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ABSTRACT

The motivation of this thesis is to obtain a Polynomial Identity Testing algorithm for the

class of log-variate ROABPs. Given a multivariate polynomial, in a certain fixed model

of computation, the PIT problem asks whether the input polynomial is identically 0. We

have a polynomial-time randomized algorithm for PIT. However, designing a deterministic

polynomial-time algorithm for PIT is a long-standing open question in algebraic complexity

theory. It has deep connections with both circuit lower bounds and many other algorithmic

problems like perfect matching, multivariate polynomial factorization.

We consider the PIT problem in the black-box setting, where we are not allowed to see

the internal structure of the circuit, but evaluations at points are allowed. For instance, the

randomized algorithm for PIT is a black-box algorithm. Designing a deterministic black-box

PIT algorithm for a circuit class is equivalent to finding a set of points such that for every

nonzero circuit, the set contains a point where it evaluates to a nonzero value. Such a set is

called hitting set. So by derandomizing PIT, we mean designing a poly(s)-time computable

hitting set for s-variate size s degree s circuits.

Because of bootstrapping results in the PIT domain, there has been more focused research

on discovering new techniques that can give efficient PIT algorithms for the "low"-variate

models (Usually we use the notion of log-variate, by which, we mean the number of variables

is logarithmic with respect to the circuit size)

We introduce the notion of cs ≤ k hypothesis. We get a structural characterization

of the polynomial when it satisfies the cs ≤ k hypothesis with shift t = (t, t, ..., t). The

aim is to prove a result that if the cone-size hypothesis is satisfied by the polynomial, then

it will have high width. This will give us a poly-time PIT for log-variate ROABPs. We

prove this in the bivariate setting and get a (2dk ln k) hitting set. Proceeding along similar

lines, we get ROABP width lower bound of k
1

n−1 on the polynomials satisfying the structural



characterisation and this gives us a new poly(d, w) hitting set for constant-variate ROABPs

with individual degree ≤ d and width w.

We conjecture a stronger characterization lemma for polynomials that satisfy the cone-

size hypothesis for which computing the width will be relatively easier. We prove this

characterization lemma for the trivariate case and give the corresponding width lower bound

for this. And we show examples of general families of polynomials which satisfy this new

characterization lemma and have width ≥
√
k.

We now change the shift to the sparse PIT shift and then try to analyse the cone-size

conjecture in terms of that shift. First we prove the structure lemma, where we give a

characterization for the form of the polynomial, after it is shifted by the sparse-PIT map.

We prove the width result for all polynomials that satisfy the structural result and have

some high degree variable.

We consider polynomials over Fk and then show that, if we shift the polynomial by a

basis isolating weight assignment (BIWA), the new polynomial has cs ≤ k concentration.

This is already implied from [FGS18], who show that polynomials shifted by a BIWA have

a cone-closed basis. We give a simpler proof of this fact and our proof is inspired from the

[Gur+15] result who show log(k + 1) support concentration. (Cone-size ≤ k concentration

is strictly stronger than log-support concentration.)
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Chapter One

Introduction

Polynomials have probably been some of the most interesting and most studied functions in

all of mathematics and computer science. Yet so little is understood about the complexity

of evaluating them.We are often interested in calculating the number of computation steps

(addition, multiplication) required to evaluate a polynomial at a certain point. This notion of

complexity is best formalised by representing polynomials in the form of arithmetic circuits.

(formal definition (2))

One of the most basic decision problems regarding polynomials is verifying in polynomial

time (polynomial in input size) whether it is the 0 polynomial or not. This problem is known

as the polynomial identity testing (PIT) problem. When the polynomial is given as a list of

coefficients, this problem is trivial. But when a succinct representation of the polynomial is

given as input, this problem suddenly becomes extremely non-trivial. There are two kinds

of PIT algorithms, white-box, where one is allowed to make use of the circuit structure and

other one in black-box, where one can only evaluate the polynomial at certain points. One

way to check whether the polynomial computed by the input circuit is zero is to set its

variables to constants. If the circuit evaluates to a non-zero value, we definitely know that

the polynomial is non-zero. So one technique is to find a set of points in the underlying

field (or maybe an extension), such that if the polynomial is non-zero it will evaluate to a

non-zero value on at least one of these points. This is called a hitting set for the circuit and
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Introduction

it is equivalent to giving a black-box PIT algorithm.

The randomized PIT algorithm due to ([DL78], [Zip79],[Sch80]) is a black-box algorithm

for PIT. If we try to derandomize that trivially, we get an exponential size hitting set which

is also computable in same time complexity.

To derandomize the PIT algorithm, we need a polynomial time computable hitting set.

[HS80] first showed that any random subset of size poly(s) is a hitting set for the class of

size s degree s circuits. The best known construction is by [Mul12], who gave a PSPACE

construction of a polynomial size hitting-sets.

A series of bootstrapping works [AGS18], [KST18], [Guo+19] finally show that even

saving a single point over the trivial hitting set for arithmetic circuits (i.e giving an explicit

hitting set of size (s− 1)n − 1 ) gives a polynomial size hitting set.

PIT has applications in designing various algorithm as well for proving various circuit

lower bounds (both in algebraic and boolean setting). Kabanets and Impagliazzo in [[KI03]]

proved that a polynomial-time white-box PIT algorithm implies a separation between two

algebraic classes (VP 6= VNP) or two boolean classes (NEXP 6∈ P/poly). The famous

polynomial-time primality testing by Agrawal, Kayal and Saxena can be seen as a special

instance of PIT problem [AKS02]. Kopparty, Saraf and Shpilka showed the equivalence be-

tween polynomial identity testing and deterministic multivariate polynomial factorization

[KSS14]. The perfect matching problem reduces to PIT question for a special class of poly-

nomials [[Tut47], [Lov79],[FGT16]]

1.1 Polynomial Identity Testing

Definition 1. Let Cs,d be the set of algebraic circuits of size ≤ s computing polynomials in

F[x1, ..., xn] of degree ≤ d. Let φ 6= C ⊆ Cs,d. The Polynomial Identity Testing (PIT)

problem is : Given a circuit C ∈ C, computing a polynomial fC, determine whether fC ≡ 0.

The size of the input circuit is given by 3 parameters s, n, d and the goal is to find an efficient

2



Introduction

algorithm that runs in poly(s, n, d) steps.

The algorithm for solving the PIT problem for a given circuit class C, in the unit-cost

model over F is called black-box if for all C ∈ C, the algorithm only uses the given C to

evaluate fC on a set of points in Fn. If it explores the entire structure of the given circuit,

it is called white-box.

1.2 Models of Computation

We first fix an underlying field F.

1.2.1 Arithmetic Circuits

Definition 2. An arithmetic circuit is a directed acyclic graph with one sink (called the

output gate). Each of the source vertices (input nodes) are either labeled by a variable xi or

an element from F. Each of the internal nodes are labeled either by + (addition gate) or ×

(multiplication gate). Sometimes edges may carry weights that are elements from F.

The computation is now conducted in a natural way. Every edge collects the polynomial

computed at its tail node, scales it up the weight on the edge and sends it to the head node.

Each addition gate then computes the sum of all the polynomials given by the incoming

edges. Similarly, each multiplication gate then computes the product of all the polynomials

given by the incoming edges. The polynomial computed at the output node is the polynomial

computed by the circuit.

For each node, the fan-in is the in-degree of the node and the fan-out is the out-degree of

the node.

Without loss of generality, the circuit or formula is assumed to be layered, with edges

only between successive layers. The important parameters of an arithmetic circuit are the

following:

3
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• size - the number of edges which is equal to the number of additions and multiplications

we perform to compute the polynomial computed by the circuit

• depth - The length of the longest path in the circuit from a leaf gate to an output

gate

• degree - The syntactic degree of the polynomial computed at the output gate. The

degree can be computed in a natural way. At an addition gate, we take the maximum

over the degrees of all the children. At a multiplication gate, we take the sum of the

degrees of all the children.

Note, that the syntactic degree might not be the same as the actual degree of the poly-

nomial (mostly owing to cancellations) but it is definitely an upper bound on the actual

degree of the polynomial.

1.2.2 Algebraic Branching Programs

This section introduces the algebraic branching program model defined by Nisan [Nis91],

and gives the definitions of the subclasses of this model that we will consider. In particular,

we will define the restricted class of circuits called read-once oblivious algebraic branching

program.

Definition 3. An ABP over F is a directed acyclic layered graph with vertex set V and

edge-set E = E1 t E2 t ... t Ed where Ei ⊆ Vi−1 × Vi with a set of labelling L0, ...,Ld such

that each Li : Ei −→ F[x], where the labelling to every edge is a polynomial in F [x] of degree

≤ 1. We define the labelling function L : E −→ F[x] such that L|Ei
= Li

• The vertices are partitioned into d + 1 layers i.e V = V0 = {s} t V1 t ... t Vd = {t}

such that s and t are the set of source and sink respectively.

• Each edge e goes from Vi−1 to Vi for some i ∈ [d], so E ⊆ ti∈[d]Vi−1 × Vi

4
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• An edge e from Vi−1 to Vi is labelled with an element in Li

The polynomial computed by the ABP is of the form

f =
∑

p∈path(s,t)

∏
e∈p

L(e)

The parameters of the ABP are

• width (w) = maxi|Vi|

• The size of the ABP is the number of vertices which in this case is w2d.

Definition 4. Let F be a field, n ≥ 1 and let π : [n] −→ [n] be a permutation. A read-once

(oblivious) algebraic branching program with variable order π is a depth = n layered

F[x]-ABP with labels

Li := {f |f ∈ F[xπ(i)]}

The program computes in a known order if π is a fixed known permutation and computes in

an unknown order if π is unknown.

An Algebraic Branching Program computes the polynomial by summing over all the

paths, the weight of the paths, where the weight of the path is basically the product of the

weights of all the edges along that path. An ABP is read-once if along each path each

variable occurs in at most one label. A read-once ABP is oblivious if in each path the

variables occur in the same order (some permutation π on [n]).

There is also another equivalent notion for an ROABP that is it can be written as a

matrix product.

Lemma 1. Let f ∈ F[xn] and let π : [n] −→ [n] be a permutation of [n]. Then the following

statements are equivalent:

• The polynomial f is computed by a width -w and individual degree ≤ d ROABP in

variable order π

5
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• There exist matrices U, T ∈ Fw×1 and Mi ∈ Fw×w[xπ(i)] such that f = UT
∏n

i=1MiT ,

writing f as a 1× 1 matrix.

An ROABP is called commutative when the corresponding matrix product is commu-

tative. For example, when the matrices are diagonal matrices, which corresponds to the

circuit model sum-of-products-of-univariate-polynomials. All the PIT results for ROABP

(even with known order) also hold for commutative ROABP .

1.2.3 History of PIT for ROABPs

Raz and Shpilka [RS04] gave a poly(n,w, d)-time white-box algorithm for n-variate poly-

nomials computed by a width-w ROABP with individual degree bound d. [Agr+15] give a

O(ndw)logn time hitting set for ROABPs even when the variable order is unknown. They

also give a (ndw)O(log logw) hitting set for commutative ROABPs

1.3 Contributions of this Thesis

In this thesis, we look a possible approach towards finding a poly-time PIT algorithm for

log-variate ROABPs. Because of bootstrapping results in the PIT domain, there has been

more focused research on discovering new techniques that can give efficient PIT algorithms

for the low-variate models (By log-variate, we mean the number of variables is logarithmic

with respect to the circuit size). We already have a polynomial time PIT for the circuit

model called the depth-3 diagonal circuits [FGS18] (Depth-3 diagonal circuits compute the

sum of power of linear polynomials) . This model of log-variate ROABPs subsumes the

depth-3 diagonal model. (2.6) No poly-time PIT is known for this model.

6
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1.3.1 Cone-size Hypothesis

We first introduce the notion of the cone-size ≤ k hypothesis with shift t = (t, ..., t). A

polynomial satisfies this hypothesis if after being shifted by t, all of the monomials that

have cone-size ≤ k have coefficient 0. We get a structural characterization of the polynomial

when it satisfies the cs ≤ k hypothesis with shift t. The aim is to prove a result that if the

cone-size hypothesis is satisfied by the polynomial, then it will have high width (preferably
√
k). This will give us a poly-time PIT for log-variate ROABPs because given a polynomial

that has ROABP width w, we need to just shift the polynomial by t and then check the

coefficient of the monomials with cs ≤ w2 The number of such monomials in polynomial in

the log-variate case. Then we use the algorithm from [FGS18] to extract the coefficient of

the low-cone monomials in the black-box setting. This algorithm runs in polynomial time

with respect to the cone-size of the monomial (which is again poly-time because of the log-

variate regime). So if the given polynomial has an ROABP of width < w, then there must

be a monomial in cone-size ≤ w2. Hence, just checking the coefficient of polynomially many

number of monomials, we can output whether the polynomial is identically 0 or not.

We prove this in the bi-variate setting and get a 2dk ln k + 1 hitting set. Proceeding

along similar lines, for trivariate we get a lower bound of
√
k on the ROABP width of the

polynomial that satisfies the cs ≤ k hypothesis. And we give an example to prove that this

analysis is tight. For n-variate, we get a width lower bound of k
1

n−1 which is exponentially

better than the trivial bound. This gives us a black-box hitting set of size poly(d, w) for

ROABPs of any variable order with individual degree bounded by d and width w.

