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Zusammenfassung

Die vorliegende Arbeit untersucht die Konzepte der linearen und algebrai-
schen Unabhängigkeit innerhalb der algebraischen Komplexitätstheorie.

Arithmetische Schaltkreise, die multivariate Polynome über einem Körper
berechnen, bilden die Grundlage unserer Komplexitätsbetrachtungen. Wir
befassen uns mit dem polynomial identity testing (PIT) Problem, bei dem
entschieden werden soll ob ein gegebener Schaltkreis das Nullpolynom be-
rechnet. Für dieses Problem sind effiziente randomisierte Algorithmen be-
kannt, aber deterministische Polynomialzeitalgorithmen konnten bisher nur
für eingeschränkte Klassen von Schaltkreisen angegeben werden. Besonders
von Interesse sind Blackbox-Algorithmen, welche den gegebenen Schaltkreis
nicht inspizieren, sondern lediglich an Punkten auswerten.

Bekannte Ansätze für das PIT Problem basieren auf den Begriffen der
linearen Unabhängigkeit und des Rangs von Untervektorräumen des Poly-
nomrings. Wir übertragen diese Methoden auf algebraische Unabhängigkeit
und den Transzendenzgrad von Unteralgebren des Polynomrings. Dadurch er-
halten wir effiziente Blackbox-PIT-Algorithmen für neue Klassen von Schalt-
kreisen.

Eine effiziente Charakterisierung der algebraischen Unabhängigkeit von
Polynomen ist durch das Jacobi-Kriterium gegeben. Dieses Kriterium ist je-
doch nur in Charakteristik Null gültig. Wir leiten ein neues Jacobi-artiges
Kriterium für die algebraische Unabhängigkeit von Polynomen über endli-
chen Körpern her. Dieses liefert einen weiteren Blackbox-PIT-Algorithmus
und verbessert die Komplexität des Problems arithmetische Schaltkreise über
endlichen Körpern auf algebraische Unabhängigkeit zu testen.

iii



iv



Synopsis

This thesis examines the concepts of linear and algebraic independence in
algebraic complexity theory.

Arithmetic circuits, computing multivariate polynomials over a field, form
the framework of our complexity considerations. We are concerned with poly-
nomial identity testing (PIT), the problem of deciding whether a given arith-
metic circuit computes the zero polynomial. There are efficient randomized
algorithms known for this problem, but as yet deterministic polynomial-time
algorithms could be found only for restricted circuit classes. We are especially
interested in blackbox algorithms, which do not inspect the given circuit, but
solely evaluate it at some points.

Known approaches to the PIT problem are based on the notions of linear
independence and rank of vector subspaces of the polynomial ring. We gen-
eralize those methods to algebraic independence and transcendence degree
of subalgebras of the polynomial ring. Thereby, we obtain efficient blackbox
PIT algorithms for new circuit classes.

The Jacobian criterion constitutes an efficient characterization for alge-
braic independence of polynomials. However, this criterion is valid only in
characteristic zero. We deduce a novel Jacobian-like criterion for algebraic
independence of polynomials over finite fields. We apply it to obtain an-
other blackbox PIT algorithm and to improve the complexity of testing the
algebraic independence of arithmetic circuits over finite fields.
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Chapter 1

Introduction

Algebraic complexity theory studies the computational resources required
to solve algebraic problems algorithmically. A large class of algebraic and
symbolic computations deal with polynomials in one or several variables.

The standard model for computations with multivariate polynomials are
arithmetic circuits. Starting with variables x = {x1, . . . , xn} and constants
from a field K, an arithmetic circuit C computes an element of the poly-
nomial ring K[x] by recursively adding and multiplying already computed
expressions. The circuit C can be modeled by a directed acyclic graph whose
sources are labeled with a variable or constant and whose remaining vertices
are labeled with + or ×. We define the size of C as the number vertices
and edges in this graph. The depth of C is defined as the length of a longest
directed path.

The most fundamental open problem connected with arithmetic circuits
is to prove super-polynomial lower bounds, i. e. find an explicit polynomial of
polynomial degree that cannot be computed by a polynomial-size circuit. In
this thesis we are concerned with a computational problem that is seemingly
unrelated to lower bounds.

Polynomial identity testing

Polynomial identity testing (PIT) is the problem of deciding whether a given
arithmetic circuit C computes the zero polynomial. Note that over finite
fields this is a different question than asking whether a circuit computes the
zero function Kn → K.

There is a randomized polynomial-time algorithm known for PIT which
is based on the Schwartz–Zippel lemma [Sch80, Zip79, DL78]. In simplified
form, this test runs as follows: Given a circuit C, pick a point a ∈ Kn

at random and declare “C computes the zero polynomial” if and only if

1



2 1. Introduction

C(a) = 0. By the Schwartz–Zippel lemma, the probability that we pick a
root of a non-zero circuit is small, thus PIT is in coRP.

Giving a deterministic polynomial-time algorithm for PIT is a major open
problem. Surprisingly, derandomizing PIT is related to proving arithmetic
and boolean circuit lower bounds [KI04, DSY09].

The importance of PIT is further underlined by many algorithmic appli-
cations such as primality testing [AB03, AKS04], perfect matchings [Lov79,
GK87, Agr03, AHT07], matrix completion [Lov89], equivalence testing of
read-once branching programs [BCW80, IM83], multiset equality testing
[BK95, CK00], or equivalence testing of probabilistic automata [KMO+12].
In complexity theory, identity tests for polynomials played a role in proving
IP = PSPACE [LFKN92, Sha92], MIP = NEXP [BFL91], and the PCP-
Theorems [BFLS91, FGL+96, AS98, ALM+98]. Recently, PIT has also found
applications in geometric complexity theory [Mul12].

The randomized Schwartz–Zippel test is an example of a blackbox PIT
algorithm, because it relies solely on evaluations and does not “look inside”
the arithmetic circuit. Blackbox algorithms require the computation of hit-
ting sets. A hitting set for a class of circuits C over K[x] is a set of points
H ⊆ Kn such that for all non-zero circuits C ∈ C there exists a ∈ H satisfy-
ing C(a) 6= 0. There is interest in deterministic blackbox algorithms, because
of direct connections to arithmetic circuit lower bounds [HS80a, Agr05].

Since derandomizing PIT in general seems to be a complicated endeavor,
attempts have been made for restricted circuit classes. A natural restriction
is to consider constant-depth circuits. In depth 2, it suffices to consider ΣΠ-
circuits computing sums of monomials. For those circuits, PIT is trivial,
and also polynomial-time blackbox algorithms are known [KS01, BHLV09].
In depth 3, we may limit ourselves to examine ΣΠΣ-circuits of the form∑k

i=1

∏δ
j=1 `i,j, computing sums of products of linear forms `i,j. Even for this

class of circuits the PIT question is open. However, in the case of constant top
fan-in k, a polynomial-time blackbox algorithm was found [SS11b]. Special
classes of depth-4 circuits were considered in [Sax08, AM10, SV11]. On the
other hand, a polynomial-time blackbox PIT algorithm for (unrestricted)
depth-4 circuits would already imply a quasipolynomial-time PIT algorithm
for low-degree circuits [AV08], hence, in some sense, depth-4 circuits can be
regarded as a very general case.

Linear independence

Many known PIT algorithms work by reducing the number of variables of a
given arithmetic circuit C. Such a reduction can be achieved by replacing the
input variables x by elements of a polynomial ring K[z] = K[z1, . . . , zr] with
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less variables. Algebraically, this amounts to applying a K-algebra homo-
morphism ϕ : K[x]→ K[z] to C. To be useful for PIT, the homomorphism
should satisfy ϕ(C) = 0 if and only if C = 0.

The concept of linear independence in K[x], viewed as K-vector space,
can be beneficial for finding a desired homomorphism. A set of polynomials
{f1, . . . , fm} ⊂ K[x] is called K-linearly independent if λ1f1+· · ·+λmfm 6= 0
for all non-zero λ ∈ Km. A vector λ ∈ Km satisfying λ1f1 + · · ·+ λmfm = 0
is called a linear relation of f1, . . . , fm. The rank of the set {f1, . . . , fm},
denoted by rkK(f1, . . . , fm), is the cardinality of a maximal linearly indepen-
dent subset.

We say that the homomorphism ϕ is rank-preserving for {f1, . . . , fm} if
it satisfies

rkK(ϕ(f1), . . . , ϕ(fm)) = rkK(f1, . . . , fm).

In this case, ϕ is injective on the K-subspace 〈f1, . . . , fm〉K spanned by
f1, . . . , fm. In particular, it preserves the non-zeroness of circuits C =
λ1f1 + · · · + λmfm living in that space. Rank-preserving homomorphisms
for sets of linear forms found applications in blackbox PIT algorithms for
ΣΠΣ-circuits with constant top fan-in [KS11a, SS11b]. They were obtained
from a construction of rank-preserving matrices in [GR08].

Linear independence testing is the problem of deciding whether given
arithmetic circuits C1, . . . , Cm are linearly independent. It reduces to (the
complement of) PIT and is therefore contained in RP [Kay10]. This fol-
lows from a characterization of linear independence of polynomials which
we term alternant criterion. It says that polynomials f1, . . . , fm are linearly
independent if and only if

det
(
fi(tj)

)
i,j
6= 0,

where t1, . . . , tm are disjoint tuples of respectively n variables. Since deter-
minants can be computed by polynomial-size circuits [Ber84], we obtain the
desired reduction.

The computation of a basis of the K-subspace of linear relations can be
considered a search version of linear independence testing. This problem was
dealt with in [Kay10, CKW11] and can be solved by PIT methods as well.

Algebraic independence

Algebraic independence is a generalization of linear independence. It is a
well-known concept from field theory, but is also applicable to K-algebras
such as K[x]. A set of polynomials {f1, . . . , fm} ⊂ K[x] is called algebraically
independent over K if F (f1, . . . , fm) 6= 0 for all non-zero polynomials F ∈
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K[y] = K[y1, . . . , ym]. A polynomial F ∈ K[y] satisfying F (f1, . . . , fm) = 0
is called an algebraic relation of f1, . . . , fm. A non-zero algebraic relation is
also called an annihilating polynomial. The transcendence degree of the set
{f1, . . . , fm}, denoted by trdegK(f1, . . . , fm), is the cardinality of a maximal
algebraically independent subset.

Algebraic independence testing is the problem of deciding whether given
arithmetic circuits C1, . . . , Cm are algebraically independent. An effective
criterion for algebraic independence is provided by Perron’s degree bound for
annihilating polynomials [Per27]. This bound is exponential in the number of
variables, but can be shown to be best possible. It enables the computation of
annihilating polynomials by linear algebra and puts algebraic independence
testing in PSPACE. The Jacobian criterion [Jac41] constitutes a more
efficient characterization, which is applicable if the characteristic of K is
zero (or sufficiently large for given polynomials). It says that polynomials
f1, . . . , fn are algebraically independent if and only if

det Jx(f1, . . . , fn) 6= 0,

where Jx(f1, . . . , fn) =
(
∂xjfi

)
i,j denotes the Jacobian matrix. In character-

istic p > 0, the Jacobian criterion fails due to ∂xx
p = 0. Since the partial

derivatives of a circuit can be computed efficiently [BS83], algebraic indepen-
dence testing in characteristic zero reduces to (the complement of) PIT and
is therefore contained in RP [DGW09].

The computation of a generating system for the ideal of algebraic relations
can be considered a search version of the algebraic independence testing
problem. This can be done by Gröbner basis methods in exponential space.
Even the computation of a single annihilating polynomial can be shown to
be a hard problem [Kay09].

In complexity theory, the notions of algebraic independence and tran-
scendence degree were applied to find program invariants [L’v84], to prove
arithmetic circuit lower bounds [Kal85, ASSS12], and for randomness extrac-
tors [DGW09, Dvi09]. In this thesis we bring algebraic independence into
the realm of PIT.

1.1 Contributions

Central parts of this thesis have already been published in form of two refer-
eed papers [BMS11, BMS13] and a preprint [MSS12]. Our main results can
be divided into two parts accordingly.
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Faithful homomorphisms

The first main contribution of this thesis is a new approach to PIT based
on the notions of algebraic independence and transcendence degree. This
research was initiated as joint work with Malte Beecken (now Malte Mink)
and Nitin Saxena [BMS11, BMS13] and is expanded in this thesis.

Taking rank-preserving homomorphisms as a role model, we consider
K-algebra homomorphisms ϕ : K[x] → K[z] preserving the transcendence
degree of polynomials. We say that ϕ is faithful to a set of polynomials
{f1, . . . , fm} ⊂ K[x] if

trdegK(ϕ(f1), . . . , ϕ(fm)) = trdegK(f1, . . . , fm).

We show that, in this case, ϕ is injective on the K-subalgebra K[f1, . . . , fm]
generated by f1, . . . , fm. In particular, it preserves the non-zeroness of cir-
cuits C = F (f1, . . . , fm) living in that subalgebra. In this way, faithful
homomorphisms enable us to reduce the number of variables from n to r.

This motivates the first application of faithful homomorphisms. Let F be
a polynomial-degree circuit overK[y] and let f1, . . . , fm be polynomial-degree
circuits over K[x] of constant transcendence degree r. If we can construct
faithful homomorphisms efficiently and “in a blackbox way” for sets of type
{f1, . . . , fm}, then we obtain an efficient hitting set construction for circuits
of the form C = F (f1, . . . , fm). In this thesis, we give such constructions
for the cases that f1, . . . , fm are linear forms, monomials, constant-degree
polynomials, sparse polynomials (in zero or sufficiently large characteristic),
and products of constant-degree forms (of transcendence degree 2). A further
construction of this type will be mentioned below. Note that those results are
non-trivial, because both m and the number of variables n are unbounded.
In particular, C might have exponential sparsity.

As a second application of faithful homomorphisms, we generalize the
rank-based approach for ΣΠΣ-circuits with bounded top fan-in by [DS07,
KS11a]. We consider ΣΠΣΠ-circuits with bounded top and bottom fan-in,
i. e. circuits of the form

∑k
i=1

∏d
j=1 fi,j, where k is constant and fi,j are

constant-degree polynomials given in sparse ΣΠ-representation. We propose
a blackbox algorithm for this circuit class. For k ≥ 3, this test is conditional
in the sense that its efficiency depends on proving a certain rank bound. This
question we leave open.

The Witt-Jacobian criterion

The second main result of this thesis is a novel Jacobian-like criterion for
algebraic independence of polynomials over finite fields. We term it the
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Witt-Jacobian criterion. This is joint work with Nitin Saxena and Peter
Scheiblechner [MSS12].

Let Fq be a finite field of characteristic p > 0 and let f1, . . . , fn ∈ Fq[x]
be polynomials of degree at most δ.

The idea of the Witt-Jacobian criterion is to lift polynomials from Fq[x]
to Zq[x], where Zq := W(Fq) is the ring of Witt vectors of Fq. The ring Zq has
characteristic zero and is the ring of integers of an unramified extension of
the p-adic numbers. We have Zq/〈p〉 = Fq, so we can choose lifts g1, . . . , gn ∈
Zq[x] such that fi = gi (mod 〈p〉) for all i ∈ [n].

The criterion is stated via a degeneracy condition for polynomials in Zq[x].
Let ` ≥ 0. For a non-zero exponent vector α ∈ Nn, we denote by vp(α) the
maximal number v ∈ N such that pv divides αi for all i ∈ [n]. Furthermore,
we set vp(0) :=∞. A polynomial g ∈ Zq[x] is called (`+ 1)-degenerate if the
coefficient of xα in g is divisible by pmin{vp(α),`}+1 for all α ∈ N.

Now fix some ` ≥ n · logp(δ). Then the Witt-Jacobian criterion says that
f1, . . . , fn are algebraically independent over Fq if and only if the polynomial

g := (g1 · · · gn)p
`−1 · x1 · · ·xn · det Jx(g1, . . . , gn) ∈ Zq[x]

is not (`+ 1)-degenerate.
We call g the Witt-Jacobian polynomial of g1, . . . , gn. The main tool for

the proof of the criterion is the de Rham-Witt complex constructed by Illusie
[Ill79].

We also give two applications of the Witt-Jacobian criterion. First, we
use it to efficiently construct faithful homomorphisms for polynomials of sub-
logarithmic sparsity over Fq. This looks like a rather weak result, but this
method is more efficient than our constructions based on classical criteria in
small prime characteristic.

The second application is an algorithm for the algebraic independence
testing problem over Fq. We show that this problem is in NP#P, i. e. it can be
decided by a non-deterministic polynomial-time Turing machine with a #P-
oracle [Val79]. The basic idea of the test is that a non-deterministic machine
can guess α and the coefficient of xα in the Witt-Jacobian polynomial g
can be computed by a #P-oracle. Since we have the inclusion NP#P ⊆
PSPACE, this improves the PSPACE-algorithm obtained from Perron’s
degree bound.

1.2 Thesis Outline

The material of this thesis is distributed over the chapters as follows.
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In Chapter 2 we give a detailed introduction to arithmetic circuits and
the polynomial identity testing problem.

Chapter 3 deals with the theme of linear independence. First we present
a criterion for the linear independence of polynomials. Then we construct
rank-preserving homomorphisms and hitting sets for several circuit classes.
Finally, we investigate the complexity of testing linear independence and
computing the linear relations of arithmetic circuits.

Chapter 4 is about the theme of algebraic independence and is structured
analogously to Chapter 3. It contains the main results of this thesis. We start
with criteria for the algebraic independence of polynomials. Subsequently, we
construct faithful homomorphisms and hitting sets for several circuit classes.
Finally, we deal with the algebraic independence testing problem and the
computation of algebraic relations of arithmetic circuits.

In Chapter 5 we conclude by stating some problems that were left open
in this thesis.

Appendix A contains notation used throughout this thesis and introduces
preliminaries from algebra and complexity theory. Some definitions and no-
tation introduced in the appendix will be used in the main text without
reference. They can be located from the index which also includes a list of
symbols.
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Chapter 2

Polynomial Identity Testing

Identity is such a crucial affair
that one shouldn’t rush into it.

(David Quammen)

In this chapter we give a thorough introduction to the polynomial identity
testing problem. We pay special attention to the input representation, i. e.
the encoding of arithmetic circuits and their constants. We will distinguish
between the size of a circuit (in the common definition) and the encoding
size of a circuit (which takes into account the bit-size of the constants).
The classical randomized PIT algorithms will be presented for circuits over
Q and Fq. We also point out efficient randomized parallel algorithms for
polynomial-degree circuits. Finally, we present a proof for the existence of
small hitting sets for arbitrary circuits which can be turned into a polynomial
space bounded algorithm for their computation.

For further reading about PIT, we refer to the surveys [Sax09, AS09,
SY10] and the references therein.

Chapter outline

This chapter is organized as follows. Section 2.1 lists some famous polynomial
identities. In Section 2.2, we define arithmetic circuits and discuss encodings
of constants. A formal definition of the polynomial identity testing problem is
given in Section 2.3. In Section 2.4, we address the complexity of evaluating
arithmetic circuits. Randomized algorithms for PIT are presented in Section
2.5, and general attempts at derandomization are discussed in Section 2.6.
Finally, in Section 2.7 we define and examine hitting sets.

9



10 2. Polynomial Identity Testing

2.1 Some Polynomial Identities

Before we investigate the computational aspect of polynomial identities, we
give a compilation of some famous identities. Most of them appeared in con-
nection with number-theoretic questions such as Waring’s problem [Nar12,
Section 2.4.2] or Fermat’s Last Theorem [Edw00]. More algebraic identities
can be found in [Pie10].

(a) The Difference-of-Powers Identity:

xd − yd =
(
x− y

)
·
(
xd−1 + xd−2y + · · ·+ xyd−2 + yd−1

)
.

(b) The Multinomial Theorem:(
x1 + · · ·+ xn

)d
=

∑
α1+···+αn=d

(
d

α1, . . . , αn

)
xα1
1 · · ·xαnn .

(c) Euclid’s parametrization of primitive Pythagorean triples:(
x2 − y2

)2
+
(
2xy
)2

=
(
x2 + y2

)2
.

(d) The Brahmagupta–Fibonacci Two-Square Identity:(
x21 + x22

)
·
(
y21 + y22

)
=
(
x1y1 ± x2y2

)2
+
(
x1y2 ∓ x2y1

)2
.

(e) The Euler Four-Square Identity:(
x21+x

2
2 + x23 + x24

)
·
(
y21 + y22 + y23 + y24

)
=

(x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y2 + x2y1 + x3y4 − x4y3)2+
(x1y3 − x2y4 + x3y1 + x4y2)

2 + (x1y4 + x2y3 − x3y2 + x4y1)
2.

This identity was communicated by Euler in a letter to Goldbach on May
4, 1748.

(f) The Degen–Graves–Cayley Eight-Square Identity:(
x21+x

2
2 + · · ·+ x28

)
·
(
y21 + y22 + · · ·+ y28

)
=

(x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7 − x8y8)2+
(x1y2 + x2y1 + x3y4 − x4y3 + x5y6 − x6y5 − x7y8 + x8y7)

2+

(x1y3 − x2y4 + x3y1 + x4y2 + x5y7 + x6y8 − x7y5 − x8y6)2+
(x1y4 + x2y3 − x3y2 + x4y1 + x5y8 − x6y7 + x7y6 − x8y5)2+
(x1y5 − x2y6 − x3y7 − x4y8 + x5y1 + x6y2 + x7y3 + x8y4)

2+

(x1y6 + x2y5 − x3y8 + x4y7 − x5y2 + x6y1 − x7y4 + x8y3)
2+

(x1y7 + x2y8 + x3y5 − x4y6 − x5y3 + x6y4 + x7y1 − x8y2)2+
(x1y8 − x2y7 + x3y6 + x4y5 − x5y4 − x6y3 + x7y2 + x8y1)

2.
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(g) Lagrange’s Identity:( n∑
i=1

x2i

)
·
( n∑
i=1

y2i

)
−
( n∑
i=1

xiyi

)2

=
∑

1≤i<j≤n

(
xiyj − xjyi

)2
.

(h) The Binet–Cauchy Identity:

( n∑
i=1

xizi

)
·
( n∑
i=1

yiwi

)
−
( n∑
i=1

xiwi

)
·
( n∑
i=1

yizi

)
=

∑
1≤i<j≤n

(
xiyj − xjyi

)
·
(
ziwj − zjwi

)
.

This is a generalization of (g) and can be proven using the Cauchy–Binet
Formula (see Lemma A.3.2).

(i) Maillet’s Identity:

6x
(
x2 + y21 + y22 + y23

)
=

3∑
i=1

(
x+ yi

)3
+

3∑
i=1

(
x− yi

)3
.

(j) The Lucas–Liouville Identity:

6
(
x21 + x22 + x23 + x24

)2
=

∑
1≤i<j≤4

(
xi + xj

)4
+

∑
1≤i<j≤4

(
xi − xj

)4
.

(k) Lamé-type identities:(
x+ y + z

)3 − (x3 + y3 + z3
)

= 3
(
x+ y

)(
x+ z

)(
y + z

)
,

(
x+ y + z

)5 − (x5 + y5 + z5
)

= 5
(
x+ y

)(
x+ z

)(
y + z

)(
x2 + y2 + z2 + xy + xz + yz

)
,

(
x+ y + z

)7 − (x7 + y7 + z7
)

= 7
(
x+ y

)(
x+ z

)(
y + z

)
·
((
x2 + y2 + z2 + xy + xz + yz

)2
+ xyz

(
x+ y + z

))
.

The last identity appears in Lamé’s proof of the n = 7 case of Fermat’s
Last Theorem [Edw00].
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2.2 Arithmetic Circuits

Let n ≥ 1, let K be a ring, and let K[x] = K[x1, . . . , xn] be a polynomial
ring in n variables over K. Elements of K[x] can be succinctly encoded by
arithmetic circuits.

Definition 2.2.1. Let K be a ring and let x = {x1, . . . , xn} be a set of
variables.

(a) An arithmetic circuit over K[x] is a finite, labeled, directed, acyclic
multigraph C = (V (C), E(C)) with the following properties. The ver-
tices V (C) are called gates, and the directed edges E(C) are called
wires. The in- and out-degree of a gate v ∈ V (C) is called fan-in
and fan-out and is denoted by fanin(v) and fanout(v), respectively. We
also set fanin(C) := max{1, fanin(v) | v ∈ V (C)} and fanout(C) :=
max{1, fanout(v) | v ∈ V (C)}. A gate of fan-in 0 is called input gate
and is labeled either by a constant (an element of K) or a variable (an
element of x). A gate of positive fan-in is called arithmetic gate and is
labeled either by the symbol + (then it is called sum gate) or × (then
it is called product gate). Finally, we assume that there is exactly one
gate of fan-out 0 which is called the output gate and is denoted by
vout. We denote the set of input gates and the set of arithmetic gates by
Vin(C) and Varith(C), respectively.

(b) At each gate v ∈ V (C), an arithmetic circuit C computes a polynomial
Cv ∈ K[x] in the following way. An input gate computes the constant
or variable it is labeled with. A sum gate computes the sum of the
polynomials computed by its predecessors (with repetition in case of
parallel wires) and, likewise, a product gate computes the product of
the polynomials computed by its predecessors (again with repetition).
Finally, we say that C computes the polynomial Cvout that is computed
at the output gate. By abuse of notation, we denote the polynomial Cvout
also by C.

(c) The size of C is defined as |C| := |V (C)|+ |E(C)| ∈ N>0.

(d) The depth of a gate v ∈ V (C) is defined as the maximum length of a
path in C with terminal gate v and is denoted by depth(v). (A path of
maximal length necessarily starts at an input gate.) The depth of C is
defined by depth(C) := depth(vout).

(e) The formal degree of a gate v ∈ V (C), written fdeg(v), is defined as
follows. The formal degree of an input gate is 1. The formal degree
of a sum gate is defined as the maximum of the formal degrees of its
predecessors, and the formal degree of a product gate is defined as the
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sum of the formal degrees of its predecessors (with repetition in case of
parallel wires). Finally, the formal degree of C is defined by fdeg(C) :=
fdeg(vout).

(f) An arithmetic circuit C is called an arithmetic formula if fanout(C) =
1. In this case, C is a directed tree with root vout.

Remark 2.2.2.

(a) In many sources, arithmetic gates are defined to be of fan-in 2. We prefer
a more flexible definition. Also note that for constant-depth circuits
unbounded fan-in is necessary (see Lemma 2.2.4 (b)).

(b) The size of an arithmetic circuit is sometimes defined as the number
of gates and sometimes as the number of edges. Since we allow parallel
wires, the former definition would not be suitable for us. While the latter
definition would be possible, we still prefer our flexible choice.

(c) Straight-line programs are a model for computing polynomials similar
to arithmetic circuits (see for example [IM83]). Arithmetic circuits and
straight-line programs can be efficiently converted into each other.

Figure 2.1 gives an example of an arithmetic circuit and an arithmetic
formula computing the same polynomial. Here the circuit representation is
more compact, since we are allowed to reuse already computed expressions.
The following example demonstrates that symbolic determinants can be com-
puted by polynomial-size circuits, although they have exponential sparsity.

Example 2.2.3. LetK[x] = K[xi,j | 1 ≤ i, j ≤ n]. By the Berkowitz algorithm
(see Lemma A.3.1), the polynomial det

(
xi,j
)
i,j ∈ K[x] can be computed by

an arithmetic circuit C with |C| = poly(n). On the other hand, we have
sp(C) = n! > (n/3)n.

The following lemma gives bounds for the formal degree of arithmetic
circuits. The examples in Figure 2.2 show that those bounds are tight.

Lemma 2.2.4. Let C be an arithmetic circuit over K[x].

(a) If C 6= 0, then deg(C) ≤ fdeg(C).

(b) We have fdeg(C) ≤ fanin(C)depth(C).

(c) If C is a formula, then fdeg(C) ≤ |Vin(C)|.

Proof. For (a), we show deg(Cv) ≤ fdeg(v) for all v ∈ V (C) such that Cv 6= 0
by structural induction. If v ∈ V (C) is an input gate with Cv 6= 0, then
deg(Cv) ≤ 1 = fdeg(Cv). Now let v ∈ V (C) be an arithmetic gate such that
Cv 6= 0, and let v1, . . . , vk ∈ V (C) be its predecessors (with repetition in case
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x1

x2

x3

x4+

+×

×

+

+

×

(a) A general circuit.

x1 x2 x1 x2 x3 x4 x1 x2 x3 x4 x3 x4

+ + + +

× ×

+ +

×

(b) A formula.

Figure 2.1: Two arithmetic circuits computing the polynomial
(
(x1 + x2)

2 +
x3 + x4

)
·
(
x1 + x2 + (x3 + x4)

2
)
.
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of parallel wires). By induction, we have deg(Cvi) ≤ fdeg(vi) for all i ∈ [k]
with Cvi 6= 0. If v is a sum gate, then deg(Cv) ≤ max{deg(Cvi) | Cvi 6= 0} ≤
max{fdeg(vi) | i ∈ [k]} = fdeg(v). If v is a product gate, then Cvi 6= 0 for all
i ∈ [k], hence deg(Cv) =

∑k
i=1 deg(Cvi) ≤

∑k
i=1 fdeg(vi) = fdeg(v).

For (b), we show fdeg(v) ≤ fanin(C)depth(v) for all v ∈ V (C) by structural
induction. If v ∈ V (C) is an input gate, then fdeg(v) = 1 = fanin(C)depth(v).
Now let v ∈ V (C) be an arithmetic gate, and let v1, . . . , vk ∈ V (C) be its
predecessors (with repetition in case of parallel wires), where k = fanin(v).
By induction, we have fdeg(vi) ≤ fanin(C)depth(vi) ≤ fanin(C)depth(v)−1 for
all i ∈ [k]. We conclude fdeg(v) ≤

∑k
i=1 fdeg(vi) ≤ k · fanin(C)depth(v)−1 ≤

fanin(C)depth(v).
For (c), assume that C is a formula. Hence C is a tree with root vout and

wires directed towards vout. For a gate v ∈ V (C), we denote by Cv the subtree
of C with root v and wires directed towards v. We show fdeg(v) ≤ |Vin(Cv)|
for all v ∈ V (C) by structural induction. If v ∈ V (C) is an input gate,
then fdeg(v) = 1 = |Vin(Cv)|. Now let v ∈ V (C) be an arithmetic gate, and
let v1, . . . , vk ∈ V (C) be its predecessors (with repetition in case of parallel
wires), where k = fanin(v). By induction, we have fdeg(vi) ≤ |Vin(Cvi)|
for all i ∈ [k]. We conclude fdeg(v) ≤

∑k
i=1 fdeg(vi) ≤

∑k
i=1|Vin(Cvi)| ≤

|Vin(Cv)|.

Now we term some often encountered classes of arithmetic circuits. The
classes in the following definition are ordered from most general to most
specific.

