CH/Poly is simply the nonuniform version of the class CH (i.e with poly ad-
vice).

Definition 19. [Explicitness] We will call a polynomial family { fn}n∈N to be
CH-explicit when the coefficient of the polynomial are definable in CH.

The intuition here is that the j-th bit of the k-th coefficent should be computable
efficiently. If we write fn as fn = ∑

k
s(n, k)xk, it is easy to see why the above definition

of explicitness is extremely natural.

4.3.3 The Kronecker and Inverse Kronecker Maps

Let F≤d[x] (respectively F≤d[x]) be the ring of univariate (respectively, k-variate)
polynomials of individual degree ≤ d. The naive Kronecker map φk,d is an surjective
homomorphism from F[x] to F[x] which separates the k-variate monomials with
maximum individual degree d. The map is defined as follows :

φk,d ∶ xi Ð→ x(d+1)i−1

∀ i ∈ [1, k]. The most important property of φk,d encapsulated in the following lemma
:

Lemma 11. φk,d givers distinct weights to distinct monomials of maximum in-
dividual degree d.
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Proof. Consider a monomial of the form xe1
1 xe2

2 ⋯xek
k . Each ei ≤ d. The map φk,d acts on

the vector (e1, e2, ..., ek) as follows :

φ ∶ (e1, e2, ..., ek)Ð→
k
∑
i=1

ei ⋅ (d + 1)i−1

The domain element is nothing but taking the base (d + 1)-representation of an in-
teger where the integer is precisely the image on the right. For a fixed base r, every
integer has a unique base r-representation. This proves the claim.

Note that the R.H.S is largest when the individual degree of every variable in
the monomial is d. Thus, the above proof, when linearly extended to the case of
polynomials shows that every polynomial with individual degree at most d gets
mapped to a univariate polynomial of degree at most d + d(d + 1)+⋯+ d(d + 1)k−1 =

(d + 1)k−1. Thus, φk,d is an bijective map between F≤d[x] and F≤(d+1)k−1[x].

Now, we need to construct an inverse of this map. Intuitively, it is clear what the
map should be. Yet, for the sake of formality, let us go through the steps. Suppose we
want a map such that each xi for i ∈ [d] gets mapped to a distinct k-variate monomials
of individual degree at most dk. This inverse map, which we denote by ψk,d is a map
from F≤d[x] to F≤dk[x]. We define ψk,d as :

ψk,d ∶ xi
Ð→ xbasedk+1(i)

Here basedk+1(i) is the k-tuple (i1, i2, ..., ik) such that i =
k
∑
j=1

ij (dk + 1)j−1. As before, we

can linearly extend the map to polynomials of degree ≤ d. Therefore, it suffices to
choose a dk such that (dk + 1)k

− 1 ≥ d ≥ dk
k − 1. We choose dk ∶= ⌈(d + 1)1/k⌉− 1. By a

similar logic as in the proof of Lemma 11, it is clear that ψk,d will give distinct weights
to distinct monomials. We have φk,dk ○ψk,d = id over the right F≤d[x], where id is the
identity map. Thus, the map ψk,d, the right inverse of the map φk,dk , is naturally
called the inverse Kronecker map.

4.3.4 Are our polynomial families explicit ?

We are studying the measures defined in the previous chapter with focus on two

polynomial families fd ∶= (x + 1)d and gd ∶=
d
∑
i=0

2i2
xi. We now construct a multivari-

ate family from each of these univariate family of polynomials and check explicitness
for each.

First, we do this for the polynomial family gd, for which explicitness is easier to
argue. Taking cue from the procedure laid out is previous subsection, we apply
the inverse Kronecker map. Consider the n-variate polynomial family {Gn (x)}n
where Gn (x) = ψn,d (gd), the inverse Kronecker map applied on gd where d ∶= 2n −1.
Note from the construction in the previous subsection, that the maximum individual
degree of any variable is bounded by ⌈(d + 1)1/n⌉ − 1 = 1. Thus, Gn is an n-variate
multilinear polynomial.
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Also, d is given to us in binary, which is similar to n being provided in unary. Thus,
this setting is consisted with our earlier setting in which we defined CH-explicitness.

Lemma 12. {Gn (x)}n is CH-explicit.

Proof. Note that the coefficients of the polynomial have the form 2i2
where 0 ≤ i ≤

2n−1. We need to compute the i-th bit of the j − th coeffiecient of Gn. Clearly, as the
j-th coefficient is 2j2 , every bit except the j2-th bit is 0. Thus, in order to compute it’s
i-th bit bi, we have the simple check :

bi =

⎧⎪⎪
⎨
⎪⎪⎩

1 if i = j2

0 otherwise

Note that the bit-sizes of both i and j are bounded by O(n). Thus, the above check
takes at most O(n log n) time, using Karatsuba’s multiplication algorithm. Hence,
the family {Gn (x)}n is CH-explicit.