Our conjecture, though, is that if f satisfies cone-size ≤ k hypothesis, then it has width
√
k. So, we conjecture a stronger characterization lemma for which computing the width will

be relatively easier. We consider some specific type of polynomials Pe =
∏

i<j∈[n](xi−xj)ei,j .

We also define cs(Pe) > k for a fixed e ∈ Nn if for all monomial in the support of Pe, cone-size

of the monomial is ≥ k. We conjecture that a polynomial satisfies the cone-size hypothesis

7
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iff it is in the ideal (over the field F) generated by polynomials which have cs(Pe) > k. We

prove this conjecture for the trivariate case. More formally, we prove that

Lemma 20: If f ∈ F[x1, x2, x3] satisfies cs ≤ k hypothesis, then

f ∈
〈
Pē = (x1 − x2)e12 .(x1 − x3)e13 .(x2 − x3)e23 | cs(Pē) > k

〉
F[x̄]

And we show examples of families of polynomials which satisfy this new characterization

lemma and have width
√
k. More formally we prove the following

Theorem 10:

f =
∏

i<j∈[n]

(xi − xj)l

Then any ROABP computing f must have width > lbn/2c

1.3.2 Stronger Cone-size Hypothesis

We now change the shift to a much stronger shift and then try to analyse the cone-size

conjecture in terms of that shift. A lower bound on the width of an ROABP is given by

the maximum possible rank of the partial derivative space with respect to a certain set of

monomials. Now, the hardness of proving width lower bounds for the simple (t, t, ..., t) shift

is that a lot of monomials map to the same monomial under this shift and it is hard to keep

track of the cancellations. A natural alternative which we try in this chapter is that we shift

the polynomial by the sparse-PIT map and then we look at a similar version of the cone-size

hypothesis.This ensures that after the shift, the cancellations can be controlled much better.

First we prove the structure lemma where we describe the form of the polynomial after it is

shifted by the sparse-PIT map. More formally, we show that

Lemma 22 If f satisfies cs ≤ k hypothesis, define e′ = (e2, ..., en)

f ∈
〈
Pē =

n∏
i=2

(
xi − ti(x1)

)ei ∣∣∣ cs(e′) > k
〉
F[x1]

8
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Now, following a similar strategy like the previous section, we have to show corresponding

width lower bounds. We conjecture that for polynomials. For formally, we conjecture that

Conjecture 3: If

f ∈
〈
Pē =

n∏
i=2

(
xi − ti(x1)

)ei ∣∣∣ cs(e′) > k
〉
F[x1]

then ROABP width w(f) > k, where t̄ is the sparse PIT map for ≤ k sparse polynomials.

The simplest case is that of a single summand for which just a simple rank calculation gives

the lower bound.

Now let ei := maxe{∂xei (f)|xi=0 6= 0}. Let e := maxi{ei}. Then, w(f) ≥ e. Hence, this

gives us a width result for all polynomials that satisfy the structural result and have some

high degree variable. Let us assume without loss of generality that, e = e2. More formally

we prove that,

Lemma Let f = a1 · (x2− t2(x1))e2 · g1 + a2 · (x2− t2)e
′
2 · g2 + a3 · (x2− t2)e

′′
2 · g3 + · · · , where

ai ∈ F, e2 ≥ e′2 ≥ e′′2 · · · , f has arbitrary number of summands and each gi contains the

remaining product for that summand (For example g1 = (x3 − t3(x1))e3 · · · (xn − tn(x1))en).

Then f has width, w(f) > e2.

So the only case remains to be proved when all the variables have really low degree but they

still combine to satisfy the cone-size hypothesis. An attempt would be to build on the proof

of this lemma and proving the same for sets of variables.

1.3.3 Multinomial Matrix and Concentration results

For PIT of ROABPs, we can assume, without loss of generality, that the output gate is an

addition gate and we can write the polynomial as

f =
∑
i

cifi

= 〈c, P 〉 where P = (f1, ..., fk)

9
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So, we can now consider polynomial maps over a k-dimensional algebra Ak .We look at the

vector-space VP spanned by the coefficients of the input polynomial P . Usually the goal is

to find a "small" set of monomials (S) such that the rank of the space spanned by their

coefficients is the same as the rank of VP . Then f 6= 0 iff the projection on the set S

i.e. fS = 〈c, PS〉 6= 0. However it is not correct to expect the polynomial to have such a

concentration on its own. So, the general idea is to apply some linear transformation to the

variables such that the non-zeroness is preserved and low-rank concentration is achieved.

Then to test non-zeroness of f , we have to verify if their exists a monomial from this set S in

the transformed polynomial that has non-zero coefficient. The usual PIT literature [ASS13],

[Agr+15], [FSS14], [Gur+15] looks at low-support monomials, but here following the theme

of the thesis, we look at low-cone monomials. (i.e monomials with low cone-size)

A basis isolating weight assignment is an univariate map on the variables that can isolate

a basis S for the coefficient space of the polynomial over Ak. Now, let f 6= 0 and m∗ be

the minimum weight monomial which gives a non-zero inner product with c. We can show

that substituting the variables by the weight assignment will also keep the coefficient of the

monomial non-zero.

In this section, we show that if A is a polynomial over the k-dimensional algebra Ak,

shifting by a basis-isolating weight assignment gives us a cs ≤ k concentration. More for-

mally, we show that,

Theorem 11 [Isolation to Concentration] Let A(x) ∈ Ak[x]. Let w be a basis-isolating

weight assignment for A(x). Then A(x + tw) is cs ≤ k concentrated.

[FGS18] show that if a polynomial A ∈ Ak[x] is shifted by a basis isolating weight assign-

ment then it has a cone-closed basis. This readily implies our theorem because if A has a

cone-closed basis then it has cone-size ≤ k rank concentration. But this is a new proof and

it is done by strengthening the combinatorial results in the [Gur+15] lemma who are able to

show a log(k + 1) concentration. For this, we prove that a certain multinomial matrix has

full rank which we prove by proving an alternate equivalent statement.

10



Introduction

Lemma 25 Let f(x̄) ∈ F[x̄] be a non-zero polynomial of sparsity at most k. Then

f ′(x̄) = f(x̄+ 1̄) has a monomial of cone-size ≤ k with non-zero coefficient.

11



Chapter Two

Preliminaries

In this chapter, we give a guide to the basic definitions and notations used in this thesis. We

also give an introduction to the basic results in polynomial identity testing, describe some

algebraic models of computation and some structural results about them.

2.1 Notation and definitions

Let a,b ∈ Nn. Then (
a
b

)
:=

n∏
i=1

(
ai
bi

)
By x, we denote the set of variables {x1, ..., xn}. For any e ∈ Nn, xe denotes the monomial∏n

i=1 x
ei
i . The degree of a monomial xe =

∏n
i=1 ei and is denoted by deg(xe).

For a field F, F[x] denotes the ring of polynomials over the variables {x1, ..., xn} where the

coefficients are coming from F. For a monomial m and a polynomial P , we denote coeffm(P )

to denote the coefficient of m in P . Again for a polynomial P , we define the support of

P , denoted by supp(f) to be the set of monomials m such that coeffm(P ) 6= 0. We define

sparsity of a polynomial P denoted by sp(P ) to be the cardinality of supp(P ). We say

that a polynomial P has degree d if for all monomials m ∈ supp(P ), deg(m) ≤ d. We say

that a polynomial f has individual degree d, if for every monomial m =
∏n

i=1 x
ei
i ∈ supp(P ),

ei ≤ d.

12
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A weight assignment on the set of variables is a function w : x −→ N. We usually

attach the weight w(xi) = wi for all i ∈ [n]. For a monomial m = xe, the weight of the

monomial is w(m) =
∑n

i=1 eiwi. Similarly for a set of monomials B, the weight of B is

w(B) :=
∑

m∈B w(m)

For a monomial xe and a polynomial P ∈ F[x], we denote by ∂xe(P ) to be the partial

derivative of P with respect to the monomial xe. Also, by 〈∂∞(P )〉, we denote the vector

space over F spanned by ∂xe(P ) for all e ∈ Nn. This is the partial derivative space of f .

Similarly, 〈∂=k(P )〉 denotes the the vector space over F spanned by ∂xe(P ) for all e ∈ Nn

such that deg(xe) = k.

Here, in the thesis, we look at polynomials over an algebra A, An algebra is a vector

space V over a certain field F equipped with a vector product, i.e., a binary operation from

V × V to V . The product is associative (we will talk consider associative algebras) and

distributive with the + operation of the vector space and compatible with the scalars from

the underlying field. For two elements v1, v2 in algebra A, v1v2 denotes this vector product.

The dimension of an algebra is the dimension of the underlying vector space. When this

vector product is simply a coordinate wise product, then the resulting algebra is called the

Hadamard algebra.

Let Ak denote the k-dimensional algebra over the field F. For any 2 elements a,b ∈ Ak,

we denote a · b =
∑n

i=1 aibi.

We translate the same definitions from above here. For a polynomial P , we define the

support of P , denoted by supp(f) to be the set of monomials m such that coeffm(P ) 6= 0

where 0 = (0, ..., 0) ∈ Nk. The coefficient space of P is the subspace of Fk generated by the

coefficients of P , and it is denoted by sp(P ). For a set of monomials B, we say B is a basis

of P , if the coefficients of all the monomials in B form a basis for sp(P ) over F

Definition 5 (Monomial ordering). A monomial ordering ≺ is a total order on the set

of all monomial over x such that

13
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• for all a ∈ Nn \ 0 = (0, ..., 0), 1 ≺ xa

• for all a, b, c ∈ Nn, if xa ≺ xb, then xa+c ≺ xb+c

For a non-zero polynomial f , the leading monomial (with respect to a monomial ordering) is

the largest monomial in the support of f .

2.2 Models of computation

2.2.1 Depth-3 Diagonal circuits

Depth-3 diagonal circuits compute polynomials of form

C(x) =
s∑
i=1

ldii

where li’s are the linear polynomials over the underlying field F. We denote the class of depth-

3 diagonal circuits by
∑∧∑

. For all i ∈ [k], let fi be the degree 1 part of li. Then the

rank of a depth-3 diagonal circuit, denoted by rk(C), is the dimension of the subspace (over

F) generated by fi’s. Note that the rank of C can be equal or one less than the dimension

of the subspace generated by li’s. By log-variate depth-3 diagonal circuit we mean the class

of depth-3 diagonal circuits where the number variables is at most logarithmic with respect

to the circuit size.

2.3 Polynomial Identity Testing

Lemma 2. [DL78] [Zip79] [Sch80] Let f ∈ F[x1, ..., xn] be a non-zero polynomial of degree

d ≥ 0. Let S be any finite subset of F and let a1, ..., an be sampled from S independently and

uniformly at random. Then

Pra1,...,an∈rS[f(a1, ..., an) = 0] ≤ d

|S|

14
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Corollary 1. For an n-variate polynomial f ∈ F[x] of degree d, there exists a hitting set of

size (d+ 1)n and computable in poly(dn) time.

Proof. Let f ∈ F[x] be an n-variate polynomial of degree d. Let S ⊆ F, such that |S| = d+1.

If |F| < d + 1, we go to an extension K of F such that |K| ≥ d + 1 and then, pick S ⊆ K.

Then according to lemma 2,

Pra∈rSn

[
f(a) = 0

]
< 1

. Hence, there exists a ∈ Sn, such that f(a) 6= 0.

Theorem 1 (Randomized black-box PIT algorithm). Let F be a field of size ≥ 2d. Let Cs,d

be the set of algebraic circuits of size ≤ s computing polynomials in F[x1, ..., xn] of degree

≤ d. There is a randomized black-box PIT algorithm for C running in poly(s, n, d) time, so

that for every C ∈ C, if fC = 0, then the algorithm returns True else the algorithm returns

False with probability ≥ 1
2

Remark 1. Suppose f ∈ F[x] can be computed by a size ≤ s algebraic circuit C. Given C,

for all α ∈ Fn, f(α) can be computed in poly(s, n) time in the unit-cost model over F.

Definition 6 (Hitting sets). Let F ⊆ F[x1, ..., xn] be a family of polynomials. H ⊆ Fn is a

hitting-set for all f ∈ F , f ≡ 0 if and only if f(α) = 0 for all α ∈ Fn

Now we show that the computational problem of finding the hitting set for a certain

family of polynomials is equivalent to giving a deterministic black-box PIT algorithm. For

a detailed proof, please refer to [For14a].

Lemma 3. Let C be a subset of algebraic circuits of size s and computing polynomials of

degree ≤ d. If there exists a t(s, n, d)-explicit hitting set H for C, then there is a deterministic

poly(|H|, t(s, n, d), s, n, d)-time black-box PIT algorithm for C.

Lemma 4. Let C ⊆ Cs,d. If there is a t(s, n, d)-time deterministic black-box PIT algorithm

A for C, then there is a poly(t(s, n, d), s, n, d)-explicit hitting set H for C with |H| ≤ t(s, n, d)

15
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In the following lemma we describe a standard technique to design a hitting set for the

set of polynomials having a "low-support" monomial in their support. It has been used in

almost all PIT results regarding the construction of hitting sets for various restricted classes

of circuits.