Definition 2.2.5. A circuit class C over K is a union C =
⋃
n≥1 Cn, where

Cn is a set of arithmetic circuits over K[x1, . . . , xn] for all n ≥ 1. In particular,
we define the circuit classes

(a) Call :=
⋃
n≥1 Call,n, where Call,n is the set of all arithmetic circuits over

K[x1, . . . , xn],

(b) Cpoly-deg :=
⋃
n≥1 Cpoly-deg,n, where Cpoly-deg,n is the set of all arithmetic

circuits C over K[x1, . . . , xn] such that fdeg(C) ≤ f(|C|) for some fixed
polynomial f ∈ N[z],

(c) Cformula :=
⋃
n≥1 Cformula,n, where Cformula,n is the set of all arithmetic for-

mulas over K[x1, . . . , xn], and

(d) Cdepth-k :=
⋃
n≥1 Cdepth-k,n, where k ≥ 1 is fixed and Cdepth-k,n is the set of

all arithmetic circuits over K[x1, . . . , xn] of depth at most k.

It is easy to see that a constant-depth circuit C can be converted into a
formula of size poly(|C|) computing the same polynomial. By Lemma 2.2.4,
constant-depth circuits and formulas are polynomial-degree circuits.
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x1

×

×

×

×

· · ·

· · ·

· · ·

· · ·

...

(a) A general circuit.

x1

× x1

× x1

× x1

× x1

...

(b) A formula of fan-in 2.

x1 x1 x1 · · · x1 x1 x1

×

(c) A formula of depth 1.

Figure 2.2: Arithmetic circuits exhibiting extremal formal degrees.
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Polynomial-degree arithmetic circuits can be assumed to have polyloga-
rithmic depth. Let f ∈ K[x] be a polynomial that is computed by an arith-
metic circuit C with d := fdeg(C) and s := |C|. Then, by [VSBR83], f can
be computed by an arithmetic circuit with fan-in 2, depth O

(
(log d)(log d+

log s)
)
, and size poly(s, d).

From now on we will assume thatK is a field. We defined the size |C| of an
arithmetic circuit C as the size of the underlying directed acyclic graph. For
algorithms dealing with arithmetic circuits, we also have to take the encoding
of the constants into account. We say that a field K is computable if its
elements c ∈ K can be encoded as binary strings in {0, 1}O(bs(c)), where
bs : K → N>0 is some function, and the field operations on those encodings
can be carried out by a Turing machine. We call bs(c) the bit-size of c.

Definition 2.2.6. Let K be a computable field. The encoding size of an
arithmetic circuit C over K[x] is defined as size(C) := |C| +

∑m
i=1 bs(ci),

where c1, . . . , cm ∈ K are the constants of C.

The standard examples of computable fields are the rationals Q and finite
fields Fq for prime powers q.

Arithmetic circuits over Q

Let K = Q. For an integer a ∈ Z, let `(a) := dlog2(|a|+1)e ∈ N be the length
of its binary representation (without sign). Now let q = a/b ∈ Q be a rational
number in canonical form, i. e. a ∈ Z and b ∈ N>0 such that gcd(a, b) = 1.
We denote num(q) := a and den(q) := b, hence q = num(q)/ den(q). We
define the bit-size of a rational number q ∈ Q as

bs(q) := max
{
`(num(q)), `(den(q))

}
∈ N>0.

The following lemma collects some basic properties of the bit-size function.

Lemma 2.2.7. Let q, q1, . . . , qk ∈ Q be rational numbers.

(a) We have |num(q)| ≤ 2bs(q) and den(q) ≤ 2bs(q).

(b) We have bs
(∑k

i=1 qi
)
≤
(∑k

i=1 bs(qi)
)

+ `(k − 1) and bs
(∏k

i=1 qi
)
≤∑k

i=1 bs(qi).

(c) If q1, . . . , qk ∈ Z, then we have bs
(∑k

i=1 qi
)
≤ max{bs(qi) | i ∈ [k]} +

`(k − 1).

Proof. Part (a) is clear by definition. To show (c), suppose that q1, . . . , qk ∈
Z. Furthermore, we may assume 0 < |q1| ≤ · · · ≤ |qk|. Then bs

(∑k
i=1 qi

)
≤
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bs(k · |qk|) ≤ `(k · qk) ≤ bs(qk) + `(k − 1) = max{bs(qi) | i ∈ [k]}+ `(k − 1).
To show (b), let q1, . . . , qk ∈ Q be arbitrary and denote ai := num(qi) and
bi := den(qi) for all i ∈ [k]. Then

bs
(∏k

i=1 qi
)
≤ max

{
`(a1 · · · ak), `(b1 · · · bk)

}
≤ max

{∑k
i=1 `(ai),

∑k
i=1 `(bi)

}
≤
∑k

i=1 max{`(ai), `(bi)}
=
∑k

i=1 bs(qi).

Together with (c), this yields

bs
(∑k

i=1 qi
)
≤ max

{
`
(∑k

i=1 b1 · · · ai · · · bk
)
, `(b1 · · · bk)

}
≤ max

{
`(b1 · · · ai · · · bk) + `(k − 1), `(b1 · · · bk) | i ∈ [k]

}
≤ max

{
`(ai) +

∑
j 6=i `(bj),

∑k
j=1 `(bj) | i ∈ [k]

}
+ `(k − 1)

≤
(∑k

i=1 max{`(ai), `(bi)}
)

+ `(k − 1)

=
(∑k

i=1 bs(qi)
)

+ `(k − 1),

finishing the proof.

The following theorem shows that the rational number computed by a
variable-free arithmetic circuit C over Q has bit-size poly(fdeg(C), size(C)).
The argument for bounding the bit-size of the denominator in terms of the
formal degree was shown to me by Peter Scheiblechner.

Theorem 2.2.8. Let C be a variable-free arithmetic circuit over Q, and
assume that the sum of the bit-sizes of its constants is bounded by B ≥ 1.
Then we have bs(den(C)) ≤ fdeg(C) ·B and

bs(C) ≤ fdeg(C) · `(fanin(C)) · (2 depth(C) + 1) ·B.

Proof. Let c1, . . . , cm ∈ Q be the constants of C, and let

a := lcm(den(c1), . . . , den(cm)) ∈ N>0.

By assumption, we have bs(a) ≤
∑m

i=1 bs(ci) ≤ B. Using structural induc-
tion, we prove that, for all v ∈ V (C), we have

(a) den(Cv) divides afdeg(v),

(b) bs(den(Cv)) ≤ fdeg(v) ·B, and

(c) bs(num(Cv)) ≤ fdeg(v) · `(fanin(C)) · (2 depth(v) + 1) ·B.
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If v ∈ V (C) is an input gate, then (a)–(c) are satisfied. Now let v ∈ V (C)
be an arithmetic gate, and let v1, . . . , vk ∈ V (C) be its predecessors (with
repetition in case of parallel wires), where k = fanin(v).

First, we assume that v is a sum gate. Then den(Cv) divides

lcm(den(Cv1), . . . , den(Cvk)).

Hence, by induction, den(Cv) divides

lcm
(
afdeg(v1), . . . , afdeg(vk)

)
= amax{fdeg(vi) | i∈[k]} = afdeg(v),

showing (a). Since bs(a) ≤ B, (a) implies (b). To prove (c), observe that
num(Cv) divides

k∑
i=1

num(Cvi) ·
lcm(den(Cv1), . . . , den(Cvk))

den(Cvi)
.

Therefore, we obtain

bs(num(Cv)) ≤ bs
(∑k

i=1 num(Cvi) · afdeg(v)
)

≤ max
{

bs(num(Cvi)) + bs(afdeg(v)) | i ∈ [k]
}

+ `(k − 1)

≤ max
{

bs(num(Cvi)) | i ∈ [k]
}

+ fdeg(v) ·B + `(k − 1).

By induction, we have

bs(num(Cvi)) ≤ fdeg(vi) · `(fanin(C)) · (2 depth(vi) + 1) ·B
≤ fdeg(v) · `(fanin(C)) · (2 depth(v)− 1) ·B

for all i ∈ [k]. We conclude

bs(num(Cv)) ≤ fdeg(v) · `(fanin(C)) · (2 depth(v) + 1) ·B.
Now we assume that v is a product gate. Then num(Cv) and den(Cv)

divide
∏k

i=1 num(Cvi) and
∏k

i=1 den(Cvi), respectively. Therefore, by induc-
tion, den(Cv) divides

k∏
i=1

afdeg(vi) = a
∑k
i=1 fdeg(vi) = afdeg(v),

showing (a) and implying (b). Again by induction, we obtain

bs(num(Cv)) ≤ bs
(∏k

i=1 num(Cvi)
)

≤
∑k

i=1 bs(num(Cvi))

≤
∑k

i=1 fdeg(vi) · `(fanin(C)) · (2 depth(vi) + 1) ·B
≤
(∑k

i=1 fdeg(vi)
)
· `(fanin(C)) · (2 depth(v) + 1) ·B

= fdeg(v) · `(fanin(C)) · (2 depth(v) + 1) ·B.
This shows (c) and finishes the proof.
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Arithmetic circuits over Fq

Let p be a prime, let m ≥ 1, and let q = pm. We assume that we are given the
finite field K = Fq as Fp[x]/〈f〉, where f ∈ Fp[x] is an irreducible polynomial
of degree m. Then {1 + 〈f〉, x+ 〈f〉, . . . , xm−1 + 〈f〉} is an Fp-basis of Fq, so
we can represent the elements of Fq by their coordinate vectors in Fmp with
respect to this basis. A discussion of alternative representations of finite
fields is given in [Len91].

In situations where we deal with a fixed finite field we can define the
bit-size of an element c ∈ Fq as bs(c) = 1. In situations where we have
to compute finite field extensions of various degrees, it is convenient to set
bs(c) := m · `(p) for all c ∈ Fq.

The following lemma shows that finite field extensions can be constructed
efficiently. In part (a), a field extension of polynomial degree is constructed
in polynomial time (cf. [Sah08, Theorem 1.2]). The asserted irreducible
polynomial is computed by an algorithm in [LP11]. Part (b) demonstrates
how an extension field of polynomial cardinality can be computed efficiently
in parallel (cf. [GKS90] and [Fra91, Theorem 3 (2.)]). Here the irreducible
polynomial can be computed by brute force using the Ben-Or irreducibility
test (see Lemma A.3.5).

Lemma 2.2.9. Let q = pm be a prime power, and let Fq be given as Fp[x]/〈f〉,
where f ∈ Fp[x] is an irreducible polynomial of degree m.

(a) There exists an algorithm that, given D ≥ (log p)2 and Fq as above,
computes an irreducible polynomial g ∈ Fp[x] of degree md for some
D ≤ d < 2D and an embedding Fp[x]/〈f〉 ↪→ Fp[x]/〈g〉. This yields
a field extension Fqd/Fq of degree at least D. The algorithm runs in
poly(D,m, log p) time.

(b) There exists an algorithm that, given N ≥ q and Fq as above, computes
an irreducible polynomial g ∈ Fq[x] of degree d such that qd ≥ N . This
yields a field extension Fqd/Fq such that |Fqd| ≥ N . The algorithm runs
in poly(logN) parallel time using poly(N) processors.

Proof. First we show (a). Let D ≥ (log p)2. Then an irreducible polynomial
f ′ ∈ Fp[x] of degree d for some D ≤ d < 2D can be computed in poly(d, log p)
time by [LP11, Theorem 2]. By [Len91, Theorem 1.1, (b) ⇒ (c)], for each
prime r dividing m resp. d, an irreducible polynomial in Fp[x] of degree r can
be computed from f resp. f ′ in poly(D,m log p) time. By [Len91, Theorem
1.1, (c) ⇒ (b)], an irreducible polynomial g ∈ Fp[x] of degree md can be
computed from those polynomials in poly(D,m, log p) time. The embedding
Fp[x]/〈f〉 ↪→ Fp[x]/〈g〉 can be computed within the same time bound by
[Len91, §2].
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To show (b), let N ≥ q. Let d ≥ 1 be the least integer such that qd ≥ N .
There are qd − 1 = poly(N) non-zero degree-d polynomials in Fq[x], so we
can test each of them for irreduciblity in parallel. To this end, we will use the
irreduciblity test of Lemma A.3.5. Let f ∈ Fq[x] be a polynomial of degree

d and let k ∈ {1, . . . , bd/2c}. We have to check whether gcd(f, xq
k − x) =

1. By [BvzGH82, Theorem 2], the gcd computation can be performed in
poly(logN) parallel time using poly(N) processors (note that deg(xq

k−x) =
poly(N)).

2.3 Problem Statement

The heart of mathematics is its problems.
(Paul Halmos)

Now we can formally define the polynomial identity testing problem. This
decision problem asks whether a given arithmetic circuit computes the zero
polynomial. The input size is the encoding size of the circuit.

Problem 2.3.1. Let K be a computable field and let C be a circuit class over
K. Then the polynomial identity testing problem PITK(C) is defined as
follows: Given a circuit C ∈ C, decide whether C = 0. We set PITK :=
PITK(Call).

Remark 2.3.2. We consider the field K of constants as fixed. If K is a finite
field, one could make a description of K part of the input. However, for all
computational problems in this thesis which are dealing with finite fields, the
computation of a field extension L/K is required anyways (and can be done
efficiently by Lemma 2.2.9). Therefore, the additional input does not alter
the complexity of the problem.

The zero function testing problem

An arithmetic circuit C over K[x] gives rise to a function Kn → K defined
by a 7→ C(a). So it is also natural to consider the following computational
problem, which asks whether an arithmetic circuit defines the zero function.

Problem 2.3.3. Let K be a computable field. Then the zero function
testing problem ZFTK is defined as follows: Given an arithmetic circuit C
over K[x], decide whether C(a) = 0 for all a ∈ Kn.

If K is infinite, then Theorem 2.5.4 implies that a circuit C over K[x] is
zero if and only if C(a) = 0 for all a ∈ Kn, hence PITK = ZFTK .
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By contrast, if K = Fq for some prime power q, then the non-zero poly-
nomial xq − x ∈ K[x] vanishes on K, hence PITK ⊂ ZFTK . By the following
theorem, ZFTK is coNP-hard (cf. [IM83, Theorem 3.2]). In view of Theo-
rem 2.5.5, this means that ZFTK is computationally harder than PITK (under
standard complexity-theoretic assumptions).

Theorem 2.3.4. Let K = Fq for some prime power q. Then ZFTK is
coNP-complete.

The proof, given below, uses a reduction from the coNP-complete prob-
lem SAT (unsatisfiability of boolean formulas).

We recall a few definitions. A boolean circuit over the variables x =
{x1, . . . , xn} is a finite, labeled, directed acyclic graph φ with the following
properties. Vertices of fan-in 0 are called input gates and are labeled by
a variable in x. Vertices of positive fan-in are called logic gates and are
labeled by a symbol in {∨,∧,¬} (or-, and-, and not-gates). not-gates are
required to have fan-in 1. Finally, we assume that there is a unique gate of
fan-out 0, called the output gate. The circuit φ computes a boolean function
φ : {0, 1}n → {0, 1} in a natural way. The size of φ, denoted by |φ|, is defined
as the number of vertices plus the number of edges. If the fan-out is at most
1 for all gates, then φ is called a boolean formula. A boolean circuit can
be turned into an arithmetic circuit as follows.

Definition 2.3.5. Let K be a computable field. Let φ be a boolean circuit
over x. Then the arithmetization of φ over K[x], written arithφ, is an
arithmetic circuit over K[x] which is inductively defined as follows. If φ = xi
for some i ∈ [n], then we define arithφ := xi. Now let φ1, . . . , φm be boolean
circuits.

(a) If φ = ¬φ1, then we define arithφ := 1− arithφ1 .

(b) If φ =
∧m
i=1 φi, then we define arithφ :=

∏m
i=1 arithφi .

(c) If φ =
∨m
i=1 φi, then we define arithφ := 1−

∏m
i=1(1− arithφi).

The following lemma shows that a boolean circuit agrees with its arith-
metization on {0, 1}n. The proof follows directly from Definition 2.3.5.

Lemma 2.3.6. Let φ be a boolean circuit over x.

(a) We have arithφ(a) = φ(a) for all a ∈ {0, 1}n.

(b) We have size(arithφ) = poly(|φ|).

Proof of Theorem 2.3.4. Since circuits over K[x] can be evaluated in poly-
nomial time, we have ZFTK ∈ coNP. To show coNP-hardness, we reduce
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SAT to ZFTK . Let φ be a boolean formula over x. Define the arithmetic
circuit

C := arithφ
(
xq−11 , . . . , xq−1n

)
.

By Lemma 2.3.6 (b), we have size(C) = poly(|φ|, log q), and C can be con-
structed in polynomial time. For a ∈ K, we have aq−1 = 0 if a = 0, and
aq−1 = 1 otherwise. Thus, by Lemma 2.3.6 (a), we get φ ∈ SAT if and only
if C ∈ ZFTK .

2.4 Evaluation

In this section, we study the complexity of evaluating an arithmetic circuit
C over K[x] at a point a ∈ Kn.

Problem 2.4.1. Let K be a computable field and let C be a circuit class
over K. Then the evaluation problem EvalK(C) is defined as follows: Given
a circuit C ∈ C ∩ K[x] and a ∈ Kn, decide whether C(a) = 0. We set
EvalK := EvalK(Call).

The decision problem EvalK(C) can be considered as a special case of
PITK(C), because identity testing of variable-free arithmetic circuits amounts
to evaluation. On the other hand, most PIT algorithms use evaluation as a
subroutine.

Randomized evaluation of arithmetic circuits over Q

Arithmetic circuits over Q[x] cannot be efficiently evaluated in a straight-
forward manner, because the value of the evaluation might have exponential
bit-size. For instance, by repeated squaring, the number 22n can be com-
puted by a circuit of size O(n). However, with the help of randomization, a
modular approach can be used. The following theorem is a variant of [IM83,
Lemma 2.5] (which deals with evaluation of straight-line programs over Z)
for arithmetic circuits over Q.

Theorem 2.4.2. We have EvalQ ∈ coRP.

The algorithm and proof, given below, are based on the following fact:
Given an instance (C,a) of EvalQ with C(a) 6= 0, a random integer m ≥ 1 will
with high probability divide neither the numerator of C(a) nor any occuring
denominator. To compute with “rational numbers modulo integers”, we use
the following setting. Regard C(a) as a variable-free circuit, let b1, . . . , bk ≥ 1
be the denominators of its constants, and consider the multiplicative set U :=
{bi11 · · · b

ik
k | i1, . . . , ik ≥ 0}. Then the rational numbers computed at the gates



24 2. Polynomial Identity Testing

of C(a) are contained in the localization U−1Z. Let ϕ : Z � Z/〈m〉 be the
canonical surjection. If gcd(m, bi) = 1 for all i ∈ [k], then ϕ(U) ⊆ (Z/〈m〉)∗.
This implies that there is a ring homomorphism ϕ′ : U−1Z → Z/〈m〉 given
by u−1a 7→ ϕ(u)−1ϕ(a) for u ∈ U and a ∈ Z. Given c ∈ U−1Z, the image
ϕ′(c) will be called c modulo m and will be denoted by c (mod m). If m
does not divide the numerator of C(a), then C(a) 6= 0 (mod m).

Algorithm 2.4.3.
Input: An arithmetic circuit C over Q[x] and a ∈ Qn.
Acceptance: If C(a) = 0, then the algorithm always accepts. If C(a) 6= 0,
then the algorithm rejects with probability ≥ 1/2.

(1) Set s ← max{size(C) + bs(a), 4} ∈ N>0, set j ← 0, and set d ←
(
∏k

i=1 den(ci)) · (
∏n

i=1 den(ai)) ∈ N>0, where c1, . . . , ck ∈ Q are the con-
stants of C.

(2) Set j ← j + 1. If j > 3s2, then accept.

(3) Pick m ∈ [22s2 ] at random.

(4) If gcd(m, d) 6= 1, then go to step (2).

(5) If C(a) = 0 (mod m), then go to step (2), otherwise reject.

Proof of Theorem 2.4.2. We will show that Algorithm 2.4.3 is correct and
runs in polynomial time. If C(a) = 0, then the algorithm obviously always
accepts, so assume C(a) 6= 0.

By Lemma 2.2.7 (b), we have bs(d) ≤
∑k

i=1 bs(den(ci)) +
∑n

i=1 ai ≤
size(C) + bs(a) ≤ s. Since d 6= 0, this implies that there are at most s
prime numbers dividing s.

Consider C(a) as a variable-free arithmetic circuit and let B ≥ 1 be the
sum of the bit-sizes of its constants. Then we have

B ≤ |C| ·max{size(C), bs(a)} ≤ s2.

By Theorem 2.2.8, we obtain

bs(C(a)) ≤ fdeg(C) · `(fanin(C)) · (2 depth(C) + 1) ·B
≤ ss · s · (2s+ 1) · s2 ≤ 2s

2

.

Since C(a) 6= 0, this implies that there are at most 2s
2

prime numbers
dividing num(C(a)).

By Corollary A.1.2, the set [22s2 ] contains at least 22s2/(2s2) prime num-
bers. This implies that [22s2 ] contains at least 22s2/(2s2) − 2s

2 − s primes
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m such that gcd(m, d) = 1 and m does not divide num(C(a)). Since
22s2/(2s2)− 2s

2 − s ≥ 22s2/(3s2), we obtain

Pr
m∈[22s2 ]

[
gcd(m, d) = 1 and m - num(C(a))

]
≥ 1

3s2
. (2.4.1)

If this event happens for some integer m ∈ [22s], then C may be evaluated
at a modulo m and we have C(a) 6= 0 (mod m).

Now consider one round of Algorithm 2.4.3, i. e. steps (2) to (5). By
(2.4.1), the probability that (C,a) is rejected at the end of the round is at
least 1/(3s2). We conclude that the probability that (C,a) is rejected in one
of the 3s2 rounds is at least

1−
(

1− 1

3s2

)3s2

≥ 1− exp(−1) ≥ 1/2,

hence Algorithm 2.4.3 works correctly.
The algorithm runs in polynomial time, because all computations are

performed on rational numbers of bit-size at most poly(s).

Remark 2.4.4. It is tempting to hope that an integer which is computed by a
variable-free arithmetic circuit has just a small number of prime divisors, so
that Algorithm 2.4.3 could be derandomized. However, this is not the case
by the following example due to Noam Elkies. Let n ≥ 2 and let πn be the
product of the first n prime numbers. By [Koi96, Lemma 4], the integer

ππnn − 1

has at least 2n distinct prime factors. Using repeated squaring, this number
can be computed by an arithmetic circuit of encoding size poly(n).

Parallel evaluation of polynomial-degree arithmetic circuits

Arithmetic circuits of polynomial degree can be evaluated efficiently, even in
parallel [MRK88, BCGR92].

Theorem 2.4.5. Let K = Q or K = Fq for some prime power q. Then we
have EvalK(Cpoly-deg) ∈ NC.

Proof. We want to invoke [MRK88, Theorem 5.3]. Let C ∈ Cpoly-deg ∩K[x]
and let a ∈ Kn. Consider C(a) as a variable-free arithmetic circuit and set
s := size(C(a)) and d := fdeg(C(a)) = poly(s).

First note that C(a) can be converted to an arithmetic circuit C ′ in
accordance with [MRK88, Definition 2.1] that computes the same value and
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satisfies |C ′| = poly(s) and fdeg(C ′) = d. The conversion can be done in
O(log s) parallel time using poly(s) processors.

By [MRK88, Theorem 5.3], the value of C ′ can be computed in parallel in
time O((log s)(log sd)) = O(log2 s) using poly(s) processors, where addition
and multiplication in K are assumed to consume unit time. If K = Fq for
some prime power q, this implies EvalK(Cpoly-deg) ∈ NC, because addition
and multiplication in Fq can be done in poly(log log q) parallel time using
poly(log q) processors.

Now let K = Q. By Theorem 2.2.8, we have bs(C(a)) ≤ fdeg(C(a)) ·
`(fanin(C(a))) · (2 depth(C(a)) + 1) · s = poly(s). Since it is not known
whether the gcd of two poly(s)-bit integers can be computed in poly(log s)
parallel time, we cannot perform the computations directly in K. How-
ever, for a poly(log s)-bit prime p, addition, multiplication, and inversion in
Fp are easily possible in poly(log s) parallel time using poly(s) processors.
Since bs(C(a)) = poly(s), there are only N = poly(s) prime numbers di-
viding num(C(a)) or any denominator in C or a. By Corollary A.1.2 (b),
the interval [(N + 1)2] contains a prime p that does divide neither of them,
thus C(a) = 0 if and only if C(a) = 0 (mod p). Such a prime can be
computed in poly(log s) parallel time using poly(s) processors, therefore we
obtain EvalK(Cpoly-deg) ∈ NC.

P-hardness of evaluating general arithmetic circuits

By the following theorem, it is unlikely (under standard complexity-theoretic
conjectures) that general arithmetic circuits can be evaluated efficiently in
parallel.

Theorem 2.4.6. Let K be a computable field. Then EvalK is P-hard under
log-space reductions.

Proof. By [Lad75], the evaluation of boolean circuits is P-hard. By Lemma
2.3.6, this problem reduces to EvalK . The reduction can be carried out in
logarithmic space.

Corollary 2.4.7. The problem EvalFq is P-complete for all prime powers q.

Proof. Arithmetic circuits over finite fields can be evaluated in polynomial
time, thus the assertion follows from Theorem 2.4.6.

Summary

The results of this section are summarized in the following table.
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C K Complexity of EvalK(C) Reference

Call Q coRP, P-hard Theorem 2.4.2, 2.4.6
Fq P-complete Corollary 2.4.7

Cpoly-deg Q or Fq NC Theorem 2.4.5

This table raises the question whether the algorithm for EvalQ could be
derandomized. By Theorem 2.6.3, EvalQ is computationally equivalent to
PITQ, therefore such a derandomization seems difficult with the proof tech-
niques currently available.

2.5 Randomized Algorithms

Everything of importance has been said before
by somebody who did not discover it.

(Alfred N. Whitehead)

In this section we review the classical randomized algorithms for PITK
when K = Q or K = Fq for some prime power q. We also present randomized
parallel algorithms for the case of polynomial-degree arithmetic circuits.

The Schwartz–Zippel Lemma

The randomized algorithms in this section are based on a famous lemma
which is usually attributed to Schwartz [Sch80] and Zippel [Zip79], but was
discovered before [DL78] (a version with R = S = Fq even dates back to
[Ore22], but was not used for PIT). The lemma bounds the probability of a
point being the root of a non-zero polynomial. The following variant of the
lemma is similar to [AM10, Lemma 25].

Lemma 2.5.1 (Schwartz–Zippel Lemma). Let R be a ring and let S ⊆ R be a
non-empty finite subset such that a−b is a non-zerodivisor for all {a, b} ∈

(
S
2

)
.

Let f ∈ R[x] be a non-zero polynomial of degree d ≥ 0. Then

Pr
a∈Sn

[
f(a) = 0

]
≤ d

|S|
.

Proof. We use induction on n. The case n = 0 is clear (in this case, d = 0).
Now let n ≥ 1. Let δ := degxn(f) and write f =

∑δ
i=1 gi · xin, where gi ∈

R[x1, . . . , xn−1] for i ∈ [δ]. The polynomial gδ is non-zero and of degree d−δ,
hence we have

N1 := #
{

(a, a) ∈ Sn−1 × S | gδ(a) = 0
}
≤ (d− δ)|S|n−2|S| = (d− δ)|S|n−1
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by induction hypothesis. If gδ(a) 6= 0 for some a ∈ Sn−1, then fa :=
f(a, xn) ∈ R[xn] is a non-zero univariate polynomial of degree δ, thus Lemma
2.5.3 implies

N2 := #
{

(a, a) ∈ Sn−1 × S | gδ(a) 6= 0 and fa(a) = 0
}
≤ δ · |S|n−1.

We conclude #
{
a ∈ Sn | f(a) = 0

}
≤ N1 +N2 = d · |S|n−1.

Remark 2.5.2. If R is an integral domain, then a− b is a non-zerodivisor for
all {a, b} ∈

(
R
2

)
. If R is a K-algebra, where K is a field, then a − b is a

non-zerodivisor for all {a, b} ∈
(
K
2

)
.

In the proof of the Schwartz–Zippel Lemma we used the following fact.

Lemma 2.5.3. Let R be a ring and let S ⊆ R be a subset such that a− b is
a non-zerodivisor for all {a, b} ∈

(
S
2

)
. Let f ∈ R[x] be a non-zero polynomial

of degree d ≥ 0. Then f has at most d zeros in S.

Proof. We use induction on d. The case d = 0 is clear. Now let d ≥ 1.
Assume that there exists b ∈ S such that f(b) = 0 (otherwise we are done).
By long division, we can write f = g · (x− b) for some non-zero polynomial
q ∈ R[x] of degree d− 1. By induction hypothesis, g has at most d− 1 zeros
in S. Since a− b is a non-zerodivisor for all a ∈ S \ {b}, we infer that f has
at most d zeros in S.

Alon’s Combinatorial Nullstellensatz [Alo99] (in the “non-vanishing ver-
sion”) is similar to the Schwartz–Zippel Lemma. In fact, the special case
[Alo99, Lemma 2.1] is a direct corollary of Lemma 2.5.1. The following vari-
ant of the Nullstellensatz is proven in [Mic10].

Theorem 2.5.4 (Combinatorial Nullstellensatz). Let R be a ring and let
S1, . . . , Sn ⊆ R be non-empty finite subsets such that a−b is a non-zerodivisor
for all {a, b} ∈

(
Si
2

)
and all i ∈ [n]. Let f ∈ R[x] be a non-zero polynomial,

and let d1, . . . , dn ≥ 0 such that d1 + · · · + dn = deg(f) and xd11 · · ·xdnn ∈
Supp(f). If |Si| ≥ di + 1 for all i ∈ [n], then f(a) 6= 0 for some a ∈
S1 × · · · × Sn.

Randomized PIT over Fq

Over finite fields, the Schwartz–Zippel Lemma gives (almost) directly rise to
a randomized algorithm. Given an arithmetic circuit C over Fq[x], pick a
point a ∈ Fnq at random and declare C to be zero if and only if C(a) = 0.
This algorithm can err only if C 6= 0 and we are unlucky enough to draw a
root of C. To keep the probability of this event low, the finite field has to
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be large enough, so we might have to compute a field extension of Fq first.
The evaluation of C can be done in polynomial time, for polynomial-degree
circuits even in poly-logarithmic parallel time using a polynomial number of
processors.

Theorem 2.5.5. Let q be a prime power.

(a) We have PITFq ∈ coRP.

(b) We have PITFq(Cpoly-deg) ∈ coRNC.

Algorithm 2.5.6 (Randomized PIT over Fq).
Input: An arithmetic circuit C over Fq[x1, . . . , xn].
Acceptance: If C = 0, then the algorithm always accepts. If C 6= 0, then
the algorithm rejects with probability ≥ 1/2.

(1) Determine an upper bound d for fdeg(C).

(2) Compute a finite field extension L/Fq such that |L| ≥ 2d.

(3) Pick a point a ∈ Ln at random.

(4) If C(a) = 0, then accept, otherwise reject.

Proof of Theorem 2.5.5. First we show that Algorithm 2.5.6 works correctly.
Let C be an arithmetic circuit over Fq[x] given as input. If C = 0, then
the algorithm obviously always accepts, so assume C 6= 0. Then we have
deg(C) ≤ d, thus, by Lemma 2.5.1, the algorithm rejects with probability

Pr
a∈Ln

[
C(a) 6= 0

]
= 1− Pr

a∈Ln

[
C(a) = 0

]
≥ 1− deg(C)

|L|
≥ 1− d

2d
= 1/2.