Now, consider the family fd and the corresponding multivariate polynomial fam-
ily {Pn (x)}n where Pn (x) = ψn,d ( fd). The CH-explicitness of this family is much
harder to argue. To do so, we use the following theorem, that was proved in [Bür-
gisser, 2009]. However, in [Bürgisser, 2009], all inputs were taken in binary. Thus the
version we use is the unary form, restated in [Koiran, 2011].

Theorem 15. Let p(n) be a polynomial and suppose (a(n, k))n∈N,k≤2p(n) is CH-
definable. Then, the following sum and product sequences b(n) and c(n) are
CH-definable :

b(n) ∶=
2p(n)

∑
k=0

a(n, k) c(n) ∶=
2p(n)

∏
k=0

a(n, k)

We show that binomial coefficients are definable in CH. This proof is very similar
to [Bürgisser, 2009, Cor 3.12] and has been demonstrated in [Dutta, Saxena, and
Thierauf, 2020].

Theorem 16. Let p(n) be a polynomial and dn ≤ 2p(n). Then, the sequence
a(n, i) = (

dn
i ) is CH-definable.
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Proof. Consider fdn = (x + 1)dn =

dn

∑

i=0
(

dn

i
)xi. Plugging x = 2dn , we get :

fdn (2dn) =

dn

∑

i=0
(

dn

i
) ⋅ 2idn

Clearly (
dn

i
) < 2dn . Hence, the bits of (

dn

i
) in the binary representation of fdn (2dn)

do not overlap for different i’s and can therefore, be read off the bit representation
of fdn (2dn). Therefore, it is enough to show that fdn (2dn) is CH-definable.

We now use Theorem 15. The only criteria left to verify is that (2dn + 1) is CH-
definable. We have demonstrated how to show this in the proof of Lemma 12.
Hence, we are done.

4.4 Depth-4 Reduction and the connection with Valiant’s Hy-
pothesis

Let us start with a criterion proposed in by [Valiant, 1979] that puts a large class of
polynomials in VNP.

Theorem 17. [Valiant’s Criterion] Suppose φ ∶ {0, 1}∗ Ð→N is a function in the
class #P/Poly. Then the family ( fn) of polynomials defined by :

fn ∶= ∑
e∈{0,1}n

φ(e)xe1
1 xe2

2 ⋯xen
n

is in VNP.

In Section 4.1, we demonstrated the depth reduction of a circuit C to another cir-
cuit C′ of size O (s3d6) of depth O (log d), where d is the degree of the polynomial
computed by the circuit C and s is it’s size. One of the important consequences of
this result is that proving bounds for O (log d)-depth circuits is sufficient to prove
bounds for general circuits. Thus, while proving a lower bound, we may assume
that we already have circuit in normal form.

Further depth reduction results were obtained in [Agrawal and Vinay, 2008], [Koiran,
2012] and [Tavenas, 2015] and these give us a reduction to constant depth circuits,
although with a slightly super-polynomial blow-up. Let us state the most relevant
result below.

Theorem 18. [Depth-4 reduction] Let f be an n-variate degree d polynomial
computed by a size s arithmetic circuit. Then, for any 0 < t ≤ d, f can be equiva-
lently computed by a homogeneous ΣΠΣΠt circuit of top-fan-in sO(d/t) and size
sO(t+d/t).
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We shall not use this theorem directly but the proof technique involved in achiev-
ing this result. Let us give a short gist of the proof technique :

• Consider the given circuit and flatten it to log-depth to get a circuit in normal
form.

• Break the circuit into two parts : the first part is composed of the topmost t lev-
els of multiplication gates and the addition gates above them and the second
part is the rest bottom part of the circuit.

• By the properties of the universal circuit, the top part computes a polynomial
of degree 5t (imagine it isolated with the bottom part being replaced by new
variables) in the polynomials computed in the bottom part. Consider it’s dense
representation.

• The degree of the bottom part is bounded by deg( f )/(3/2)t and this too can
be written as a sum of monomials in the dense form. In both this computation
and above, use the fact that the numer of monomials in a polynomial of degree
d in n variables is at most (n+d

d ).

• Optimization over the parameter t gives us the required result.

A key ingredient in the proof is the following lemma, due to [Fischer, 1994], which
allows us to convert a monomial to an exponential sum of powers.

Lemma 13. [Fischer’s trick] Let F be a field of characteristic 0 or > r. Any ex-

pression of the form g =
k
∑
i=1
∏

r
j=1 gij with deg (gij) ≤ δ can be written as g =

k′

∑
i=1

cigr
i

where k′ = k ⋅ 2r, deg (gi) ≤ δ and ci ∈ F. In particular, each gi ∈ spanF
(gi′ j ∣ j) for

some i′.