Lemma 5. Let P be the set of n-variate degree d polynomials such that every non-zero

polynomial in P has a l-support monomial with non-zero coefficient. Then there exists a

hitting set for P that is computable in time (nd)O(l).

Proof. Let x = {x1, ..., xn} be the set of variables over which P is defined. For every l-size

subset S of [n], let φS be the projective of the a monomial xe to xeS
S . Now since, for every

polynomial P ∈ P , there exists an l-size subset S ⊆ [n] such that P (φS(x)) 6= 0. Hence it

becomes a l-variate degree d monomial. So the trivial hitting set is of size dO(l). Since for

given a P we do not know the l-size subset S of [n] for which it is non-zero we have to try

all possible subsets. This gives a (nd)O(l) hitting set.

Lemma 6. (Efficient Kronecker Map) Let M be the set of all monomials in x = {x1, ..., xn}

such that for all m ∈ M , ideg(m) ≤ d. For any value s, there is a polynomial-time con-

structible set of weight functions {wi}i∈[N ] such that N := ns log(d + 1) where wi : x −→

[2N logN ], such that for any A ⊆M×M , |A| = s, there exists i such that for all (m,m′) ∈ A,

wi(m) 6= wi(m
′).

We include a short proof of this lemma for completeness.

Proof. Let Mn,d be the set of all monomials on n variables and degree ≤ d. Now, we want to

find W : x −→ N such that w(m) 6= w(m′) for m 6= m′ ∈Mn,d. One trivial approach towards

this is to use the Kronecker map W : xi −→ (d+ 1)i−1. This will give distinct weights to each

monomial in Mn,d but the weights given by W are exponentially high.

So, we take the weight function W modulo p for many small primes p. Each prime p leads to

a different weight function. That is our set of candidate weight functions. We need to bound

16
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the number N of primes which ensures that at least one of the weight functions separates

all the monomial pairs in A. We choose the smallest N primes, say P is the set. By the

effective version of the Prime Number Theorem, the highest value in the set P is less than

2N logN .

2.4 Results for ROABPs

We include a few theorems which are necessary for better understanding of ROABPs.

2.4.1 Structural Results

Lemma 7. (For proof refer to [For14b]) Let f ∈ F[x] be a polynomial computed by a t(n,w)-

explicit ROABP of width ≤ w in variable order x1 ≤ ... ≤ xn so that f = (
∏n

i=1Mi(xi))1,1, for

matrices Mi ∈ F[xi]
w×w. Then there are matrices M ′

i ∈ F[xi]
w×w with degxi(M

′
i) ≤ degxi(f)

with f = (
∏n

i=1M
′
i(xi))1,1 such that f can be computed by a poly(t(n,w), n, w, ideg(f))-

explicit ROABP in variable order x1 < ... < xn of individual degree ≤ ideg(f) and width

w.

Corollary 2. If polynomials f, g ∈ F[x] are computed by an ideg < d ROABPs in a variable

order π : [n] −→ [n], where f is computed by a width ≤ w ROABP that is t(n,w, d) explicit and

g is computed by an ROABP of width ≤ s that is r(n, s, d) explicit, the for all a, b ∈ F, af+bg

can be computed by an ideg < d, width (w + s), poly(t(n,w, d), r(n, s, d), n, w, s, d)-explicit

ROABP in variable order π.

The following lemma gives a trivial upper bound on the ROABP width with respect to

the degree of the polynomial.

Lemma 8 (For proof refer to [For14b]). Let f ∈ F[xn] be a polynomial with sparsity(f) ≤ s.

Then for any permutation π : [n] −→ [n], f can be computed by an ROABP of width s in

variable order π. In particular, any f with ideg(f) < d, can be computed in width dn.

17
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Lemma 9. [Nis91] Let A(x) be a polynomial of individual degree d, computed by an ROABP

of width w with variable order (x1, ..., xn). Let k ≤ n and y = {x1, ..., xk}. Then

dimF{Ay,a|a ∈ {0, 1, ..., d}k} ≤ w

Proof. We know by the matrix product structure of ROABPs, A(x) = D1(x1)...Dn(xn)

such that D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and for all 2 ≤ i ≤ n − 1, Di ∈ Fw×w[xi].

Let z = {xk+1, ..., xn} be the remaining variables of x. We define P (y) = D1...Dk and

Q(z) = Dk+1...Dn. Then

P = [P1(y), ..., Pw(y)] ∈ F1×w[y]

and

Q = [Q1(z), ..., Qw(z)]TFw×1[z]

and we have A(x) = P (y)Q(z).

Now, we know when A(x) =
∏n

i=1Di(xi), then

coeffxa(A) =
n∏
i=1

coeffxaii (Di) (2.1)

Then for a ∈ {0, 1, ..., d}k, the coefficient A(y,a) ∈ F[z] of ya can be given as

A(y,a) =
w∑
i=1

coeffya(Pi)Qi(z)

Hence, every A(y,a) ∈ spanF{Q1, .., Qw}. Hence the claim follows.

Here, we have that y is a prefix of x. But note that this is not necessary for the con-

struction to work. The variables in y can be arbitrarily distributed in x. We summarize this

observation in the following corollary.

Corollary 3. Let A(x) be a polynomial of individual degree d, computed by an ROABP of

width w , k ≤ n and y = {xi1 , ..., xik}. Then the polynomial {Ay,a for all a ∈ {0, 1, ..., d}k

can be computed by an ROABP of width w in the same order inherited from the order of the

ROABP.
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Lemma 10. let f ∈ F[x, y] such that

f(x, y) =
∏
i

(xi + yi)

Then dim (coeffxb) = dim (coeffyb) = 2n

Proof. For b ∈ {0, 1}n, we look at the coefficients of yb in f .

coeffyb(f) = coeffyb(
∏
i

(xi + yi))

= ∂yb(f)
∣∣∣
y=0

= x1−b

Thus every coeffyb produces a distinct monomial in F[x] and hence, these are linearly inde-

pendent. So dim (coeffyb(f)) ≥ 2n

The other direction follows from the fact that f is a multilinear polynomial and hence

the coefficient space can have size at most 2n.

Hence, we get that dim (coeffyb) = 2n. A similar argument works for dim (coeffxb).

Corollary 4. let f ∈ F[x, y] such that

f(x, y) =
∏
i

(xi + yi)

• For all permutations π of the variables x, y, f can be computed by an ROABP of width

≤ 2n

• There exist permutations π such that π(x) < π(y), so that any ROABP computing f

in variable order π must have width ≥ 2n

• If we take the variable order x1 < y1 < ... < xn < yn, there is a poly(n) explicit ROABP

for computing f that has width 2.
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2.4.2 Standard results required for width calculation

Lemma 11. (Monomial ordering)[For14b] Let ≺ be a monomial ordering on F[x] and S ⊆

F[x]. Then dim(S) = |LM(f) : f ∈ span(S)|

Proof. We first prove the ≥ direction.

Let r := |LM(f) : f ∈ span(S)|. Let the polynomials in span(S) that have distinct leading

monomials be f1, ..., fr such that LM(f1) ≺ ... ≺ LM(fr). We need to show that the fi’s

are linearly independent. We take a non-trivial linear combination
∑

i aifi. Let i0 to be the

largest i ∈ [r] such that ai 6= 0. We claim that coeffLM(fi0 )(
∑

i aifi) 6= 0.

Now ai = 0 for all i > i0. Also LM(fi) ≺ LM(fi0) for all i < i0 so they do not contribute

to coeffLM(fi0 )(
∑

i aifi). It follows then that only the polynomial fi0 contributes to this

coefficient, so that

coeffLM(fi0 )(
∑
i

aifi) = ai0coeffLM(fi0 )(fi0) 6= 0

Hence,
∑

i aifi 6= 0 and hence the fis are linearly independent.

We now prove the ≤ direction. Let us consider f such that f 6∈ span{fi} and then we

consider the set {LM(f − g)|g ∈ span(fi)}. Let a such that xa be a minimal monomial

with respect to ≺ in this set. As f 6∈ span(fi), this is a non-zero monomial. Now we claim

xa 6= LM(fi) for any i. This is because if xa = LM(f − g) = LM(fi), then we can write

f − g = cxa +
∑

b�a cbx
b and fi = c′xa +

∑
b�a c

′
bxb. From that we can get

f −
(
g +

c

c′
fi

)
=
(
c− c

c′
.c′
)
xa +

∑
b�a

(
cb −

c

c′
.c′b

)
xb

Now g + c
c′
fi ∈ span(fi) and this has a minimal monomial � xa, but this contradicts the

minimality of a.

Hence, there exists, g ∈ span(fi) ⊆ span(S), such that LM(f − g) 6∈ {LM(fi)}. Thus

f − g 6∈ span(S). As f ∈ span(S) implies f − g ∈ span(S), we have f 6∈ span(S) as

desired.
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Corollary 5. Let f ∈ F[x] be a polynomial and let ≺ be any monomial ordering on F[x].

Then dim(∂<∞(f)) ≥ dim(∂<∞(LM(f)))

Lemma 12. Let F be a field, char(F) = 0 and char(F) > d.Let Pn,d,k ⊆ F[xn] such that for

all P ∈ P, deg(P ) ≤ d and dim(∂<∞(f)) ≤ k. Then every 0 6= P ∈ Pn,d,k has a monomial

xa such that cs(xa) ≤ k

Proof. We first show that

|{LM(f)|f ∈ span{∂<∞(P )} ≥ |cone(LM(P ))|

Let xe be the leading monomial of P with respect to the monomial ordering ≺, Then P can

be written as

P = cexe +
∑

h∈supp(P )\e

chxh

Let xf belong to cone(xe). We define g := e− f. Then we get

∂xg(P ) = c′ex
e−g +

∑
h∈supp(P )\e

c′hx
h−g

where

c′e = ce

n∏
i=1

ei!

(ei − gi)!

Now due to the lexicographic monomial ordering, we get that xh−g ≺ xe−g.

Hence, LM(∂xg(P )) = xf.

Hence, we get that for every monomial xf ∈ cone(xe), there exists polynomial h := ∂xg(P ) ∈

span{∂<∞(P )} such that LM(h) = xf. This gives us that∣∣∣{LM(f)
∣∣∣f ∈ span{∂<∞(P )

}∣∣∣ ≥ ∣∣∣cone(LM(P ))
∣∣∣

We also know from the previous lemma that with respect to monomial ordering ≺,

dim(∂<∞(P )) ≥ |{LM(f)|f ∈ 〈∂<∞(P )〉}

This gives us the proof of our lemma.
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2.5 Low cone monomials are few

We prove the following lemma that we will use later.

Lemma 13. For 0 < k ≤ n, k ∈ Z,
k∑
i=0

(
n

i

)
≤
(en
k

)k
Proof. For 0 < t ≤ 1

k∑
i=0

(
n

i

)
≤ 1

tk

k∑
i=0

(
n

i

)
ti ≤ (1 + t)n

tk

Since (1 + t) < et for all t 6= 0, from the above expression, we get

k∑
i=0

(
n

i

)
≤ etn

tk

We now put k = tn and this gives us the given inequality.

Now, we show that the number of low-cone monomials are few.

Lemma 14. [Gho19] The number of n-variate monomials with cone-size ≤ k is O(rk2)

where r =
(

3n
log k

)log k

Proof. First we prove that for any fixed support set Sk, the number of cone-size ≤ k mono-

mials is < k2. Then, we can multiply by the total number of support sets to get an upper

bound.

Let T (k, l) denote the number of cone-size monomials with support S of size l. The

exponent of each xi ∈ S is at least 1 and ≤ k − 1. This gives us the following recurrence

T (k, l) ≤
k∑
i=2

T (
k

i
, l − 1)

We claim that T (k, l) < k2. We prove this by induction on k. Using the previous equation,

for all t ≤ k, we get

T (k, l) <
k∑
i=2

(k
i

)2

< k2

k∑
i=2

( 1

i− 1
− 1

i

)
< k2
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From the definition of cone, a cone-size ≤ k must have support size ≤ l := blog kc. The

number of possible support sets, is
∑l

i=0

(
n
i

)
. Using lemma 13,

∑l
i=0

(
n
i

)
≤
(

3n
l

)l
.

Here we include a separate calculation for the bivariate case. We will use this later.

Lemma 15. The number of bivariate cone-size ≤ k monomials is ≤ k ln k

Proof. Let the variables be x = {x1, x2} We first count the number of monomials m with

cs ≤ k such that degx1
(m) = i. We denote that set by Mi. Then

|Mi| =
⌊k
i

⌋
Let M be the set of monomials with cs ≤ k. Then

|M | =
k∑
i=1

|Mi| =
k∑
i=1

⌊k
i

⌋
≤

k∑
i=1

k

i
≤ k

k∑
i=1

1

i
≤ k ln k

2.6 Sum of log-variate ROABPs subsumes DD3

First we include small proofs to the results required for this proof.

In this next theorem, we will show that the polynomials in the depth-3 diagonal model has

low dimensional partial derivative space.