Therefore, Algorithm 2.5.6 is correct.
To show (a), let C be an arithmetic circuit over Fq[x] given as input, and

let s := |C|. By Lemma 2.2.4, we have fdeg(C) ≤ fanin(C)depth(C) ≤ 2s
2
,

hence we may take d := 2s
2

in step (1). By Lemma 2.2.9 (a), we can compute
a finite field extension L/Fq of degree at least s2 in poly(s, log q) time. The
evaluation of C at a point a ∈ Ln can be done in poly(s, log q) time, too.

To show (b), let C be an arithmetic circuit over Fq[x] given as input such
that fdeg(C) ≤ f(s) for some fixed polynomial f ∈ N[z] (associated with the
circuit class Cpoly-deg), where s := |C|. Thus, we may take d := f(s) in step
(1). By Lemma 2.2.9 (b), we can compute a finite field extension L/Fq such
that |L| ≥ 2d in poly(log s) parallel time using poly(s) processors. Since
addition and multiplications in L can be performed in poly(log s) parallel
time using poly(s) processors, the proof of Theorem 2.4.5 shows that C can
be evaluated at a point a ∈ Ln in poly(log s) parallel time using poly(s)
processors, too.
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Randomized PIT over Q

Over the rationals, we also obtain algorithms based on the Schwartz–Zippel
Lemma. Here we do not have to care about the field being too small, but
rather about the rationals growing too big during the evaluation. The evalu-
ation of polynomial-degree arithmetic circuits can be done deterministically
in poly-logarithmic parallel time using a polynomial number of processors.
For circuits of unbounded degree, additional randomness is required for their
evaluation (see [IM83, Lemma 2.6], [KI04, Lemma 2.20], and Section 2.4).
Alternatively, Theorem 2.4.2 in conjunction with Theorem 2.6.3 below yields
an algorithm that sidesteps the Schwartz–Zippel Lemma.

Theorem 2.5.7.

(a) We have PITQ ∈ coRP.

(b) We have PITQ(Cpoly-deg) ∈ coRNC.

Algorithm 2.5.8 (Randomized PIT over Q).
Input: An arithmetic circuit C over Q[x1, . . . , xn].
Acceptance: If C = 0, then the algorithm always accepts. If C 6= 0, then
the algorithm rejects with probability ≥ 1/2.

(1) Set s← max{size(C), 5} and set j ← 0.

(2) Set j ← j + 1. If j > 6s2, then accept.

(3) Pick a ∈ [2ss]n and m ∈ [22s2 ] at random.

(4) If gcd(m, den(c)) 6= 1 for some constant c of C, then go to step (2).

(5) If C(a) = 0 (mod m), then go to step (2), otherwise reject.

Proof of Theorem 2.5.7. Part (a) follows from Algorithm 2.5.8, whose cor-
rectness can be shown along the lines of the proofs of Theorem 2.5.5 (invoking
the Schwartz–Zippel Lemma) and Theorem 2.4.2 (evaluating the circuit).

Part (b) can be shown using an algorithm similar to Algorithm 2.5.8,
where the evaluation is done in deterministic poly-logarithmic time using a
polynomial amount of processors as in the proof of Theorem 2.4.5.

Remark 2.5.9. This thesis focuses on deterministic PIT algorithms for re-
stricted circuit classes. Another line of research deals with reducing the ran-
domness of PIT algorithms for more general circuit classes, see for example
[CK00, LV98, AB03, KS01, BHS08, BE11].
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2.6 Derandomization Hypotheses

Creativity is the ability to introduce order
into the randomness of nature.

(Eric Hoffer)

Many researchers believe that randomness “does not help” in efficient
computation. In particular, it is conjectured that we have BPP = P and
RNC = coRNC = NC. This leads to the big main conjecture of PIT.

Conjecture 2.6.1 (Main). Let K = Q or K = Fq for some prime power q.
Then we have PITK ∈ P and PITK(Cpoly-deg) ∈ NC.

In this section, we present some general strategies for attacking the PIT
problem, together with a few more concrete derandomization hypotheses.

Kronecker substitution

A common theme of many PIT algorithms is the reduction of the number
of variables. One way to achieve this is a method, usually referred to as
Kronecker substitution, that goes back to [Kro82, §4]. Let d ≥ 0 and let
f ∈ K[x] be a non-zero polynomial of degree at most d. Then, for D ≥ d+1,
the univariate polynomial

f
(
z, zD, . . . , zD

n−1) ∈ K[z] (2.6.1)

is non-zero, because the terms of f are being mapped to distinct terms. This
is a consequence of the following simple lemma.

Lemma 2.6.2. Let d1, . . . , dn ≥ 0 be integers and let Di :=
∏i−1

j=1(dj + 1) for
i ∈ [n+ 1]. Then the map

[0, d1]× · · · × [0, dn]→ [0, Dn+1 − 1], (δ1, . . . , δn) 7→
n∑
i=1

δiDi

is bijective.

Proof. We use induction on n. For n = 1, the map under consideration is
the indentity [0, d1]→ [0, d1], hence it is bijective.

Now let n > 1, and let a ∈ [0, Dn+1 − 1]. Then there exist unique
a′, δn ≥ 0 such that a = a′ + δnDn and a′ < Dn. We have δn ∈ [0, dn],
because otherwise a ≥ (δn + 1)Dn = Dn+1. By induction, there exists a
unique (δ1, . . . , δn−1) ∈ [0, d1] × · · · × [0, dn−1] such that a′ =

∑n−1
i=1 δiDi.

Altogether, there exists a unique (δ1, . . . , δn) ∈ [0, d1]×· · ·× [0, dn] such that
a =

∑n
i=1 δiDi. Therefore, the map under consideration is bijective.
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Note that a Kronecker substitution causes an exponential blowup of the
degree. However, if f is given as arithmetic circuit of size s, we can compute
a circuit for (2.6.1) of size poly(s) by repeated squaring.

The Kronecker substitution can be used to show that identity testing
over Q is actually computationally equivalent to evaluation (cf. [ABKM06,
Proposition 2.2]).

Theorem 2.6.3. The problems PITQ and EvalQ are polynomial-time equiva-
lent.

The proof, given below, is based on the following lemma, which states
that the absolute value of the roots of complex univariate polynomials can
be bounded by the absolute values of the coefficients. As a consequence, in
order to reduce PITQ to EvalQ, we can first apply a Kronecker substitution
to a given circuit and then choose a sufficiently large integer as evaluation
point.

Lemma 2.6.4 (Cauchy’s bound, [HM97, Theorem 2]). Let f =
∑d

i=0 cix
i ∈

C[x] be a univariate polynomial with cd 6= 0, and let a ∈ C be a root of f .
Then we have

|a| < 1 + max
0≤i≤d−1

|ci/cd|.

Proof of Theorem 2.6.3. The problem EvalQ clearly reduces to PITQ, because
evaluation of an arithmetic circuit is the same as identity testing of a variable-
free arithmetic circuit.

To show that PITQ reduces to EvalQ, let C be an arithmetic circuit over
Q[x]. Set s := max{size(C), n, 5}, setD := ss+1, and consider the univariate
polynomial

C
(
zD

0

, zD
1

, . . . , zD
n−1) ∈ Q[z].

Using repeated squaring, this polynomial can be computed by an arithmetic
circuit C ′ with size(C ′) = poly(s). By Lemma 2.2.4, we have fdeg(C) < D,
therefore, by Lemma 2.6.2, we have C = 0 if and only if C ′ = 0.

Now set B := 2s
2
. By Lemma 2.2.7, we have |num(c)| ≤ 2s and den(c) ≤

2s for all constants c ∈ Q of C. Now let c, d ∈ Q be coefficients of C with
d 6= 0. Since c and d are polynomials in the constants of C of degree at most
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fdeg(C) ≤ ss, we obtain

|c| · |d|−1 ≤ |c| · den(d)

≤
((

n+ss

ss

)
· (2s)ss

)
·
(
(2s)s

)ss
≤
(
(s+ 1)s

s · 2ss+1) · 2ss+2

≤ 23ss+2

≤ 2B − 1.

Consider the univariate polynomial C ′
(
(2z)B

)
∈ Q[z]. Again, using repeated

squaring, this polynomial can be computed by an arithmetic circuit C ′′ with
size(C ′′) = poly(s). Since C and C ′ have the same coefficients, Lemma 2.6.4
yields C ′ = 0 if and only if C ′′(1) = 0.

Given C, the arithmetic circuit C ′′ can be computed in polynomial time,
and we have C ∈ PITQ if and only if (C ′′, 1) ∈ EvalQ.

Agrawal’s paradigm

Agrawal introduced a general paradigm for derandomizing polynomial iden-
tity testing [Agr03, Agr05]. His idea is to reduce univariate circuits of high
degree (for instance, obtained by a Kronecker substitution) modulo several
low-degree polynomials. One hopes that in this way a non-zero circuit will
remain non-zero for some reduction. The following conjecture, if true, would
imply a polynomial-time identity test for constant-depth circuits.

Conjecture 2.6.5. Let K be a field and let C be a constant-depth arithmetic
circuit over K[x]. Then C 6= 0 if and only if

C
(
zD

0

, zD
1

, . . . , zD
n−1) 6= 0 (mod 〈zr − 1〉K[z]) for some r ∈ [N ],

where D := fdeg(C) + 1 and N = poly(|C|).

Agrawal’s approach was successfully employed to obtain a deterministic
polynomial-time primality test [AKS04]. It also works for sparse polynomials
[Agr05, BHLV09], see Section 3.2.2.

Isolation of terms

Another possibility to obtain a multivariate to univariate reduction of poly-
nomials is via isolating weight vectors [MVV87, CRS95, KS01, AM08]. For
a weight vector w ∈ Nn and a vector α ∈ Rn

≥0, we define |α|w := w1α1 + · · ·+
wnαn (see Appendix A.3.2).
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Definition 2.6.6. Let A ⊆ Rn
≥0 be a subset and let w ∈ Nn be a weight

vector.

(a) Let α ∈ A. If |α|w < |β|w for all β ∈ A\{α}, then we say that w isolates
α in A.

(b) If there exists α ∈ A such that w isolates α in A, then w is called
isolating for A.

Let d ≥ 0 and let f ∈ K[x] be a non-zero polynomial of degree at most
d. Then the logarithmic support A := LSupp(f) ⊂ Nn is non-empty. If a
weight vector w ∈ Nn isolates some α ∈ A, then the univariate polynomial

f
(
zw1 , . . . , zwn

)
∈ K[z],

is non-zero, because it has a non-zero monomial of degree |α|w. Note that the
Kronecker substitution (2.6.1) yields a weight vector w :=

(
1, D, . . . , Dn−1)

for A, though, with entries exponential in d. We are interested in weights
of magnitude poly(n, d). The following lemma demonstrates that a weight
vector which is randomly chosen from [2nd]n is isolating for A with high
probability.

Lemma 2.6.7 (Isolating Lemma, [KS01, Lemma 4]). Let d,N ≥ 1, and let
A ⊂ Nn such that |α| ≤ d for all α ∈ A. Then we have

Pr
w∈[N ]n

[
w is isolating for A

]
≥ 1− nd

N
.

A suitable derandomization of the Isolating Lemma (see for example
[AM08]) would imply a deterministic polynomial-time identity test for arith-
metic circuits of polynomial degree.

Finally, we remark that it is easy to obtain an isolating weight vector for
A ⊂ Nn if the convex polytope Conv(A) has few vertices. We will exploit
this fact in Section 3.2.3.

2.7 Hitting Sets

To be sure of hitting the target, shoot first,
and call whatever you hit the target.

(Ashleigh Brilliant)

The randomized PIT algorithms given in Section 2.5 work by evalua-
tion, where the query points are determined without “looking inside” the
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given arithmetic circuit. Algorithms of this kind are referred to as blackbox
algorithms. Blackbox algorithms require the computation of a hitting set
according to the following definition.

Definition 2.7.1. Let C ⊆ K[x] be a set of polynomials. A set H ⊆ Kn is
called a hitting set for C if for all non-zero C ∈ C there exists a ∈ H such
that C(a) 6= 0.

Example 2.7.2. Let us give two examples of hitting sets.

(a) Let d ≥ 0 and let S ⊆ K be a subset such that |S| ≥ d+ 1. Then Sn is a
hitting set for K[x]≤d by Theorem 2.5.4. The size of this hitting set is ex-
ponential in the general setting. However, for polynomial-degree circuits
with constantly many variables, we obtain a polynomial-size hitting set.

(b) Let K = Q and let Cn,s be the set of arithmetic circuits C over Q[x] such
that size(C) ≤ s. Then the proof of Theorem 2.6.3 yields a hitting set
for Cn,s consisting of a single point. The coordinates of this point have
bit-size exponential in s.

Existence of small hitting sets

The existence of small hitting sets was proven by Heintz & Schnorr [HS80a]
(in their paper, hitting sets are called “correct test sequences”) for fields of
characteristic zero. Here we reproduce their proof, but replace a result they
use from [HS80b] by a simpler argument that works for arbitrary fields. This
argument is inspired by the proof of [SY10, Theorem 3.1]. We will require
some machinery from algebraic geometry which we cover in Appendix A.4.

Theorem 2.7.3. Let 1 ≤ n ≤ s and let d ≥ 1. Let K be a field and let
S ⊆ K be an arbitrary subset with |S| ≥ (2sd+ 2)2. Denote by Cn,d,s the set
of arithmetic circuits C over K[x] such that fdeg(C) ≤ d and |C| ≤ s. Then
there exists a hitting set Hn,d,s ⊆ Sn for Cn,d,s such that |Hn,d,s| ≤ 9s.

Proof. Let y = {y1, . . . , ys} be new variables and let Sn,d,s be the set of
constant-free arithmetic circuits C over K[x,y] such that fdeg(C) ≤ d and
|C| ≤ s. Obviously, every circuit in Cn,d,s can be obtained from a cir-
cuit in Sn,d,s by substituting constants for the y-variables. There are at
most s2s connected, directed multigraphs C with V (C) ⊆ [s] and |C| ≤ s,
and the vertices of each such multigraph can be labeled by the symbols
{+,×, x1, . . . , xn, y1, . . . , ys} in at most (2s + 2)s different ways. Therefore,
we have |Sn,d,s| ≤ (2s+ 2)3s.

Set t :=
(
n+d
d

)
and let xα1 , . . .xαt ∈ T(x) be the terms of degree at most

d. We identify a polynomial f =
∑t

i=1 ci · xαi ∈ K[x]≤d with its vector of
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coefficients (c1, . . . , ct) ∈ Kt, hence Cn,d,s ⊆ Kt. Let C ∈ Sn,d,s be a constant-
free circuit. Write C =

∑t
i=1 ci ·xαi with ci ∈ K[y]. The coefficients ci define

a morphism

ϕC : K
s → K

t
, a 7→ (c1(a), . . . , ct(a))

with deg(ϕC) ≤ d. Let YC ⊆ K
t

be the Zariski closure of ϕC(K
s
). Since

dim(K
s
) = s, we have dim(YC) ≤ s. By Lemma 2.7.4 below, we obtain

deg
K
t(YC) ≤ ds. The affine variety

Yn,d,s :=
⋃

C∈Sn,d,s

YC ⊆ K
t

contains Cn,d,s and satisfies dim(Yn,d,s) ≤ max{dim(YC) | C ∈ Sn,d,s} ≤ s and

deg
K
t(Yn,d,s) ≤

∑
C∈Sn,d,s

deg
K
t(YC)

≤ |Sn,d,s| ·max
{

deg
K
t(YC) | C ∈ Sn,d,s

}
≤ (2s+ 2)3sds.

Set m := 9s. We want to show that there exists a tuple of points
(a1, . . . ,am) ∈ Smn such that for all non-zero C ∈ Cn,d,s there exists i ∈ [m]
such that C(ai) 6= 0. This tuple will then constitute a desired hitting set.

Consider the affine variety

X :=
{

(f,a1, . . . ,am) ∈ Kt+mn | f ∈ Yn,d,s and f(ai) = 0 for all i ∈ [m]
}
.

For i ∈ [t] and (j, k) ∈ [m]× [n], let zi and zj,k be the coordinates of K
t+mn

.
Then X is defined by the polynomial equations for Yn,d,s and

t∑
i=1

zi · z
αi,1
j,1 · · · z

αi,n
j,n , j ∈ [m].

By Theorem A.4.7, we have

deg
K
t+mn(X) ≤ deg

K
t+mn(Yn,d,s) · (d+ 1)m ≤ (2s+ 2)3sds(d+ 1)m.

Define the projections π1 : K
t+mn

� K
t

and π2 : K
t+mn

� K
mn

to the

first t and last mn coordinates, respectively. Let C1, . . . , C` ⊆ K
t+mn

be
all irreducible components C ⊆ X such that π1(C) contains a non-zero
polynomial, and set C :=

⋃`
i=1Ci. Then π2(C) ∩ Smn contains all tuples

(a1, . . . ,am) ∈ Smn that do not constitute a hitting set for Cn,d,s.
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Let i ∈ [`] and let f ∈ π1(Ci) such that f 6= 0. Then

π−11 (f) = {f} × VKn(f)× · · · × VKn(f)︸ ︷︷ ︸
m times

,

hence dim(π−11 (f)) = m(n − 1). Applying Lemma A.4.2 to the morphism
π1 : Ci → Yn,d,s, we obtain

dim(Ci) ≤ dim(π−11 (f)) + dim(Yn,d,s) ≤ m(n− 1) + s.

This implies dim(C) ≤ max{dim(Ci) | i ∈ [`]} ≤ m(n− 1) + s.
Now define the hypersurfaces

Hj,k := V
K
t+mn

(∏
c∈S(zj,k − c)

)
for all j ∈ [m] and k ∈ [n], and set H :=

⋂
(j,k)∈[m]×[n]Hj,k. Then we have

|π2(C) ∩ Smn| = |π2(C ∩H)|
≤ deg

K
t+mn(C ∩H)

≤ deg
K
t+mn(C) ·max{deg

K
t+mn(Hj,k) | j ∈ [m], k ∈ [n]}dim(C)

≤ deg
K
t+mn(X) · |S|dim(C)

≤ (2s+ 2)3sds(d+ 1)m · |S|m(n−1)+s

≤ |S|2s+m/2 · |S|m(n−1)+s

= |S|−m/6 · |S|mn,

where the second inequality follows from Corollary A.4.8. This implies the
existence of a tuple (a1, . . . ,am) ∈ Smn that constitutes a hitting set for
Cn,d,s.

In the proof of Theorem 2.7.3 we used the following lemma for bounding
the degree of the image of a morphism.

Lemma 2.7.4. Let X ⊆ K
s

be an irreducible affine variety, let Y ⊆ K
t

be
an affine variety, and let ϕ : X → Y be a dominant morphism. Then we have

deg
K
t(Y ) ≤ degKs(X) · deg(ϕ)dim(Y ).

Proof. The following argument is contained in the proof of [HS80b, Lemma
1]. Set r := dim(Y ). Since ϕ is dominant, Y is irreducible. By Theorem
A.4.4, ϕ(X) is a constructible set, so by Lemma A.4.3 it contains a non-
empty open subset of Y . Therefore, by Lemma A.4.6, there exist affine

hyperplanes H1, . . . , Hr ⊂ K
t

such that deg
K
t(Y ) = |ϕ(X) ∩H1 ∩ · · · ∩Hr|.
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Then ϕ−1(Hi) ⊂ K
s

is an affine hypersurface with degKs(ϕ−1(Hi)) ≤ deg(ϕ)
for all i ∈ [r]. By Theorem A.4.7, we obtain

degKs

(
X ∩ ϕ−1(H1) ∩ · · · ∩ ϕ−1(Hr)

)
≤ degKs(X) · deg(ϕ)r.

Let C1, . . . , Cm ⊆ K
s

be the irreducible components of the affine variety
X ∩ ϕ−1(H1) ∩ · · · ∩ ϕ−1(Hr). Since the map

ϕ : X ∩ ϕ−1(H1) ∩ · · · ∩ ϕ−1(Hr)→ ϕ(X) ∩H1 ∩ · · · ∩Hr

is surjective and ϕ(Ci) is a singleton for all i ∈ [m], we get

deg
K
t(Y ) = |ϕ(X) ∩H1 ∩ · · · ∩Hr|

≤ m

≤
m∑
i=1

degKs(Ci)

= degKs

(
X ∩ ϕ−1(H1) ∩ · · · ∩ ϕ−1(Hr)

)
≤ degKs(X) · deg(ϕ)r,

finishing the proof.

Polynomial-space computation of hitting sets

Using quantifier elimination, the proof of Theorem 2.7.3 can be turned into
a polynomial-space algorithm for the computation of small hitting sets. For
an introduction to quantifier elimination, see [BPR06, Chapter 1].

Theorem 2.7.5. Let K = Q or K = Fq for some prime power q. Then
there exists a Turing machine that, given 1 ≤ n ≤ s and d ≥ 1, computes in
poly(s)-space a hitting set Hn,d,s ⊆ Sn for Cn,d,s of size |Hn,d,s| ≤ 9s, where
S ⊂ K is a subset such that bs(c) = poly(log s, log d) for all c ∈ S.

Proof sketch. The description of the asserted Turing machine M is as follows.
If K = Q, then M sets S ← [(2sd + 2)2] ⊂ K. If K = Fq for some
prime power q, then M constructs the smallest field extension L/K such
that |L| ≥ (2sd + 2)2 and picks a subset S ⊆ L of size |S| = (2sd + 2)2.
In both cases, we obtain a subset S ⊆ K such that |S| = (2sd + 2)2 and
bs(c) = poly(log s, log d) for all c ∈ S.

Next, M sets m ← 9s and checks for all m-subsets H ⊆ Sn whether H
is a hitting set for Cn,d,s as follows. As in the proof of Theorem 2.7.3, let
y = {y1, . . . , ys} be new variables and let Sn,d,s be the set of all constant-free
arithmetic circuits C over K[x,y] such that fdeg(C) ≤ d and |C| ≤ s. Let
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Cn,d,s be the set of arithmetic circuits C over K[x] such that fdeg(C) ≤ d
and |C| ≤ s, thus Cn,d,s ⊆ Cn,d,s. Then H is a hitting set for Cn,d,s if and only
if the sentence∧

C∈Sn,d,s

(
∀ c ∈ Ks

(
∀ b ∈ Kn

C(b, c) = 0
)
∨
∨
a∈H

C(a, c) 6= 0

)
(in the first-order theory of algebraically closed fields) is true. Note that
the sentence in the innermost parentheses is just another way of saying that
C(x, c) ∈ K[x] is the zero polynomial. Using quantifier elimination, M
checks the truth of the sentence

∀ c ∈ Ks
(
∀ b ∈ Kn

C(b, c) = 0
)
∨
∨
a∈H

C(a, c) 6= 0

for all C ∈ Sn,d,s. Since the number of quantifier alternations is constant,
this can be done in poly(s)-space [Ier89].

By Theorem 2.7.3, M will eventually find a hitting set Hn,d,s ⊆ Sn for
Cn,d,s of size |Hn,d,s| ≤ 9s. By reusing space, the algorithm can be imple-
mented to run in poly(s)-space.

Connections to lower bounds

The following simple theorem demonstrates that small hitting sets imply
lower bounds (cf. [HS80a, Theorem 4.5]). See also [Agr05] for a similar
result.

Theorem 2.7.6. Let 1 ≤ n ≤ s and let d ≥ 1. Let K be a field, let S ⊆ K
be a subset, and let K0 ⊆ K be the prime field of K. Denote by Cn,d,s the
set of arithmetic circuits C over K[x] such that fdeg(C) ≤ d and |C| ≤ s.
Assume that Hn,d,s ⊆ Sn is a hitting set for Cn,d,s of size m := |Hn,d,s|.

If m ≤
(
n+d
d

)
−1, then there exists a non-zero polynomial f ∈ K0(S)[x]≤d

with sp(f) ≤ m+ 1 such that f /∈ Cn,d,s.

Proof. The proof is by interpolation. Denote Hn,d,s = {a1, . . . ,am}, let
t1, . . . , tm+1 ∈ T(x)≤d be distinct terms, and let y = {y1, . . . , ym+1} be new
variables. Consider the homogeneous system of linear equations

t1(ai) · y1 + · · ·+ tm+1(ai) · ym+1 = 0, i ∈ [m],

with indeterminates y and coefficients in K0(S). Since this system has more
variables than equations, there exists a non-zero solution (c1, . . . , cm+1) ∈
K0(S)m+1. The polynomial f :=

∑m+1
i=1 ci · ti has the desired properties.
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Chapter 3

Linear Independence
Techniques

This chapter deals with the theme of linear independence. First we present
the Alternant Criterion for linear independence of polynomials. Using tech-
niques from the existing literature, we give constructions of rank-preserving
homomorphisms for linear forms, sparse polynomials, and products of linear
forms. On the way, we encounter hitting set constructions for sparse poly-
nomials and ΣΠΣ-circuits with constant top fan-in. Using isolating weight
vectors, we generalize the hitting sets for sparse polynomials to polynomi-
als whose Newton polytope can be decomposed into sparse polytopes. All
constructions will be independent of the field of constants. Finally, we out-
line that linear independence testing and the computation of linear rela-
tions is (more or less) equivalent to PIT. In this context, we extend the
polynomial-time PIT algorithm [RS05] for set-multilinear ΣΠΣ-circuits (with
unbounded top fan-in) to an algorithm for computing the linear relations of
set-multilinear ΠΣ-circuits.

Chapter outline

This chapter is organized as follows. Section 3.1 contains a criterion for lin-
ear independence of polynomials. In Section 3.2 we define rank-preserving
homomorphisms and give explicit constructions of rank-preserving homo-
morphisms and hitting sets for several circuit classes. We summarize those
results in Section 3.2.5. Section 3.3 deals with the linear independence testing
problem. Finally, in Section 3.4, we investigate the complexity of computing
linear relations.

41
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3.1 Linear Independence

In this section we introduce a bit of notation connected with linear indepen-
dence and present a criterion for linear independence of polynomials.

Let K be a field, let A be a K-vector space, and let a1, . . . , am ∈ A. Then

LinRelK(a1, . . . , am) :=
{
λ ∈ Km | λ1a1 + · · ·+ λmam = 0

}
(3.1.1)

is a K-subspace of Km and is called the subspace of linear relations of
a1, . . . , am over K. It is the kernel of the K-linear epimorphism

Km → 〈a1, . . . , am〉K , λ 7→ λ1a1 + · · ·+ λmam.

For a subset S ⊆ A, we define the rank of S over K as

rkK(S) := dimK

(
〈S〉K

)
∈ N ∪ {∞}. (3.1.2)

We are primarily interested in the case where A is a polynomial ring over K.

3.1.1 The Alternant Criterion

Let K be a field and let K[x] = K[x1, . . . , xn] be a polynomial ring over
K. The following theorem contains a criterion for linear independence of
polynomials in K[x] if the field K is sufficiently large.

Theorem 3.1.1 (Alternant Criterion). Let K be an infinite field and let
f1, . . . , fm ∈ K[x] be polynomials. Then f1, . . . , fm are K-linearly indepen-
dent if and only if there exist points a1, . . . ,am ∈ Kn such that

det
(
fi(aj)

)
1≤i,j≤m 6= 0.

Proof. By Theorem 2.5.4, this follows from Lemma 3.1.2 below.

The Alternant Criterion is based on the following assertion which ap-
peared in the proof of [Kay10, Lemma 8].

Lemma 3.1.2. Let f1, . . . , fm ∈ K[x] be polynomials. Define the matrix

A :=

 f1(t1,1, . . . , t1,n) · · · fm(t1,1, . . . , t1,n)
...

...
f1(tm,1, . . . , tm,n) · · · fm(tm,1, . . . , tm,n)

 ∈ K[t]m×m,

where t = {ti,j | i ∈ [m] and j ∈ [n]} are new variables. Then f1, . . . , fm are
K-linearly independent if and only if det(A) 6= 0.



3.2. Rank-Preserving Homomorphisms 43

Proof. By a linear algebra argument, f1, . . . , fm are K-linearly independent
if and only if they are K-linearly independent. Therefore, we may assume
that K is infinite.

First let f1, . . . , fm be K-linearly dependent. Then the columns of A are
K(t)-linearly dependent, hence det(A) = 0.

Conversely, assume that f1, . . . , fm are K-linearly independent. We show
det(A) 6= 0 by induction on m. The case m = 1 is obvious, so let m ≥ 2.
Expanding det(A) by the last row, we get

det(A) =
m∑
j=1

(−1)j+m · fj(tm,1, . . . , tm,n) · det(Am,j), (3.1.3)

where Am,j ∈ K[t\{tm,1, . . . , tm,n}](m−1)×(m−1) is obtained from A by deleting
them-th row and j-th column. By induction hypothesis, we have det(Am,1) 6=
0. Since K is infinite, Theorem 2.5.4 implies that there exist ci,k ∈ K for
i ∈ [m− 1] and j ∈ [n] such that (det(Am,1))(c) 6= 0, where c = (ci,k). Since
f1(tm,1, . . . , tm,n), . . . , fm(tm,1, . . . , tm,n) are K-linearly independent, (3.1.3)
implies (det(A))(c) 6= 0, hence det(A) 6= 0.

3.2 Rank-Preserving Homomorphisms

Let n, r ≥ 1, let K be a field, and let K[x] = K[x1, . . . , xn] and K[z] =
K[z1, . . . , zr] be polynomial rings over K. In this section we investigate K-
algebra homomorphisms that preserve the rank of a given set of polynomials.

Definition 3.2.1. Let ϕ : K[x]→ K[z] be a K-algebra homomorphism and
let f1, . . . , fm ∈ K[x] be polynomials. If

rkK(ϕ(f1), . . . , ϕ(fm)) = rkK(f1, . . . , fm),

then ϕ is called rank-preserving for {f1, . . . , fm}.

Existence of rank-preserving homomorphisms

The following theorem shows that toric rank-preserving homomorphisms ex-
ist for every set of polynomials and for r = 1. The proof is based on a
Kronecker substitution (see Section 2.6).

Theorem 3.2.2. Let f1, . . . , fm ∈ K[x] be polynomials. Then there exists
a toric K-algebra homomorphism ϕ : K[x] → K[z] which is rank-preserving
for {f1, . . . , fm}.
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Proof. Let d1, . . . , dn ≥ 0 such that degxi(fj) ≤ di for all i ∈ [n] and j ∈ [m].

SetDi :=
∏i−1

j=1(dj+1) for i ∈ [n+1] and define theK-algebra homomorphism

ϕ : K[x]→ K[z], xi 7→ zDi ,

where i ∈ [n]. Let V :=
〈
f ∈ K[x] \ {0} | degxi(f) ≤ di for all i ∈ [n]

〉
K

. By
Lemma 2.6.2, the map

V → K[z]≤Dn+1−1, f 7→ ϕ(f)

is an isomorphism of K-vector spaces. Since f1, . . . , fm ∈ V , the assertion
follows.