We will now prove the following theorem which establihes the connection be-
tween Conjecture 2 and Valiant’s Hypothesis:

Theorem 19. Consider the family gd ∶=
d
∑
i=0

2i2
xi. If Conjecture 2 is true for gd,

then VNP is exponentially harder than VP.

Proof. The proof proceeds in two steps :

1. Construct the polynomial n-variate multilinear polynomial family {Gn (x)}n
by applying the inverse Kronecker map ψn,d on gd, where d = 2n − 1. The CH-
explicitness of this family has already been shown earlier.

2. Prove that {Gn}n∈N ∈ VNP.

3. Prove that if Conjecture 2 holds true, then size (Gn) = dΩ(1) = 2Ω(n).

These steps exhibit a polynomial in VNP that has exponential circuit size, thereby
showing that VNP is exponentially harder than VP.
Step 1 has already been executed. Let us start with Step 2.
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Lemma 14. {Gn}n∈N ∈ VNP.

Proof. Consider the following polynomial G̃n (x, y) in 3n variables x1, x2, ..., xn, y1, y2, ..., y2n
:

G̃n (x, y) ∶=
2n−1

∑
i=0

ybin(i2)
⋅ xbin(i)

where bin (i) = (i1, i2, ..., in) is a vector such that i =
n
∑
j=1

ij2j−1. Substituting yi = 22i−1
∀

i ∈ [1, 2n] in G̃n gives Gn. In particular, we have :

G̃n (x, y) =
2n−1

∑
i=0

22n−1

∑
j=0

φ (i, j) xbin(i)
⋅ ybin(j)

where the function φ on N×N is defined as follows :

φ(i, j) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if j = i2

0 otherwise

The bit-size of the exponent vectors of x and y is O(n). Using Karatsuba’s multipli-
cation algorithm, φ(i, j) can be computed in time O (n log n). Thus, φ ∈ FP ⊆ #P/Poly.

Hence, by Valiant’s Criterion (Theorem 17), we get that {G̃n}n∈N
∈ VNP. Since,

VNP is closed under substitution [Bürgisser, 2000], {Gn}n∈N also belongs to VNP.

We now prove the exponential hardness of the family {Gn}n∈N, assuming Con-
jecture 2 is true. From, now on, by the size of a circuit we will refer to the size of the
equivalent universal circuit.

Lemma 15. Assuming Conjecture 2 is true, any universal circuit C computing
{Gn}n∈N has size at least dΩ(1) = 2Ω(n).

Proof. We prove the claim by contradiction. Suppose universal circuit complexity of
{Gn}n∈N is not dΩ(1). Then, ∃ an infinite domain I ⊂ N such that universal circuit
complexity of {Gn}n∈N is at most do(1) over I. Tn particular, ∃ a function µ of d, such
that size (Gn) ≤ d1/µ(d) and µ(d)Ð→∞ over I. Without loss of generality, we can also
assume that µ(d) ≤ log d. Since Gn is an n-variate multilinear polynomial, we have
deg (Gn) ≤ n.

We now look at the universal circuit C of size at most s′ ∶= d1/µ(d) and cut the
circuit at the t-th layer of multiplication gates from the top, where t ∶= t(d) is a
function of d that we will fix later. We get the following two parts :
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• Top Part : Since the fan-in of each multiplication gate is 5, the top part of the
circuit computes a polynomial of degree at most 5t. The number of variables
is trivially bounded by s′ , the size of the circuit. Hence, the top part can be
written as a trivial ΣΠ circuit of size :

s′′1 ∶= (
s′ + 5t

5t )

• Bottom Part : The number of multiplication gates that feed into the top part is
bounded by s′ . Since, deg (Gn) ≤ n, and the degree at least halves below every
multiplication layer, the bottom part computes a polynomial of degree at most
n ⋅ 2−t. The number of variables is n. So, each multiplication gate at the top of
the bottom layer can be reduced to a trivial ΣΠ circuit of size :

s′′2 ∶= (
n + n2−t

n
)

From the above construction, we have a Σs′′1 Π5t
Σs′′2 Πn circuit computing Gn. In par-

ticular, using Fischer’s trick (Lemma 13), one can express :

Gn =

s′′1
∑
i=1

5t

∏
j=1

gij =

s′′1 ⋅2
5t

∑
i=1

cig5t

i

where gi ∈ spanF
(gi′ j∣j) for some i′ and ci ∈ F. Each gij is an n-variate polynomial

of degree at most n ⋅ 2−t. Thus, each gi is an n-variate polynomial of degree at most
n ⋅ 2−t.