Theorem 2. [For14b] Let f(x) =
∑s

i=1 ci(fi(x))di where fi(x) = a0 +
∑n

j=1 ai,jxj, ai,j ∈ F.

Then dim(∂<∞(f))) ≤ s(d+ 1) where d = maxi di

Proof. Let xe be such that |e|1 =
∑n

i=1 ei = b. Then

∂xe(fdii ) =

(
b

e1, ..., en

)
(a0 +

n∑
j=1

ai,jxj)
di−b

n∏
j=1

ai,j

Now for all b ≤ di,

dim(∂=b(fdii )) ≤ 1
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and for b > di, it is zero. Hence, we get

dim(∂<∞(f)) ≤
s∑
i=1

dim(∂<∞(fdii ))

≤
k∑
i=1

(di + 1)

≤ k(d+ 1)

Theorem 3. [Sax08] (Duality Trick) Let m, d ∈ Z+. Let |F| ≥ d(m − 1). Then for all

distinct a0, ..., ad(m−1) ∈ F, there exist bi,j such that

(z1 + ...+ zm)d =

(m−1)d∑
i=0

d∑
k=0

bi,j

m∏
j=1

(zj + ai)
k

Proof. We define p(t) :=
∏m

i=1(zi + t)− tm. Then

∂tm−1(p)|t=0 = (z1 + ...+ zm)

Let g = pd. Then

∂t(m−1)d(g)|t=0 = (z1 + ...+ zm)d

Now we consider (d + 1) distinct points a0, ..., ad ∈ F and look at the evaluations of g at

these points. We know, for any ti, the coefficient of ti in g(t) can be extracted by taking

linear combinations of evaluations of g at (i + 1) many distinct points. Hence, there exists

b′i’s such that

(z1 + ...+ zm)d =

(m−1)d∑
i=0

b′ig(ai)

=

(m−1)d∑
i=0

b′i(
m∏
j=1

(zj + ai)− ami )d

=

(m−1)d∑
i=0

d∑
k=0

bi,k(
m∏
j=1

(zj + ai))
k

where bi,k =
(
d
k

)
b′i(−ami )d−k
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Next, we show a variable reduction map from n to O(log n) variables preserving non-

zeroness of polynomials.

Definition 7. [Vai15] Define the map ψ : F[x] −→ F[a, b, t] where |a| = |b| = l as follows:

xi −→
l∑

j=1

aijb
i2

j t

Theorem 4. [Vai15] Under the map ψ : F[x] −→ F[a, b, t], each ≤ l support monomial in

P (x) is mapped to a unique monomial in P (ψ(x))

Proof. We fix an l-support monomial xr = xr1i1x
r2
i2
...xrlil . Now

ψ(xr) =
l∏

k=1

( l∑
j=1

aikj b
i2k
j t
)rk

= a0

l∏
k=1

(aikk b
i2k
k )rkt

|r|1 + other terms

Now we claim that this monomial can be generated uniquely from the product and hence

a0 = 1.

Let us assume we picked the first term ai11 b
i21
1 from k1 many brackets. And the corresponding

exponents of a1 are (e1, ..., ek1). This gives us the following relations:

k1∑
j=1

ej = r1i1

k1∑
j=1

e2
j = r1i

2
1

Now using Cauchy-Schwarz, we get r1 ≤ k1. Equality holds when e1 = e2 = ... = ek1 = i1

Similarly, for all j, we get kj ≤ rj. Now |k|1 = |r|1. Hence, the monomial is generated

uniquely.

Now we include the proof here that the sum of log-variate ROABPs subsumes the diagonal

depth-3.
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Lemma 16. [BS20] If we have poly-time black-box PIT for sum of width-1, log-variate

(commutative) ROABPs, then we have poly-time black-box PIT for diagonal depth-3 circuits.

Proof. We showed in Theorem (2) that diagonal depth-3 circuits have ‘low’ dimension partial

derivative space, and that such polynomials have a nonzero log-support monomial. Under

the promise of such a log-support monomial, we can apply variable-reduction map from

Theorem (4) to get from n to O(log n) variables and we showed that this map preserves

non-zeroness.

After applying the log-variate map, we will get to power-of-sums-of univariates form

which we can convert to sum-of-products-of-univariates form using the duality-trick of that

was shown in Theorem (3) . Moreover, each product-of-univariates has a width-1 ROABP;

thus we have represented as sum of width-1 log-variate ROABPs (which are trivially com-

mutative!).

2.7 Results for Cone-closed Basis

Here we also state an interesting result regarding the structural properties of polynomials

over Fk when they are shifted by a Basis-Isolating Weight Assignment (from [FGS18])

Definition 8 (Cone-closed Basis). A set of monomials B is called cone-closed set of mono-

mials, if for every monomial in B, all its sub-monomials also belong to B. Let P be an

n-variate polynomial over Fk. We say that P has a cone-closed basis if there is a cone-closed

set of monomials B whose coefficients in P form a basis for the coefficient space of P .

Theorem 5. Let P (x) be a n-variate degree d polynomial over Fk[x] and char(F) = 0 or

> d. Let w = (w1, ..., wn) ∈ Nn be a basis isolating weight assignment for P (x). Then

P (x + tw) := P (x1 + tw1 , ..., xn + twn) has a cone-closed basis over Ft

For a detailed proof of this theorem, refer to Section (7) in [Gho19].
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We show that the notion of cone-closed basis subsumes the other two notions of rank con-

centration, i.e., low-support rank concentration and low-cone rank concentration.

Lemma 17. Let P (x) be a polynomial in Fk[x]. Suppose that P (x) has a cone-closed basis.

Then, P (x) has cone-size ≤ k rank concentration and log k-support rank concentration.

Proof. Let B be a cone-closed set of monomials such that it is a basis of P . Clearly |B| ≤ k.

Since B is cone-closed, for every monomial in B, all its sub-monomials are also in B. Thus,

each m ∈ B has cone-size ≤ k

Moreover, each m ∈ B has support size ≤ log k. Otherwise, there will be a monomial in

B whose cone-size is greater than k. This is not possible, since B is cone-closed. So, P has

log k-support rank concentration.
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Chapter Three

Cone-Size Hypothesis

3.1 Introduction

Definitions: Let m be a monomial with coefficient c.

m = c · x1
e1x2

e2 · · ·xnen

We denote the exponent vector (e1, e2, · · · , en) as e. A monomial ma belongs in the cone of

another monomial mb if ma divides mb, equivalently a ≤ b. We define cone for a monomial

or equivalently it’s exponent vector e as:

cone(e) = { f ∈ Zn | 0 ≤ f ≤ e }

For example cone(xd) = { 1, x, x2, · · · , xd }, and cone(x2y) = { 1, x, x2, y, xy, x2y }. And now

we define cone size of a monomial as simply the the number of monomials which divide it,

that is the number of monomials in it’s cone.

cs(e) = |cone(e)| =
∏
i∈[n]

(ei + 1)

We define cone of a polynomial P (x) (denoted cs(P )) as the minimal cone-size over all

the monomials occurring in P .

cone(P ) = min{ cone(e) | coeffxe(P ) 6= 0}
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Note that a polynomial may have multiple minimal cone monomials with the same minimum

cone size.

Coefficients of a shifted polynomial: Let us shift a general polynomial randomly, and

try to find relation among its coefficients. Let f(x) ∈ F[x] be a non-zero polynomial with

individual degree d. Let f ′(x + t) be the shifted polynomial where xi → xi + ti. Assume

ch(F) = 0.

Let f(x) =
∑

0≤e≤d

ze · xe, where ze are coefficients ∈ F

f ′(x + t) =
∑

0≤e≤d

z′e · xe, where z′e ∈ F[t]

Now by using the binomial theorem and collecting the coefficients, we can show that

z′e =
∑

e≤f≤d

(
f!
e!

)
· zf · tf−e (3.1)

Equation (3.1) also has an alternate viewpoint using the generalized Taylor series expansion

of f(x) around the point t.

f(x) =
∑
e

(1/e!) · ∂xef(t) · (x− t)e

f(x + t) =
∑
e

(1/e!) · ∂xef(t) · xe

This immediately gives the desired expression as:

z′e =
1

e!
· ∂xef(t)

=
∑

e≤f≤d

(
f!
e!

)
· zf · tf−e

3.2 Cone size Hypothesis

Let f(x) ∈ F[x1, x2, . . . , xn] be shifted by a single variable t, xi → xi + t to get f ′ ∈ F[t][x].

Cone size≤ k Hypothesis: All cone size ≤ k monomials in f ′ = f(x+ t) have coefficients
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= 0.

Note that the coefficients of f ′ are univariate polynomials in t, and the hypothesis demands

that ∀e such that cs(e) ≤ k, coeffxe(f ′) = 0. As, we saw in Equation (3.1), the cone size

hypothesis can be re-framed as :

∂xef(t, . . . , t) = 0 for all e. cs(e) ≤ k

What can we say about a polynomial f which satisfies cs ≤ k hypothesis? We wish to exactly

characterize the structure of f . We start with the simple case of bivariate polynomials, where

we derive a very nice structure for f . And to motivate we will show how that structure gives

us a faster hitting set for bivariate polynomials computed by an ROABP.

3.2.1 Bivariate Case

We prove the following structure in the case when number of variables n = 2. Let I =

〈x− y〉F[x,y] be a principal ideal of F[x, y]. Note that Ik =
〈

(x− y)k
〉
F[x,y]

. Then:

Lemma 18. If f ∈ F[x, y] satisfies cs ≤ k hypothesis, then f ∈ Ik.

Proof. The proof is by induction on k.

Base Case: k = 1. Since the zeroth partial derivative of f is f itself, f satisfies cs ≤ 0

hypothesis simply means f(t, t) = 0, which by Factor Theorem implies that (x− y)|f ⇒ f ∈

I.

Inductive case: Suppose f ∈ Ik, and f satisfies cs ≤ k + 1 hypothesis. This means
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f = g(x, y) · (x− y)k, and ∂xkf(t, t) = 0, respectively.

∂xkf(t, t) = 0(
k! · g + (x− y)k · ∂xkg

)
(t, t) = 0

g(t, t) = 0

g ∈ I ⇒ g = h · (x− y), where h ∈ F[x, y]

f = g · (x− y)k = h · (x− y)k+1

f ∈ Ik+1

Remark 2. For n ≥ 3, the ideal will look like I = 〈(x1 − x2), (x1 − x3), . . . , (x1 − xn)〉. In

that case, if f satisfies cs ≤ k hypothesis, then f /∈ Ik, since the above proof will break down

because I is not a principal ideal. We will however still find the exact structure of f , as we

will see later.

Now we will show an ROABP width lower bound when f ∈ Ik.

Theorem 6. If f = (x− y)k · g(x, y), then ROABP width w(f) > k.

Proof. Note that (x − y)k has ROABP width exactly k + 1 by Nisan’s characterization

(coeff(yi) for i ∈ [k + 1] are linearly independent as the coefficients are different degree x

polynomials). The idea is that width will only increase when multiplied by g.

Suppose g is a degree d polynomial. Let g = gd + gd−1 + . . . + g0, where gi is degree

i homogeneous part of g. It suffices to prove that (x − y)kgd has width > k. This is

because (x − y)k is a homogeneous polynomial of degree k, hence (x − y)kgd contributes a

degx = k + d − i term in coefff (yi), while gd−1, . . . , g0 contribute degx < k + d − i terms in

coefff (yi). Hence they will not affect F linear independence of coefficients as the degrees are

different.
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Let h = (x− y)kgd(x, y). Let sp(p) denote the sparsity of a univariate polynomial p. To

prove w(h) > k, it suffices to prove that

sp
(
h(x, 1)

)
= sp

(
(x− 1)kgd(x, 1)

)
> k

This is because h(x, y) is a homogeneous polynomial of degree d+ k. If sp(h(x, 1)) = l > k,

then

h(x, 1) = c1 · xj1 + . . .+ cl · xjl

with each c1, . . . , cl 6= 0. Note that coeffh(xji) has degy = k + d − ji in h(x, y). Therefore

coeffh(xj1), . . . , coeffh(xjl) are linearly independent as they are of different degrees.

Now, we focus on the final step of proving the following claim

Claim 1. sp
(

(x− 1)k · gd(x, 1)
)
> k

Note that (x − 1)k · gd(x, 1) is a non-zero polynomial, since partial evaluation of a ho-

mogeneous polynomial is always non-zero. For the sake of contradiction, suppose sp <= k.

That means:

(x− 1)k · gd(x, 1) =
k−1∑
i=0

ci · xji

xk · gd(x+ 1, 1) =
k−1∑
i=0

ci · (x+ 1)ji

On LHS, all degree < k terms are 0. This sets up a homogeneous system of linear equations.

1 1 · · · 1

j0 j1 · · · jk−1(
j0
2

) (
j1
2

)
· · ·

(
jk−1

2

)
. . .(

j0
k−1

) (
j1
k−1

)
· · ·

(
jk−1

k−1

)


·



c0

c1

...

ck−1


=



0

0

...