The homomorphism in the proof of Theorem 3.2.2 is of exponential de-
gree and in fact rank-preserving for the whole subspace V . The following
theorem proves the existence of rank-preserving homomorphisms with more
interesting parameter settings. Given polynomials f1, . . . , fm ∈ K[x] of rank
at most ρ and assuming that the field K is sufficiently large, this theo-
rem demonstrates that rank-preserving homomorphisms ϕ : K[x] → K[z]
for {f1, . . . , fm} exist such that r = 1 and ϕ is of degree < ρ, or such that
r = ρ and ϕ is graded of degree 1. The proof relies on the Alternant Criterion
and uses an idea from [FS12b] based on interpolation.

Theorem 3.2.3. Let K be an infinite field. Let r ≥ 1 and let f1, . . . , fm ∈
K[x] be polynomials with rkK(f1, . . . , fm) ≤ r.

(a) There exists a K-algebra homomorphism ϕ : K[x]→ K[z] with deg(ϕ) <
r which is rank-preserving for {f1, . . . , fm}.

(b) There exists a graded K-algebra homomorphism ϕ : K[x] → K[z] =
K[z1, . . . , zr] of degree 1 which is rank-preserving for {f1, . . . , fm}.

Proof. We may assume that f1, . . . , fr are K-linearly independent (if the rank
is less than r, we can append linearly independent monomials). Since K is
infinite, Lemma 3.1.2 and Theorem 2.5.4 imply that there exist a1, . . . ,ar ∈
Kn such that the matrix

(
fi(aj)

)
i,j ∈ Kr×r is non-singular.

To show (a), pick distinct b1, . . . , br ∈ K. By interpolation, there exist
univariate polynomials g1, . . . , gn ∈ K[z] such that deg(gk) < r and gk(bj) =
aj,k for all j ∈ [r] and k ∈ [n]. Define the K-algebra homomorphism

ϕ : K[x]→ K[z], xk 7→ gk,

where k ∈ [n]. Since
(
(ϕ(fi))(bj)

)
i,j =

(
fi(aj)

)
i,j is non-singular, the poly-

nomials ϕ(f1), . . . , ϕ(fr) are K-linearly independent by Lemma 3.1.2, hence
ϕ is rank-preserving for {f1, . . . , fm}.
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To show (b), define the K-algebra homomorphism

ϕ : K[x]→ K[z], xk 7→ a1,k · z1 + · · ·+ ar,k · zr,

where k ∈ [n]. Then
(
(ϕ(fi))(ej)

)
i,j =

(
fi(aj)

)
i,j is non-singular, where

e1, . . . , er ∈ Kr are the standard basis vectors of Kr. By Lemma 3.1.2, the
polynomials ϕ(f1), . . . , ϕ(fr) are K-linearly independent, hence ϕ is rank-
preserving for {f1, . . . , fm}.

Reducing the number of variables

Polynomial identity testing of constant-variable polynomial-degree circuits is
easy by the Combinatorial Nullstellensatz. Therefore, we are interested in
homomorphisms of polynomial degree that reduce the number of variables.
To be useful for identity testing, those homomorphisms should preserve the
non-zeroness of the circuit under consideration. Usually it is not possible to
find a single map that does the job, but a family of homomorphisms where
one homomorphism is guaranteed to work. We formalize this idea in the
following simple theorem.

Theorem 3.2.4. Let n, r, d, δ ≥ 1 and let C ⊆ K[x] be a set of polynomials
of degree at most δ. Let I be an index set and let Φi : K[x] → K[z] be a

K-algebra homomorphism of degree at most d for all i ∈ I. Denote Φ
(j)
i :=

Φi(xj) ∈ K[z] for all i ∈ I and j ∈ [n]. Let S ⊆ K be a subset such that
|S| ≥ δd+ 1.

Assume that for all non-zero f ∈ C there exists i ∈ I such that Φi(f) 6= 0.
Then

H :=
{(

Φ
(1)
i (a), . . . ,Φ

(n)
i (a)

) ∣∣ i ∈ I and a ∈ Sr
}
⊆ Kn

is a hitting set for C with |H| ≤ |I| · |S|r.

Proof. Let f ∈ C be non-zero. Then there exists i ∈ I such that Φi(f) 6= 0.
We have deg(Φi(f)) ≤ δd < |S|. By Theorem 2.5.4, there exists a ∈ Sr such
that

f
(
Φ

(1)
i (a), . . . ,Φ

(n)
i (a)

)
=
(
Φi(f)

)
(a) 6= 0.

This implies that H is a hitting set for C.

The following lemma demonstrates that a homomorphism that is rank-
preserving for {f1, . . . , fm} ⊂ K[x] preserves the non-zeroness of polynomials
λ1f1 + · · ·+ λmfm in the K-subspace 〈f1, . . . , fm〉K .
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Lemma 3.2.5. Let ϕ : K[x] → K[z] be a K-algebra homomorphism, let
f1, . . . , fm ∈ K[x] be polynomials and let ϕV := ϕ|V : V → K[z] be the (K-
linear) restriction of ϕ to the K-subspace V := 〈f1, . . . , fm〉K ⊂ K[x]. Then
ϕ is rank-preserving for {f1, . . . , fm} if and only if ϕV is injective.

Proof. This is clear by linear algebra.

Let m ≥ 1 and let C ⊂ K[x] be a set of polynomials. Define the subset

ΣmC :=

{
λ1f1 + · · ·+ λmfm

∣∣∣∣ λ1, . . . , λm ∈ K,f1, . . . , fm ∈ C

}
⊆ K[x]

By Lemma 3.2.5, an efficient construction of rank-preserving homomorphisms
for m-subsets of C yields an efficient construction for homomorphisms that
preserve the non-zeroness of polynomials in ΣmC. Conversely, it is not clear
how to efficiently obtain rank-preserving homomorphisms for C given non-
zeroness preserving homomorphisms for ΣmC. In this sense, rank-preserving
homomorphisms can be considered the stronger notion.

In Sections 3.2.1 to 3.2.4 we will present explicit constructions of ho-
momorphisms preserving non-zeroness of restricted circuit classes to which
Theorem 3.2.4 can be applied. Except for Section 3.2.3, we also give ex-
plicit constructions of rank-preserving homomorphisms for the corresponding
classes. A summary of those results will be given in Section 3.2.5.

3.2.1 Linear Forms

We start with the construction of rank-preserving homomorphisms for sets
of linear forms. Linear forms are instances of sparse polynomials which are
covered in Section 3.2.2. Here we are interested in obtaining rank-preserving
homomorphisms of degree 1. This is motivated, amongst other things, by
Lemma 3.2.8 below. The following theorem is based on a lemma by Gabizon
& Raz [GR08].

Theorem 3.2.6. Let 1 ≤ r ≤ n. For c ∈ K, define the K-algebra homo-
morphism

Φc : K[x]→ K[z], xi 7→
r∑
j=1

c(i−1)(j−1)zj, (3.2.1)

where i ∈ [n]. There exists an effectively computable N ∈ N with N =
poly(n) such that for all N-subsets S ⊆ K we have the following: For all
linear forms `1, . . . , `m ∈ K[x]1 with rkK(`1, . . . , `m) ≤ r there exists c ∈ S
such that Φc is rank-preserving for {`1, . . . , `m}.
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Proof. The theorem is a direct consequence of Lemma 3.2.7 below.

For the proof, we translate this theorem into the language of matrices.
Let 1 ≤ r ≤ n and m ≥ 1. Let A ∈ Km×n be a matrix with rkK(A) ≤ r. We
say that a matrix B ∈ Kn×r is rank-preserving for A if rkK(AB) = rkK(A).
If `1, . . . , `m ∈ K[x]1 are given by the rows of A and if ϕ : K[x] → K[z] is
given by xi 7→

∑r
j=1 bi,j · zj for i ∈ [n], then B =

(
bi,j
)

is rank-preserving for
A if and only if ϕ is rank-preserving for {`1, . . . , `m}.

A construction of rank-preserving matrices inspired by Vandermonde ma-
trices was given in [GR08, Lemma 6.1]. We present this lemma here with a
proof similar to that of Theorem 4.1 in the full version of [FS12a]. In Lemma
4.2.13 we will propose another construction for rank-preserving matrices.

Lemma 3.2.7. Let 1 ≤ r ≤ n and m ≥ 1. Let A ∈ Km×n be a matrix with
rkK(A) ≤ r. For c ∈ K, define Vc :=

(
c(i−1)(j−1)

)
i,j ∈ Kn×r. Then there

exists a set B ⊆ K with |B| ≤
(
r
2

)
(n− 1) such that

rkK(AVc) = rkK(A)

for all c ∈ K \B.

Proof. Let t be a variable and define V :=
(
t(i−1)(j−1)

)
i,j ∈ K[t]n×r. By

removing rows of A and columns of V (from the right), we may assume
m = r = rkK(A). Then it suffices to show that f := det(AV ) ∈ K[t]
is a non-zero polynomial with deg(f) ≤

(
r
2

)
(n − 1). By the Cauchy–Binet

Formula (see Lemma A.3.2), we have

f =
∑
I∈I

det(A[r],I) · det(VI,[r]),

where I :=
{
I ∈

(
[n]
r

)
| det(A[r],I) 6= 0

}
. Since rkK(A) = r, the set I is

non-empty. Therefore, it suffices to show that

(a) the polynomial fI := det(VI,[r]) ∈ K[t] is non-zero and deg(fI) ≤
(
r
2

)
(n−

1) for all I ∈
(
[n]
r

)
, and

(b) there exists I ∈ I such that deg(fI) > deg(fJ) for all J ∈ I \ {I}.
To show (a), let I = {i1 < · · · < ir} ∈

(
[n]
r

)
. We have fI =

∑
σ∈Sr sgn(σ) ·

tdσ,I , where dσ,I := (i1 − 1)(σ(1) − 1) + · · · + (ir − 1)(σ(r) − 1) ∈ N. It is
not hard to show that did,I > dσ,I for all σ ∈ Sr \ {id}, hence fI 6= 0 and
deg(fI) = did,I ≤

(
r
2

)
(n− 1).

To show (b), let I ∈ I such that deg(fI) ≥ deg(fJ) for all J ∈ I.
Assume for the sake of contradiction that there exists J ∈ I \ {I} such that
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deg(fI) = deg(fJ). Let i ∈ (I \ J) ∪ (J \ I) be minimal. We may assume
i ∈ I. Then, by the Steinitz Exchange Lemma, there exists j ∈ J \ I such
that I ′ := (I \ {i}) ∪ {j} ∈ I. Since j > i, we obtain deg(fI′) = did,I′ >
did,I = deg(fI), a contradiction.

To conclude this section, we would like to point out that a graded ho-
momorphism ϕ : K[x] → K[z] of degree 1, such as (3.2.1), which is rank-
preserving for {`1, . . . , `m} ⊆ K[x]1 is not only injective on the K-subspace
〈`1, . . . , `m〉K , but also on the K-subalgebra K[`1, . . . , `m]. Homomorphisms
that are injective on subalgebras K[f1, . . . , fm] for arbitrary polynomials
f1, . . . , fm ∈ K[x] will be the subject of Section 4.2.

Lemma 3.2.8. Let `1, . . . , `m ∈ K[x]1 be linear forms, let ϕ : K[x] →
K[z] = K[z1, . . . , zr] be a graded K-algebra homomorhism of degree 1, and
let ϕ|K[`1,...,`m] be the restriction of ϕ to the K-subalgebra K[`1, . . . , `m].

If ϕ is rank-preserving for {`1, . . . , `m}, then ϕ|K[`1,...,`m] is injective. If,
in addition, rkK(`1, . . . , `m) = r, then ϕ|K[`1,...,`m] is bijective.

Proof. We may assume that `1, . . . , `m are K-linearly independent. Let ϕ
be rank-preserving for {`1, . . . , `m}. Since ϕ(`i) ∈ K[z]1 for all i ∈ [m], we
have m ≤ r. After an invertible linear change of the z-variables, we may
assume that ϕ(`i) = zi for all i ∈ [m]. Now let F ∈ K[y1, . . . , ym] be a poly-
nomial such that ϕ(F (`1, . . . , `m)) = 0. This implies 0 = ϕ(F (`1, . . . , `m)) =
F (ϕ(`1), . . . , ϕ(`m)) = F (z1, . . . , zm), thus F = 0. This demonstrates that
ϕ|K[`1,...,`m] is injective. If rkK(`1, . . . , `m) = r, then ϕ(K[`1, . . . , `m]) = K[z],
hence ϕ|K[`1,...,`m] is bijective.

3.2.2 Sparse Polynomials

It was so sparse out there
they didn’t get close enough to each other

to collide and form a planet.
(Andrew Puckett)

In this section we present PIT algorithms and rank-preserving homomor-
phisms for sparse polynomials. Blackbox identity testing and blackbox inter-
polation of sparse polynomials have received a lot of attention in the literature
[GK87, BT88, Zip90, GKS90, CDGK91, KS01, AHT07, BHLV09, BE11].

Identity testing of sparse polynomials

We use the sparse PIT algorithm that appeared in [Agr05, BHLV09] and
stands out due to its simplicity. The main idea of the algorithm is to make



3.2. Rank-Preserving Homomorphisms 49

the sparse polynomial univariate by a Kronecker substitution and then apply
Agrawal’s paradigm in order to reduce the high degree (see Section 2.6). The
following lemma (cf. [BHLV09, Lemma 13]) makes Agrawal’s paradigm work
for sparse polynomials. It bounds the number of primes q for which a non-
zero polynomial f ∈ K[z] vanishes modulo 〈zq − 1〉.

Lemma 3.2.9. Let R be a ring, let d, s ≥ 1, and let f ∈ R[z] be a non-zero
polynomial of sparsity at most s and degree at most d. Then

#
{
q ∈ P | f ∈ 〈zq − 1〉R[z]

}
≤ (s− 1)blog2 dc.

Proof. Let S := LSupp(f) ⊆ [0, d] be the logarithmic support of f and let
i ∈ S be minimal. Assume that q ∈ P is a prime such that f ∈ 〈zq − 1〉.
Then |S| ≥ 2 and there exists j ∈ S \ {i} such that q | (j − i). Since j − i
has at most blog2(j − i)c ≤ blog2 dc prime divisors, we conclude

#
{
q ∈ P | f ∈ 〈zq − 1〉

}
≤ (|S| − 1)blog2 dc ≤ (s− 1)blog2 dc,

as required.

Let D ≥ 1 and let q ≥ 1. For a ∈ Z, we denote by bacq the integer
b ∈ Z satisfying 0 ≤ b < q and a = b (mod q). Define the K-algebra
homomorphisms

ΦD : K[x]→ K[z], xi 7→ zD
i−1

,

ΦD,q : K[x]→ K[z], xi 7→ zbD
i−1cq ,

(3.2.2)

where i ∈ [n]. We have ΦD(f) = ΦD,q(f) (mod 〈zq−1〉K[z]) for all f ∈ K[x].
For almost all D ≥ 1 and q ∈ P the homomorphism ΦD,q preserves the non-
zeroness of a given polynomial. The following lemma bounds the number
of bad primes q. Note that the homomorphism ΦD,q is toric, hence it is
sparsity-preserving as well.

Lemma 3.2.10. Let δ, s ≥ 1 and let D ≥ δ+1. For q ≥ 1, let ΦD,q : K[x]→
K[z] be defined as in (3.2.2). Let f ∈ K[x] be a non-zero polynomial of
sparsity at most s and degree at most δ.

Then there exists a set B ⊂ P of primes with |B| ≤ (s−1)bn log2Dc such
that ΦD,q(f) 6= 0 for all q ∈ P \B.

Proof. By Lemma 2.6.2, the polynomial g := ΦD(f) ∈ K[z] satisfies g 6= 0,
sp(g) = sp(f) ≤ s and deg(g) ≤ Dn − 1. By Lemma 3.2.9, there exists a
set B ⊂ P with |B| ≤ (s − 1)blog2(D

n − 1)c ≤ (s − 1)bn log2Dc such that
g /∈ 〈zq − 1〉K[z] for all q ∈ P \B. Since g−ΦD,q(f) ∈ 〈zq − 1〉K[z], we obtain
ΦD,q(f) 6= 0 for all q ∈ P \B.
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By Corollary A.1.2 (b), we will hit a good prime q for a given non-zero
polynomial by trying every integer in an interval of polynomial size. Thus
we obtain the following theorem.

Theorem 3.2.11. Let δ, s ≥ 1. Set D := δ+1. For q ≥ 1, let ΦD,q : K[x]→
K[z] be defined as in (3.2.2).

There exists an effectively computable N ∈ N with N = poly(n, s, log δ)
such that we have the following: For every non-zero polynomial f ∈ K[x]
of sparsity at most s and degree at most δ, there exists q ∈ [N ] such that
ΦD,q(f) 6= 0.

Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 3.2.10.

Preserving the rank of sparse polynomials

Preserving the rank of sparse polynomials f1, . . . , fm ∈ K[x] works similar
to the PIT algorithm. Here it suffices to find D, q ≥ 1 such that ΦD,q sends
the terms in the supports of f1, . . . , fm to different terms.

Theorem 3.2.12. Let δ,m, r, s ≥ 1. Set D := δ + 1. For q ≥ 1, define
ΦD,q : K[x]→ K[z] as in (3.2.2).

There exists an effectively computable N ∈ N with N = poly(n, r, s, log δ)
such that we have the following: For all polynomials f1, . . . , fm ∈ K[x] of
sparsity at most s, degree at most δ, and rkK(f1, . . . , fm) ≤ r, there exists
q ∈ [N ] such that ΦD,q is rank-preserving for {f1, . . . , fm}.

Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 3.2.13
below.

The following lemma constitutes the proof of Theorem 3.2.12. It demon-
strates that, for almost all D ≥ 1 and q ∈ P, the homomorphism ΦD,q is
rank-preserving for a given set of polynomials, and it bounds the number of
bad primes q.

Lemma 3.2.13. Let δ, r, s ≥ 1 and let D ≥ δ + 1. For q ≥ 1, define
ΦD,q : K[x] → K[z] as in (3.2.2). Let f1, . . . , fm ∈ K[x] be polynomials of
sparsity at most s, degree at most δ, and rkK(f1, . . . , fm) ≤ r.

Then there exists a set B ⊂ P of primes with |B| ≤
(
rs
2

)
bn log2Dc such

that ΦD,q is rank-preserving for {f1, . . . , fm} for all q ∈ P \B.

Proof. Assume that f1, . . . , fr are K-linearly independent (if the rank is less
than r, we can append linearly independent monomials). Let S := Supp(f1)∪
· · · ∪ Supp(fr) ⊂ T(x). Then S is a K-basis of V := 〈S〉K ⊂ K[x], and we
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have |S| ≤ rs. By Lemma 3.2.10, there exists a set B ⊂ P with |B| ≤(
rs
2

)
bn log2Dc such that ΦD,q(t) 6= ΦD,q(t

′) for all {t, t′} ∈
(
S
2

)
and all q ∈

P \ B. Let q ∈ P \ B. Then the K-linear map V → K[z], f 7→ ΦD,q(f) is
injective. Since f1, . . . , fm ∈ V , this means that ΦD,q is rank-preserving for
{f1, . . . , fm}.

The next theorem shows how rank-preserving homomorphisms of low de-
gree according to Theorem 3.2.3 can be found for sparse polynomials. The
construction is a combination of Theorems 3.2.6 and 3.2.12, and uses addi-
tional ideas of [FS12b].

Theorem 3.2.14. Let δ,m, r, s ≥ 1. Set D := δ + 1. Let a1, . . . , ar ∈ K be
distinct and let g1, . . . , gr ∈ K[z] such that deg(gi) = r − 1 and gi(aj) = δi,j
for all i, j ∈ [r]. For q ≥ 1 and c ∈ K, define the K-algebra homomorphisms

ΦD,q,c : K[x]→ K[z], xi 7→
r∑
j=1

cbD
i−1cq ·(j−1) · gj, (3.2.3)

where i ∈ [n], and

ΨD,q,c : K[x]→ K[z], xi 7→
r∑
j=1

cbD
i−1cq ·(j−1) · zj, (3.2.4)

where i ∈ [n] and z = {z1, . . . , zr}.
There exists an effectively computable N ∈ N with N = poly(n, r, s, δ)

such that for all N-subsets S ⊆ K we have the following: For all poly-
nomials f1, . . . , fm ∈ K[x] of sparsity at most s, degree at most δ, and
rkK(f1, . . . , fm) ≤ r, there exist q ∈ [N ] and c ∈ S such that both ΦD,q,c

and ΨD,q,c are rank-preserving for {f1, . . . , fm}.

Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 3.2.15
below.

The following lemma constitutes the proof of Theorem 3.2.14. The main
idea of the proof is as follows. By the Alternant Criterion and the proof of
Theorem 3.2.3, it suffices to find points b1, . . . , br ∈ Kn such that

(
fi(bj)

)
i,j ∈

Kr×r is non-singular. Indeed, then we can interpolate those points by low
degree polynomials (this idea was used in [FS12b]; cf. the proof of The-
orem 3.2.3). In order to obtain the points b1, . . . , br, we first apply the
rank-preserving homomorphism (3.2.2) to f1, . . . , fr to make them univari-
ate polynomials h1, . . . , hr ∈ K[z] of moderate degree < d. Subsequently, we
evaluate those univariate polynomials at the powers c0, c1, . . . , cr−1 of an ele-
ment c ∈ K. In [FS12b] it was observed that the matrix

(
hi(c

j−1)
)
i,j ∈ Kr×r
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equals A · Vc, where A ∈ Kr×d contains the coefficients of h1, . . . , hr and
Vc ∈ Kd×r is the Vandermonde matrix from Lemma 3.2.7. Since Vc is rank-
preserving for A for almost all c ∈ K, we obtain points b1, . . . , br with the
desired properties.

Lemma 3.2.15. Let δ, r, s ≥ 1 and let D ≥ δ + 1. Let a1, . . . , ar ∈ K be
distinct and let g1, . . . , gr ∈ K[z] such that deg(gi) = r − 1 and gi(aj) = δi,j
for all i, j ∈ [r]. For q ≥ 1 and c ∈ K, define ΦD,q,c : K[x] → K[z] and
ΨD,q,c : K[x] → K[z] as in (3.2.3) and (3.2.4). Let f1, . . . , fm ∈ K[x] be
polynomials of sparsity at most s, degree at most δ, and rkK(f1, . . . , fm) ≤ r.

Then there exists a set B1 ⊂ P of primes with |B1| ≤
(
rs
2

)
bn log2Dc

satisfying the following property: For all q ∈ P\B1 there exists a set B2 ⊆ K
with |B2| < qδ

(
r
2

)
such that both ΦD,q,c and ΨD,q,c are rank-preserving for

{f1, . . . , fm} for all c ∈ K \B2.

Proof. Assume that f1, . . . , fr are K-linearly independent (if the rank is less
than r, we can append linearly independent monomials). By Lemma 3.2.13,
there exists B1 ⊂ P with |B1| ≤

(
rs
2

)
bn log2Dc such that the polynomials

hi,q := fi
(
tbD

0cq , tbD
1cq , . . . , tbD

n−1cq
)
∈ K[t], i ∈ [r],

are K-linearly independent for all q ∈ P \ B1. Now fix q ∈ P \ B1. We have
degt(hi,q) < qδ =: d for all i ∈ [r]. Let A =

(
ai,j
)
i,j ∈ Kr×d, where ai,j is

the coefficient of tj−1 in hi,q for all i ∈ [r] and j ∈ [d]. Since g1,q, . . . , gr,q are
K-linearly independent, we have rkK(A) = r. By Lemma 3.2.7, there exists
B2 ⊆ K with |B2| < qδ

(
r
2

)
such that det(AVc) 6= 0 for all c ∈ K \ B2, where

Vc :=
(
c(i−1)(j−1)

)
i,j ∈ Kd×r. Fix an element c ∈ K \B2. We have(

(ΦD,q,c(fi))(aj)
)
1≤i,j≤r =

(
(ΨD,q,c(fi))(ej)

)
i,j

=
(
hi,q(c

j−1)
)
i,j

= AVc,

where e1, . . . , er ∈ Kr are the standard basis vectors of Kr. Since AVc is
non-singular, Lemma 3.1.2 implies that both ΦD,q,c(f1), . . . ,ΦD,q,c(fr) and
ΨD,q,c(f1), . . . ,ΨD,q,c(fr) are K-linearly independent. Therefore, both ΦD,q,c

and ΨD,q,c are rank-preserving for {f1, . . . , fm}.

3.2.3 Polynomials with Sparse Newton Polytope De-
composition

It is the weight, not numbers
of experiments that is to be regarded.

(Isaac Newton)
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In this section, we generalize the identity test for sparse polynomials from
Section 3.2.2 to polynomials whose Newton polytopes admits a certain sparse
decomposition.

We start with a few definitions about convex polytopes. For more infor-
mation on polytopes, we refer to the standard monographs [Grü03, Zie95].
A subset P ⊂ Rn is called polytope if it is the convex hull of a finite set
of points, i. e. P = Conv(α1, . . . , αm) for some α1, . . . , αm ∈ Rn. A point
α ∈ P is a vertex of P , if α /∈ Conv(P \ {α}). The set of all vertices of
P is denoted by Vert(P ) ⊂ Rn. It is the unique minimal subset of Rn with
convex hull P . We call the number sp(P ) := # Vert(P ) ∈ N the sparsity
of P . If Vert(P ) ⊂ Zn, then P is called integral. We are interested in the
integral polytope that is spanned by the exponent vectors in the support of
a polynomial.

Definition 3.2.16. Let f ∈ K[x] be a polynomial. The set

New(f) := Conv(LSupp(f)) ⊂ Rn
≥0

is called the Newton polytope of f .

By definition, we have sp(New(f)) ≤ sp(f) for all f ∈ K[x]. The follow-
ing example demonstrates that the sparsity of a polynomial can be exponen-
tially larger than the sparsity of its Newton polytope.

Example 3.2.17. Let δ ≥ 1, let K be a field with char(K) = 0 or char(K) > δ,
and consider the polynomial f = (x1 + · · ·+ xn + 1)δ ∈ K[x]. Then we have
Supp(f) = T(x)≤δ, hence New(f) is an n-dimensional simplex with vertices
{0, δε1, . . . , δεn}, where εi ∈ Rn is the i-th standard basis vector for i ∈ [n].
Therefore, we have sp(New(f)) = n+ 1 and sp(f) =

(
n+δ
δ

)
> (n/δ)δ.

Ostrowski [Ost75] observed that a factorization of a polynomial implies
a decomposition of its Newton polytope as Minkowski sum. Recall that the
Minkowski sum of subsets P1, . . . , Pm ⊆ Rn is defined as P1 + · · ·+ Pm :=
{α1 + · · ·+αm | αi ∈ Pi for i ∈ [m]} ⊆ Rn. If P1, . . . , Pm are polytopes, then
their Minkowski sum is again a polytope.

Lemma 3.2.18 ([Ost75, Theorem VI]). Let f, g ∈ K[x] be polynomials.
Then we have New(f · g) = New(f) + New(g).

Motivated by this lemma, we will consider polynomials whose Newton
polytopes decompose into few sparse integral polytopes.

Definition 3.2.19. Let News,δ be the set of all polynomials f ∈ K[x] of
degree at most δ such that New(f) = P1+· · ·+Pm for some integral polytopes
P1, . . . , Pm ⊂ Rn

≥0 with
∑m

i=1|Vert(Pi)| ≤ s.
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The Newton polytope in the following example has exponential sparsity,
but admits a sparse decomposition.

Example 3.2.20. Let K be an arbitrary field and consider the polynomial
f = (x1 + 1) · · · (xn + 1) ∈ K[x]. Then LSupp(f) = {0, 1}n, hence New(f)
is an n-dimensional hypercube with vertices {0, 1}n. Therefore, we have
sp(New(f)) = sp(f) = 2n. On the other hand, Lemma 3.2.18 implies
New(f) = Conv(0, ε1) + · · ·+ Conv(0, εn), thus we have f ∈ New2n,n.

Now we can state the main result of this section. Note that this is a
generalization of Theorem 3.2.11.

Theorem 3.2.21. Let δ, s ≥ 1. Set D := δ+1. For q ≥ 1, let ΦD,q : K[x]→
K[z] be defined as in (3.2.2).

There exists an effectively computable N ∈ N with N = poly(n, s, log δ)
such that we have the following: For every non-zero f ∈ News,δ ∩K[x] there
exists q ∈ [N ] such that ΦD,q(f) 6= 0.

Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 3.2.24
below.

In the proof we use the theme of isolating terms which was introduced
in Section 2.6. We first observe that, in order to obtain an isolating weight
vector (recall Definition 2.6.6) for a polytope, it suffices to isolate one of its
vertices.

Lemma 3.2.22. Let P ⊂ Rn
≥0 be a polytope and let w ∈ Nn be a weight

vector. Then the following statements are equivalent:

(a) The weight vector w is isolating for P .

(b) Some α ∈ Vert(P ) is isolated by w in P .

(c) The weight vector w is isolating for Vert(P ).

Proof. Denote Vert(P ) = {α1, . . . , αm}. First we assume (a). Then some
α ∈ P is isolated by w in P . Write α =

∑m
i=1 λiαi for some λ1, . . . , λm ∈ R≥0

with
∑m

i=1 λi = 1. We have

|α|w =
m∑
i=1

λi · |αi|w ≥
(

min
1≤i≤m

|αi|w
)
·
m∑
i=1

λi = min
1≤i≤m

|αi|w.

Since w isolates α in P , we get α = αj for some j ∈ [m], so we have shown
(b). Part (b) contains (c) as a special case. Finally, assume (c). Then there
exists j ∈ [m] such that w isolates αj in Vert(P ). Let β ∈ P \ {αj}. Write
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β =
∑m

i=1 λiαi for some λ1, . . . , λm ∈ R≥0 with
∑m

i=1 λi = 1. We have λj < 1,
hence λi > 0 for some i 6= j, so we obtain

|αj|w =
m∑
i=1

λi · |αj|w <
m∑
i=1

λi · |αi|w = |β|w.

This shows (a).

The following lemma demonstrates that a weight vector is isolating for a
Minkowski sum of polytopes if and only if it is isolating for every summand.

Lemma 3.2.23. Let P1, . . . , Pm ⊂ Rn
≥0 be polytopes and let w ∈ Nn be a

weight vector. Then w is isolating for P1 + · · · + Pm if and only if w is
isolating for Pi for all i ∈ [m].

Proof. Denote P := P1 + · · · + Pm. Assume that w is isolating for P . Then
some α ∈ P is isolated by w in P . Write α = α1 + · · · + αm with αi ∈ Pi
for i ∈ [m]. Now let i ∈ [m]. We want to show that w isolates αi in Pi.
To this end, let βi ∈ Pi \ {αi} and consider β := α − αi + βi ∈ P \ {α}.
Since w isolates α in P , we obtain |α|w < |β|w = |α|w − |αi|w + |βi|w, hence
|αi|w < |βi|w. This shows that w is isolating for Pi for all i ∈ [m].

Conversely, assume that w is isolating for Pi for all i ∈ [m]. Then some
αi ∈ Pi is isolated by w in Pi for all i ∈ [m]. We want to show that α :=
α1 + · · · + αm ∈ P is isolated by w in P . To this end, let β ∈ P \ {α}.
Write β = β1 + · · · + βm with βi ∈ Pi for i ∈ [m]. We have |αi|w ≤ |βi|w
for all i ∈ [m]. Since α 6= β, there exits j ∈ [m] such that αj 6= βj, hence
|αj|w < |βj|. This yields

|α|w =
m∑
i=1

|αi|w <
m∑
i=1

|βi|w = |β|w,

showing that w isolates α in P .