Choose r ∶= r(d) such that r is a prime and 5t < r < 5t+1. We know that such a
prime exists because of Bertrand’s Postulate. Using Theorem 8 , we know that there
exists cij, λj ∈ F such that :

g5t

i =
r+1

∑
i=1

cij (gi + λj)
r

In particular, ∃ c̃i ∈ F, such that :

Gn =

s̃
∑

i=1
c̃i g̃i

r

where s̃ ∶= s′′1 ⋅ 2
5t
⋅ (r + 1) and each g̃i is an n-variate polynomial of degree at most

n ⋅ 2−t.

Now applying the Kronecker map φn,1 to Gn yields :

gd ∶= φn,1 (Gn) ∶=

s̃
∑

i=1
c̃i ⋅ φn,1 (g̃i)

r

An important observation is that ∣⋃i supp (g̃i) ∣ ≤ s′′2 Ô⇒ ∣⋃i supp (φn,1 (g̃i)) ∣ ≤ s′′2 .

Thus, we must have :
UF (gd, r, s̃) ≤ s′′2 .
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So, once t is fixed, we have that s̃ and r gets fixed (up to constant multiple). We need
to fix a t such that s̃ ≤ do(1) , r ≤ log∗ d-th prime s′′2 < o (d/r). If such t exists, then we
are done because that shows UF (gd, r, s̃) ≤ o (d/r) over an infinite domain I, which
would be a contradiction.

Let
5t

∶= min (
√

µ(d), (1/5) ⋅ plog∗ d)

where plog∗ d denotes the log∗ d-th prime. As r < 5t+1 , hence r ≤ log∗ d-th prime, by
definition. Also, r ≥ 5t, and so r(d)Ð→∞ as d Ð→∞. Also, notice that t(d)Ð→∞ as
µ(d)Ð→∞.

Note that the following result holds true.

For n ≥ d ≥ 0, we have (
n + d

d
) ≤ min (nO(d), dO(n)

)

This gives us :

s̃ = s′′1 ⋅ 2
5t
⋅ (r + 1) ≤ (s′)O(5t)

⋅ 5t
≤ dO(1/

√
µ(d))

⋅
√

µ(d) ≤ do(1)

What we have left to show is that s′′2 ≤ o(d/r). We have :

s′′2 = (
n + n2−t

n
) ≤ (e (1+ 2t))

n2−t

≤ (
7
2
⋅ 2t

)

n2−t

On the other hand
d
r
≥

(2n − 1)
plog∗ d

. Note that :

s′′2
d
r

≤
2n/(t+3)

2n−3t ⋅ (
5
8
)

t

Notice t ∶= o(log d) and n = O (log d) and both functions→∞ as d →∞ . From these
observations and the above inequality, it is obvious that :

lim
d→∞

⎛

⎝

s′′2
d
r

⎞

⎠
Ð→ 0 as d Ð→∞

Thus, s′′2 = o(d/r). Thus, the universal circuit complexity of Gn is at least dΩ(1) =

2Ω(n)

This completes the proof of Theorem 19. Note that while we have done this for
the polynomial family gd, the proof of hardness is exactly the same for the family
fd = (x + 1)d. The only catch is in the proof of inclusion of the n-variate multilin-
ear polynomial family Pn = ψn,1 ( fd) in VNP. We have shown that the coefficient
sequence of binomials is CH-definable. Thus, by Valiant’s Criterion, for {Pn}n∈N, we
would achieve exponential separation of VNP from VP (under Conjecture 2), if CH
= #P/Poly. Thus, we have also proved the following result which is very much in the
spirit of the famous derandomization Ô⇒ hardness result of Kabanets-Impagliazzo
[Kabanets and Impagliazzo, 2003].
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Theorem 20. Consider the family fd ∶= (x + 1)d. If Conjecture 2 is true for fd,
then either CH ≠ #P/Poly or VNP is exponentially harder than VP.
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Chapter 5

The Sum of Squares Model and
Counterexample Generation

We now focus our attention to a special case of the SOP model : the Sum of Squares
model for the family fd , which is simply the following :

(x + 1)d
=

s
∑
i=1

l2
i

Also, for this chapter, we focus our attention on the measure SF i.e the minimum of
the sum of sparsity of the constituent representative polynomials and try to attempt
to prove the ambitious conjecture that :

SF ((x + 1)d, 2, s) ≥ Ω(d)

We will mostly outline some natural attempts to prove this conjecture, outline why
they don’t work and come up with a systematic measure to generate some striking
univariate polynomial identities in the process.

We have mostly worked with two specific polynomial families throughout this
work, stating their importance in their explicitness. Clearly these might not be the
only choices . In the first section, we speak of some choices that work and for proof,
point to [Dutta, Saxena, and Thierauf, 2020]. Also, we point out some choices that
don’t and for a proof we revisit the idea of sumsets. Roughly, the idea is to be able to
write a dense polynomial as a product of two sparse polynomials and then use the
simple product-to-sum of squares conversion.