0


This binomial coefficient matrix is full rank, a simple proof of which we include later

for completeness. Hence this system only has a trivial solution which contradicts the non-
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zeroness of (x− 1)k · gd(x, 1). Hence, sp > k, which suffices to prove width of f = (x− y)k ·

g(x, y) > k.

Lemma 19. [Gur+15] Let C be a w×w matrix with C(a, b) =
(
ja
b−1

)
for all a, b ∈ [w] where

{ja}a are all distinct numbers. Then C has full rank

Proof. We will show that for any α 6= 0 ∈ Fw×1, Cα 6= 0. We consider the polynomial

h(y) =
∑w

b=1 αb
y(y−1)...(y−b+2)

(b−1)!
. As, h(y) is a polynomial with degree ≤ w − 1, we have at

most w − 1 roots. Then there exists a ∈ [w], such that h(ja) =
∑w

b=1 αb
(
ja
b−1

)
6= 0.

Hitting sets for bivariate ROABPs

Note that Theorem 6 and Lemma 18 together give a hitting set for bivariate ROABPs. Let

f be the input bivariate polynomial computed by an ROABP of width k given as black-box.

We simply need to shift f with t and test zeroness of the coefficients (univariates in t) of

cs ≤ k monomials in the shifted polynomial. This is a valid hitting set because if f is a

non-zero polynomial, then one of the cs ≤ k coefficients must be non-zero. If not, then by

Lemma 18 and Theorem 6, f has ROABP width > k, which is a contradiction.

Now we compute the size of the hitting set for the ROABPs. The trivial hitting set is

(d + 1)2 where d := max{ideg(x1), ideg(x2)}. Now, for this hitting set we need to check the

coefficient of all bivariate monomials that have cs ≤ k. The number of bivariate monomials

with cs ≤ k is k ln k. (Lemma 15) Now the coefficient of each such monomial is an univariate

polynomial of degree ≤ 2d. So the size of the required hitting set is 2dk ln k + 1. This is

strictly better than the trivial hitting set for d >> k.

3.2.2 Extending to general ROABPs

Theorem 7 (Structural Result). Let

I =
〈∏
j≥2

(xj − x1)ei,j |cs(e) ≤ k
〉
F[x1]

(3.2)
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If f satisfies cone-size ≤ k hypothesis, then f ∈ I

Proof. The proof is same as the proof of Lemma (22). Replace the ti = t and this follows.

We now want to prove a similar ROABP width lower bound for polynomials satisfying

this structural property.

Theorem 8 (Width Result). If f ∈ I, then any ROABP computing f has width ≥ k
1

n−1

We first write the proof for n = 3 and then generalize it to higher variables.

Proof. We take f ∈ I. Now f can be split into degree -i homogeneous parts. Each of these

contribute separately to the width because there are no cancellations and taking the partial

derivative with respect to them will always give distinct leading monomials. Hence,without

loss of generality, we can, assume that f is a degree d homogeneous polynomial.

Hence,

f =
∑

e:cs(e)≥k

aex
d−|e|1
1 (x2 − x1)e2(x3 − x1)e3

We now use the following substitution x2 = t2x1 and x3 = t3x1. Hence the new polynomial

becomes

f = xd1
∑

e:cs(e)≥k

ae(t2 − 1)e2(t3 − 1)e3

So using this structural characterization, we make the following claim regarding the sparsity

of such polynomials

Claim 2. Let

f ′ =
∑

e:cs(e)≥k

ae(t2 − 1)e2(t3 − 1)e3

Then sp(f) ≥
√
k
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Now since, cs(e) ≥ k, then either e2 or e3 must be ≥
√
k − 1. If not, then cs(e) =

(e2 + 1)(e3 + 1) < k.

Then we can write the polynomial into two parts. One where e2 ≥
√
k− 1 and e3 ≥

√
k− 1

f ′ = (t2 − 1)
√
k
∑
e

(t2 − 1)e
′
2(t3 − 1)e3 + (t3 − 1)

√
k
∑
e

(t2 − 1)e2(t3 − 1)e
′
3

There are two cases.

Case 1: If (t2 − 1)
√
kg(x2, x3) is a summand. (This works even if both of them exist.) We

define e′ to be the highest power such that (t3 − 1)e|f ′ but (t3 − 1)e+1 - f ′

f ′′ =
f ′

(t3 − 1)e

Now we want to prove that sp(f ′′) ≥
√
k

Now, f ′′(t2, 1) 6= 0. Hence,

f ′′(t2, 1) = (t2 − 1)
√
k
∑
e

a′e(t2 − 1)3

Now, f ′′(t2, 1) = (t2−1)
√
kg(t2).We use Claim (1) here to prove that sp(f ′′(t2, 1)) ≥

√
k. Now,

replacing variables by constants can only decrease the sparsity by adding more cancellations.

Hence, sp(f ′′) ≥
√
k. Hence, multiplying back by (t3 − 1)e will keep sparsity unchanged.

Hence sp(f ′) ≥
√
k. . Hence, we can write

f ′ =

w≥
√
k∑

i=1

ai(t3)tei2

Now we can write back

f =

w≥
√
k∑

i=1

ai(t3)xd−ei1 xei2

Hence, if we take the set of partial derivatives

∆ = {∂
x
d−ei
1

(f)|x1=0 where i ∈ [w]}
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These partial derivatives are all linearly independent due to different powers of x2 in them.

Hence, we use Lemma (9), to get that w(f) ≥
√
k.

Case 2: If (t2 − 1)
√
kg(x2, x3) is not a summand. Then we can write

f ′′ = (t3 − 1)
√
k
∑
e

ae(t2 − 1)e2(t3 − 1)e
′
3

We can use the same proof strategy as Case 1 but now by switching t2 and t3. This will

again give us that sp(f ′) ≥
√
k. And then we can write

f =

w≥
√
k∑

i=1

ai(t2)xd−ei1 xei3

We take the same set of partial derivatives ∆ and these are all linearly independent due to

different powers of x3 in them. Hence, we use Lemma (9), to get that w(f) ≥
√
k.

Now this proof can be extended to higher variables by a similar observation that there

exists i ∈ {2, ..., n} such that ei ≥ k
1

n−1 . The rest of the proof follows in an exactly similar

fashion. We get that w(f) ≥ k
1

n−1

3.3 A structural Conjecture for Cone-Size hypothesis

As mentioned in Remark 2, the picture is not so simple and clear for general number of vari-

ables n. But, inspired from bivariate and many calculations, we give the following generalized

conjecture for the structure of f .

Conjecture 1. If f satisfies cs ≤ k hypothesis, then

f ∈
〈
Pe =

∏
i 6=j

(xi − xj)eij | cs(Pe) ≥ k + 1
〉
F[x]

One can easily verify that Lemma 18 is a special case of above conjecture. The benefit

of having this form of f will be justified by the next conjecture:

Conjecture 2. If f ∈
〈
Pe =

∏
i 6=j(xi − xj)

eij | cs(Pe) ≥ k + 1
〉
F[x]

, then ROABP width

w(f) >
√
k.
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The idea is to first show that Pe =
∏

i 6=j(xi−xj)eij , where cs(Pe) ≥ k+ 1 has w(Pe) > k,

then show the same lower bound for g · Pe, where g is any n variate polynomial. The final

nail in the coffin is to then show the width lower bound for
∑

i gi · Pi, which is expected to

be the most difficult part.

Remark 3. Here one is forced to consider commutative ROABP width, as there exists

the following example:

f = (x1 − y1)e1(x2 − y2)e2 . . . (xn − yn)en

has ROABP width = 1 + maxi{ei} in the variable order x1 < y1 < . . . < xn < yn. How-

ever it still has width = cs(e) in all the variable orders where σ(x) < σ(y), that is in the

variable order, where all x variables must occur before any y variables although allowing any

permutations within x or y.

Hitting set overview: Suppose we are given an input polynomial f as a black-box

ROABP of size k (width ≤ k), and number of variables n = O(log k). We know that

number of cs ≤ k monomials when n = O(log k) is poly(k). Hence, in polynomial time we

will test zeroness of the coefficients of cs ≤ k monomials in f(x1 +t, . . . , xn+t), which can be

done in polynomial time as they are polynomially many and each coefficient is a univariate

polynomial in t. If the input polynomial f was non-zero, then one of these coefficients must

be non-zero. Because otherwise, f satisfies cs ≤ k hypothesis, which by Conjecture 1 and 2

will contradict the width of input polynomial.

3.3.1 A proof for the trivariate case

Definition 9 (Cone set). The cone set Sm of a monomial m is defined as:

Sm = {Pe | cone(Pe) = m}

Note that different cone sets may share some polynomials since a polynomial can have

multiple least cone monomials. The reason for defining Sm is driven by partial derivatives.
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In 〈P=k〉, we wish to take partial derivative by a monomial m = xe of cone-size = k. Suppose

〈Sm〉 ⊆ 〈P=k〉 =
∑

i:Pi∈Sm
aiPi, then:

1

e!
· ∂m〈P=k〉(t) =

1

e!
· ∂m〈Sm〉(t) =

∑
i:Pi∈Sm

ai(t)

1

e!
· ∂m〈P=k〉(t) =

∑
i:Pi∈Sm

ai(t) = 0

The last step follows from cs ≤ k hypothesis, where t simply means evaluating at x1 =

x2 = x3 = t point. The first step is true since only Pi ∈ Sm will contribute in the partial

derivatives evaluated at t. In this section, we will show that the cone size conjecture is true

when the input polynomial is trivariate. This will require much more non-trivial ideas than

the bivariate case proved earlier. The hope is to generalize the techniques here to prove

cs ≤ k conjecture for general n. Let us formally state this as a lemma:

Lemma 20. If f ∈ F[x1, x2, x3] satisfies cs ≤ k hypothesis, then

f ∈
〈
Pe = (x1 − x2)e12 .(x1 − x3)e13 .(x2 − x3)e23 | cs(Pe) > k

〉
F[x]

Proof Sketch: The proof is again by induction on k.

Base case: k = 1 which means f(t, t, t) = 0. This implies f ∈ I, where I = 〈(x1−x2), (x1−

x3)〉. Hence, f satisfies the induction hypothesis since cs(x1 − x2) = cs(x1 − x3) > 1.

Inductive case: If f satisfies cs ≤ k hypothesis, then we wish to prove that f ∈
〈
Pe =∏

i 6=j(xi − xj)ei,j | cs(Pe) > k
〉
F[x]

. Note that f satisfies cs ≤ (k − 1) hypothesis, which by

induction hypothesis implies

f ∈
〈
Pe =

∏
i 6=j

(xi − xj)ei,j | cs(Pe) = k
〉

+
〈
Pe =

∏
i 6=j

(xi − xj)ei,j | cs(Pe) > k
〉

(3.3)

By taking partial derivatives of f by monomials of cone size exactly k (the e in the first

ideal), we will show that f is actually only in the second ideal above. Note that ∂xef(t, t, t)

has 0 contribution from the second ideal. For simplicity, let us write Equation 3.3 in short

as f = 〈P=k〉+ 〈P>k〉. Incrementally, we will push all the terms in 〈P=k〉 to 〈P>k〉, by taking
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partial derivatives by monomials of cs = k. Once, a term has been moved to 〈P>k〉, we need

not worry about its contribution in the partial derivatives since it will be zero due to the

form of 〈P>k〉.

Telescopic Differences: Suppose 〈Sm〉 ⊆ 〈P=k〉 = a1P1 + a2P2 + . . . + arPr. This can be

rewritten in a telescopic form as follows:

〈Sm〉 = a1P1 − a1P2 + (a1 + a2)P2 − (a1 + a2)P3 + . . .+ (a1 + a2 + . . .+ ar)Pr

The reason behind such decomposition is well motivated. These differences are “well-

behaved". Also, the last lone summand (a1 + a2 + . . . + ar)Pr is special as it will no longer

be in 〈P=k〉. This follows from the cone set argument above

1/e! · ∂m〈P=k〉(t) = a1(t) + a2(t) + . . .+ ar(t) = 0

This implies
∑r

i=1 ai ∈ I. Since, Pr ∈ 〈P=k〉, with cs(Pr) = k,

cs((
r∑
i=1

ai)Pr) > k

That is, (
∑r

i=1)Pr ∈ 〈P>k〉, thus taking us closer to proving our induction step. Now, we are

left with handling the telescopic differences.

Initial settings: Remember we were in the induction step: f = 〈P=k〉 + 〈P>k〉. We focus

on

〈P=k〉 =
〈
Pe = (x1 − x2)e12 .(x1 − x3)e13 .(x2 − x3)e23 | cs(Pe) = k

〉
. If m12 = xe12+e13

1 · xe23
2 is a least cone monomial of Pe, then m13 = xe13+e12

1 · xe23
3 is also a

least cone monomial of Pe. Similarly m21 ∼ m23 and m31 ∼ m32 are the only other possible

least cone monomials due to the form of Pe.