The following lemma constitutes the proof of Theorem 3.2.21. It gives
a bound on the number of primes q ∈ P for which the homomorphism ΦD,q

does not preserve the non-zeroness of a polynomial whose Newton polytope
has a sparse decomposition. In view of Lemmas 3.2.22 and 3.2.23, it suffices
to isolate the terms corresponding to the vertices of the decomposition from
each other.

Lemma 3.2.24. Let δ ≥ 1 and let D ≥ δ + 1. For q ≥ 1, let ΦD,q : K[x]→
K[z] be defined as in (3.2.2). Let f ∈ K[x] be a non-zero polynomial of
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degree at most δ such that New(f) = P1+ · · ·+Pm for some integral polytopes
P1, . . . , Pm ⊂ Rn

≥0 with |Vert(Pi)| ≤ s for all i ∈ [m].

Then there exists a set B ⊂ P of primes with |B| ≤ m
(
s
2

)
bn log2Dc such

that ΦD,q(f) 6= 0 for all q ∈ P \B.

Proof. Denote Vi := Vert(Pi) ⊂ Nn for all i ∈ [m]. For q ≥ 1, define the
weight vector

wq :=
(
bD0cq, bD1cq, . . . , bDn−1cq

)
∈ Nn.

Now let i ∈ [m] and let {α, β} ∈
(
Vi
2

)
. By Lemma 3.2.10, there exists a

set Bi,{α,β} ⊂ P of primes with |Bi,{α,β}| ≤ bn log2Dc such that ΦD,q(x
α) 6=

ΦD,q(x
β) for all q ∈ P \ Bi,{α,β}. This implies |α|wq 6= |β|wq for all q ∈

P \Bi,{α,β}. Now set

B :=
m⋃
i=1

⋃
{α,β}∈

(
Vi
2

)Bi,{α,β} ⊂ P

and let q ∈ P \ B. Then wq is isolating for Vi for all i ∈ [m]. By Lemma
3.2.22, this implies that wq is isolating for Pi for all i ∈ [m]. Therefore, by
Lemma 3.2.23, wq is isolating for New(f). We conclude that ΦD,q(f) 6= 0.

3.2.4 Products of Linear Forms

Knowing + and × is good enough,
understanding their interaction is ideal.

(Bruno Buchberger)

In this section we give a construction of rank-preserving homomorphisms
for sets of products of linear forms. A related topic are PIT algorithms for
ΣΠΣ-circuits which are sums of products of linear forms.

Definition 3.2.25. Let n, k, δ ≥ 1 and consider the arithmetic circuit

C =
k∑
i=1

δ∏
j=1

`i,j, (3.2.5)

where `i,j ∈ K[x]1 \ {0} are linear forms (in sparse Σ-representation). The
parameter k is called the top fan-in of C. For i ∈ [k], the product Ti :=∏δ

j=1 `i,j is called a multiplication term of C. The set of all circuits as in
(3.2.5) is denoted by ΣkΠδΣ.
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This class of circuits has been subject to a long line of research. For ΣΠΣ-
circuits with constant top fan-in, polynomial-time algorithms are known. The
first non-blackbox polynomial-time algorithm was given by Kayal & Saxena
[KS07] (see also [AM10] for a different formulation of this algorithm).

The quest for blackbox algorithms was initiated by Karnin & Shpilka
[KS11a] who turned the quasipolynomial-time algorithm of Dvir & Shpilka
[DS07] into a hitting set. Their rank-based construction was gradually im-
proved in the works [SS11a, KS09, SS10], so that polynomial-time blackbox
algorithms could be obtained over ordered fields such as Q. We will address
this approach in Section 4.2.5, where we generalize it to ΣΠΣΠ-circuits with
constant top and bottom fan-in.

Saxena & Seshadhri [SS11b] finally found a field-independent polynomial-
time blackbox identity test for ΣΠΣ-circuits with constant top fan-in. Their
algorithm can be interpreted as a blackbox version of [KS07], but uses also
tools developed in [KS11a, SS10]. We will present these methods here and
show how they can be used to obtain rank-preserving homomorphisms for
products of linear forms.

Ideal decomposition

The results of this section are based on decompositions of ideals generated
by products of linear forms. This method was used in [SS10] (see the full
version of the paper for details). Let S ⊂ K[x] be a set of products of linear
forms. We define the K-subspace

LinK(S) :=
〈
` ∈ K[x]1 | ` divides some f ∈ S

〉
K
⊆ K[x]1.

The following lemma gives a sufficient condition for a linear form being a
non-zero divisor modulo an ideal generated by products of linear forms (cf.
[SS11b, Lemma 10]).

Lemma 3.2.26. Let f1, . . . , fm ∈ K[x] be products of linear forms and let ` ∈
K[x]1 \Lin(f1, . . . , fm). Then ` is a non-zerodivisor modulo 〈f1, . . . , fm〉K[x].

Proof. After an invertible linear change of variables, we may assume that
` = xn and Lin(f1, . . . , fm) ⊆ K[x[n−1]]1. Then f1, . . . , fm ∈ K[x[n−1]] and it
is easy to see that ` is a non-zerodivisor modulo 〈f1, . . . , fm〉K[x].

Non-zerodivisors can be used to split ideals generated by products of
linear forms.
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Lemma 3.2.27. Let f1, . . . , fm, g1, g2 ∈ K[x] be products of linear forms
such that Lin(g1) ∩ Lin(f1, . . . , fm, g2) = {0}. Denote I := 〈f1, . . . , fm〉K[x]

and g := g1 · g2. Then we have

I + 〈g〉K[x] =
(
I + 〈g1〉K[x]

)
∩
(
I + 〈g2〉K[x]

)
.

Proof. It is clear that the left-hand side is contained in the right-hand side.
Conversely, let h = f + q1g1 = f ′ + q2g2, where f, f ′ ∈ I and q1, q2 ∈ K[x].
Then q1g1 = f ′ − f + q2g2 ∈ I + 〈g2〉. By Lemma 3.2.26, g1 is a non-
zerodivisor modulo I + 〈g2〉, hence q1 ∈ I + 〈g2〉. This implies q1g1 ∈ I + 〈g〉,
thus h = f + q1g1 ∈ I + 〈g〉.

Repeating the splitting procedure, we obtain an ideal decomposition with
control over the dimension of the Lin-spaces of the generators.

Lemma 3.2.28. Let f1, . . . , fm, g ∈ K[x] be products of linear forms and let
I := 〈f1, . . . , fm〉K[x]. Then there exist products of linear forms g1, . . . , gs ∈
K[x] with g = g1 · · · gs such that

I + 〈g〉K[x] =
s⋂
i=1

(
I + 〈gi〉K[x]

)
and dimK Lin(f1, . . . , fm, gi) ≤ dimK Lin(f1, . . . , fm) + 1 for all i ∈ [s].

Proof. Apply Lemma 3.2.27 repeatedly.

We conclude this section by showing how the rank-preserving homomor-
phism from Section 3.2.1 can be used to preserve non-membership in ideals
generated by products of linear forms (cf. [SS11b, Lemma 8]).

Lemma 3.2.29. Let f, f1, . . . , fm ∈ K[x] be products of linear forms and let
I := 〈f1, . . . , fm〉K[x]. Let ϕ : K[x]→ K[z] be a graded K-algebra homomor-
phism of degree 1. Assume that for all ` ∈ K[x]1 with ` | f there exist linearly
independent `1, . . . , `r with Lin(`, f1, . . . , fm) ⊆ 〈`1, . . . , `r〉K such that ϕ is
rank-preserving for {`1, . . . , `r}. Then we have

(a) ϕ(I) = 〈ϕ(f1), . . . , ϕ(fm)〉K[z], and

(b) f ∈ I if and only if ϕ(f) ∈ ϕ(I).

Proof. By assumption and Lemma 3.2.8, the homomorphism ϕ is surjective,
hence ϕ(I) = 〈ϕ(f1), . . . , ϕ(fm)〉K[z]. If f ∈ I, then clearly ϕ(f) ∈ ϕ(I).
Conversely, let f /∈ I. Write f = g1 · g2 with g1, g2 ∈ K[x] such that ` /∈
Lin(f1, . . . , fm) for all ` ∈ K[x]1 with ` | g1 and Lin(g2) ⊆ Lin(f1, . . . , fm).
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By Lemma 3.2.26, g1 is a non-zerodivisor modulo I, hence g2 /∈ I. By assump-
tion and Lemma 3.2.8, there exist linearly independent `1, . . . , `r ∈ K[x]1
such that g2, f1, . . . , fm ∈ K[`1, . . . , `r] and ϕ|K[`1,...,`r] is an isomorphism.
This implies ϕ(g2) /∈ ϕ(I). Now let ` ∈ K[x]1 such that ` | g1, hence
` /∈ Lin(f1, . . . , fm). Again by assumption and Lemma 3.2.8, there exist
`1, . . . , `r ∈ K[x]1 such that `, f1, . . . , fm ∈ K[`1, . . . , `r] and ϕ|K[`1,...,`r] is an
isomorphism. This implies ϕ(`) /∈ Lin(ϕ(f1), . . . , ϕ(fm)). By Lemma 3.2.26,
ϕ(g1) is a non-zerodivisor modulo ϕ(I), therefore ϕ(f) = ϕ(g1) · ϕ(g2) /∈
ϕ(I).

Identity testing of ΣΠΣ-circuits with bounded top fan-in

Now we can state the main result of [SS11b]. It shows how to reduce the
number of variables of a ΣkΠΣ-circuit from n to k while preserving non-
zeroness.

Theorem 3.2.30. Let n, k, δ ≥ 1. For c ∈ K, let Φc : K[x] → K[z] be
defined as in (3.2.1).

There exists an effectively computable N ∈ N with N = poly(n, k, δ)
such that for all N-subsets S ⊆ K we have the following: For all non-zero
C ∈ ΣkΠδΣ there exists c ∈ S such that Φc(C) 6= 0.

The proof of this theorem, given below, is based on the following lemma
which provides a low-rank certificate for the non-zeroness of a ΣΠΣ-circuit
(cf. [SS11b, Theorem 6]).

Lemma 3.2.31. Let f1, . . . , fm ∈ K[x] be products of linear forms of the
same degree such that f :=

∑m
i=1 fi is non-zero. Then there exist i ∈ [m] and

polynomials g1, . . . , gi−1 ∈ K[x] such that

(a) gj | fj for all j ∈ [i− 1],

(b) dimK Lin(g1, . . . , gj) ≤ j for all j ∈ [i− 1],

(c) f /∈ 〈g1, . . . , gi−1〉K[x], and

(d) f − λfi ∈ 〈g1, . . . , gi−1〉K[x] for some λ ∈ K∗.

Proof. Let i ∈ [m] be maximal such that there exist g1, . . . , gi−1 ∈ K[x]
satisfying (a)–(c). This maximal index exists, because f /∈ 〈0〉, thus i = 1 is
possible. Now assume for the sake of contradiction that f /∈ 〈g1, . . . , gi−1, fi〉.
This implies i < m. By Lemma 3.2.28, there exists gi ∈ K[x] with gi | fi
such that f /∈ 〈g1, . . . , gi〉 and dimK Lin(g1, . . . , gi) ≤ (i − 1) + 1 = i. This
is a contradiction to the maximality of i, therefore f ∈ 〈g1, . . . , gi−1, fi〉. By
homogeneity, there exists λ ∈ K such that f − λfi ∈ 〈g1, . . . , gi−1〉, and by
(c), we have λ 6= 0.
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Proof of Theorem 3.2.30. Let C =
∑k

i=1 Ti be a non-zero ΣkΠδΣ-circuit. By
Lemma 3.2.31, there exist i ∈ [k], g1, . . . , gi−1 ∈ K[x], and λ ∈ K∗ such
that gj | Tj for all j ∈ [i − 1], dimK Lin(g1, . . . , gi−1) ≤ i − 1, and C =
λTi 6= 0 (mod 〈g1, . . . , gi−1〉). By Lemmas 3.2.7 and 3.2.29, there exists
N ∈ N with N = poly(n, k, δ) such that for all N -subsets S ⊆ K we have
Φc(λTi) /∈ 〈Φc(g1), . . . ,Φc(gi−1)〉 for some c ∈ S. Since Φc(C) − Φc(λTi) ∈
〈Φc(g1), . . . ,Φc(gi−1)〉, this implies Φc(C) 6= 0, as required.

Preserving the rank of products of linear forms

Finally, we can state the main result of this section. Using arguments from
[SS10], we show how to find rank-preserving homomorphisms for products
of linear forms. For products of linear forms of rank at most ρ, the homo-
morphism under consideration reduces the number of variables from n to
ρ2.

Theorem 3.2.32. Let n, ρ, δ ≥ 1 and let r := ρ2. For c ∈ K, let Φc : K[x]→
K[z] = K[z1, . . . , zr] be defined as in (3.2.1).

There exists an effectively computable N ∈ N with N = poly(n, ρ, δ) such
that for all N-subsets S ⊆ K we have the following: For all products of linear
forms f1, . . . , fm ∈ K[x] of degree at most δ and rkK(f1, . . . , fm) ≤ ρ there
exists c ∈ S such that Φc is rank-preserving for {f1, . . . , fm}.

The proof of this theorem, given below, is based on a criterion for linear
independence of products of linear forms. A prototype of this character-
ization for general homogeneous polynomials is provided by the following
lemma.

Lemma 3.2.33. Let f1, . . . , fm ∈ K[x] be homogeneous polynomials of the
same degree. Then f1, . . . , fm are K-linearly independent if and only if for
every i ∈ [m] there exist polynomials g1, . . . , gi−1 ∈ K[x] such that gj | fj for
all j ∈ [i− 1] and fi /∈ 〈g1, . . . , gi−1〉K[x].

Proof. Let f1, . . . , fm be K-linearly independent. Set gi := fi for i ∈ [m −
1]. Since f1, . . . , fm are homogeneous of the same degree, we obtain fi /∈
〈g1, . . . , gi−1〉 for all i ∈ [m].

Conversely, let f1, . . . , fm be K-linearly dependent. Then there exist
λ1, . . . , λm ∈ K, not all zero, such that λ1f1 + · · ·+λmfm = 0. Let i ∈ [m] be
maximal such that λi 6= 0, and let g1, . . . , gi−1 ∈ K[x] such that gj | fj for all
j ∈ [i− 1]. Then fi = (−λ1/λi)f1 + · · ·+ (−λi−1/λi)fi−1 ∈ 〈g1, . . . , gi−1〉.

For products of linear forms, the polynomials g1, . . . , gi−1 can be chosen
such that the dimension of their Lin-space is small (cf. the full version of the
paper [SS10]; note that they state this result in a slightly different language).
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Lemma 3.2.34. Let f1, . . . , fr ∈ K[x] be K-linearly independent products
of linear forms of the same degree. Then there exist products of linear forms
g1, . . . , gr−1 ∈ K[x] with gi | fi for i ∈ [r− 1] such that fi /∈ 〈g1, . . . , gi−1〉K[x]

for all i ∈ [r] and dimK Lin(g1, . . . , gr−1) ≤
(
r
2

)
.

Proof. The proof is by double induction. We start with induction on r. For
r = 1 the statement is true, because f1 /∈ 〈0〉. Now let r ≥ 2. By induction
hypothesis, we have g′1, . . . , g

′
r−2 ∈ K[x] with g′i | fi for i ∈ [r − 2] such that

fi /∈ 〈g′1, . . . , g′i−1〉 for all i ∈ [r − 1] and dimK Lin(g′1, . . . , g
′
r−2) ≤

(
r−1
2

)
.

Now we want to prove the following claim: For all j ∈ [0, r − 2]
there exist g1, . . . , gj ∈ K[x] with g′i | gi and gi | fi for i ∈ [j]
such that

(a) fr /∈ 〈g1, . . . , gj, fj+1, . . . , fr−1〉, and

(b) dimK Lin(g1, . . . , gj, g
′
j+1, . . . , g

′
r−2) ≤

(
r−1
2

)
+ j.

We prove this statement by induction on j. Since f1, . . . , fr are
linearly independent and homogeneous of the same degree, we
have fr /∈ 〈f1, . . . , fr−1〉, so the claim holds for j = 0. Now let
j ∈ [1, r − 2]. By induction hypothesis, we have g1, . . . , gj−1 ∈
K[x] with g′i | gi and gi | fi for i ∈ [j − 1] such that fr /∈
〈g1, . . . , gj−1, fj, . . . , fr−1〉 and

dimK Lin(g1, . . . , gj−1, g
′
j, . . . , g

′
r−2) ≤

(
r − 1

2

)
+ (j − 1).

Let us assume that fr ∈ 〈g1, . . . , gj−1, g′j, fj+1, . . . , fr−1〉, because
otherwise we can set gj := g′j and are done. By homogeneity,
there exist λj+1, . . . , λr−1 ∈ K such that

fr −
r−1∑
i=j+1

λifi ∈
〈
g1, . . . , gj−1, g

′
j

〉
. (3.2.6)

Also by homogeneity, we have fr−
∑r−1

i=j+1 λifi /∈ 〈g1, . . . , gj−1, fj〉.
By Lemma 3.2.28, there exists g′′j ∈ K[x] with g′′j | fj such that

fr −
∑r−1

i=j+1 λifi /∈ 〈g1, . . . , gj−1, g′′j 〉 and

dimK Lin(g1, . . . , gj−1, g
′′
j ) ≤ dimK Lin(g1, . . . , gj−1) + 1.

Set gj := lcm(g′j, g
′′
j ). Then we have

fr −
r−1∑
i=j+1

λifi /∈
〈
g1, . . . , gj

〉
(3.2.7)
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and dimK Lin(g1, . . . , gj, g
′
j+1, . . . , g

′
r−2) ≤

(
r−1
2

)
+ j. In order to

finish the argument, we assume for the sake of contradiction that
fr ∈ 〈g1, . . . , gj, fj+1, . . . , fr−1〉. Then, again by homogeneity,
there exist µj+1, . . . , µr−1 ∈ K such that

fr −
r−1∑
i=j+1

µifi ∈
〈
g1, . . . , gj

〉
⊆
〈
g1, . . . , gj−1, g

′
j

〉
. (3.2.8)

By (3.2.7), there exists a maximal index i ∈ [j + 1, r − 1] such
that λi 6= µi. By (3.2.6) and (3.2.8), this implies

fi ∈
〈
g1, . . . , gj−1, g

′
j, fj+1, . . . , fi−1

〉
⊆
〈
g′1, . . . , g

′
i−1
〉
,

contradicting the hypothesis of the outer induction. Therefore,
we have fr /∈ 〈g1, . . . , gj, fj+1, . . . , fr−1〉 and the claim is proved.

The case j = r − 2 of the claim yields polynomials g1, . . . , gr−2 ∈ K[x] with
g′i | gi and gi | fi for i ∈ [r − 2] such that fr /∈ 〈g1, . . . , gr−2, fr−1〉 and
dimK Lin(g1, . . . , gr−2) ≤

(
r−1
2

)
+ (r − 2). By Lemma 3.2.28, there exists

gr−1 ∈ K[x] with gr−1 | fr−1 such that fr /∈ 〈g1, . . . , gr−1〉 and

dimK Lin(g1, . . . , gr−1) ≤
(
r − 1

2

)
+ (r − 2) + 1 =

(
r

2

)
.

Since fi /∈ 〈g′1, . . . , g′i−1〉 for all i ∈ [r− 1], we also have fi /∈ 〈g1, . . . , gi−1〉 for
all i ∈ [r − 1]. This finishes the proof.

Proof of Theorem 3.2.32. Let f1, . . . , fρ ∈ K[x] be K-linearly independent
products of linear forms. We may assume that f1, . . . , fρ are of degree δ (by
homogeneity, we can treat each degree separately). By Lemma 3.2.34, there
exist g1, . . . , gρ−1 ∈ K[x] such that gi | fi for all i ∈ [ρ−1], Lin(g1, . . . , gρ−1) ≤(
ρ
2

)
, and fi /∈ 〈g1, . . . , gi−1〉 for all i ∈ [ρ]. We have

(
ρ
2

)
+ 1 ≤ ρ2 = r.

By Lemmas 3.2.7 and 3.2.29, there exists N ∈ N with N = poly(n, ρ, δ)
such that for all N -subsets S ⊆ K there exists c ∈ S such that Φc(fi) /∈
〈Φc(g1), . . . ,Φc(gi−1)〉 for all i ∈ [ρ]. By Lemma 3.2.33, this implies that
Φc(f1), . . . ,Φc(fρ) are K-linearly independent.

3.2.5 Summary

We summarize the results of Sections 3.2.1 to 3.2.4. First we list the con-
structions of rank-preserving homomorphisms, then the obtained hitting sets.
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Rank-preserving homomorphisms

We considered several circuit classes C depending on a subset of the param-
eters n, s, δ ≥ 1. For ρ ≥ 1 and C, we constructed families of K-algebra
homomorphisms

Φi : K[x]→ K[z1, . . . , zr], i ∈ I,

where I is an index set, with the following property: For all arithmetic circuits
C1, . . . , Cm ∈ C ∩ K[x] with rkK(C1, . . . , Cm) ≤ ρ there exists i ∈ I such
that Φi is rank-preserving for {C1, . . . , Cm}. The following table presents an
overview of the respective constructions.

# Circuit class r deg(Φi) |I| Remark

(a) Σ ρ 1 poly
(
n, ρ
)

(b) ΣsΠδ 1 poly
(
n, ρ, s, log δ

)
poly

(
n, ρ, s, log δ

)
toric

(c) 1 ρ− 1 poly
(
n, ρ, s, δ

)
(d) ρ 1 poly

(
n, ρ, s, δ

)
(e) ΠδΣ ρ2 1 poly

(
n, ρ, δ

)
Item (a) on linear forms is proven by Theorem 3.2.6, items (b)–(d) on

sparse polynomials are contained in Theorems 3.2.12 and 3.2.14, and item
(e) on products of linear forms is Theorem 3.2.32.

Hitting sets

We presented hitting sets for the circuit classes listed in the following table.

# Circuit class Hitting set size

(a) ΣsΠδ poly
(
n, s, δ

)
(b) News,δ poly

(
n, s, δ

)
(c) ΣkΠδΣ poly

(
n, δk

)
Items (a)–(c) follow from Theorem 3.2.4 in conjunction with Theorems

3.2.11, 3.2.21, and 3.2.30, respectively. Note that Theorem 3.2.30 also uses
the concept of rank-preserving homomorphisms.

To apply Theorems 3.2.4 and 3.2.30 the field K has to be of polynomial
cardinality. Small finite fields can be efficiently replaced by a sufficiently
large extension field by Lemma 2.2.9. Then, for both K = Q or K a finite
field, the hitting sets can be chosen to consist of points of polynomial bit-size.
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3.3 Linear Independence Testing

In this section we study the complexity of testing linear independence of
arithmetic circuits.

Problem 3.3.1. Let K be a computable field and let C be a circuit class over
K. Then the linear independence testing problem LinIndepK(C) is defined
as follows: Given circuits C1, . . . , Cm ∈ C, decide whether the polynomials
C1, . . . , Cm are K-linearly independent. We set LinIndepK := LinIndepK(Call).

By the Alternant Criterion (see Theorem 3.1.1), testing linear indepen-
dence reduces to (the complement of ) PIT (cf. [CKW11, Lemma 14.4]).

Theorem 3.3.2. Let K be a computable field. Then the problems LinIndepK
and PITK are polynomial-time equivalent.

Proof. Let C be an arithmetic circuit over K[x]. Then C 6= 0 if and only if
C is K-linearly dependent. Therefore, PITK reduces to LinIndepK .

Conversely, let C1, . . . , Cm be arithmetic circuits over K[x]. Consider the
polynomial

det

 C1(t1,1, . . . , t1,n) · · · Cm(t1,1, . . . , t1,n)
...

...
C1(tm,1, . . . , tm,n) · · · Cm(tm,1, . . . , tm,n)

 ∈ K[t],

where t = {ti,j | i ∈ [m] and j ∈ [n]} are new variables. By the Berkowitz
algorithm (see Lemma A.3.1), an arithmetic circuit C for this polynomial
can be computed in polynomial time. By Lemma 3.1.2, C1, . . . , Cm are K-
linearly independent if and only if C 6= 0. Therefore, LinIndepK reduces to
PITK .

As a consequence of Theorem 3.3.2, we obtain efficient randomized algo-
rithms for the linear independence testing problem.

Corollary 3.3.3. Let K = Q or K = Fq for some prime power q. Then we
have LinIndepK ∈ RP.

Proof. This follows from Theorems 3.3.2, 2.5.5, and 2.5.7.

3.4 Computation of Linear Relations

In the final section of this chapter we investigate the complexity of computing
the linear relations of arithmetic circuits. This problem can be considered



3.4. Computation of Linear Relations 65

as a search version of the linear independence testing problem and was dealt
with in [Kay10, CKW11].

Let K be a field and let K[x] = K[x1, . . . , xn] be a polynomial ring
over K. We say that a K-basis {v1, . . . ,vr} of a K-subspace V ⊆ Km is
canonical if the matrix M ∈ Km×r with columns v1, . . . ,vr is in reduced
column echelon form. Every subspace V ⊆ Km has a unique canonical basis.

Given arithmetic circuits C1, . . . , Cm over K[x], we want to compute the
canonical K-basis B ⊂ Km of LinRelK(C1, . . . , Cm). We restrict ourselves
to polynomial-degree circuits, because otherwise B could have bit-size expo-
nential in the encoding size of the circuits. For instance, if we are given the
circuits C1 = 22s and C2 = 1 of encoding size O(s) over Q, then the canonical
basis B = {(1,−22s)} of LinRelQ(C1, C2) has bit-size Ω(2s).

The following theorem deals with the case of general polynomial-degree
circuits. It is proven similarly to Theorem 3.3.2, see [CKW11, Lemma 14.4].

Theorem 3.4.1. Let K = Q or K = Fq for some prime power q. Then there
exists a randomized polynomial-time Turing machine that, given polynomial-
degree arithmetic circuits C1, . . . , Cm over K[x], computes a K-linearly in-
dependent set B ⊂ Km in canonical form such that, with probability ≥ 1/2,
B is a K-basis of LinRelK(C1, . . . , Cm).

Proof sketch. A basis for the linear relations can be computed as follows.
First determine an upper bound d ≥ 1 for the formal degrees of the input
circuits C1, . . . , Cm. Next, choose a subset S ⊆ K with |S| = 2md whose
elements have small bit-size (if |K| < 2md, replace K by a sufficiently large
extension field). Then pick points a1, . . . ,am ∈ Sn at random and consider
the matrix M :=

(
Cj(ai)

)
i,j ∈ Km×m. We have LinRelK(C1, . . . , Cm) ⊆

ker(M). By Lemma 3.1.2, Lemma 2.5.1, and a dimension argument, this is
an equality with probability ≥ 1/2. Now the canonical K-basis B of ker(M)
can be computed by linear algebra algorithms. If K = Q, standard Gaussian
elimination might produce rational numbers of exponential bit-size. Here
a modular approach can be used (see also the proof of Theorem 3.4.5). If
K = Fq for some prime power q and K has been replaced by a finite field
extension L/K, then note that the canonical L-basis of LinRelL(C1, . . . , Cm)
coincides with the canonical K-basis of LinRelK(C1, . . . , Cm).

3.4.1 Kronecker Products of Vectors

Die ganzen Zahlen hat der liebe Gott gemacht,
alles andere ist Menschenwerk.

(Leopold Kronecker)
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In this section we give a polynomial-time algorithm for computing the
linear relations of Kronecker products of vectors. The algorithm can be seen
as a generalization of the polynomial-time identity test for set-multilinear
ΣΠΣ-circuits (with unbounded top fan-in) of Raz & Shpilka [RS05]. Note
that for this circuit class there is no polynomial-time blackbox algorithm
known. Recently, progress towards a solution of this problem was made in
[ASS12, FS12b].

For convenience of notation, we use a vector notation here as it was done
in [FS12a]. Let m,n,D ≥ 1 and let K be a field. For i ∈ [m] and j ∈ [n], let
ai,j = (ai,j,0, . . . , ai,j,D)> ∈ KD+1 be a vector. Define the Kronecker products
(see Appendix A.3.1 for a definition)

f i := ai,1 ⊗ · · · ⊗ ai,n ∈ K(D+1)n

for all i ∈ [m]. Given the ai,j, we want to compute a K-basis of

LinRelK(f 1, . . . ,fm) ⊆ Km.

Note that we cannot compute the vectors f 1, . . . ,fm explicitly, since they
have exponential dimensions.

Related circuit classes

Before we state the algorithm, we indicate the circuit classes to which Kro-
necker products of vectors relate. For i ∈ [m], define the products of
univariates

fi :=
n∏
j=1

( D∑
d=0

ai,j,d · xdj
)
∈ K[x],

where x = {x1, . . . , xn}, and define the set-multilinear products of linear
forms

gi :=
n∏
j=1

( D∑
d=0

ai,j,d · xj,d
)
∈ K[x],

where x = {xj,d | j ∈ [n] and d ∈ [0, D]}. It is easy to see that

LinRelK(f 1, . . . ,fm) = LinRelK(f1, . . . , fm) = LinRelK(g1, . . . , gm).

Note that the circuits
∑m

i=1 fi and
∑m

i=1 gi are zero if and only if (1, . . . , 1) ∈
LinRelK(f 1, . . . ,fm).
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Polynomial-time computation of LinRelK(f 1, . . . ,fm)

Our approach is inspired by the algorithm in [CKW11, Theorem 14.8] for
computing the linear relations of powers of sums of univariate polynomials.
This problem is related to ours, because those powers can be transformed
to sums of products of univariates [Sax08, SSS11, FS12b]. Note that the
algorithm in [CKW11] uses partial derivatives and therefore works only in
characteristic zero or sufficiently large characteristic, whereas our method
works for any field.

Our algorithm is based on the following simple lemma. It can be used
to compute the linear relations of Kronecker products iteratively, adding one
factor at a time.

Lemma 3.4.2. Let m, s, t ≥ 1. Let v1, . . . ,vm ∈ Ks and w1, . . . ,wm ∈ Kt

be vectors. Then we have

LinRelK(v1 ⊗w1, . . . ,vm ⊗wm) =
t⋂

j=1

LinRelK(w1,j · v1, . . . , wm,j · vm).

Proof. Let λ1, . . . , λm ∈ K. Then, by definition of the Kronecker product, we
have

∑m
i=1 λi vi⊗wi = 0 if and only if

∑m
i=1 λiwi,j ·vi = 0 for all j ∈ [t].

The following lemma demonstrates how LinRelK(w1v1, . . . , wmvm) can
be computed from w1, . . . , wm ∈ K and a K-basis of LinRelK(v1, . . . ,vm).

First we require some notation. Let V,W be finite-dimensional K-vector
spaces with ordered bases B ⊂ V and C ⊂ W . Then the matrix of a
K-linear map ϕ : V → W with respect to B and C will be denoted by
MB

C (ϕ) ∈ K |C|×|B|.