5.1 Some useful and some refutable choices of polynomials

In this section, we speak about our choice of polynomial. We have seen until now,
that we have mostly prefered working with the polynomial families : fd = (x + 1)d

and gd =
d
∑
i=0

2i2
xi. Are these the only candidate polynomial families ? Of course not.

Very similar polynomial families work as well as they too fit the criterion for CH-

explicitness. Consider hd ∶=
d
∑
i=0

3i2
xi or qd ∶=

d
∏
i=1

(x + i). To see how the family qd

is CH-explicit, consult [Dutta, Saxena, and Thierauf, 2020]. The proof is along the
same lines as the proof of explicitness of fd.
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Let us now look at a candidate polynomial family which does not work. Consider

pd ∶=
d
∑
i=0

xi

To see why this polynomial does not work, recall the idea of sumsets. We know that :

∣A + B∣ ≤ ∣A∣ ⋅ ∣B∣

The key to refute this polynomial family is to find sets ∣A∣ and ∣B∣ such that each is of
size

√
d and the equality in the above equation is satisfied. Without loss of generality,

let us assume d is a perfect square (since perfect squares form an infinite domain,
showing that the lower bound is violated for this domain is enough to refute the
conjecture ) . So, consider the following two sets :

A ∶= {a∣ a ∈ [
√

d − 1]}

B ∶= {b
√

d∣ b ∈ [
√

d]} (5.1)

Notice that each element x ∈ [d] can be written in
√

d-basis as a + b
√

d where a ∈

[
√

d − 1] and b ∈ [
√

d]. Thus, we have :

[d] ∶= A + B

which gives us :
d
∑
1=0

xi
∶= (∑

i∈A
xi
) ⋅ (∑

i∈B
xi
)

Now, using l1l2 = (l1 + l2)2 + i2(l1 − l2)2, we are able to write :

d
∑
1=0

xi
∶= (l1 + l2)2

+ i2
(l1 − l2)2

where l1 = ∑
i∈A

xi and l2 = ∑
i∈B

xi, both of which have sparsity O (
√

d). Thus, this refutes

the conjecture for this particular family. It is therfore obvious that any family like
d
∑
i=0

cixi won’t work either.

Consider the special case :

(x + 1)2d
− l2

1 = l2
2 − l2

3

Considering this format makes sense when we are working over C. Note that, using
a2 − b2 = (a + b)(a − b), one can ask the general question if the product of two sparse
polynomials can be written as the product of two dense polynomials. If this is not
possible, it will resolve this special case of three summands. Note that we have
already seen that a dense polynomial can be written as the product of two sparse
polynomials. Now consider the following example :

(xd
− 1) (2dxd

− 1) = (x − 1)
⎛

⎝

d−1

∑
i=0

xi⎞

⎠
⋅ (2x − 1)

⎛

⎝

d−1

∑
i=0

2ixi⎞

⎠
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Let f = (x − 1)(
d−1
∑
i=0

2ixi) and g = (2x − 1)(
d−1
∑
i=0

xi). Note that both f and g have spar-

sity d, while each term in the L.H.S has sparsity 2. Thus, the product of two dense
polynomials can be written as the product of two sparse polynomials. Thus, even
this case of three squares remains open.

Another possible attempt could be the following conjecture :

∑
i

l2
i = f 2

Ô⇒ f ∈ spanF {l1, l2, ..., ls}

Notice that this would immediate imply the conjecture for our candidate polynomial
families as our measure is sub-additive. However, this conjecture is immediately
refuted by the following counterexample :

l1 = a2
+ b2

− c2, l2 = 2ac, l3 = 2bc. and l4 = a2
+ b2

+ c2

Notice that : l2
1 + l2

2 + l2
3 = l2

4 but l4 /∈ spanF {l1, l2, l3}.

However, while this conjecture is not true for general f , it is not immediate while
such a conjecture should not be true for the monomial f = xd. Notice that, if this is
true, it would imply our conjecture since we can just use the shift map :

x Ð→ x + 1

and the conjecture would follow from the spanning criterion. However, this conjec-
ture fails as well. For a ≠ d, write :

x2d
= x2d−a

⋅ xa

Using this and technique demonstrated earlier for writing a product as a sum of
squares, we can write :

x2d−a
⋅ xa

+ xb
⋅ x2d−b

∶= ∑
i∈[3]

l2
i

which clearly refutes the conjecture.

However, a more viable conjecture might be :

xd
⋅ g(x) ∈ spanF {l1, l2, ..., ls} (5.2)

for some non-zero polynomial g. The following lemma shows why this should imply
the conjecture.

Lemma 16. [Hajós Lemma] Suppose f (x) ∈ C[x] be a univariate polynomial
with t ≥ 1 monomials. Let α be a non-zero root of f (x). Then, the multiplicity of
α in f can be at most t − 1.