Observe that if Pe ∈ Sm12 , then (Pe)x2↔x3 ∈ Sm12 , where in the latter we have swapped the

variables x2 and x3. This is a nice structural property owing to the form of Pe which we will
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exploit later in the next concept of atomic operations. WLOG, henceforth we will assume

m12 of cone-size = k is a least cone monomial of Pe, unless stated otherwise. This puts us in

the settings: e12 ≥ e23 and e13 ≥ e23, which can be easily verified. Also wlog, let e12 ≥ e13,

because if not we can always swap x2 ↔ x3. This gives us:

e12 ≥ e13 ≥ e23

Atomic Operations: Let us use the shorthand (e12, e13, e23) for Pe. We assumed that

(e12, e13, e23) ∈ Sm12 . We define atomic operation by decrementing/incrementing e12, e13 by

-1, +1 respectively (Total degree should not change). The question is whether (e12− 1, e13 +

1, e23) ∈ Sm12? This question is non-trivial because although monomial m12 still has the

same cone-size k, this operation might give rise to some other least cone monomial with cone

size < k, for example m31 which has cone-size (e13 + e23 + 1) · (e12 − 1) (actually both the

products also have a +1 but we will ignore these in cone sizes since it will not affect the

calculations). But, we will rule out such possibilities because we knew that cs(m31) ≥ k in

both Pe and (Pe)x2↔x3 , that is (e13 + e23).(e12) ≥ k and (e12 + e23).(e13) ≥ k. We formalize

this, in the following claim:

Lemma 21. (e12 − δ, e13 + δ, e23) ∈ Sm12 for δ = {0, 1, . . . , e12 − e13}

Proof. We first show that m31 ∼ m32 cannot get a cone-size < k in (e12− δ, e13 + δ, e23). The

claim for end points δ = 0, e12−e13 is given, that is (e13+e23).(e12) ≥ k and (e12+e23).(e13) ≥

k. We need to use this to prove it for the rest of the values of δ. Note that this can be

formulated as a function h(x) = x · (c− x), where c = e12 + e13 + e23 is a constant. Since the

second derivative h′′(x) < 0, this function is concave, hence all intermediate values on the

graph of h(x) between the two end points for δ = 0 and δ = e12 − e13 are ≥ k. Note that

start point δ = 0 polynomial has cone-size ≥ end point δ = e12 − e13. Therefore, if we take

difference of two consecutive polynomials, the resulting polynomial can have cone-size = k

only in the last difference.

40



Cone-Size Hypothesis

Similar argument also shows that m21 ∼ m23 cannot get cone-size < k in (e12 − δ, e13 +

δ, e23). Here, if we take consecutive differences, the resulting polynomial can have cone-size

= k only in the first difference.

Atomic Differences: Now we shall combine telescopic differences and atomic operations

to show the aforementioned “well-behaved"ness of differences.

If Sm12 is singleton, then we simply take partial derivative by m12, evaluate at t to show

that it’s coefficient ∈ I, and hence it is in 〈P>k〉, and we are done. If we have more than one

polynomial in Sm12 , pick the one with bigger e12. Then we subtract and add telescopically

with (e12− δ, e13 + δ, e23) till we reach the next e′ with smaller e12 and so on. Let us analyze

any single atomic difference step:

(e12, e13, e23)− (e12 − 1, e13 + 1, e23) = (e12 − 1, e13, e23 + 1)

This nice factorization of two differences is useful for us in making progress in our induction

step.. By Claim 21, we know that in any intermediate step, the polynomials being subtracted,

both of them ∈ Sm12 . Thus the difference of the two will give a resulting polynomial also

with minimal cone size ≥ k. We handle it in two cases:

Case 1: The resulting polynomial has cone-size > k. This puts it in 〈P>k〉 which is a good

case. Note that this will happen when both the polynomials being subtracted had only

m12 ∼ m13 as the only least cone monomial, which got subtracted out.

Case 2: The resulting polynomial has cone-size = k. Then, the resulting polynomial either

belongs in Sm21−m12 or Sm31−m12 . The proof of Claim 21 reveals that it will move to Sm21

only in the first difference, if at all and Sm31 only in the last difference, if at all. Rest of the

differences will be Case 1.

Now we will repeat this process for polynomials ∈ Sm21 . The good thing is that on

taking derivative with m21 at t, common polynomials from Sm12 cannot interfere as they

have already been removed. Here also, either the atomic differences will have cone-size> k,

41



Cone-Size Hypothesis

which is good or they will have cone-size = k. In the latter case, either it will give m31

uniquely, if at all, and it may give m12 uniquely. The m31 case will be handled in next step,

and the m12 case can be handled simply by taking derivative with m12 at t. Since, m12 was

produced uniquely, no other polynomial can interfere, and hence its coefficient ∈ I pushing

the polynomial in 〈P>k〉.

Again, we repeat the process for the remaining polynomials of 〈P=k〉 which are in Sm31

but do not have m12 or m21 as their least cone monomials. Here again the difficult case is

when the atomic differences might produce m12 or m21 but since they produce it just once,

they can be moved to 〈P>k〉 by taking partial derivatives respectively.

Finally, we have showed through the method of telescopic atomic differences, that f is

generated by polynomials of cone-size > k, that is

f ∈
〈
Pe =

∏
i 6=j

(xi − xj)ei,j | cs(Pe) > k
〉

which completes the induction step and proof of Lemma 20.

3.3.2 Some related width Results

We first prove a width result for the n = 3 case.

Theorem 9 (Width result for the trivariate case). Let

I :=
〈
Pe = (x1 − x2)e12 .(x1 − x3)e13 .(x2 − x3)e23 | cs(Pe) > k

〉
F[x]

If f ∈ I, then it has width ≥ O(
√
k)

Proof. We will use techniques similar to the proof of Theorem 8.

Now, f ∈ I can be split into degree-d homogeneous parts. Each of these contribute separately

to the width because there are no cancellations and taking the partial derivative with respect

to them, will give distinct leading monomials. Let fd be the degree-d homogeneous part of
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f . Then w(f) ≥ w(fd).

Hence, we already can write

f =
∑

cs(Pe)>k

ae(x2 − x1)e2,1(x3 − x1)e3,1(x2 − x3)e2,3

where ae ∈ F and e = (e2,1, e3,1, e2,3) ∈ Nn

Now, because of the assumption, we can write

fd =
∑

cs(Pe)>k

aex
d
1(t2 − 1)e2,1(t3 − 1)e3,1(t2 − t3)e2,3

where x2 = t2x1 and x3 = t3x1.

Now cs(Pe) > k means that one of the following things will happen

(e2,1 + e3,1 + 1)(e2,3 + 1) > k or

(e2,1 + e2,3 + 1)(e3,1 + 1) > k or

(e2,3 + e3,1 + 1)(e2,1 + 1) > k

By Pigeonhole principle, we get that for each of these situations, there exists some i, j such

that ei,j ≥
√
k

2
= l.

We can then write the polynomial fd as

fd = (t2 − 1)
l
2 g2(t2, t3) + (t3 − 1)

l
2 g3(t2, t3) + (t2 − t3)lg2,3(t2, t3)

Now we can split (t2− t3)l as ((t2− t1)− (t3− t1))l =
∑

i

(
l
i

)
(t2−1)i(t3)l−i. Now, either i ≥ l

2

or l − i ≥ l
2
. So, we can split this part and collect the terms in the first two summands and

write the polynomial as

fd = (t2 − 1)
l
2 g′2(t2, t3) + (t3 − 1)

l
2 g′3(t2, t3)

We can use the same proof as 2 to show that sp(fd) ≥
√
k

4
.

This gives us a proof that

w(f) ≥ O(
√
k)
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We prove a result for a general class of polynomials that satisfies the structural conjecture.

These polynomials can serve to be a toy case and the techniques used here could potentially

be generalised to the class of polynomials satisfying the cone-size hypothesis.

Theorem 10.

f =
∏

i<j∈[n]

(xi − xj)l

Then any ROABP computing f must have width > lbn/2c

We first give a proof in the n = 4 case to give an idea of the proof strategy.

Claim 3. Let

f =
∏

i<j∈[4]

(xi − xj)l

Then any ROABP computing f must have width > l2

Proof. We look at the dimension of the following coefficient space

coeffxi1x2l+j
3

(f) where i, j ∈ [0, l]

We also apply a monomial ordering on the set of monomials that is guided by the following

ordering on the set of variables x2 � x4. We look at the leading monomial with respect to

this monomial ordering. We claim that

LM
(
coeffxi1x2l+j

3
(f)
)
where i, j ∈ [0, l]

We claim that x2l−i
2 xl−j4 ((x2 − x4)l) is the leading monomial and has non-zero coefficient.

Now (x2 − x4)l|LM(coeffxi1xj3(f)) for all i, j. This is because

coeffxi1xj3(f) = ∂xi1x
j
3
(f)
∣∣∣
x1,x3=0

Using the product rule, the partial derivative operator ∂xi1xj3 leaves (x2 − x4)l factor un-

changed.
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Now for the leading monomial to have non-zero coefficient (x1 − x3) - LM(∂xi1x
2l+j
3

(f)).

Now, we want to show that, m = x2l−i
2 xl−j4 can be computed in only one way. Let us assume

on the contrary, that m can also be computed if x1 takes i′ < i from the (x1 − x4)l bracket

and takes the remaining i− i′ from the (x1 − x2)l bracket. More formally,

LM(∂xl+j
3

(∂xi1((x1 − x2)l(x1 − x4)l)(x3 − x4)l(x3 − x2)l))

=LM(∂xl+j
3

((x1 − x2)l−i+i
′
(x1 − x4)l−i

′
(x3 − x4)l(x3 − x2)l))

=x2l−i+i′−j
2 xl−i

′

4

But i′ < i, hence, x2l−i+i′−j
2 xl−i

′

4 ≺ x2l−i
2 xl−j4 due to the monomial ordering.

Similarly, we can also assume on the contrary, m can also be computed if x3 takes j′ > j

from the (x3 − x2)l bracket and takes the remaining l − j + j′ from the (x3 − x4)l bracket.

But this gives a leading monomial x2l−j′
2 xl−i+j

′−j
3 which is ≺ x2l−i

2 xl−j4 .

Hence, LM
(
coeffxi1x2l+j

3
(f)
)

= x2l−i
2 xl−j4 ((x2− x4)l) where i, j ∈ [0, l] and these have non-

zero coefficients. Also, these have all distinct l2 many distinct individual degrees and hence,

using Lemma 9 and then using Corollary 5, we get

w(f) ≥ dim
(
{coeffxi1x2l+j

3
(f) where i, j ∈ [0, l]}

)
= l2

.

Proof of Theorem (3.3.2). We assume for simpler calculations that n = 2k. Then we look

at the dimension of the following coefficient space of f . We first define the monomial set

with respect to which we look at the partial derivatives.

∆ =
{ k∏
i=1

x
(2i−2)l+ji
2i−1 where i, j1, ..., jk ∈ [0, l)

}
We define the set of odd numbered variables to be O = {1, 3, ..., n − 1}. Let xO be the

restriction of x to the odd numbered variables. So we want to calculate the dimension of the

following set

∂∆(f) =
{
∂m(f)|xO=0

∣∣∣m ∈ ∆
}
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Now, |∂∆(f)| ≤ lk. We claim that the equality holds.

Now we assume there is a deg-lex monomial ordering on the m ∈ ∂∆(f) with x2 > x4 >

... > x2k and we look at the leading monomial with respect to this monomial ordering.

We first give an algorithm to find a leading monomial with respect to this ordering.

Preprocessing Step: Since, (x2i − x2j)
l divides all of the partial derivatives, so we can

remove them and look at the partial derivatives on the remaining f . Now, if the leading

monomial must have non-zero coefficient, ((x2i−1 − x2j−1) - LM(∂m(f))). For each x2i−1,

x
(i−1)l
2i−1 must be used up. So we define

∆′ =
{ k∏
i=1

x
(i−1)l+j2i−1

2i−1 where i, j1, ..., jk ∈ [0, l)
}

So we define

f ′ =
f∏

i<j∈[k](x2i − x2j)l(x2i−1 − x2j−1)l

and now we want to compute.

∂∆′(f
′) =

{
∂m(f ′)|xO=0

∣∣∣m ∈ ∆′
}

Algorithm 1: Algorithm to find leading monomial
Result: This algorithm finds the leading monomial in the processed polynomial

i = k, Leadmo = 1, f =
∏

i<j∈[n](xi − xj)l, mon =
∏k

j=1(x2j−1)l,f ′ = 0;

while i > 0 do

mon = mon
(x2i−1)l

;

f ′ = ∂mon(f);

Leadmo = Leadmo× LM(∂
x

(i−1)l+j2i−1
2i−1

(f ′)|x2i−1=0);

i = i− 1;

end

Return: Leadmo
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Proof of Correctness: This returns the leading monomial for the given ∆′ because we

maintain the invariant of finding the leading monomial at every step.

Let m ∈ ∆ with parameters j2i−1 where i ∈ [k].

LM(∂m(f ′)) =
k∏
i=1

x
(k−(i−1))l−jn−(2i−1)

2i

Now, it is obvious, that for different sets of ji, we get different leading monomials. (Just look

at every degree of x2, it only depends on jn−1 and this happens for every i = 2j). Hence

using Corollary (5) ∣∣∣∂∆(f)
∣∣∣ ≥ ∣∣∣{LM(∂m(f))

∣∣∣m ∈ ∆
}∣∣∣ ≥ lk

Now we know from Lemma (9)

w(f) ≥
∣∣∣∂∆(f)

∣∣∣ ≥ lk
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Chapter Four

Stronger Cone-Size Hypothesis

We will be using the famous sparse PIT map as our shift. Structure Lemma (22) will describe

the form of such a shifted polynomial. Then, we intend to use the special properties of the

sparse PIT map in proving the width conjecture(3), to achieve the desired bound of hitting

set.