Lemma 3.4.3. Let m, s ≥ 1. Let A ∈ Km×m, let F ∈ Ks×m and let
U := ker(F ) ⊆ Km. Let Q := ME

C (Km � Km/U) ∈ Kr×m, where E is the
standard K-basis of Km, C is some K-basis of Km/U , and r := |C| ∈ [0,m].
Then we have ker(FA) = ker(QA).

Proof. Observe that ker(FA) is the kernel of the K-linear map

ϕ : Km → Km/U, v 7→ (A · v) + U,

and we have ME
C (ϕ) = QA. Therefore, we obtain ker(FA) = ker(ϕ) =

ker(QA).

Lemmas 3.4.2 and 3.4.3 suggest an iterative algorithm for computing the
linear relations of Kronecker products. In the description of the algorithm,
we denote by diag(a1, . . . , am) ∈ Km×m the diagonal matrix with diagonal
entries a1, . . . , am ∈ K.
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Algorithm 3.4.4 (Linear relations of Kronecker products of vectors).
Input: Vectors ai,j ∈ KD+1 for i ∈ [m] and j ∈ [n] over a computable field
K.
Output: A K-basis B of LinRelK(f 1, . . . ,fm) ⊆ Km, where

f i := ai,1 ⊗ · · · ⊗ ai,n ∈ K(D+1)n

for i ∈ [m].

(1) Compute a K-basis B of LinRelK(a1,1, . . . ,am,1) ⊆ Km.

(2) For j ← 2, . . . , n, repeat steps (3) to (5).

(3) Compute a K-basis C of Km/〈B〉K and set r ← |C|. Compute

Q←ME
C

(
Km � Km/〈B〉K

)
∈ Kr×m,

where E denotes the standard K-basis of Km.

(4) For d← 0, . . . , D, set Ad ← diag(a1,j,d, . . . , am,j,d) ∈ Km×m.

(5) Compute a K-basis of
⋂D
d=0 ker(QAd) and replace B with it.

(6) Output B.

Theorem 3.4.5. Algorithm 3.4.4 works correctly. If K = Q or K = Fq for
some prime power q, then it can be implemented to run in polynomial time.

Proof. For i ∈ [m] and j ∈ [n], define the partial Kronecker products

f i,j := ai,1 ⊗ · · · ⊗ ai,j ∈ K(D+1)j .

Denote by B1 ⊂ Km the K-basis computed in step (1) of the algorithm
and, for j ∈ [2, n], denote by Bj ⊂ Km the K-basis computed in step (5)
of the j-th round of the algorithm. We claim that Bj is a generating set of
LinRelK(f 1,j, . . . ,fm,j) for all j ∈ [m]. We prove this claim by induction on
j. For j = 1, this is clear by step (1) of the algorithm. Now let j ∈ [2, n].
By Lemma 3.4.2, we have

LinRelK(f 1,j, . . . ,fm,j) =
D⋂
d=0

LinRelK(a1,j,d · f 1,j−1, . . . , am,j,d · fm,j−1).

Denote by F ∈ K(D+1)j−1×m the matrix with columns f 1,j−1, . . . ,fm,j−1. By
induction, Bj−1 is a K-basis of

LinRelK(f 1,j−1, . . . ,fm,j−1) = ker(F ).
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By Lemma 3.4.3, we get

LinRelK(a1,j,d · f 1,j−1, . . . , am,j,d · fm,j−1) = ker(FAd) = ker(QAd),

where Q ∈ Kr×m and Ad ∈ Km×m are the matrices computed in steps (3)
and (4) of the j-th round of the algorithm. This finishes the proof of the
claim. Since Bn is output in step (6), the algorithm works correctly.

Using well-known linear algebra algorithms, we see that Algorithm 3.4.4
requires poly(m,n,D) arithmetic operations in K. If K = Fq for some prime
power q, then this yields a polynomial-time algorithm.

Now let K = Q. In this case, standard Gaussian elimination might pro-
duce rational numbers of exponential bit-size. However, a modular approach
can be used which we will sketch below. Let s ≥ 1 be an upper bound on
the bit-sizes of the coordinates of ai,j for all i ∈ [m] and j ∈ [n]. Then, by
Lemma 2.2.7, the bit-sizes of the coordinates of f i are bounded by ns for
all i ∈ [m]. Denote by F ∈ K(D+1)n×m the matrix with columns f 1, . . . ,fm.
Using Cramer’s Rule and Hadamard’s Inequality (Lemma A.3.3), we see
that there exists N ≥ 1 with N = poly(m,n, s) such that |det(F ′)| < 2N

for every square submatrix F ′ of F and the bit-size of the canonical K-
basis B ⊂ Km of ker(F ) is bounded by N . We call a prime p bad if it
divides a denominator in F (i. e. a denominator in one of the ai,j) or if

dimFp(ker(Fp)) > dimQ(ker(F )), where Fp ∈ F(D+1)n×m
p denotes the image

of F modulo p. The number of bad primes is bounded by poly(N). Given
a prime p, we can use Algorithm 3.4.4 to compute the canonical Fp-basis
Bp ⊂ Fmp of ker(Fp) in poly(m,n, s,D, log p)-time. Repeating this com-
putation poly(N) times while discarding bad primes detected during this
process, we obtain bases Bp1 , . . . , Bp` for good primes p1, . . . , p` such that
p1 · · · p` > 22N+1. Applying a rational number reconstruction algorithm and
a Chinese Remainder Theorem for rational numbers (see [vzGG03, Theorem
5.26 and Excercise 5.44]) coordinate-wise to the Bpi , we obtain B.
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Chapter 4

Algebraic Independence
Techniques

This chapter deals with the theme of algebraic independence. It constitutes
the main part of this thesis and expands on the papers [BMS11, BMS13]
and [MSS12]. First we present effective characterizations of the algebraic
independence of polynomials. These include degree bounds for annihilating
polynomials, the classical Jacobian Criterion, and the new Witt-Jacobian
Criterion. Using those criteria, often in connection with techniques from
Chapter 3, we design faithful homomorphisms for linear forms, monomi-
als, sparse polynomials, and products of constant degree polynomials (of
transcendence degree 2). Depending on the employed criterion, the field of
constants is subject to restrictions. Furthermore, we extend the rank-based
approach for ΣΠΣ-circuits with constant top fan-in by [DS07, KS11a] to
ΣΠΣΠ-circuits with constant top and bottom fan-in. We obtain a hitting
set construction whose efficiency depends on proving a certain rank bound.
This question we leave open. Finally, we improve the complexity bound of
the algebraic independence testing problem over finite fields from PSPACE
to NP#P by an application of the Witt-Jacobian Criterion.

Chapter outline

This chapter is organized along the lines of Chapter 3. Section 4.1 contains
criteria for algebraic independence of polynomials. In Section 4.2 we define
faithful homomorphisms and give explicit constructions of faithful homomor-
phisms and hitting sets for several circuit classes. We summarize those results
in Section 4.2.6. Section 4.3 deals with the algebraic independence testing
problem. Finally, in Section 4.4, we investigate the complexity of computing
algebraic relations.

71
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4.1 Algebraic Independence

In this section we introduce the notion of algebraic independence and give
criteria for algebraic independence of polynomials.

Let K be a field, let A be a K-algebra, and let a1, . . . , am ∈ A. Then

AlgRelK[y](a1, . . . , am) :=
{
F ∈ K[y] | F (a1, . . . , am) = 0

}
(4.1.1)

is an ideal of the polynomial ring K[y] = K[y1, . . . , ym] and is called the
ideal of algebraic relations of a1, . . . , am over K. It is the kernel of the
K-algebra epimorphism

K[y]→ K[a1, . . . , am], F 7→ F (a1, . . . , am).

If AlgRelK[y](a1, . . . , am) = {0}, then {a1, . . . , am} is called algebraically
independent over K. If AlgRelK[y](a1, . . . , am) contains a non-zero poly-
nomial F ∈ K[y], then {a1, . . . , am} is called algebraically dependent
over K and we say that F is an annihilating polynomial of a1, . . . , am
over K.

For a subset S ⊆ A, we define the transcendence degree of S over K
as

trdegK(S) := sup
{

#T | T ⊆ S finite and alg. indep. over K
}
. (4.1.2)

We have trdegK(S) ∈ {−1} ∪N∪ {∞}, where trdegK(S) = −1 for A = S =
{0}. If L/K is a field extension, then trdegK(L) coincides with the notion of
transcendence degree in field theory, usually written as trdeg(L/K).

The following lemma demonstrates that the transcendence degree of a
K-algebra can be computed from the generators. Moreover, it shows that
the transcendence degree of an affine K-algebra is finite.

Lemma 4.1.1. Let A be a K-algebra generated by S ⊆ A. Then trdegK(S) =
trdegK(A).

Proof. It suffices to show that for all algebraically independent a1, . . . , ar ∈ A
we can find algebraically independent s1, . . . , sr ∈ S ′, where S ′ ⊆ S is finite
such that a1, . . . , ar ∈ K[S ′]. Therefore we may assume that S is finite and
A is an affine K-algebra.

Let a1, . . . , ar ∈ A be algebraically independent over K. By Lemma 4.1.2
below, there exists a prime ideal p ⊂ A such that a1 + p, . . . , ar + p ∈ A/p
are algebraically independent over K. Therefore, we have trdegK(A/p) ≥ r.
Since A/p = K[s+ p | s ∈ S] is an affine K-domain, field theory (applied to
the extension Quot(A/p)/K) tells us that there are s1, . . . , sr ∈ S such that
s1 + p, . . . , sr + p are algebraically independent over K. This implies that
s1, . . . , sr are algebraically independent over K.
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In the proof of Lemma 4.1.1, we used the following lemma. It shows how
to transfer questions about the transcendence degree of affine K-algebras to
affine domains, where results from field theory can be invoked (by passing to
the quotient field).

Lemma 4.1.2. Let A be an affine K-algebra and let a1, . . . , ar ∈ A be alge-
braically independent over K. Then there exists a minimal prime ideal p ⊂ A
such that a1 + p, . . . , ar + p ∈ A/p are algebraically independent over K.

Proof. The following argument is contained in the proof of [Kem11, Theo-
rem 5.9 and Proposition 5.10]. Since A is Noetherian (by [AM69, Corollary
7.7]), there exist only finitely many minimal prime ideals p1, . . . , pm ⊂ A (by
[KR05, Proposition 5.6.15 b]). Assume for the sake of contradiction that, for
all i ∈ [m], the elements a1 + pi, . . . , ar + pi ∈ A/pi are algebraically depen-
dent over K. Then there are non-zero polynomials Fi ∈ K[y] = K[y1, . . . , yr]
such that Fi(a1, . . . , ar) ∈ pi. This implies that

a :=
m∏
i=1

Fi(a1, . . . , ar) ∈
m⋂
i=1

pi =
√
〈0〉A,

where the last equality holds by [KR05, Proposition 5.6.15 b]. Hence there is
an e ≥ 1 such that ae = 0. Therefore, the polynomial F :=

∏m
i=1 F

e
i ∈ K[y]

is non-zero and satisfies F (a1, . . . , ar) = 0, a contradiction.

We are primarily interested in the case where A = K[x] = K[x1, . . . , xn]
is a polynomial ring. Let f1, . . . , fm ∈ K[x]. By Lemma 4.1.1, we have 0 ≤
trdegK(f1, . . . , fm) ≤ trdegK(x1, . . . , xn) = n. Before we present effective
characterizations of algebraic independence of polynomials in Sections 4.1.1
to 4.1.3, we give two sufficient conditions. For checking the condition of part
(a) see Lemma 4.2.10.

Lemma 4.1.3. Let f1, . . . , fn ∈ K[x] be non-zero polynomials.

(a) If ltσ(f1), . . . , ltσ(fn) are algebraically independent over K for some term
ordering σ on T(x), then f1, . . . , fn are algebraically independent over K.

(b) If fi ∈ K[x1, . . . , xi] \K[x1, . . . , xi−1] for all i ∈ [n], then f1, . . . , fn are
algebraically independent over K.

Proof. A proof of part (a) is implicitly contained in the proof of [KR05,
Proposition 6.6.11]. Part (b) follows from (a) by considering the lexicographic
term ordering σ = Lex with xn >Lex · · · >Lex x1 and using Lemma 4.2.10.
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4.1.1 Degree Bounds

Le degré de l’équation finale
résultante d’un nombre quelconque d’équations complettes,

refermant un pareil nombre d’inconnues, & de degrés quelconques,
est égal au produit des exposans des degrés de ces équations.

(Étienne Bézout)

Degree bounds for annihilating polynomials

Perron [Per27] established a degree bound for annihilating polynomials of
n+ 1 polynomials in n variables.

Theorem 4.1.4 (Perron’s Theorem, [P lo05, Theorem 1.1]). Let fi ∈ K[x]
be a non-constant polynomial and let δi := deg(fi) for i ∈ [n + 1]. Denote
w := (δ1, . . . , δn+1) ∈ Nn+1

>0 . Then there exists a non-zero polynomial F ∈
K[y1, . . . , yn+1] with degw(F ) ≤ δ1 · · · δn+1 such that F (f1, . . . , fn+1) = 0. In
particular, we have

deg(F ) ≤ δ1 · · · δn+1

min{δ1, . . . , δn+1}
≤
(
max{δ1, . . . , δn+1}

)n
.

For fields of characteristic zero, Kayal [Kay09] deduced a degree bound
for annihilating polynomials of an arbitrary number of polynomials. More-
over, this bound is in terms of the transcendence degree of the polynomials
and independent of the number of variables. The following theorem is a gen-
eralization of this result for fields of arbitrary characteristic. In the proof,
we use results from Section 4.2.

Theorem 4.1.5. Let f1, . . . , fm ∈ K[x] be polynomials of degree at most
δ ≥ 1 and let r := trdegK(f1, . . . , fm). If m > r, then there exists a non-zero
polynomial F ∈ K[y1, . . . , ym] with

deg(F ) ≤ δr

such that F (f1, . . . , fm) = 0.

Proof. By a linear algebra argument, we may assume that K is infinite. Fur-
thermore, we may assume that m = r + 1 and f1, . . . , fr are algebraically
independent over K. Let F ∈ K[y] = K[y1, . . . , ym] be a non-zero ir-
reducible polynomial such that F (f1, . . . , fm) = 0. By Definition 4.2.1
and Theorem 4.2.2, there exists a K-algebra homomorphism ϕ : K[x] →
K[z] = K[z1, . . . , zr] such that the polynomials gi := ϕ(fi) ∈ K[z], i ∈ [m],
are of degree at most δ and trdegK(g1, . . . , gm) = r. By Theorem 4.1.4,
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there exists a non-zero polynomial G ∈ K[y] with deg(G) ≤ δr such that
G(g1, . . . , gm) = 0. But since F is irreducible and satisfies

F (g1, . . . , gm) = F (ϕ(f1), . . . , ϕ(fm)) = ϕ(F (f1, . . . , fm)) = 0,

Lemma 4.1.6 below implies that F divides G. Therefore, we have deg(F ) ≤
deg(G) ≤ δr.

In the proof of Theorem 4.1.5 we used the following well-known lemma.
It identifies a situation where annihilating polynomials are unique up to a
non-zero scalar multiple. Due to the lack of a suitable reference, we present
a proof here, following the instructions of [vdE00, Exercise 3.2.7].

Lemma 4.1.6. Let f1, . . . , fm ∈ K[x] such that trdegK(f1, . . . , fm) = m−1.
Then AlgRelK[y](f1, . . . , fm) is a principal ideal of K[y] = K[y1, . . . , ym].

Proof. We may assume that f1, . . . , fm−1 are algebraically independent over
K. Now let F1, F2 ∈ K[y] be non-zero irreducible polynomials such that
Fi(f1, . . . , fm) = 0 for i ∈ [2]. It suffices to show that F1 = c · F2 for some
c ∈ K∗.

Since f1, . . . , fm−1 are algebraically independent, we have degym(Fi) > 0
for i ∈ [2], so we may consider the ym-resultant g := resym(F1, F2) ∈ K[y[m−1]]
of F1 and F2. By Lemma A.3.4 (a), there exist g1, g2 ∈ K[y] such that
g = g1F1 + g2F2. Substituting f1, . . . , fm, we obtain

g(f1, . . . , fm−1)

= g1(f1, . . . , fm) · F1(f1, . . . , fm) + g2(f1, . . . , fm) · F2(f1, . . . , fm) = 0.

Since f1, . . . , fm−1 are algebraically independent, this implies g = 0. Hence,
by Lemma A.3.4 (b), F1, F2 have a non-constant common factor in K[y].
Since we assumed that F1, F2 are irreducible, we obtain F1 = c · F2 for some
c ∈ K∗, as required.

Definition 4.1.7. Let f1, . . . , fm ∈ K[x] be polynomials. If

AlgRelK[y](f1, . . . , fm) = 〈F 〉K[y]

for some F ∈ K[y], then F is called a minimal polynomial of f1, . . . , fm
over K.
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Degree bound for field extensions

In Section 4.1.3 we will require bounds for the degree of finite extensions of
function fields. It is possible to deduce such a bound from Perron’s Theorem.
However, for field extensions without primitive element, a stronger bound can
be obtained from Bézout’s Theorem. For homogeneous polynomials, this was
shown in [Kem96]. By means of Lemma 4.1.9 below, we generalize this result
to hold for arbitrary polynomials.

Theorem 4.1.8. Let f1, . . . , fn ∈ K[x] be algebraically independent over K
and let δi := deg(fi) for i ∈ [n]. Then the extension K(x)/K(f1, . . . , fn) is
finite and we have

[K(x) : K(f1, . . . , fn)] ≤ δ1 · · · δn.

Proof. By Lemma 4.1.9 below, we may assume that f1, . . . , fn are homoge-
neous. The homogeneous case of the statement is [Kem96, Corollary 1.8].

Lemma 4.1.9. Let f1, . . . , fn ∈ K[x] be algebraically independent over K,
and let fh

i ∈ K[x0,x] be the homogenization (with respect to the standard
grading) of fi for i ∈ [n]. Then x0, f

h
1 , . . . , f

h
n are algebraically independent

over K and

[K(x) : K(f1, . . . , fn)] = [K(x0,x) : K(x0, f
h
1 , . . . , f

h
n)].

Proof. Assume for the sake of contradiction that x0, f
h
1 , . . . , f

h
n are alge-

braically dependent over K. Then there exists a non-zero polynomial F ∈
K[y0, . . . , yn] such that F (x0, f

h
1 , . . . , f

h
n) = 0. Since x0 − 1 6= 0, we may

assume that y0 − 1 does not divide F . This implies that the polynomial
G := F (1, y1, . . . , yn) ∈ K[y1, . . . , yn] is non-zero. We obtain

G(f1, . . . , fn) = F (1, f1, . . . , fn) =
(
F (x0, f

h
1 , . . . , f

h
n)
)
(1,x) = 0,

a contradiction. Hence x0, f
h
1 , . . . , f

h
n are algebraically independent over K.

The field extensions K(x)/K(f1, . . . , fn) and K(x0,x)/K(x0, f
h
1 , . . . , f

h
n)

are therefore finite. Note that both a K(f1, . . . , fn)-basis of K(x) and a
K(x0, f

h
1 , . . . , f

h
n)-basis of K(x0,x) can be chosen from T(x). Therefore, in

order to prove the assertion about the field extension degrees, it suffices
to show that a set B = {xα1 , . . . ,xαs} ⊂ T(x) is K(f1, . . . , fn)-linearly
independent if and only if it is K(x0, f

h
1 , . . . , f

h
n)-linearly independent.

First, let B be K(f1, . . . , fn)-linearly independent. Assume for the sake
of contradiction that B is K(x0, f

h
1 , . . . , f

h
n)-linearly dependent. Then there
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exist polynomials F1, . . . , Fs ∈ K[y0,y] = K[y0, y1 . . . , yn], not all zero, such
that

F1(x0, f
h
1 , . . . , f

h
n) · xα1 + · · ·+ Fs(x0, f

h
1 , . . . , f

h
n) · xαs = 0. (4.1.3)

Denote δi := deg(fh
i ) ∈ N>0 for i ∈ [n] and w := (1, δ1, . . . , δn) ∈ Nn+1

>0 .
Now let i ∈ [s] such that Fi 6= 0. Since x0, f

h
1 , . . . , f

h
n are homogeneous and

algebraically independent over K, we have Fi(x0, f
h
1 , . . . , f

h
n) 6= 0 and the

homogeneous part of Fi(x0, f
h
1 , . . . , f

h
n) of degree deg(Fi(x0, f

h
1 , . . . , f

h
n)) is

given by Gi(x0, f
h
1 , . . . , f

h
n), where Gi ∈ K[y0,y] is the w-homogeneous part

of Fi of weighted degree degw(Fi). Considering only the leading forms of
summands Fi(x0, f

h
1 , . . . , f

h
n) · xαi in (4.1.3) of maximal degree, we see that

there exist w-homogeneous polynomials G1, . . . , Gs ∈ K[y0,y], not all zero,
such that

G1(x0, f
h
1 , . . . , f

h
n) · xα1 + · · ·+Gs(x0, f

h
1 , . . . , f

h
n) · xαs = 0.

Let i ∈ [s] such that Gi 6= 0. Since Gi(x0, f
h
1 , . . . , f

h
n) is homogeneous and

non-zero, we have
(
Gi(x0, f

h
1 , . . . , f

h
n)
)
(1,x) 6= 0. Set Hi := Gi(1,y) ∈ K[y]

for all i ∈ [s]. Then we obtain

H1(f1, . . . , fn) · xα1 + · · ·+Hs(f1, . . . , fn) · xαs = 0,

where Hi(f1, . . . , fn) =
(
Gi(x0, f

h
1 , . . . , f

h
n)
)
(1,x) 6= 0 for some i ∈ [s]. This

is a contradiction to the K(f1, . . . , fn)-linear independence of B.

Conversely, let B be K(x0, f
h
1 , . . . , f

h
n)-linearly independent. Assume for

the sake of contradiction that there exist F1, . . . , Fs ∈ K[y], not all zero,
such that

F1(f1, . . . , fn) · xα1 + · · ·+ Fs(f1, . . . , fn) · xαs = 0.

Let d ≥ 1 such that deg(Fi(f1, . . . , fn) · xαi) ≤ d for all i ∈ [s] with Fi 6= 0.
Then it is not hard to see that

0 = xd0 ·
(∑s

i=1 Fi(f1, . . . , fn) · xαi
)

(x/x0) =
s∑
i=1

Gi(x0, f
h
1 , . . . , f

h
n) · xαi ,

where G1, . . . , Gs ∈ K[y0,y] are polynomials such that Gi(1,y) = Fi for all
i ∈ [s]. In particular, we have Gi 6= 0 for some i ∈ [s]. Since x0, f

h
1 , . . . , f

h
n are

algebraically independent over K, this implies Gi(x0, f
h
1 , . . . , f

h
n) 6= 0. This

is a contradiction to the K(x0, f
h
1 , . . . , f

h
n)-linear independence of B.
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A lower bound

The following construction is adapted from an example ascribed variously to
Masser–Philippon [Bro87] and Lazard–Mora (see also [P lo05, Example 3.2]).
It demonstrates that the degree bounds featured in this section are essentially
tight.

Example 4.1.10. Let δ1, . . . , δn ≥ 1 and consider the polynomials

f1 := xδ11 , f2 := xδ22 − x1, . . . , fn := xδnn − xn−1, fn+1 := xn

in K[x]. Then we have

(a) trdegK(f1, . . . , fn) = trdegK(f1, . . . , fn+1) = n,

(b) degw(F ) ≥ deg(F ) ≥ δ1 · · · δn for all annihilating polynomials F ∈ K[y]
of f1, . . . , fn+1, where w = (δ1, . . . , δn, 1), and

(c) [K(x) : K(f1, . . . , fn)] = δ1 · · · δn.

Proof. Part (a) follows from Lemma 4.1.3. To prove (b), observe that the
polynomial

F :=
(
· · ·
(
(yδnn+1 − yn)δn−1 − yn−1

)δn−2 − · · ·
)δ1 − y1 ∈ K[y]

is an annihilating polynomial of f1, . . . , fn+1 such that deg(F ) = degw(F ) =
δ1 · · · δn. Thus, by Lemma 4.1.6, it suffices to show that F is irreducible. To
this end, consider the K-algebra homomorphism

ϕ : K[y]→ K[y], yi 7→

{
−yi + yδii+1, if i ∈ [n],

yi, if i = n+ 1.

Note that ϕ is an automorphism of K[y] (by [KR00, Proposition 3.6.12],
it suffices to check that ϕ is surjective). Since ϕ(F ) = y1 is irreducible,
F is irreducible, too. Finally, (b) implies (c), because K(f1, . . . , fn+1) =
K(x).

4.1.2 The Jacobian Criterion

Man muss immer umkehren.
(Carl G. J. Jacobi)

The classical Jacobian Criterion [Jac41] constitutes a more efficient test
for algebraic independence of polynomials than Perron’s Theorem. It is ap-
plicable to polynomials f1, . . . , fm ∈ K[x] for which K(x) is a separable
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extension of K(f1, . . . , fm), in particular in characteristic zero or sufficiently
large prime characteristic (see Lemma 4.1.14). We prove the Jacobian Cri-
terion in the spirit of the proof of the Witt-Jacobian Criterion presented in
Section 4.1.3. For elementary proofs we refer to [Grö49, (116.25),(116.26)]
or [ER93, DGW09, BMS13].

We state the Jacobian Criterion via the following differential form in the
de Rham complex (see Appendix A.5).

Definition 4.1.11. Let R be a ring and let A be an R-algebra. Given
a1, . . . , am ∈ A, we say that

JA/R(a1, . . . , am) := da1 ∧ · · · ∧ dam ∈ Ωm
A/R

is the Jacobian differential of a1, . . . , am in Ωm
A/R.

Under a separability hypothesis (for separability of field extensions, see
Appendix A.3.3), polynomials f1, . . . , fm ∈ K[x] are algebraically indepen-
dent over K if and only if their Jacobian differential in Ωm

K[x]/K is non-zero.

Theorem 4.1.12 (Jacobian Criterion). Let f1, . . . , fm ∈ K[x] be polynomi-
als and assume that the extension K(x)/K(f1, . . . , fm) is separable. Then
f1, . . . , fm are algebraically independent over K if and only if

JK[x]/K(f1, . . . , fm) 6= 0.

By Lemma A.5.2, the zeroness of the Jacobian differential of f1, . . . , fm
can be checked via their Jacobian matrix: we have JK[x]/K(f1, . . . , fm) 6= 0 if
and only if rkK(x) Jx(f1, . . . , fm) = m.

We isolate the following special case of the Jacobian Criterion, because it
holds without the separability condition.

Lemma 4.1.13. Let f1, . . . , fm ∈ K[x] be polynomials. If f1, . . . , fm are
algebraically dependent over K, then JK[x]/K(f1, . . . , fm) = 0.

Proof. Let f1, . . . , fm be algebraically dependent over K. Then they remain
algebraically dependent over the algebraic closure L := K. Since L is perfect,
L(f1, . . . , fm) is separable over L. By Lemma A.5.6, we obtain

dimL(f1,...,fm) Ω1
L(f1,...,fm)/L = trdeg(L(f1, . . . , fm)/L) < m.

Thus df1, . . . , dfm are linearly dependent, hence JL(f1,...,fm)/L(f1, . . . , fm) =
0. By Lemma A.5.4, this implies JL[f1,...,fm]/L(f1, . . . , fm) = 0. The inclu-
sion L[f1, . . . , fm] ⊆ L[x] induces an L[f1, . . . , fm]-module homomorphism
Ωm
L[f1,...,fm]/L → Ωm

L[x]/L, hence JL[x]/L(f1, . . . , fm) = 0. Since L[x] = L ⊗K
K[x], Lemma A.5.3 implies JK[x]/K(f1, . . . , fm) = 0.
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Proof of Theorem 4.1.12. If f1, . . . , fm are algebraically dependent over K,
then, by Lemma 4.1.13, we have JK[x]/K(f1, . . . , fm) = 0.

Conversely, let f1, . . . , fm be algebraically independent over K. Since
K(x)/K(f1, . . . , fm) is separable, there exist fm+1, . . . , fn ∈ x such that
K(x)/K(f1, . . . , fn) is algebraic and separable. Since K[f1, . . . , fn] is a poly-
nomial ring, we have JK[f1,...,fn]/K(f1, . . . , fn) 6= 0. Lemmas A.5.4 and A.5.5
imply JK[x]/K(f1, . . . , fn) 6= 0, hence JK[x]/K(f1, . . . , fm) 6= 0.

The separability hypothesis of the Jacobian Criterion is automatically
satisfied in characteristic zero. In [DGW09], it is shown that the Jacobian
Criterion is also valid in sufficiently large prime characteristic. As a conse-
quence of Theorem 4.1.8, we can give a refined lower bound on the charac-
teristic.

Lemma 4.1.14. Let f1, . . . , fm ∈ K[x] be polynomials of degree at most
δ ≥ 1 and transcendence degree at most r ≥ 1, and assume that char(K) = 0
or char(K) > δr. Then the extension K(x)/K(f1, . . . , fm) is separable.

Proof. In the case char(K) = 0 there is nothing to prove, so let p :=
char(K) > δr. After renumbering polynomials and variables, we may as-
sume that f1, . . . , fr, xr+1, . . . , xn are algebraically independent overK. Then
x[r+1,n] is a transcendence basis of K(x)/K(f1, . . . , fm) and we claim that it
is separating. Indeed, by Theorem 4.1.8 we have

[K(x) : K(f1, . . . , fm,x[r+1,n])] ≤ [K(x) : K(f1, . . . , fr,x[r+1,n])] ≤ δr < p,

hence the minimal polynomial of xi overK(f1, . . . , fm,x[r+1,n]) has degree less
than p for all i ∈ [r]. Therefore xi is separable over K(f1, . . . , fm,x[r+1,n])
for all i ∈ [r].

4.1.3 The Witt-Jacobian Criterion

Man muss immer generalisieren.
(Carl G. J. Jacobi)

In this section we propose a novel Jacobian-like criterion for algebraic
independence of polynomials over fields of small prime characteristic. It
builds on the de Rham-Witt complex constructed by Illusie [Ill79].

The abstract Witt-Jacobian criterion

The abstract Witt-Jacobian criterion is stated via the following differential
form in the de Rham-Witt complex (see Appendix A.6.2).
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Definition 4.1.15. Let ` ≥ 0 and let A be an Fp-algebra. Given a1, . . . , am ∈
A, we say that

WJ`+1,A(a1, . . . , am) := d[a1]≤`+1 ∧ · · · ∧ d[am]≤`+1 ∈W`+1 Ωm
A

is the (`+ 1)-th Witt-Jacobian differential of a1, . . . , am in W`+1 Ωm
A .

The parameter ` will later be chosen according to a certain measure of
inseparability. To this end, we extend the definition of the inseparable degree
of finite field extensions to finitely generated field extensions.

Definition 4.1.16. Let Q/L be a finitely generated field extension. Then

[Q : L]insep := min
{

[Q : L(B)]insep | B ⊂ Q is a tr. basis of Q/L
}
∈ N>0

is called the inseparable degree of Q/L.

If char(L) = 0, then L is perfect, so [Q : L]insep = 1. If char(K) = p > 0,
then [Q : L]insep = pe for some e ≥ 0, and e = 0 if and only if Q/L is
separable.