For the sake of completion, we include a proof of the above lemma.
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Proof. The proof will be by induction on t. For t = 1, f (x) = akxk, which has no non-
zero roots. Hence, we are trivially done. For t ≥ 2, assume that f (x) = xr ⋅ g(x) for
some r such that sparsity(g) = t and g(0) ≠ 0. Notice that it is enough to prove the
result for g as multiplication by xr only shifts the exponents and does not change
sparsity. Also, all non-zero roots of f are non-zero roots of g and vice-versa. Let α
be a root of g. Now, sparsity (g′) = t − 1 as g(0) ≠ 0. Thus, by induction hypothesis,
multiplicity of α in g is at most t − 2 . This implies that the multiplicity of α in f is at
most t − 1.

The above lemma shows that sparsity ((x + 1)d ⋅ g(x)) ≥ d + 1 for any non-zero
polynomial g . Thus, if (2) holds, then we can apply the shift map and reach the
desired conclusion.

5.2 Counterexample generation

In the earlier section, we had refuted the conjecture that :

x2d
=∑

i
l2
i Ô⇒ xd

∈ spanF {l1, l2, ..., ls}

However, our counterexample had a very special property : for each li there was
a nonzero monomial in li with degree > d. This leads to the following question :
Suppose we restricted ourselves only to those li which have maximum degree d and
studied the representation :

x2d
=∑

i
cil2

i

then what can we say about the li’s ? Of course we would also like to bound the
number of li’s. The most natural condition to put is to consider that we have < d li’s,
otherwise the sparsity would already be too large. For the rest of this chapter, we fix
F = C. Also, we simplify the above representation, by using the Hadamard Product of
Vectors.

Definition 20. For two matrices A and B of the same dimension m × n, the
Hadamard product A ○ B is a matrix of the same dimension as the operands,
with elements given by :

(A ○ B)ij ∶= (A)ijBij

For matrix of different dimensions, the Hadamard product is undefined.

For our purpose the Hadamard product of two vectors u and v of the same dimen-
sion, will be denoted simply as uv. In case we wish to indicate the inner product of u
and v, we will denote it as uTv, where uT denotes the transpose of u.

So, we have to examine an identity of the form :

x2d
= αT

(u0 + u1x + u2x2
+⋯+ udxd

)
2

(5.3)
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where the j-th co-ordinate of ui is simply the coefficient of xi in lj and ui’s ∈ Ck, where
k < d.

We have a set of vectors ui, i ∈ [d]. The most natural course of action is to first be-
gin by considering the linear relations among the ui’s. Suppose {u1, u2, ..., uk} forms
a basis for Ck. We first emphasize that it is enough to consider k = o(d). Suppose
not and k = Ω(d). Without loss of generality, let us assume that ud must be in-
cluded in the basis set. Let the entire basis set be, again, without loss of generality,
{u1, u2, u3, ..., uk−2, ud}. Since, dim⟨u1, u2, ..., uk−2⟩C = k−1 , ∃ c ∈ Ck such that cT ⋅ui = 0
∀ i ≤ k − 2 but cT ⋅ ud ≠ 0. Thus, we get xd = ∑ cili. By shifting, we can therefore prove
our original sparsity conjecture. Thus, the case k = Ω(d) is uninteresting for us.
Also, note that this is in sync with our original goal of avoiding examples with large
monomials in the linear span.

Notice that only the monomial x2d survives after expanding out the R.H.S of (3).
So, there are a huge number of cancellations that take place. Since, we have restricted
the degrees to be ≤ d, it is not unnatural to wonder if so many cancellations would
imply that a large number of ui’s must be non-xero. In spirit of enquiry, we make
the following ambitious conjecture :

Conjecture 3. Suppose (3) holds. Also, suppose we have the following condi-
tion :

• {u1, u2, ..., uk} form a spanning set for {u1, u2, ..., ud} where k = o(d)

Then Ω(d) of the ui’s are non-zero.

5.2.1 The case k = 3, d = 3

For the rest of this write-up, we’ll be working with the Hadamard product of vectors.
We will first deal with this simple case where we are looking at a representation of
the following form :

x6
= αT (1+ u1x + u2x2

+ u3x3)
2

(5.4)

where 1, u1 and u2 form a basis for C3. We therefore have two equations :

αT
⋅ [1, 2u1, 2u2 + u2

1, 2u3 + 2u1u2] = 0

and
αT

⋅ [2u1u3 + u2
2, 2u2u3] = 0

Also, we need : αT
⋅ u2

3 ≠ 0. The first set of equations will be termed as variable setting
equations and the next set as the constraint equations. Our strategy to satisfy both
equations, will be as follows :

• Pick α to be orthogonal to 1 and u1.