Recall that in sparse PIT map, one constructs a weight function w : x̄→ N such that when

xi is replaced with tw(i), it gives distinct weights to all the monomials, thus keeping the

polynomial non-zero after substitution.

Here we again restate this lemma that we mentioned and proved in the preliminaries section.

Lemma 6: Let M be the set of all monomials in n variables x̄ = {x1, x2, . . . , xn} with

maximum individual degree d. For any value s, there is a polynomial-time constructible set

of N := ns log(d + 1) weight functions from x̄ to [2NlogN ], such that for any set A ⊆ M2

of s pairs of monomials, at least one of the weight functions w separates all the pairs in A;

i.e., for all (m,m′) ∈ A,w(m) 6= w(m′).

In other words, this lemma says that sparse PIT map preserves F-linear independence

of a given set of sparse number of monomials. Stated explicitly, it says:

Corollary 6. Let m1,m2, . . . ,ms be a set of F-linearly independent monomials, and let φ be

the sparse PIT map for s-sparse polynomials as in Lemma(6). Then φ(m1), . . . , φ(ms) are

also F-linearly independent.
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Proof. Let c1, . . . , cs ∈ F. Then:

c1m1 + . . .+ csms = 0⇔ c1φ(m1) + . . .+ csφ(ms) = 0⇒ ∀i, ci = 0

where the latter implication holds since, φ(m1), . . . , φ(ms) have distinct degree.

The shift: Let f(x̄) ∈ F[x1, x2, . . . , xn]. Then we will shift f by xi → xi + ti to get

f ′ ∈ F[t][x̄], where t1 = t, t2 = t2(t), t3 = t3(t), . . . , tn = tn(t). The univariate map (t1, . . . , tn)

is the sparse PIT map for some fixed sparsity (say) ≤ k-sparse polynomials.

Cone size≤ k Hypothesis: All cone size ≤ k monomials in f ′ = f(x̄ + t̄) have coeffi-

cients = 0, where t̄ = (t, t2(t), . . . , tn(t)).

Note that the coefficients of f ′ are univariate polynomials in t, and the hypothesis demands

that ∀ē such that cs(ē) ≤ k, coeffx̄ē(f ′) = 0. As, we saw in Exercise 3.1, the cone size

hypothesis can also be written as :

∂x̄ēf(t, t2(t), . . . , tn(t)) = 0, ∀ē, cs(ē) ≤ k

What can we say about a polynomial f which satisfies cs ≤ k hypothesis? We wish to explore

the structure of f with the motive of getting a faster hitting set through that structure.

4.1 Structure Lemma

With the above definition of cs ≤ k hypothesis, we can prove the following lemma:

Lemma 22. If f satisfies cs ≤ k hypothesis, then

f ∈
〈
Pē =

(
x2 − t2(x1)

)e2(x3 − t3(x1)
)e3 . . . (xn − tn(x1)

)en ∣∣∣ cs(e2 · · · en) > k
〉
F[x1]

Proof. The proof is by induction on k. Let

I =
〈(
x2 − t2(x1)

)
,
(
x3 − t3(x1)

)
, . . . ,

(
xn − tn(x1)

)〉
F[x̄]
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Base Case: (k = 1) cs ≤ 1 hypothesis ⇒ f(t̄) = 0 ⇒ f ∈ I, where the cone-size of the

exponents of generators is indeed > 1.

Inductive Case: By Induction hypothesis for (k − 1),

f ∈
〈
Pē | cs(ē) > (k − 1)

〉
that is,

f =
∑

ē:cs(ē)≥k

aē(x̄)Pē

Now, f satisfies cs ≤ k hypothesis implies ∀ē : cs(ē) ≤ k, ∂x̄ēf(t̄) = 0. In particular, for

aēPē = aē(x̄) ·
(
x2− t2(x1)

)e2(x3− t3(x1)
)e3 . . . (xn− tn(x1)

)en with cs(e2 · · · en) = k, we have

∂xe2
2 ...xenn

(
aēPē(t̄)

)
= 0⇒ aē(t̄) = 0⇒ aē ∈ I

Therefore f satisfies cs ≤ k hypothesis means,

∂xe2
2 ...xenn

(
f(t̄)

)
= 0 ∀(e2, . . . , en) : cs(ē) = k

∂xe2
2 ...xenn

( ∑
ē:cs(ē)≥k

aē(x̄)Pē(t̄)
)

= 0 ∀(e2, . . . , en) : cs(ē) = k

∑
ē:cs(ē)≥k

∂xe2
2 ...xenn

(
aē(x̄)Pē(t̄)

)
= 0 ∀(e2, . . . , en) : cs(ē) = k

aē(x̄) ∈ I ∀(e2, . . . , en) : cs(ē) = k

f ∈
〈
Pē | cs(ē) > k

〉
F[x̄]

Note that we are still not done, as in the proof above the ideal is over F[x1, x2, . . . , xn], while

in the lemma statement we want ideal over F[x1]. However, due to the specific structure

of Pē, there is a simple trick: In aē(x̄), replace xi by
(
xi − ti(x1)) + ti(x1), ∀i ∈ {2, . . . , n}.

Using binomial expansion, we can push the (xi − ti(x1))d terms into Pē, as cs(ē) will only

increase. We might get extra summands but that does not matter. Thus, we will still get

the required form

f =
∑

ē:cs(ē)≥k

a′ē(x1)Qē

.
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4.2 Width Conjecture

The benefit of having the above structural form of f will be justified by the following con-

jecture:

Conjecture 3. If f ∈
〈
Pē =

(
x2−t2(x1)

)e2 . . . (xn−tn(x1)
)en ∣∣∣ cs(ē) > k

〉
F[x1]

, then ROABP

width w(f) > k, where t̄ is the sparse PIT map for ≤ k sparse polynomials.

Our first step will be to show that Pē =
(
x2 − t2(x1)

)e2 . . . (xn − tn(x1)
)en , where

cs(ē) > k has w(Pē) > k. We shall then progress towards showing the same lower bound for∑
ē:cs(ē)>k aēPē, where aē ∈ F. The final nail in the coffin is to then show the width lower

bound for
∑

ē:cs(ē)>k aē(x1)Pē, where aē(x1) ∈ F[x1], which is expected to be the most difficult

part. The difficulty lies in ruling out possible width reduction due to possible cancellations.

Hitting set overview: Suppose we are given an input polynomial f as a black-box

ROABP of size k (width ≤ k), and number of variables n = O(log k). We know that number

of cs ≤ k monomials when n = O(log k) is poly(k) (Lemma 2.5). Hence, in polynomial time

we will test whether the coefficients of cs ≤ k monomials in f(x1 +t, x2 +t2(t), . . . , xn+tn(t))

are zero, which can be done in polynomial time as they are polynomially many and each

coefficient is a univariate polynomial in t. If the input polynomial f was non-zero, then

one of these coefficients must be non-zero. Because otherwise, f satisfies cs ≤ k hypothesis,

which by Structure Lemma (22) and Width Conjecture(3) will contradict the width of input

polynomial.

4.3 Single summand

The first natural and necessary step to proving Width Conjecture(3) would be to first prove

the width lower bound for a single summand.
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Lemma 23. For Pē = aē(x1) ·
(
x2 − t2(x1)

)e2 . . . (xn − tn(x1)
)en, ROABP width w(Pē) > k,

where cs(ē) > k and t̄ is sparse PIT map for k + 1 sparse polynomials.

Proof. Let g =
(
x2− t2(x1)

)e2 . . . (xn− tn(x1)
)en . Consider the set of univariate polynomials

obtained by taking all the coefficients of g with respect to x2 to xn, that is:

coeff(x̄∗2,n)(g) = t2(x1)≤e2t3(x1)≤e3 . . . tn(x1)≤en

Since, we have |coeff(x̄∗2,n)(g)| = cs(ē) > k, we will consider any subset of coefficients of size

k + 1. By 6, the polynomials in that set will be F linearly independent, as they will have

distinct x1 degrees. Therefore, for the complete set,

rankF

(
coeff(x̄∗2,n)(g)

)
> k

By Nisan’s width criterion, this implies w(g) > k. For f = aē(x1) · g, the argument is same

as above, since rankF
(
aē · coeff(x̄∗2,n)(g)

)
= rankF

(
coeff(x̄∗2,n)(g)

)
.

4.4 A (probable) step towards the width conjecture

Lemma 24 (Degree-Width). Let

f = a1 · (x2 − t2(x1))e2 · g1 + a2 · (x2 − t2)e
′
2 · g2 + a3 · (x2 − t2)e

′′
2 · g3 + · · ·

where ai ∈ F, e2 ≥ e′2 ≥ e′′2 · · · , f has arbitrary number of summands and each gi contains the

remaining product for that summand (For example g1 = (x3 − t3(x1))e3 · · · (xn − tn(x1))en).

Then f has width, w(f) > e2.

Proof. Ignoring the constants and signs (they will not affect proof), let us consider a subset

52



Stronger Cone-Size Hypothesis

of coeff(x∗2)(f):

∂xe2
2

e2!
f|x2=0 = g1

∂
x
e2−1
2

(e2 − 1)!
f|x2=0 =

(
e2

1

)
· t2 · g1

...

∂
x
e′2
2

e′2!
f|x2=0 =

(
e2

e2 − e′2

)
· te2−e

′
2

2 · g1 + g2

...

∂
x
e′′2
2

e′′2!
f|x2=0 =

(
e2

e2 − e′′2

)
· te2−e

′′
2

2 · g1 +

(
e′2

e′2 − e′′2

)
· te
′
2−e′′2

2 · g2 + g3

...

f|x2=0 = te22 · g1 + t
e′2
2 · g2 + t

e′′2
2 · g3

Let us look into the F linear rank of these coefficients via a matrix equation.

ᾱ ·



1 0 0 · · ·(
e2
1

)
t2 0 0 · · ·

...(
e2
e′2

)
t
e2−e′2
2 1 0 · · ·

...(
e2
e′′2

)
t
e2−e′′2
2

(
e′2
e′′2

)
t
e′2−e′′2
2 1

...

te22 t
e′2
2 t

e′′2
2 · · ·



·



g1

g2

g3

...


= 0 (4.1)

Above ᾱ ∈ F(e2+1). Let us index the columns by C1, C2 and so on.

In order to show w(f) > e2, we need to prove that 4.1 cannot hold. Note that gi, gj are

F[x1] independent unless they have the same exponent (e3, · · · , en)
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Stronger Cone-Size Hypothesis

Let us look at the case when all gi’s are F[x1] independent. Let us rewrite 4.1 as:

∑
i

〈ᾱ, Ci〉.gi = 0 (4.2)

where 〈ᾱ, Ci〉 is the inner product between ᾱ and Ci which is the i-th column vector. Observe

that 〈ᾱ, Ci〉 ∈ F[x1]. Also, 〈ᾱ, C1〉 6= 0, since the terms in C1 are distinct degree non-zero

monomials in x1 and are hence F linearly independent. And since g1 is F[x1] independent of

other gi’s, 〈ᾱ, C1〉 cannot be cancelled. Therefore, 4.2 cannot be true.

Now let us see why 4.1 cannot hold even when gi’s are F[x1 dependent. First, observe

that if gi and gj are F[x1] dependent, then they are F dependent. Since the (e3, · · · , en)

exponents will be same, gj will just be a constant multiple of gi. Also, one of the following

two conditions must always hold:

1. gi and gj are F[x1] independent.

2. Ci and Cj (the corresponding columns) are distinct.

Both the conditions cannot be simultaneously violated, since otherwise

(x2 − t2)eigi + (x2 − t2)ejgj = (x2 − t2)eigi + (x2 − t2)ei(c.gi)

which can then be clubbed into a single summand c′(x2− t2)eigi and hence is a contradiction

(c and c′ are constants).

Therefore, if g1 and gi are dependent, then

〈ᾱ, C1〉g1 + 〈ᾱ, Ci〉gi = 〈ᾱ, C1 + c · Ci〉g1

Since C1 6= Ci, the leading monomial te2 in C1 cannot be cancelled, hence 〈ᾱ, C1 +c ·Ci〉 6= 0.

Therefore all the gi’s which are F[x1] dependent on g1 can be clubbed together in Equation

4.2, and we still get the same form as before:

〈
ᾱ,
(
C1 +

l∑
j=1

cjCij
)〉
.g1 + 〈ᾱ, C2〉.g2 + 〈ᾱ, C3〉.g3 + ...
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Stronger Cone-Size Hypothesis

where g1 is F[x1] independent of g2, g3 and rest of the gi’s in the sum, implying that the sum

is non-zero, as earlier.