As a consequence of Theorem 4.1.8, we obtain an effective bound for the
inseparable degree of function field extensions.

Lemma 4.1.17. Let K be a field and let f1, . . . , fm ∈ K[x] be polynomials
of degree at most δ ≥ 1. Then we have

[K(x) : K(f1, . . . , fm)]insep ≤ δr,

where r := trdegK(f1, . . . , fm).

Proof. After renumbering polynomials and variables, we may assume that
f1, . . . , fr, xr+1, . . . , xn are algebraically independent over K. Then x[r+1,n]

is a transcendence basis of K(x)/K(f1, . . . , fm), therefore

[K(x) : K(f1, . . . , fm)]insep ≤ [K(x) : K(f1, . . . , fm,x[r+1,n])]insep

≤ [K(x) : K(f1, . . . , fr,x[r+1,n])]

≤ δr

by Theorem 4.1.8.

From now on, let p be a prime and let K be an algebraic extension of Fp.
In particular, note that K is a perfect field. Now we can state the abstract
Witt-Jacobian Criterion.
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Theorem 4.1.18 (Abstract Witt-Jacobian Criterion). Let f1, . . . , fm ∈ K[x]
be polynomials and let ` ≥ logp[K(x) : K(f1, . . . , fm)]insep. Then f1, . . . , fm
are algebraically independent over K if and only if

WJ`+1,K[x](f1, . . . , fm) 6= 0.

Remark 4.1.19. The bound for ` in Theorem 4.1.18 is tight. To see this, let
1 ≤ m ≤ n and let ei ≥ 0 and fi := xp

ei

i for i ∈ [m]. Then f1, . . . , fm are
algebraically independent over K, [K(x) : K(f1, . . . , fm)]insep = pe, where
e =

∑m
i=1 ei, and we have

WJ`+1,K[x](f1, . . . , fm) = pe · [x1]p
e1−1 · · · [xm]p

em−1 ·WJ`+1,K[x](x) 6= 0

if and only if ` ≥ e.

The following two lemmas constitute the proof of the abstract Witt-
Jacobian Criterion.

Lemma 4.1.20. Let f1, . . . , fm ∈ K[x] be algebraically dependent over K.
Then WJ`+1,K[x](f1, . . . , fm) = 0 for all ` ≥ 0.

Proof. Let ` ≥ 0 and let r := trdegK(f1, . . . , fm). Since K is perfect, the set
{f1, . . . , fm} contains a separating transcendence basis of K(f1, . . . , fm)/K,
say {f1, . . . , fr}. This means thatK(f1, . . . , fm) is a finite separable extension
of K(f1, . . . , fr). Since K[f1, . . . , fr] is isomorphic to a polynomial ring over
K and m > r, we have W`+1 Ωm

K[f1,...,fr]
= {0} (see Appendix A.6.3). By

Lemma A.6.14, we infer W`+1 Ωm
K(f1,...,fr)

= {0}. Since K(f1, . . . , fm) is finite
and separable over K(f1, . . . , fr), Lemma A.6.15 implies W`+1 Ωm

K(f1,...,fm) =
{0}. Again by Lemma A.6.14, we obtain W`+1 Ωm

K[f1,...,fm] = {0}, in particular
WJ`+1,K[f1,...,fm](f1, . . . , fm) = 0. The inclusion K[f1, . . . , fm] ⊆ K[x] induces
a homomorphism

W`+1 Ωm
K[f1,...,fm] →W`+1 Ωm

K[x],

hence WJ`+1,K[x](f1, . . . , fm) = 0.

Lemma 4.1.21. Let f1, . . . , fm ∈ K[x] be algebraically independent over K.
Then WJ`+1,K[x](f1, . . . , fm) 6= 0 for all ` ≥ logp[K(x) : K(f1, . . . , fm)]insep.

Proof. It suffices to consider the case ` = logp[K(x) : K(f1, . . . , fm)]insep. By
Definition 4.1.16, there exist fm+1, . . . , fn ∈ K(x) such that Q := K(x) is
finite over L := K(f1, . . . , fn) and [Q : L]insep = p`. Let Lsep be the separable
closure of L in Q, thus Q/Lsep is purely inseparable. For i ∈ [0, n], define the
fields Li := Lsep[x1, . . . , xi], hence we have a tower

L ⊆ Lsep = L0 ⊆ L1 ⊆ · · · ⊆ Ln = Q.
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For i ∈ [n], let ei ≥ 0 be minimal such that xp
ei

i ∈ Li−1 (ei exists, since
Li/Li−1 is purely inseparable), and set qi := pei . By the multiplicativity of
field extension degrees, we have ` =

∑n
i=1 ei.

Since WJ1,K[x](x) 6= 0, we have p` ·WJ`+1,K[x](x) 6= 0 by Lemma A.6.17.
Lemma A.6.14 implies p` ·WJ`+1,Q(x) 6= 0. We conclude

WJ`+1,Q

(
xq11 , . . . , x

qn
n

)
= p` · [x1]q1−1 · · · [xn]qn−1 ·WJ`+1,Q(x) 6= 0, (4.1.4)

since [x1]
q1−1 · · · [xn]qn−1 is a unit in W`+1(Q).

Now denote f := (f1, . . . , fn), and assume for the sake of contradiction
that WJ`+1,Q(f) = 0. For i ∈ [0, n− 1], we denote by

Ψi : W`+1 Ωn
Li
→W`+1 Ωn

Q

the map induced by the inclusion Li ⊆ Q. We want to show inductively, for
i = 0, . . . , n− 1, that the map Ψi satisfies

Ψi

(
d[xq11 ] ∧ · · · ∧ d[xqii ] ∧ d[ai+1] ∧ · · · ∧ d[an]

)
= 0 (4.1.5)

for all ai+1, . . . , an ∈ Li. To prove this claim for i = 0, we first show that the
map

Ψ: W`+1 Ωn
K[f ] →W`+1 Ωn

Q,

induced by the inclusion K[f ] ⊆ Q, is zero. Let ω ∈W`+1 Ωn
K[f ]. By Lemma

A.6.6, the element ω is a Z-linear combination of products of elements of the
form Vj[cfα] and dVj[cfα] for some j ∈ [0, `], c ∈ K, and α ∈ Nn. Hence
we may assume that

ω = Vj0 [c0f
α0 ] · dVj1 [c1f

α1 ] ∧ · · · ∧ dVjn [cnf
αn ],

where j0, . . . , jn ∈ [0, `], c0, . . . , cn ∈ K, and α0, . . . , αn ∈ Nn. Let ω ∈
W`+1+j Ωn

K[f ] be a lift of ω, where j ≥ ` + 1. Using F dV = d and F d[w] =
[w]p−1 d[w] for w ∈ K[f ], we deduce

F`+1 ω = g · d[c1f
α1 ] ∧ · · · ∧ d[cnf

αn ] for some g ∈Wj(K[f ]).

By the Leibniz rule, we can simplify to

F`+1 ω = g′ · d[f1] ∧ · · · ∧ d[fn] for some g′ ∈Wj(K[f ]).

Since WJ`+1,Q(f) = 0 by assumption, we obtain F`+1 Ψ(ω) = Ψ(F`+1 ω) ∈
Fil`+1 Wj Ωn

Q, thus Ψ(ω) ∈ Fil`+1 W`+1+j Ωn
Q by Lemma A.6.12. This shows

Ψ(ω) = 0, so Ψ is zero. Lemmas A.6.14 and A.6.15 imply that Ψ0 is zero,
proving (4.1.5) for i = 0.
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Now let i ∈ [n− 1] and let ω = d[xq11 ]∧ · · · ∧d[xqii ]∧d[ai+1]∧ · · · ∧d[an] ∈
W`+1 Ωn

Li
, where ai+1, . . . , an ∈ Li. Since Li = Li−1[xi], we may assume by

Lemma A.6.6 that

ω = d[xq11 ] ∧ · · · ∧ d[xqii ] ∧ dVji+1 [ci+1x
αi+1

i ] ∧ · · · ∧ dVjn [cnx
αn
i ],

where ji+1, . . . , jn ∈ [0, `], ci+1, . . . , cn ∈ Li−1, and αi+1, . . . , αn ≥ 0. Let
ω ∈W`+1+j Ωn

Li
be a lift of ω, where j ≥ `+ 1. As above, we deduce

F`+1 ω = g · d[xq11 ] ∧ · · · ∧ d[xqii ] ∧ d[ci+1x
αi+1

i ] ∧ · · · ∧ d[cnx
αn
i ]

for some g ∈Wj(Li), and by the Leibniz rule, we can write

F`+1 ω = g′ · d[xq11 ] ∧ · · · ∧ d[xqii ] ∧ d[ci+1] ∧ · · · ∧ d[cn]

for some g′ ∈ Wj(Li). Since xq11 , . . . , x
qi
i , ci+1, . . . , cn ∈ Li−1, we obtain

F`+1 Ψi(ω) = Ψi(F
`+1 ω) ∈ Fil`+1 Wj Ωn

Q by induction, hence we get Ψi(ω) ∈
Fil`+1 W`+1+j Ωn

Q by Lemma A.6.12. This shows Ψi(ω) = 0, completing the
induction.

Equation (4.1.5) for i = n− 1 and an = xqnn ∈ Ln−1 yields

WJ`+1,Q(xq11 , . . . , x
qn
n ) = 0,

contradicting (4.1.4). We conclude WJ`+1,Q(f) 6= 0, thus

WJ`+1,K[x](f1, . . . , fm) 6= 0

by Lemma A.6.14.

The explicit Witt-Jacobian criterion

As before, let p be a prime and let K be an algebraic extension of Fp. Let
R = W(K) be the Witt ring of K. For the proof of the explicit Witt-Jacobian
Criterion, we use Illusie’s realization Em

`+1 of W`+1 Ωm
K[x] which is described

in Appendix A.6.3.
The explicit Witt-Jacobian Criterion is formulated as a divisibility con-

dition on the coefficients of the following polynomials over R.

Definition 4.1.22. Let ` ≥ 0, let g1, . . . , gm ∈ R[x], and let u ⊆ x be an
m-subset. We call

WJP`+1,u(g1, . . . , gm) := (g1 · · · gm)p
`−1(∏

x∈u x
)
· det Ju(g1, . . . , gm) ∈ R[x]

the (`+ 1)-th Witt-Jacobian polynomial of g1, . . . , gm with respect to
u.
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The divisibility condition is defined using the p-adic valuation vp of Q
(see Definition A.6.3).

Definition 4.1.23. Let f ∈ R[x] be a polynomial and let ` ≥ 0. Then
f is called (` + 1)-degenerate if the coefficient of xα in f is divisible by
pmin{vp(α),`}+1 for all α ∈ Nn.

Since K is perfect, we have R/〈p〉R ∼= K and R[x]/〈p〉R[x]
∼= K[x]. In

the sequel, we will identify those rings. Now we can state the explicit Witt-
Jacobian Criterion.

Theorem 4.1.24 (Explicit Witt-Jacobian Criterion). Let f1, . . . , fm ∈ K[x]
be polynomials and let ` ≥ logp[K(x) : K(f1, . . . , fm)]insep. Let g1, . . . , gm ∈
R[x] be polynomials such that fi = gi (mod 〈p〉R[x]) for all i ∈ [m].

Then f1, . . . , fm are algebraically independent over K if and only if there
exists I ∈

(
[n]
m

)
such that WJP`+1,xI (g1, . . . , gm) is not (`+ 1)-degenerate.

Proof. Using Theorem A.6.16 (b) and Lemmas 4.1.26 and 4.1.30 below, the
assertion follows from Theorem 4.1.18.

Example 4.1.25. Let us revisit the example of Remark 4.1.19. Let 1 ≤ m ≤ n
and let ei ≥ 0 and fi := xp

ei

i ∈ K[x] for i ∈ [m]. Then f1, . . . , fm are
algebraically independent over K and [K(x) : K(f1, . . . , fm)]insep = pe, where
e =

∑m
i=1 ei. We choose the lift gi := xp

ei

i ∈ R[x] of fi for all i ∈ [m]. Then
we have

WJP`+1,x[m]
(g1, . . . , gm) = pe ·

(
xp

e1

1 · · ·xp
em

m

)p`
.

Since vp
(
pe1+`, . . . , pem+`, 0, . . . , 0

)
≥ `, this Witt-Jacobian polynomial is not

(`+ 1)-degenerate if and only if ` ≥ e.

The following lemma shows how the Teichmüller lift of a polynomial can
be realized in E0

`+1.

Lemma 4.1.26. Let ` ≥ 0, let f ∈ K[x], and let g ∈ R[x] such that f = g
(mod 〈p〉R[x]). Then we have

τ([f ]) =
(
F−` g

)p`
in E0

`+1,

where τ : W`+1(K[x])→ E0
`+1 is the W(K)-algebra isomorphism from Theo-

rem A.6.16 (a).

Remark 4.1.27. Note that the intermediate expression F−` g ∈ R[xp
−∞

] is in
general not an element of E0.
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Proof of Lemma 4.1.26. Write g =
∑s

i=1 cix
αi , where ci ∈ R and αi ∈ Nn for

i ∈ [s]. By assumption, we have [f ] =
∑s

i=1 ci[x
αi ] in W1(K[x]). By Lemma

A.6.2, we obtain

F`[f ] = [f ]p
`

=

( s∑
i=1

ci[x
αi ]

)p`
=
∑
|i|=p`

(
p`

i

)
ci11 [xα1 ]i1 · · · ciss [xαs ]is (4.1.6)

in W`+1(K[x]), where the last sum is over all i = (i1, . . . , is) ∈ Ns. Now
define

w :=
∑
|i|=p`

p−`+vp(i)
(
p`

i

)
V−`+vp(i) F−vp(i)

(
ci11 [xα1 ]i1 · · · ciss [xαs ]is

)
∈W(K[x]).

Since K is perfect, F is an automorphism of R. Moreover, p−`+vp(i) ·
(
p`

i

)
∈ N

by Lemma A.6.5, vp(i) ≤ `, and p−vp(i) · i ∈ Ns for all i ∈ Ns with |i| = p`, so
w is well-defined. Since V F = F V = p, we see that (4.1.6) is equal to F`w
in W`+1(K[x]). The injectivity of F implies [f ] = w in W`+1(K[x]).

Now denote mi := cix
αi ∈ R[x] for i ∈ [s]. By Theorem A.6.16 (a), we

have τ([xi]) = xi for all i ∈ [n] and τ V = V τ . Hence we have τ(ci[x
αi ]) = mi

for all i ∈ [s], therefore

τ([f ]) = τ(w)

=
∑
|i|=p`

p−`+vp(i)
(
p`

i

)
V−`+vp(i) F−vp(i)(mi1

1 · · ·mis
s )

=
∑
|i|=p`

(
p`

i

)
F−`(mi1

1 · · ·mis
s ) =

∑
|i|=p`

(
p`

i

)
(F−`m1)

i1 · · · (F−`ms)
is

=

( s∑
i=1

F−`mi

)p`
=
(
F−` g

)p`
in E0

`+1.

Let Q = Quot(R) be the quotient field of R. The algebra Q[xp
−∞

],
defined in Appendix A.6.3, is graded in a natural way by G := N[p−1]n.
The homogeneous elements of degree α ∈ G are of the form cxα for some
c ∈ Q. This grading extends to ΩQ[xp−∞ ] by defining ω ∈ Ωm

Q[xp−∞ ]
to be

homogeneous of degree α ∈ G if its coordinates in the representation (A.6.3)
are. We denote the homogeneous part of degree α of ω by (ω)α. For ` ≥ 0
and α ∈ G, define

ν(`+ 1, α) := min
{

max{0, `+ 1 + vp(α)}, `+ 1
}
∈ [0, `+ 1]. (4.1.7)
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Using ν, the graded components of the filtration Fil`+1 E can be described
explicitly.

Lemma 4.1.28 ([Ill79, Proposition I.2.12]). We have(
Fil`+1 E

)
α

= pν(`+1,α)
(
E
)
α

for all ` ≥ 0 and α ∈ G.

The following simple fact demonstrates how the degeneracy condition is
related to ν.

Lemma 4.1.29. Let ` ≥ 0 and let f ∈ R[x] ⊂ E0. Then f is (` + 1)-
degenerate if and only if the coefficient of xα in F−` f is divisible by pν(`+1,α)

for all α ∈ G.

Proof. Let α ∈ G and let c ∈ R be the coefficient of xα in F−` f . Then F` c
is the coefficient of xp

`α in f . Since f is a polynomial, we may assume that
p`α ∈ Nn, hence 0 ≤ vp(p

`α) = `+ vp(α). We obtain

ν(`+ 1, α) = min{`+ 1 + vp(α), `+ 1} = min{vp(p`α), `}+ 1.

Since K is perfect, F is an automorphism of R, hence c is divisible by pν(`+1,α)

if and only if F−` c is divisible by pν(`+1,α) = pmin{vp(p`α),`}+1.

The following lemma shows that the zeroness of a realization of a Witt-
Jacobian differential in Em

`+1 is characterized by the (`+ 1)-degeneracy of the
associated Witt-Jacobian polynomials.

Lemma 4.1.30. Let ` ≥ 0, let g1, . . . , gm ∈ R[x], and define

ω := d
(
F−` g1

)p` ∧ · · · ∧ d
(
F−` gm

)p` ∈ Em .

Then we have ω ∈ Fil`+1 Em if and only if WJP`+1,xI (g1, . . . , gm) is (` + 1)-

degenerate for all I ∈
(
[n]
m

)
.

Proof. From the formula d F = pF d, we infer

F` d
(
F−` gi

)p`
= p−` dgp

`

i = gp
`−1
i dgi

for all i ∈ [m], hence F` ω = (g1 · · · gm)p
` · dg1 ∧ · · · ∧ dgm. A standard

computation shows

dg1 ∧ · · · ∧ dgm =
∑
I

(∏
j∈I xj

)
· det JxI (g1, . . . , gm) ·

∧
j∈I d log xj,
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where the sum is over all I ∈
(
[n]
m

)
. This yields the unique representation

ω =
∑
I

F−` WJP`+1,xI (g1, . . . , gm) ·
∧
j∈I d log xj.

We have Fil`+1 Em =
⊕

α∈G(Fil`+1 Em)α =
⊕

α∈G p
ν(`+1,α)(Em)α by Lemma

4.1.28, and for each α ∈ G, the homogeneous part of ω of degree α has the
unique representation

(ω)α =
∑
I

(
F−` WJP`+1,xI (g1, . . . , gm)

)
α
·
∧
j∈I d log xj.

We conclude that ω ∈ Fil`+1 Em if and only if (ω)α ∈ pν(`+1,α)(Em)α for all α ∈
G if and only if pν(`+1,α) divides F−` WJP`+1,xI (g1, . . . , gm) for all α ∈ G and

I ∈
(
[n]
m

)
. By Lemma 4.1.29, this happens if and only if WJP`+1,xI (g1, . . . , gm)

is (`+ 1)-degenerate for all I ∈
(
[n]
m

)
.

We conclude this section by pointing out a situation where degeneracy of
polynomials is preserved under multiplication.

Lemma 4.1.31. Let g ∈ R[x], let ` ≥ 0, and let α ∈ Nn with vp(α) ≥ `.
Then g is (`+ 1)-degenerate if and only if xα · g is (`+ 1)-degenerate.

Proof. It suffices to show that min{vp(β), `} = min{vp(α + β), `} for all
β ∈ Nn. So let β ∈ Nn. By assumption and Lemma A.6.4, we have
min{vp(β), `} = min{vp(α), vp(β), `} ≤ min{vp(α + β), `}, with equality if
vp(α) 6= vp(β). If vp(α) = vp(β), then min{vp(β), `} = min{vp(α), `} = ` ≥
min{vp(α + β), `}.

4.2 Faithful Homomorphisms

Let 1 ≤ r ≤ n, let K be a field, and let K[x] = K[x1, . . . , xn] and K[z] =
K[z1, . . . , zr] be polynomial rings over K. In this section we investigate K-
algebra homomorphisms ϕ : K[x] → K[z] that preserve the transcendence
degree of given sets of polynomials. Since the expression “transcendence-
degree-preserving” is a bit long, we will call these homomorphisms faithful.

Definition 4.2.1. Let ϕ : K[x]→ K[z] be a K-algebra homomorphism and
let f1, . . . , fm ∈ K[x] be polynomials. If

trdegK(ϕ(f1), . . . , ϕ(fm)) = trdegK(f1, . . . , fm),

then ϕ is called faithful to {f1, . . . , fm}.
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Existence of faithful homomorphisms

The following theorem shows that faithful homomorphisms exist for arbitrary
sets of polynomials, as long as the field is sufficiently large. Moreover, the
faithful homomorphisms can even be chosen to be of degree 1.

Theorem 4.2.2. Let K be an infinite field. Let f1, . . . , fm ∈ K[x] be poly-
nomials such that trdegK(f1, . . . , fm) ≤ r. Then there exists a K-algebra
homomorphism ϕ : K[x]→ K[z] = K[z1, . . . , zr] of degree 1 which is faithful
to {f1, . . . , fm}.

Proof. After renumbering polynomials and variables, we may assume that
f1, . . . , fr, xr+1, . . . , xn are algebraically independent over K. Consequently,
for i ∈ [r], xi is algebraically dependent on f1, . . . , fr, xr+1, . . . , xn, hence
there exists a non-zero polynomial Gi ∈ K[y0,y] = K[y0, y1, . . . , yn] with
degy0(Gi) > 0 such that

Gi(xi, f1, . . . , fr, xr+1, . . . , xn) = 0. (4.2.1)

Denote by gi ∈ K[y] the (non-zero) leading term of Gi viewed as a polynomial
in y0 with coefficients in K[y]. The algebraic independence of f1, . . . , fr,
xr+1, . . . , xn implies gi(f1, . . . , fr, xr+1, . . . , xn) 6= 0. Since K is infinite, there
exist cr+1, . . . , cn ∈ K such that(

gi(f1, . . . , fr, xr+1, . . . , xn)
)
(x1, . . . , xr, cr+1, . . . , cn) 6= 0 (4.2.2)

for all i ∈ [r] (by Lemma 2.5.1 or Theorem 2.5.4). Now define the K-algebra
homomorphism

ϕ : K[x]→ K[z], xi 7→

{
zi, if i ∈ [r],

ci, if i ∈ [r + 1, n].

Applying ϕ to (4.2.1), we obtain Gi(zi, ϕ(f1), . . . , ϕ(fr), cr+1, . . . , cn) = 0,
and by (4.2.2) we have Gi(y0, ϕ(f1), . . . , ϕ(fr), cr+1, . . . , cn) 6= 0 for all i ∈
[r]. This shows that zi is algebraically dependent on ϕ(f1), . . . , ϕ(fr) for all
i ∈ [r]. It follows that trdegK(ϕ(f1), . . . , ϕ(fm)) = r = trdegK(f1, . . . , fm),
hence ϕ is faithful to {f1, . . . , fm}.

Reducing the number of variables

The main motivation behind the definition of faithfulness is that faithful
homomorphisms give rise to hitting sets as follows. Assume that we are
given an m-variate arithmetic circuit F over K[y] = K[y1, . . . , ym] that
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F

f1 f2 · · · fm

Figure 4.1: An arithmetic circuit F with subcircuits f1, . . . , fm computing
the polynomial F (f1, . . . , fm).

takes arithmetic circuits f1, . . . , fm over K[x] as inputs. This composite
circuit computes the polynomial F (f1, . . . , fm) which is an element of the
K-subalgebra K[f1, . . . , fm] of K[x] (see Figure 4.1). Now let ϕ : K[x] →
K[z] = K[z1, . . . , zr] be a K-algebra homomorphism which is faithful to
{f1, . . . , fm}. If F (f1, . . . , fm) 6= 0, then Lemma 4.2.7 implies that

F (ϕ(f1), . . . , ϕ(fm)) = ϕ
(
F (f1, . . . , fm)

)
6= 0.

This means that ϕ reduces the number of variables from n to r, while preserv-
ing the non-zeroness of the circuit. If r is constant and ϕ can be constructed
efficiently, then this yields a reduction to PIT of circuits with a constant
number of variables. Finally, given that the transformed circuit has polyno-
mial degree, the Combinatorial Nullstellensatz provides a polynomial-sized
hitting set.

The following definition captures the circuit class for the composite cir-
cuits described above.

Definition 4.2.3. Let τ,D ≥ 1 and let C ⊆ K[x] be a set of polynomials.
Define the subset

Algτ,D C :=

{
F (f1, . . . , fm)

∣∣∣∣ m ≥ 1, F ∈ K[y1, . . . , ym], deg(F ) ≤ D,

f1, . . . , fm ∈ C, trdegK(f1, . . . , fm) ≤ τ

}

of K[x].

The following theorem, proven below, describes the hitting set construc-
tion for Algτ,D C. In Sections 4.2.1 to 4.2.5 we will explicitly construct families
of faithful homomorphisms for several circuit classes C to which this theorem
can be applied. A summary of those results will be given in Section 4.2.6.

Theorem 4.2.4. Let 1 ≤ r ≤ n, let τ, δ, d,D ≥ 1, and let C ⊆ K[x] be
a set of polynomials of degree at most δ. Let I be an index set and let
Φi : K[x]→ K[z] be a K-algebra homomorphism of degree at most d for all
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i ∈ I. Denote Φ
(j)
i := Φi(xj) ∈ K[z] for all i ∈ I and j ∈ [n]. Let S ⊆ K be

a set such that |S| ≥ δdD + 1.
Assume that for all f1, . . . , fm ∈ C with trdegK(f1, . . . , fm) ≤ τ there

exists i ∈ I such that Φi is faithful to {f1, . . . , fm}. Then

H :=
{(

Φ
(1)
i (a), . . . ,Φ

(n)
i (a)

) ∣∣ i ∈ I and a ∈ Sr
}
⊆ Kn

is a hitting set for Algτ,D C with |H| ≤ |I| · |S|r.

The following lemma shows that the transcendence degree of a K-algebra
is non-increasing under K-algebra homomorphisms.

Lemma 4.2.5. Let A,B be K-algebras and let ϕ : A → B be a K-algebra
homomorphism. Then trdegK(ϕ(A)) ≤ trdegK(A). If ϕ is injective, then
trdegK(ϕ(A)) = trdegK(A).

Proof. Let a1, . . . , ar ∈ A such that ϕ(a1), . . . , ϕ(ar) are algebraically in-
dependent over K. For the sake of contradiction, assume that a1, . . . , ar
are algebraically dependent over K. Then there exists a non-zero poly-
nomial F ∈ K[y1, . . . , yr] such that F (a1, . . . , ar) = 0. But this implies
0 = ϕ(F (a1, . . . , ar)) = F (ϕ(a1), . . . , ϕ(ar)), a contradiction. Therefore
a1, . . . , ar are algebraically independent over K.

Now let ϕ be injective and let a1, . . . , ar ∈ A be algebraically indepen-
dent over K. For the sake of contradiction, assume that ϕ(a1), . . . , ϕ(ar)
are algebraically dependent over K. Then there exists a non-zero polyno-
mial F ∈ K[y1, . . . , yr] such that F (ϕ(a1), . . . , ϕ(ar)) = 0. Hence, we have
ϕ(F (a1, . . . , ar)) = 0. Since ϕ is injective, this implies F (a1, . . . , ar) = 0, a
contradiction. Therefore ϕ(a1), . . . , ϕ(ar) are algebraically independent over
K.

The following lemma demonstrates that passing from an affine algebra to
a quotient algebra modulo a non-zerodivisor strictly decreases the transcen-
dence degree.

Lemma 4.2.6. Let A be an affine K-algebra and let g ∈ A \ {0} be a non-
zerodivisor. Then trdegK(A/〈g〉A) ≤ trdegK(A)− 1.

Proof. The following argument is contained in the proof of [Kem11, Lemma
5.6]. Let r := trdegK(A) ∈ N and assume that there exist a1, . . . , ar ∈ A
such that a1 + 〈g〉, . . . , ar + 〈g〉 are algebraically independent over K. Then
a1, . . . , ar are also algebraically independent. By the definition of r, the ele-
ments g, a1, . . . , ar are algebraically dependent. Therefore, there exists a non-
zero polynomial F ∈ K[y0,y] = K[y0, y1, . . . , yr] such that F (g, a1, . . . , ar) =
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0. Since a1, . . . , ar are algebraically independent, we have δ := degy0(F ) > 0.

Write F =
∑δ

i=0 fiy
i
0, where fi ∈ K[y]. Since g is a non-zerodivisor, we may

assume that f0 6= 0. We have f0(a1, . . . , ar) = −
∑δ

i=1 fi(a1, . . . , ar)g
i ∈ 〈g〉,

therefore f0(a1 + 〈g〉, . . . , ar + 〈g〉) = 0, a contradiction.

The following lemma is key to our hitting set construction, as it demon-
strates that a homomorphism which is faithful to {f1, . . . , fm} ⊂ K[x] pre-
serves the non-zeroness of polynomials F (f1, . . . , fm) in the K-subalgebra
K[f1, . . . , fm].

Lemma 4.2.7. Let ϕ : K[x] → K[z] be a K-algebra homomorphism, let
f1, . . . , fm ∈ K[x] be polynomials and let ϕA := ϕ|A : A → K[z] be the
restriction of ϕ to the K-subalgebra A := K[f1, . . . , fm] ⊆ K[x]. Then ϕ is
faithful to {f1, . . . , fm} if and only if ϕA is injective.

Proof. If ϕA is injective, then trdegK(ϕ(f1), . . . , ϕ(fm)) = trdegK(ϕA(A)) =
trdegK(A) = trdegK(f1, . . . , fm) by Lemmas 4.1.1 and 4.2.5, hence ϕ is faith-
ful to {f1, . . . , fm}.

Conversely, let ϕ be faithful to {f1, . . . , fm}. For the sake of contradiction,
assume that ϕA is not injective. Then there exists g ∈ A \ {0} such that
ϕA(g) = 0. Since g ∈ ker(ϕA), the K-algebra homomorhism ϕA : A/〈g〉 →
K[z], a+ 〈g〉 7→ ϕA(a) is well-defined, and ϕA factors as ϕA = ϕA ◦ η, where
η : A� A/〈g〉 is the canonical surjection. We obtain

trdegK(f1, . . . , fm) = trdegK(ϕ(f1), . . . , ϕ(fm)) (by faithfulness of ϕ)

= trdegK(ϕA(A)) (by Lemma 4.1.1)

= trdegK(ϕA(η(A)))

≤ trdegK(η(A)) (by Lemma 4.2.5)

= trdegK(A/〈g〉)
≤ trdegK(A)− 1 (by Lemma 4.2.6)

= trdegK(f1, . . . , fm)− 1 (by Lemma 4.1.1),

a contradiction. Hence, ϕA is injective.

Proof of Theorem 4.2.4. Let f ∈ Algτ,D C be a non-zero polynomial. Write
f = F (f1, . . . , fm), where F ∈ K[y1, . . . , ym] is a polynomial with deg(F ) ≤
D and f1, . . . , fm ∈ C are polynomials with trdegK(f1, . . . , fm) ≤ τ . We have
deg(f) ≤ δD. By assumption, there exists i ∈ I such that Φi is faithful to
{f1, . . . , fm}. Since f ∈ K[f1, . . . , fm], Lemma 4.2.7 implies Φi(f) 6= 0. Now
the assertion follows from Theorem 3.2.4.
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4.2.1 Linear Forms

Linear forms are situated where the theories of rank-preserving and faithful
homomorphisms meet. The reason is that linear forms are algebraically in-
dependent if and only if they are linearly independent. This follows from the
Jacobian Criterion, because the Jacobian matrix of linear forms is just the
matrix of their coefficients. We rephrase Theorem 3.2.6 for faithful homo-
morphisms.