• Ensure that all the individual vectors within the [] in both sets, lie in the space
spanned by 1 and u1.
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If the above two conditions are satisfied, then both sets of equations are automati-
cally satisfied. Thus, we now have the following set of equations to satisfy :

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2
1 + 2u2 = 0(mod V)

u1u2 + u3 = 0(mod V)

u2
2 + 2u1u3 = 0(mod V)

u2u3 = 0(mod V)

u2
3 ≠ 0(mod V)

where V is the subspace spanned by the vectors 1 and u1. These equations may
be rewritten as :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2 =
−u2

1
2 + α1u1 + α0

u3 =
u3

1
2 − α1u2

1 + β1u1 + β0

u2
2 + 2u1u3 = 0(mod V)

u2u3 = 0(mod V)

u2
3 ≠ 0(mod V)

The constraint equations can be rewritten in terms of just u1 as follows :

3
4

u4
1 − 2α1u3

1 + (α2
1 + β1 − α0)u2

1 = 0(mod V)

and
−1
4

u5
1 + α1u4

1 + (
α0

2
−

β1

2
− α2

1)u3
1 + (α1β1 − α0α1 −

β0

2
)u2

1 = 0(mod V)

To convert it from an equation concerning vectors to linear equations over complex
numbers, we first fix u1. From the expression of u2 in terms of u1 and the fact that 1,
u1 and u2 form a basis, it is simple to see that 1, u1, u2

1 form a basis too. Thus, by fix-
ing this basis, a vector w modulo V, is simply the coefficient c2 when w is expressed
as w = c0 + c1u1 + c2u2

1.

Fix u1 = [−1, 0, 1]. It is simple to see that uk
1 = 1(mod V) for any even k ∈ N and

uk
1 = 0(mod V) for any odd k ∈ N. We also fix (α0, α1) = (0, 0).

On solving the linear equations obtained, we get β1 = −3
4 , β0 = 0. Using these, it

is also simple to check that u2
3 ≠ 0(mod V). This gives us the following counterex-

ample :

l1 = (1− x −
1
2

x2
+

1
8

x3
)

l2 = 1

l3 = (1+ x −
1
2

x2
−

1
8

x3
)

and α = 32[1,−2, 1].

5.2.2 The algorithm for general d and k

We turn ourselves to the case of general d and k, i.e we have u1, u2, u3, ..., uk as the
basis set. We claim that it is sufficient to restrict ourselves to the case where u1 = 1
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i.e the following :

x2d
= αT

⋅ (1+ u1x + u2x2
+ ...+ udxd

)
2

Suppose not. Without loss of generality, we have x2d = ∑ αil2
i and l1 = x + ∑

i>1
cixi.

Then, we have l2
1 = x2 (1+ ∑

i>2
cixi−1)

2

. Then, we use the identity A2B2 = ( A2+B2

2 )
2
+

i2 ( A2−B2

2 )
2
. Since, A = x and B = (1+ ∑

i>2
cixi−1), we reduce to the case u1 = 1. So, we

are done.

We now consider an equivalent problem. Consider the expression :

E(x) = (1+ u1x + u2x2
+ ...+ udxd

)
2

We would like to ask the following structural question about E(x).

Conjecture 4. Suppose the following holds true about E :

• Generator set of {1, u1, u2, ..., ud} is up to uk=o(d)

• coeffx2d (E(x)) /∈ ⟨coeffxi(E(x))∣0 ≤ i < 2d⟩C

Then, Ω(d) of the ui’s are nonzero.

We would like to demonstrate that there exists counterexamples for this conjecture.
In fact, we would like to construct an algorithm that, under favorable choices of ini-
tial parameters, generates such counterexamples. The idea to construct counterex-
amples is similar to the example presented in the previous section.

Theorem 21. There exists a randomized algorithm A, which, on input of an
orthonormal basis V = {v1, v2, ..., vk} for Ck containing the all 1 vector 1 either
outputs a counterexample to Conjecture 4 with u1 = v1 or outputs failure after a
finite number of checks.

Proof. Let the basis set be {v1, v2, ..., vk}, with v1 = 1 and v2 = u1. We let V =

⟨v1, v2, ..., vk−1⟩C. Our strategy would be to consider a counterexample of the form
:

E(x) = (1+ u1x + u2x2
+ ...+ ukxk

+ udxd
)

2

So, what we would like to have is ⟨coeffxi(E(x))∣0 ≤ i < 2d⟩C ⊆ V and pick u2
d from

the subspace spanned by vk. This would immediately satisfy both the criteria and
yet be a counterexample since only k + 1 = o(d) of the ui’s are non-zero. Thus, we
would like to solve the following system :

coeffxi (E(x)) = 0(mod V)
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for 0 ≤ i ≤ 2d− 1. We will first obtain a set of variable setting equations and then a set
of constraint equations just as in the previous example. The algorithm that we give
simply ensures fixing of certain variables in a proper fashion so that at every stage,
we only have systems of linear equations.