Thus, there is no non-zero ᾱ ∈ Fe2+1 satisfying Equation 4.1, which means

rankF(coeffx<∞2
(f)) > e2

which implies that w(f) > e2, as required.
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Chapter Five

A simpler proof of cone-size

concentration for BIWA

In this section, we give a different and a simpler proof for the fact that polynomials when

shifted by a basis isolating weight assignment have cone-size concentration. This is already

implied from [FGS18] who show that polynomials when shifted by a basis isolating weight

assignment has a cone-closed basis over F(t) (Theorem 5) This implies that the shifted poly-

nomial has cone-size concentration.(Lemma 17)

[Gur+15] proved that a polynomial in Ak[x] when shifted by a Basis Isolating Weight As-

signment gives log(k + 1)-support concentration. We improve on the proof of this result,

especially by the improvement of a combinatorial lemma gives us a simpler proof for the fact

that the polynomial shifted by a Basis Isolating Weight Assignment has cs ≤ k concentra-

tion. This is strictly better than the log-support concentration result.

5.1 Introduction

Recall that a polynomial A(x) over an F-algebra A is called low-support concentrated if its

low-support coefficients span all its coefficients. We use the quasi-polynomial size hitting-set

for ROABPs given by Agrawal et al. [Agr+15]. Their hitting-set is based on a basis isolating
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A simpler proof of cone-size concentration for BIWA

weight assignment which we define next

Definition 10 (Basis Isolating Weight Assignment). A weight assignment w is called a

basis isolating weight assignment for a polynomial P (x) ∈ F[x], if there exists a set of

monomials B such that

• The coefficients of the monomials in B form a basis for sp(P )

• weights of all the monomials in B are distinct

• For all m ∈ supp(P ) \B, coeffm(P ) ∈ spanF{coeffm′(P )|m′ ∈ B,w(m′) < w(m)}

Let A′(x) be the shifted polynomial

A′(x) = A(x + tw) = A(x1 + tw1 , ..., xn + twn)

We will prove that A′ has cone-size concentration

The coefficients of A′ are F[t]-linear combinations of the coefficients of A. So we get the

following equations

coeffA′(xa) =
∑
b∈M

(
b
a

)
tw(b−a).coeffA(xb) (5.1)

where
(b
a

)
=
∏n

i=1

(
bi
ai

)
for any a,b ∈ Nn.

This equation can be further expressed in terms of matrices. Let C be the coefficient

matrix of A, i.e. theM× [k] matrix with coeffA(xa) as rows. Let C ′ be the coefficient matrix

of A′, i.e. the M × [k] matrix with coeffA′(xa) as rows.

C(a, ·) = coeffA(xa)T (5.2)

Let T be the M ×M transfer matrix denoted by

T (a,b) =

(
b
a

)
and let D be the M ×M diagonal matrix denoted by

D(a, a) = tw(a)
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A simpler proof of cone-size concentration for BIWA

From the equation of the coefficients of A′ in terms of A, we get that

C ′ = D−1TDC (5.3)

5.2 Isolation to Concentration

We will prove that A′ has cone-size concentration. There is a standard method of proving

this. We follow the ideas from [Gur+15] that show low support concentration. We write

the coefficients of A′ as linear combinations of the coefficients of A. Since they are linear

combinations, there exists a transfer matrix D−1TD. To study the coefficients of the cs ≤ k

monomials of the shifted polynomial, we truncate the matrices in Equation 5.3 appropriately.

Then we prove a combinatorial lemma regarding the rank of the coefficient matrix and plug

that into the proof, to get cone-size concentration. We now present the statement more

formally.

Theorem 11. Let A(x) ∈ Ak[x]. Let w be a basis-isolating weight assignment for A(x).

Then A(x + tw) is cs ≤ k concentrated.

Proof. Let A′(x) = A(x + tw). Now we consider equation (5.3) with respect to monomials

with cone-size ≤ k. We define Mk := {a ∈M |cs(a) ≤ k}. We define matrices

C ′k : Mk × [k] sub-matrix of C ′ that contains coefficients of A′ of cone-size ≤ k

Tk : Mk ×M sub-matrix of M restricted to the rows a ∈Ml

Dk : Mk ×Mk sub-matrix of D restricted to the rows and columns of Mk

To show that A′ is cs ≤ k-concentrated, we need to prove that rank(C ′k) = rank(C). By

equation (5.3), we know that C ′k = D−1
k TkDC. Now Dk has full rank and hence D−1

k as well.

Hence, we just need to show that rank(TkDC) = rank(C).

W.l.o.g. we assume that the order of the rows and columns in all the above matrices that

are indexed by M or Mk is according to increasing weight w(a) of the indices a. The rows

with the same weight can be arranged in an arbitrary order.
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A simpler proof of cone-size concentration for BIWA

Now, recall that w is a basis isolating weight assignment. Hence, there exists a set S ⊆M

such that the coefficients coeffA(b), for b ∈ S, span all coefficients coeffA(a), for a ∈ M . In

terms of the coefficient matrix C, for any a ∈M we can write

C(a, ·) ∈ span{C(b, ·)|b ∈ S and w(b) ≤ w(a)} (5.4)

Let S = {s1, ..., sk′} such that k′ ≤ k. Let C0 be the k′ × k sub-matrix of C, such that

C0(i, ·) = C(si, ·). Now by (5.4), we know for all a ∈ M , there exists γa = {γa,1, ..., γa,k′} ∈

Fk′ such that

C(a, ·) =
k′∑
j=1

γa,jC0(j, ·) (5.5)

Now, we take Γ = (γa,j) be the M × [k′] matrix and this gives us the equations

C = ΓC0 (5.6)

Observe that the si-th row of Γ is simply ei. By (5.4), C(si, ·) is used to express C(a, ·) only

when w(a) > w(si). Recall that the rows of the matrices indexed by M , like Γ, are in order

the of increasing weight of the index. Therefore, when we consider the i-th column of Γ from

the top, the entries are all zero down to row si where we hit on the one from ei,which we

can write as

Γ(si, i) = 1 and ∀a 6= si, w(a) ≤ w(si) =⇒ Γ(a, i) = 0 (5.7)

Now, we want to show that rank(TkDC) = rank(C). Now, we know that rank(C0) =

rank(C). Hence, we just need to show that R := TkDΓ has full column rank k′.

Expanding the product by column, we get

R(·, j) =
∑
a∈M

Tk(·, a)Γ(a, j)tw(a) (5.8)

Now, the term with the lowest degree in t in R(·, j) is tw(sj). By lc(R(·, j)), we denote the

coefficient of the lowest degree term in the polynomial R(·, j). Now, because Γ(sj, j) = 1,

we have

lc(R(·, j)) = Tk(·, sj) (5.9)
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A simpler proof of cone-size concentration for BIWA

We denote the Mk × [k′] matrix R0 such that R0(·, j) = Tk(·, sj). We will show that the

columns of the matrix Tk are linearly independent.Therefore the k′ columns of R0 are linearly

independent.

Hence, there are k′ rows in R0 such that its restriction to these rows, say R′0 is a square

matrix with det(R′0) 6= 0. Let R′ be the restriction of R to the same rows. Now we can

observe that lc(det(R′)) = det(R′0). This is because the lowest degree term in det(R′) has

degree
∑k′

j=1 w(sj) and this can only be obtained if the degree w(sj) term has been taken

from the j-th column. Hence, we conclude that det(R′) 6= 0 and hence, R has full column

rank.

Theorem 12. Let M be the set of all monomials of degree ≤ d in n variables and let S ⊆M

be any set of k distinct monomials in M . Define Mk to be the set of all cone-size ≤ k

monomials in M , Mk = {ā ∈ M | cs(ā) ≤ k}. Then, the multinomial matrix T defined by

T (ā, b̄) =
(
b̄
ā

)
, ā ∈Mk and b̄ ∈ S, is full rank.

The proof of Theorem 12 is in the form of Lemma 25. The multinomial matrix T is

exactly the transfer matrix of a k-sparse polynomial shifted by 1̄. Suppose T is not full

column rank, then we will get a non trivial right null vector. Construct an adversarial sparse

polynomial with the elements of null vector as its coefficients. Then this sparse polynomial

will contradict Lemma 25.

Lemma 25. Let f(x̄) ∈ F[x̄] be a non-zero polynomial of sparsity at most k. Then f ′(x̄) =

f(x̄+ 1̄) has a monomial of cone-size ≤ k with non-zero coefficient.

Proof. Proof is by induction on number of variables n.

Base Case: The n = 1 case is proved by Equation 5.10. Let f = β1x
j1 + . . . + βkx

jk .

For the sake of contradiction, suppose that all cs ≤ k monomials in f ′ = f(x̄ + 1̄) vanish,

then we get T β̄ = 0̄, where T is the binomial matrix in Equation 5.10. We will show T is a

square matrix with full rank, which means β̄ = 0̄, thus contradicting non-zeroness of f .
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A simpler proof of cone-size concentration for BIWA

That T is full rank, is in itself an interesting fact. We shall prove it again here, for the

sake of completeness. Here, T will be a square matrix of size k × k, with rows indexed

by Mk = {x0, x1, . . . , xk−1} and columns indexed by B = {xj1 , . . . , xjk}. To show that T

has full rank, we will prove that T does not have a non-zero left null vector. Let ᾱ =

(α1, α2, . . . , αk) ∈ F1×k be an arbitrary non-zero vector. We need to show that ᾱ · T 6= 0̄.

[
α1 α2 · · · αk

]



(
j1
0

) (
j2
0

)
· · ·

(
jk
0

)
(
j1
1

) (
j2
1

)
· · ·

(
jk
1

)
. . .

(
j1
k−1

) (
j2
k−1

)
· · ·

(
jk
k−1

)


=

[
0 · · · 0

]
(5.10)

To show that the above equation cannot hold, we construct an auxiliary polynomial

f(y) =
k∑
i=1

αi
y(y − 1) . . . (y − i+ 2)

(i− 1)!

Since α is a non-zero vector, f(y) is a non-zero polynomial. Notice that f has degree bounded

by (k − 1), and thus cannot have more than (k − 1) roots. But if equation 5.10 holds, then

f(y) has k roots, namely j1, . . . , jk, which is a contradiction. Hence, T is full rank.

Induction Step: Rewrite f wrt last variable as

f =
d∑
i=0

gix
i
n

where gi ∈ F[x1, . . . , xn−1]. Let m be the count of non-zero gi’s. Note that

sp(g0) + ...+ sp(gd) ≤ k

, where sp(g) denotes sparsity of g. By averaging argument, there exists a gj, j ∈ [0, d] with

sp(gj) ≤ k/m.

Applying induction hypothesis, there exists a monomial in n − 1 variables, say x̄ān−1, in
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A simpler proof of cone-size concentration for BIWA

g′j = gj(x̄ + 1̄) with non-zero coefficient and of cone-size ≤ k/m. Now, we can write the

shifted polynomial f ′ as

f ′(x̄) =
d∑
i=0

g′i(xn + 1)i

= x̄ān−1 ·
( d∑
i=0

ci(xn + 1)i
)

+ other monomials

Here, ci’s are field constants and number of non-zero ci’s are at most m. Also, cj 6= 0, thus(∑d
i=0 ci(xn + 1)i

)
is a non-zero univariate polynomial with sparsity bounded by m. By the

base case, it has a univariate monomial xjnn of cs ≤ m, that is jn ≤ m − 1. Thus, we have

isolated the monomial x̄ān−1x
jn
n in f ′ with cone-size ≤ k/m · (jn + 1) ≤ k.
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Chapter Six

Conclusion and Future Work

In the third and fourth chapters, we tried to set up a new proof strategy for a poly-time

PIT for log-variate ROABPs. We analyse the notion of cone-size hypothesis for the following

shifts:

• Shift with t = (t, t, t, ..., t)

• Shift with t = (t, t2(t), ..., tn(t)) where ti are sparse-PIT maps

For the shift with t = (t, ..., t) we prove a weaker structural characterization for polynomials

satisfying the cone-size hypothesis and we prove corresponding width lower bounds for poly-

nomials satisfying the structural characterization. For constant-variate ROABPs, this helps

us to give a poly(k) PIT algorithm.

We try to prove a stronger characterization for the polynomials that satisfy the cone-size

hypothesis. We are able to prove this for the trivariate case. A future direction of research

will be to extend the proof strategy to the general case. Replicating this proof idea becomes

difficult because applying the atomic operation on a Pe which has cone-size > k might create

a Pe′ which has cone-size ≤ k. And the induction step fails. But there might be another

interesting way to replace that by permutation operations and we will notice that their dif-

ferences are also of the same form. That might help in proving the general case.

We show the width lower bound for a specific class of polynomials that satisfy this stronger
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structural hypothesis. This proof strategy might be interesting in proving width lower bounds

for polynomials satisfying this stronger structural hypothesis.

We show a similar structural characterization for polynomials that satisfy the cone-size

hypothesis when the shift is by sparse-PIT maps. We prove a corresponding width result as

well. A similar strategy can be used to first prove width lower bounds for the case when the

span is over the underlying field F and then that can be extended to the general case (over

F[x1]).

We also give a simpler proof for the interesting structural result for Basis Isolating Weight

Assignments (BIWA) i.e a polynomial when shifted by a BIWA achieves cone-size concen-

tration. This is achieved by proving an interesting combinatorial result regarding the rank

of matrices of binomial coefficients.
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