The algorithm proceeds as follows :

• Take as input the basis {v1, v2, ..., vk} for Ck. Also, fix u1.

• Consider the subspace V = ⟨v1, v2, ..., vk−1⟩ and v1 = 1 and v2 = u1 .

• For i = 2 to k, do :

– Consider the coefficient of xi in E(x). We have :

coeffxk(E(x)) = 0(mod V)

which may be rewritten as ;

ui = ∑
r+s=i,rs≠0

urus +
k−1

∑
j=1

αijvj

where αij are some yet unfixed variables. In the case, where s > r in the
above convolution, randomly fix ur (by randomly fixing it’s correspond-
ing α’s), but keep us unfixed. The invariant that we shall maintain in this
part of the algorithm (and even consequently) is that every ui is defined
as a linear polynomial in the α’s. Proceed inductively. On the R.H.S r, s < i
in every term of the convolution. Hence, when ur is fixed, us is linear in
its α’s (by Induction hypothesis. The base cases are u1 and u2, which are
easily checked.). Thus, we conclude that ui is linear in αij’s.

• At the end of the above procedure, we have fixed all the ui’s with i ≤ k
2 . The

remaining remain unfixed.

• We now move to the constraint equations. We assume that we posses a sub-
routine that allows us to compute any vm

i vn
j modulo V. For i = k + 1 to 2k, do

:

– Consider the coefficient of xi. We have :

∑
r+s=i

urus = 0(mod V)

We now proceed as earlier. Whenever s > r, randomly fix ur (if it was
already fixed during the variable setting procedure, then consider that
value which was fixed during that procedure.) but keep us unfixed. The
same invariant is maintained. By using the aforementioned subroutine,
the subspace inclusion constraint is transformed in to an equation over
the α’s of the unfixed us’s, which, by the invariant property, is a linear
equation.

By this fixing procedure, at the last step i.e i = 2k, we have to fix the last re-
maining generating vector i.e uk. Thus, after the end of this procedure, all
u1, u2, ..., uk are fixed. Also, we note that ud does not appear in any of the con-
volution sums since k = o(d).
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• Since, u2
d is picked from the one-dimensional subspace orthogonal to V, it is

fixed upto a scalar. So, ud is fixed upto a scalar. We finally have to check the
constraints ;

udui = 0(mod V)

for 1 ≤ i ≤ k. Note that since we are equating to 0, the scaling factor for ud does
not matter. So, we can simply take ud =

√
vk. If any of these checks fail, return

Failure, otherwise return u1, u2, ..., uk.

This concludes the description of the counterexample generating algorithm.
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Chapter 6

Conclusion

In conclusion, we looked at lower bounds for univariate polynomials using spar-
sity based measures. We introduced two sparsity based measures and proved lower
bounds for explicit polynomial families for certain specific parameters and an un-
conditional lower bound for localized integer rings. We formulated a conjecture
saying that the Sum of Powers representation for certain specific polynomial fami-
lies should be large in terms of the sparsity measures. We showed that proving this
conjecture would imply lower bounds, specifically, Valiant’s Hypothesis. We looked
at the special case of sum of Squares representation and showed certain plausible ap-
proaches that don’t work. As a result, we found a systematic approach for proving
striking polynomial identities. However, certain questions remain open.

• It was shown in [Dutta, Saxena, and Thierauf, 2020] that if (x + 1)d written as
a sum of o(d) many 25-th powers of univariates requires Ω(d) many distinct
monomials, then we can derandomize blackbox PIT as well as prove Valiant’s
hypothesis. This proof crucially uses the hardness to efficient derandomiza-
tion results of [Guo et al., 2019] and [Agrawal, Ghosh, and Saxena, 2018].
[Dutta and Saxena, 2020] furthered improved this by showing that studying
4-th powers is enough to achieve the above results. Their proof uses a novel
depth-reduction idea instead of the standard [Valiant et al., 1983] that gives a
new normal form circuit. We ask if this can be further reduced to the case of
squares, which is the simplest model to study.

• Prove Conjecture 2. In fact, prove the slightly differently formulated conjecture
for 4-th powers in [Dutta and Saxena, 2020] .

• Consider the result established in [Garca-Marco and Koiran, 2017] for powers
of linear forms. Improve this to powers of quadratic forms. This might be
easier than the case of sum of squares since the exact form of the polynomial
that is being powered is known in this case.

• Prove that the measure UF(⋅) is large for random polynomials.

• Show if simpler lower bounds such as Ω (
√

d) suffice to reach the conclusion
VP ≠ VNP.
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