Theorem 4.2.8. Let 1 ≤ r ≤ n. For c ∈ K, let Φc : K[x]→ K[z] be defined
as in (3.2.1).

There exists an effectively computable N ∈ N with N = poly(n) such
that for all N-subsets S ⊆ K we have the following: For all linear forms
`1, . . . , `m ∈ K[x]1 of transcendence degree at most r, there exists c ∈ S such
that Φc is faithful to {`1, . . . , `m}.

Proof. By Lemma 3.2.8 and Lemma 4.2.7, a graded K-algebra homomor-
phism K[x] → K[z] of degree 1 is rank-preserving for {`1, . . . , `m} if and
only if it is faithful to {`1, . . . , `m}. Therefore, this theorem is a direct con-
sequence of Theorem 3.2.6.

4.2.2 Monomials

In this section, we construct faithful homomorphisms for sets of monomials.
Note that the homomorphism in the following theorem is toric, hence it is
sparsity-preserving.

Theorem 4.2.9. Let 1 ≤ r ≤ n and let δ ≥ 1. For λ ∈ Z and q ≥ 1, define
the K-algebra homomorphism

Φλ,q : K[x]→ K[z], xi 7→
r∏
j=1

z
bλ(i−1)(j−1)cq
j , (4.2.3)

where i ∈ [n].

There exists an effectively computable N ∈ N with N = poly
(
n, log δ

)
such that we have the following: For all monomials f1, . . . , fm ∈ K[x] of
degree at most δ and transcendence degree at most r, there exist λ, q ∈ [N ]
such that Φλ,q is faithful to {f1, . . . , fm}.

Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 4.2.11
below.
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Lemma 4.2.11 is based on the following characterization of algebraic in-
dependence of monomials (see also [Stu96, Lemma 4.1]). For the proof,
it is convenient to introduce the following notation. For α ∈ Z, we set
α+ := max{α, 0} ∈ N and α− := max{−α, 0} ∈ N. For α ∈ Zn, we de-
fine α+ := (α+

1 , . . . , α
+
n ) ∈ Nn and α− := (α−1 , . . . , α

−
n ) ∈ Nn. We have

α = α+ − α−.

Lemma 4.2.10. Let α1, . . . , αm ∈ Nn. Then the terms xα1 , . . . ,xαm are
algebraically independent over K if and only if α1, . . . , αm are Z-linearly in-
dependent.

Proof. Let α1, . . . , αm be Z-linearly dependent. Then there exist integers
λ1, . . . , λm ∈ Z, not all zero, such that λ1α1 + · · ·+ λmαm = 0. This implies

(xα1)λ
+
1 · · · (xαm)λ

+
m = (xα1)λ

−
1 · · · (xαm)λ

−
m ,

hence xα1 , . . . ,xαm are algebraically dependent over K.
Conversely, let xα1 , . . . ,xαm be algebraically dependent over K. Then

there exists a non-zero polynomial F ∈ K[y] = K[y1, . . . , ym] such that
F (xα1 , . . . ,xαm) = 0. This means that there are two distinct terms t1 = yλ

and t2 = yµ (where λ, µ ∈ Nm) in the support of F such that

t1(x
α1 , . . . ,xαm) = t2(x

α1 , . . . ,xαm).

This implies (λ1−µ1)α1 + · · ·+(λm−µm)αm = 0. Since λ−µ 6= 0, it follows
that α1, . . . , αm are Z-linearly dependent.

By Lemma 4.2.10, preserving the transcendence degree of monomials boils
down to preserving the rank of their exponent vectors. For the latter, we can
use Lemma 3.2.7. Since the resulting monomials would be of exponential
degree, we will also reduce the transformed exponent vectors modulo various
integers q.

Lemma 4.2.11. Let 1 ≤ r ≤ n and let δ ≥ 1. For λ ∈ Z and q ≥ 1, define
Φλ,q as in (4.2.3). Let α1, . . . , αm ∈ Nn such that xα1 , . . . ,xαm are of degree
at most δ and transcendence degree at most r.

Then there exists a set B1 ⊂ Z with |B1| ≤
(
r
2

)
(n − 1) satisfying the

following property: For all λ ∈ Z \ B1 there exists a set B2 ⊂ P with |B2| ≤
r2n log2(rδ(|λ| + 1)) such that Φλ,q is faithful to {xα1 , . . . ,xαm} for all q ∈
P \B1.

Proof. We may assume that xα1 , . . . ,xαr are algebraically independent over
K (if the transcendence degree is less than r, we can append algebraically
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independent variables). Denote by A ∈ Zr×n the matrix with rows α1, . . . , αr.
By Lemma 4.2.10, we have rkQ(A) = r. By Lemma 3.2.7, there exists a set
B1 ⊂ Z with |B1| ≤

(
r
2

)
(n − 1) such that rkQ(AVλ) = r for all λ ∈ Z \ B1,

where Vλ :=
(
λ(i−1)(j−1)

)
i,j ∈ Zn×r.

Let λ ∈ Z \ B1. Then we have det(AVλ) 6= 0. Let B2 ⊂ P be the set of
prime divisors of det(AVλ). Using Hadamard’s Inequality (see Lemma A.3.3)
and standard properties of matrix and vector norms, we can estimate

|det(AVλ)| ≤
r∏
j=1

‖Avj‖2 ≤
r∏
j=1

r1/2‖A‖∞‖vj‖∞ ≤
r∏
j=1

r1/2δ|λ|(n−1)(j−1)

≤ rr/2δr|λ|(n−1)
(
r
2

)
,

where v1, . . . , vr ∈ Zn denote the columns of Vλ. This implies that |B2| ≤
r2n log2(rδ(|λ|+ 1)).

Let q ∈ P \ B2. Then we have det(AVλ) 6= 0 (mod q). This implies that
det(AVλ,q) 6= 0, where Vλ,q :=

(
bλ(i−1)(j−1)cq

)
i,j ∈ Nn×r. Denoting the rows

of AVλ,q by β1, . . . , βr ∈ Nr, we see that Φλ,q(x
αi) = zβi for all i ∈ [r]. By

Lemma 4.2.10, we conclude

trdegK
(
Φλ,q(x

α1), . . . ,Φλ,q(x
αr)
)

= r = trdegK(xα1 , . . . ,xαm),

hence Φλ,q is faithful to {xα1 , . . . ,xαm}.

4.2.3 Sparse Polynomials

We continue with the construction of faithful homomorphisms for sets of
sparse polynomials. The construction works in arbitrary characteristic, but
a better complexity bound can be established in the separable case (in char-
acteristic zero or sufficiently large characteristic).

The following lemma gives a general recipe for obtaining faithful homo-
morphisms in the separable case and is based on the Jacobian Criterion.
The lemma demonstrates that, in order to construct a faithful homomor-
phism for given polynomials f1, . . . , fm ∈ K[x] of transcendence degree r, it
is sufficient to find a point b ∈ Kn that preserves the rank of the Jacobian
matrix Jx(f1, . . . , fm) under substitution and a matrix A ∈ Kn×r that is
rank-preserving for that matrix.

Lemma 4.2.12. Let 1 ≤ r ≤ n. Let f1, . . . , fm ∈ K[x] be polynomials of
transcendence degree at most r such that K(x) is a separable extension of
K(f1, . . . , fm). Let A = (ai,j) ∈ Kn×r be a matrix and let b ∈ Kn be a point
such that

rkK(x)(J) = rkK(Jb · A),
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where J := Jx(f1, . . . , fm) ∈ K[x]m×n and Jb := J |x=b ∈ Km×n. Then the
K-algebra homomorphism

ϕ : K[x]→ K[z], xi 7→
( r∑
j=1

ai,jzj

)
+ bi, (4.2.4)

where i ∈ [n], is faithful to {f1, . . . , fm}.

Proof. Set τ := trdegK(f1, . . . , fm) ∈ [0, r]. By Theorem 4.1.12, we have
τ = rkK(x)(J). By the chain rule, we can compute

Jz(ϕ(f1), . . . , ϕ(fm)) = ϕ(J) · Jz(ϕ(x1), . . . , ϕ(xn)) = ϕ(J) · A.

This implies Jz(ϕ(f1), . . . , ϕ(fm))|z=0 = Jb · A, therefore

rkK(z) Jz(ϕ(f1), . . . , ϕ(fm)) ≥ rkK(Jb · A) = τ.

By Theorem 4.1.12, we conclude trdegK(ϕ(f1), . . . , ϕ(fm)) = τ , thus ϕ is
faithful to {f1, . . . , fm}.

If we want to apply this lemma to sparse polynomials, we can use sparse
PIT methods from Section 3.2.2 to find b and Lemma 3.2.7 to find A (see
also Remark 4.2.18).

Here we give an alternative construction that works in arbitrary charac-
teristic. In a way, it mimics the proof of Theorem 4.2.2, but is also taylored
to suit Lemma 4.2.12. We will proceed step by step. We first define three
homomorphisms in (4.2.5), (4.2.10), and (4.2.12). The final homomorphism,
presented in Theorem 4.2.17, will then be the composition of those maps.

Eliminating variables

We start with the simplest of the three maps. Define the K-algebra homo-
morphism

Ψ: K[x]→ K[z], xi 7→

{
zi, if i ∈ [r],

0, if i ∈ [r + 1, n].
(4.2.5)

It will turn out that, after shifting and mixing the x-variables appropriately,
this projection is faithful to a given set of polynomials of transcendence degree
at most r.
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Mixing the variables

Now we will define a homomorphism that imitates the renumbering of vari-
ables that took place in the first step of the proof of Theorem 4.2.2. To this
end, we will construct a matrix of univariate polynomials that interpolates
the permutation matrices given by the renumberings. The matrix can also
be used to obtain rank-preserving matrices.

Let I = {i1 < · · · < ir} ∈
(
[n]
r

)
be an index set and let [n] \ I = {ir+1 <

· · · < in} be its complement. Define the permutation πI : [n] → [n], ij 7→ j

for j ∈ [n]. This assignment yields an injection
(
[n]
r

)
→ Sn, I 7→ πI with the

property πI(I) = [r].
We assume that K is sufficiently large, so that we can fix an injection(

[n]
r

)
→ K, I 7→ cI (4.2.6)

that assigns a constant cI ∈ K to each r-subset I ⊆ [n].
For i, j ∈ [n], let ai,j ∈ K[t] be the unique polynomial of degree

(
n
r

)
− 1

satisfying
ai,j(cI) = δπI(i),j for all I ∈

(
[n]
r

)
, (4.2.7)

where δi,j denotes the Kronecker delta. This means that
(
ai,j(cI)

)
i,j ∈ Kn×n

is the permutation matrix given by πI . In particular, we have det(ai,j(cI)) =
sgn(πI) ∈ {−1, 1}. The matrix

(
ai,j
)
i,j ∈ K[t]n×n can be easily constructed

by Lagrange interpolation as follows. For I ∈
(
[n]
r

)
, define

`I :=
∏
J 6=I

t− cJ
cI − cJ

∈ K[t],

where the product is over all J ∈
(
[n]
r

)
\ {I}. Then

ai,j =
∑
I

δπI(i),j · `I ∈ K[t] (4.2.8)

for all i, j ∈ [n], where the sum is over all I ∈
(
[n]
r

)
.

The polynomials ai,j give rise to rank-preserving matrices. Compared
with Lemma 3.2.7, this construction is less efficient, because the number of
bad substitutions c ∈ K can be exponential in r, but in applications where
r is constant, its complexity is acceptable.

Lemma 4.2.13. Let 1 ≤ r ≤ n and m ≥ 1. Let A ∈ Km×n be a matrix with
rkK(A) ≤ r. For c ∈ K, define Pc :=

(
ai,j(c)

)
i,j ∈ Kn×r. Then there exists

a set B ⊆ K with |B| ≤ r
(
n
r

)
− r such that

rkK(APc) = rkK(A)

for all c ∈ K \B.
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Proof. Define P :=
(
ai,j
)
i,j ∈ K[t]n×r. After removing unnecessary rows of

A, we may assume A ∈ Kr×n. Since ρ := rk(A) ≤ r, there exists I ∈
(
[n]
r

)
such that rkK(A[r],I) = ρ. Let cI ∈ K be defined as in (4.2.6). By (4.2.7), we
get

APcI = A ·
(
ai,j(cI)

)
i,j

= A ·
(
δπI(i),j

)
i,j

= A[r],I .

This implies rkK(t)(AP ) = rkK(A[r],I) = ρ, thus there exists a submatrix
M ∈ K[t]ρ×ρ of AP such that rkK(t)(M) = ρ. Therefore, the polynomial
f := det(M) ∈ K[t] is non-zero. Let B := VK(f) ⊆ K be the set of zeros of
f . Then we have |B| ≤ deg(f) ≤ ρ

(
n
r

)
− ρ ≤ r

(
n
r

)
− r. Now let c ∈ K \ B.

Then det(M |t=c) = f(c) 6= 0, thus rkK(APc) = ρ.

Remark 4.2.14. A curious feature of the matrix
(
ai,j
)
i,j ∈ K[t]n×n is the

property
∑n

j=1 ai,j = 1 for all i ∈ [n], and likewise
∑n

i=1 ai,j = 1 for all
j ∈ [n]. This follows from the fact that those sums are polynomials of degree
at most

(
n
r

)
− 1 and evaluate to 1 for all

(
n
r

)
points cI . We say that

(
ai,j
)
i,j

is a generalized doubly stochastic matrix.

Define the K-algebra homomorphism

Ξ: K[x]→ K[x, t], xi 7→
n∑
j=1

ai,j · xj, (4.2.9)

where i ∈ [n]. We have deg(Ξ(xi)) =
(
n
r

)
, degx(Ξ(xi)) = 1, and degt(Ξ(xi)) =(

n
r

)
− 1 for all i ∈ [n]. For c ∈ K, define the K-algebra homomorphism

Ξc : K[x]→ K[x], xi 7→
n∑
j=1

ai,j(c) · xj, (4.2.10)

where i ∈ [n]. We have Ξc(f) = Ξ(f)|t=c for all f ∈ K[x]. By definition,
ΞcI is an automorphism sending the variables {xi | i ∈ I} to {x1, . . . , xr} and
sending the variables {xi | i ∈ [n] \ I} to {xr+1, . . . , xn} (preserving the order
of indices). In general, Ξc is an automorphism for almost all c ∈ K.

Corollary 4.2.15. There exists a set B ⊆ K with |B| ≤ n
(
n
r

)
− n such that

Ξc is an automorphism of K[x] for all c ∈ K \B.

Proof. Applying Lemma 4.2.13 with r = n and A = In yields a set B ⊆ K
with |B| ≤ n

(
n
r

)
− n such that the matrix Pc ∈ Kn×n is invertible for all

c ∈ K \B, hence Ξc is an automorphism of K[x] for all c ∈ K \B.
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Shifting the variables

Finally, we define a homomorphism that transforms the variables of a non-
zero sparse polynomial f ∈ K[x] in such a way that it does not vanish at
the origin 0 = (0, . . . , 0) ∈ Kn. For this we use sparse PIT methods from
Section 3.2.2.

Let D ≥ 1 and let q ≥ 1. Define the K-algebra homomorphisms

ΛD : K[x]→ K[x, t], xi 7→ xi + tD
i−1

,

ΛD,q : K[x]→ K[x, t], xi 7→ xi + tbD
i−1cq ,

(4.2.11)

where i ∈ [n]. For c ∈ K, define the K-algebra homomorphism

ΛD,q,c : K[x]→ K[x], xi 7→ xi + cbD
i−1cq , (4.2.12)

where i ∈ [n]. We have ΛD,q,c(f) = ΛD,q(f)|t=c for all f ∈ K[x]. The map
ΛD,q,c is an automorphism of K[x] and, for almost all D ≥ 1, q ∈ P, and
c ∈ K, it sends a non-zero polynomial to a polynomial that does not vanish
at the origin. The following lemma bounds the number of bad choices for
the parameters q and c.

Lemma 4.2.16. Let δ, s ≥ 1 and let D ≥ δ+ 1. Let f ∈ K[x] be a non-zero
polynomial of sparsity at most s and degree at most δ.

Then there exists a set B1 ⊂ P of primes with |B1| ≤ (s − 1)bn log2Dc
satisfying the following property: For all q ∈ P\B1 there exists a set B2 ⊆ K
with |B2| < δq such that (

ΛD,q,c(f)
)
(0) 6= 0

for all c ∈ K \B2.

Proof. Comparing (4.2.11) with (3.2.2), we see that Lemma 3.2.10 provides a
set B1 ⊂ P of primes with |B1| ≤ (s− 1)bn log2Dc such that the polynomial
gq := ΛD,q(f)|x=0 ∈ K[t] is non-zero for all q ∈ P \ B1. Let q ∈ P \ B1, and
let B2 := VK(gq) ⊆ K be the set of zeros of gq. Then |B2| ≤ deg(gq) < δq
and

(
ΛD,q,c(f)

)
(0) = gq(c) 6= 0 for all c ∈ K \B2.

The faithful homomorphism

Now we can state the main theorem of this section. Note that the homomor-
phism in this theorem satisfies ΦD,q,c = Ψ ◦ Ξc1 ◦ ΛD,q,c2 for all D, q ≥ 1 and
c ∈ K2.
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Theorem 4.2.17. Let 1 ≤ r ≤ n and let s, δ ≥ 1. For D, q ≥ 1 and c ∈ K2,
define the K-algebra homomorphism

ΦD,q,c : K[x]→ K[z], xi 7→
( r∑
j=1

ai,j(c1) · zj
)

+ c
bDi−1cq
2 , (4.2.13)

where i ∈ [n] and ai,j ∈ K[t] are defined as in (4.2.8).

(a) Let char(K) be arbitrary. Set D := δr+1. Then there exists an effectively
computable N ∈ N with N = poly

(
nδ

r
, nr

2
, δr
)

such that for all N-subsets
S ⊆ K we have the following: For all polynomials f1, . . . , fm ∈ K[x] of
degree at most δ and transcendence degree at most r, there exist q ∈ [N ]
and c ∈ S2 such that ΦD,q,c is faithful to {f1, . . . , fm}.

(b) Let char(K) = 0 or char(K) > δr. Set D := δr+ 1. Then there exists an
effectively computable N ∈ N with N = poly

(
(ns)r, δ

)
such that for all

N-subsets S ⊆ K we have the following: For all polynomials f1, . . . , fm ∈
K[x] of sparsity at most s, degree at most δ, and transcendence degree
at most r, there exist q ∈ [N ] and c ∈ S2 such that ΦD,q,c is faithful to
{f1, . . . , fm}.

Proof. Using Corollary A.1.2 (b), the claims (a) and (b) follow from Lemma
4.2.19 and Lemma 4.2.20 below, respectively.

Remark 4.2.18. Part (b) of Theorem 4.2.17 can also be proven using the
K-algebra homomorphism defined by

ΦD,q,c : K[x]→ K[z], xi 7→
( r∑
j=1

c
(i−1)(j−1)
1 · zj

)
+ c
bDi−1cq
2 (4.2.14)

for D, q ≥ 1 and c ∈ K2 (cf. [BMS11] for a similar construction). We were,
however, unable to deduce (a) for that homomorphism.

The following lemma implies part (a) of Theorem 4.2.17. It is proven
along the lines of the proof of Theorem 4.2.2. For bounding the degrees of
annihilating polynomials, we invoke Perron’s Theorem (Theorem 4.1.4).

Lemma 4.2.19. Let 1 ≤ r ≤ n and let δ ≥ 1. Let D ≥ δr + 1 and, for q ≥ 1
and c ∈ K2, let ΦD,q,c be defined as in (4.2.13). Let f1, . . . , fm ∈ K[x] be
polynomials of degree at most δ and transcendence degree at most r.

Then there exists a set B2,1 ⊂ P of primes with |B2,1| < rn
(
n+δr

δr

)
log2D

satisfying the following property: For all q ∈ P\B2,1 there exists a set B2,2 ⊆
K with |B2,2| < rδrq such that for all c2 ∈ K \B2,2 there exists a set B1 ⊆ K
with |B1| < rδr

(
n
r

)
r such that ΦD,q,c is faithful to {f1, . . . , fm} for all c1 ∈

K \B1.
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Proof. We may assume that f1, . . . , fr are algebraically independent over K
(if the transcendence degree is less than r, we can append algebraically inde-
pendent variables). Let I = {i1 < · · · < ir} ∈

(
[n]
r

)
be an index set with com-

plement [n] \ I = {ir+1 < · · · < in} such that f1, . . . , fr, xir+1 , . . . , xin are al-
gebraically independent over K. Consequently, for j ∈ [r], xij is algebraically
dependent on f1, . . . , fr, xir+1 , . . . , xin . Denote w := (1, δ, . . . , δ, 1, . . . , 1) ∈
Nn+1
>0 , where δ appears in r slots. By Theorem 4.1.4, there exists a non-

zero polynomial Gj ∈ K[y0,y] = K[y0, y1, . . . , yn] such that degy0 > 0,
degw(Gj) ≤ δr and

Gj(xij , f1, . . . , fr, xir+1 , . . . , xin) = 0. (4.2.15)

Denote by gj ∈ K[y] the (non-zero) leading coefficient of Gj viewed as a
polynomial in y0 with coefficients in K[y]. Since f1, . . . , fr, xir+1 , . . . , xin are
algebraically independent, the polynomial

g′j := gj(f1, . . . , fr, xir+1 , . . . , xin) ∈ K[x]

is non-zero. We have deg(g′j) ≤ degw(gj) ≤ δr, and this implies the bound

sp(g′j) ≤
(
n+δr

δr

)
. Applying Lemma 4.2.16 to g′j provides a set B2,1,j ⊂ P of

primes with |B2,1,j| < n
(
n+δr

δr

)
log2D. Set B2,1 := B2,1,1 ∪ · · · ∪ B2,1,r and

let q ∈ P \ B2,1. For j ∈ [r], let B2,2,j ⊆ K be the set with |B2,2,j| < δrq
provided by Lemma 4.2.16 applied to g′j. Set B2,2 := B2,2,1 ∪ · · · ∪B2,2,r and

let c2 ∈ K \B2,2. Then we have
(
ΛD,q,c2(g

′
j)
)
(0) 6= 0 for all j ∈ [r].

Next we want to show that ΦD,q,(cI ,c2) = Ψ ◦ ΞcI ◦ ΛD,q,c2 is faithful to
{f1, . . . , fr}. Denote f = (f1, . . . , fr) and ej := bDij−1cq for all j ∈ [n]. Now
let j ∈ [r]. Applying Ψ ◦ ΞcI ◦ ΛD,q,c2 to (4.2.15) yields

0 = Ψ
(
Gj

(
xj + c

ej
2 , (ΞcI ◦ ΛD,q,c2)(f), xr+1 + c

er+1

2 , . . . , xn + cen2
))

= Gj

(
zj + c

ej
2 , (Ψ ◦ ΞcI ◦ ΛD,q,c2)(f), c

er+1

2 , . . . , cen2
)
.

(4.2.16)

On the other hand, we have

Gj

(
y0, (Ψ ◦ ΞcI ◦ ΛD,q,c2)(f), c

er+1

2 , . . . , cen2
)
6= 0, (4.2.17)

because (Ψ◦ΞcI ◦ΛD,q,c2)(g
′
j) 6= 0. The latter follows from

(
ΛD,q,c2(g

′
j)
)
(0) 6=

0, because
(
(Ψ ◦ ΞcI )(xi)

)
(0) = 0 for all i ∈ [n]. Equations (4.2.16) and

(4.2.17) show that zj is algebraically dependent on

(Ψ ◦ ΞcI ◦ ΛD,q,c2)(f1), . . . , (Ψ ◦ ΞcI ◦ ΛD,q,c2)(fr)

for all j ∈ [r], hence Ψ ◦ ΞcI ◦ ΛD,q,c2 is faithful to {f1, . . . , fr}.
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It remains to show that ΦD,q,(c,c2) = Ψ◦Ξc◦ΛD,q,c2 is faithful to {f1, . . . , fr}
for almost all c ∈ K. To this end, for i ∈ [r], define

f ′i :=
(
(Ξ ◦ ΛD,q,c2)(fi)

)
(z,0, t) ∈ K[z, t],

where 0 = (0, . . . , 0) ∈ Kn−r. We first want to show that f ′1, . . . , f
′
r, t are

algebraically independent overK, so assume for the sake of contradiction that
they are algebraically dependent. Then there exists a non-zero polynomial
H ∈ K[y0,y] = K[y0, y1, . . . , yr] such that H(t, f ′1, . . . , f

′
r) = 0. Since t−cI 6=

0, we may assume that y0− cI does not divide H. Therefore, the polynomial
H ′ := H(cI ,y) ∈ K[y] is non-zero. We have

H ′
(
f ′1(z, cI), . . . , f

′
r(z, cI)

)
=
(
H(t, f ′1, . . . , f

′
r)
)
(z, cI) = 0,

hence f ′1(z, cI), . . . , f
′
r(z, cI) are algebraically dependent. Since f ′i(z, cI) =

(Ψ ◦ ΞcI ◦ ΛD,q,c2)(fi) for all i ∈ [r], this is a contradiction to the preced-
ing paragraph. Therefore f ′1, . . . , f

′
r, t1 are algebraically independent. Now

we can proceed as above. For j ∈ [r], zj is algebraically dependent on
f ′1, . . . , f

′
r, t. Denote w := (1, d, . . . , d, 1) ∈ Nr+2

>0 , where d := δ
(
n
r

)
ap-

pears in r slots. Note that deg(f ′i) ≤ d for all i ∈ [r]. By Theorem 4.1.4,
there exists a non-zero polynomial Hj ∈ K[y0,y] = K[y0, y1, . . . , yr+1] such
that degy0(Hj) > 0, degw(Hj) ≤ dr and Hj(zj, f

′
1, . . . , f

′
r, t) = 0. Denote

by hj ∈ K[y] the (non-zero) leading coefficient of Hj viewed as a poly-
nomial in y0 with coefficients in K[y]. Since f ′1, . . . , f

′
r, t are algebraically

independent, the polynomial h′j := hj(f
′
1, . . . , f

′
r, t) ∈ K[z, t] is non-zero.

Let B1,j ⊆ K be the set of all c ∈ K such that h′j(z, c) = 0. Then

|B1,j| ≤ degt(h
′
j) ≤ degw(hj) ≤ dr = δr

(
n
r

)
r. Set B1 := B1,1 ∪ · · · ∪ B1,r,

and let c1 ∈ K \B1. Then we have

Hj

(
zj, (Ψ ◦ Ξc1 ◦ ΛD,q,c2)(f), c1

)
=
(
Hj(zj, f

′
1, . . . , f

′
r, t)
)
(z, c1) = 0,

but Hj

(
y0, (Ψ◦Ξc1 ◦ΛD,q,c2)(f), c1

)
6= 0. This shows that, for all j ∈ [r], zj is

algebraically dependent on (ΦD,q,c)(f1), . . . , (ΦD,q,c)(fr), where c := (c1, c2).
Therefore ΦD,q,c is faithful to {f1, . . . , fm}.

The following lemma proves part (b), the separable case, of Theorem
4.2.17. It is based on Lemma 4.2.12 which in turn relies on the Jacobian
Criterion.

Lemma 4.2.20. Let 1 ≤ r ≤ n and let δ, s ≥ 1. Assume that char(K) = 0
or char(K) > δr. Let D ≥ δr + 1 and, for q ≥ 1 and c ∈ K2, let ΦD,q,c be
defined as in (4.2.13). Let f1, . . . , fm ∈ K[x] be polynomials of sparsity at
most s, degree at most δ, and transcendence degree at most r.
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Then there exists a set B2,1 ⊂ P of primes with |B2,1| < r!srn log2D
satisfying the following property: For all q ∈ P\B2,1 there exists a set B2,2 ⊆
K with |B2,2| < rδq such that for all c2 ∈ K \B2,2 there exists a set B1 ⊆ K
with |B1| < r

(
n
r

)
such that ΦD,q,c is faithful to {f1, . . . , fm} for all c1 ∈ K\B1.

Proof. Denote J := Jx(f1, . . . , fm) ∈ K[x]m×n. By Lemma A.5.2 and The-
orem 4.1.12, there exists a submatrix M ∈ K[x]τ×τ of J such that g :=
det(M) ∈ K[x] is non-zero, where τ := trdegK(f1, . . . , fm) ∈ [0, r]. We have
deg(g) ≤ rδ and sp(g) ≤ r!sr. Applying Lemma 4.2.16 to g provides a set
B2,1 ⊂ P of primes with |B2,1| < r!srn log2D. Let q ∈ P \ B2,1, and let
B2,2 ⊆ K with |B2,2| < rδq be the corresponding set provided by Lemma
4.2.16. Let c2 ∈ K \ B2,2. Then we have

(
ΛD,q,c2(g)

)
(0) 6= 0. This implies

rkK(Jb) = τ , where

b :=
(
c
bD0cq
2 , c

bD1cq
2 , . . . , c

bDn−1cq
2

)
∈ Kn

and Jb := J |x=b ∈ Km×n. By Lemma 4.2.13, there exists a set B1 ⊆ K
with |B1| < r

(
n
r

)
such that rkK(Jb · Pc1) = τ for all c1 ∈ K \ B1, where

Pc1 :=
(
ai,j(c1)

)
i,j ∈ Kn×r. With Lemma 4.2.12 we conclude that ΦD,q,c is

faithful to {f1, . . . , fm} for all c1 ∈ K \B1.

4.2.4 Log-Sparse Polynomials in Positive Characteris-
tic

In this section we construct faithful homomorphisms for sets of sparse poly-
nomials in small positive characteristic. The construction is based on the
Witt-Jacobian Criterion (see Section 4.1.3). Let p be a prime and let K be
an algebraic extension of Fp.

Theorem 4.2.21. Let 1 ≤ r ≤ n and let δ, s ≥ 1. Set D := δr + 1. For
I = {i1 < · · · < ir} ∈

(
[n]
r

)
with complement [n] \ I = {ir+1 < · · · < in},

q ≥ 1, and c ∈ K, define the K-algebra homomorphism

ΦI,q,c : K[x]→ K[z], xij 7→

{
zj, if j ∈ [r],

cbD
j−r−1cq , if j ∈ [r + 1, n].

(4.2.18)

There exists an effectively computable N ∈ N with

N = poly
(
n, δr

2s, rr, srs
)

such that for all N-subsets S ⊆ K we have the following: For all polynomials
f1, . . . , fm ∈ K[x] of sparsity at most s, degree at most δ, and transcendence
degree at most r, there exist I ∈

(
[n]
r

)
, q ∈ [N ], and c ∈ S such that ΦI,q,c is

faithful to {f1, . . . , fm}.
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Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 4.2.23
below.

In the proof of the theorem, we switch to the ring R = W(K) of Witt
vectors of K. Recall that, since K is perfect, we may use the identifications
R/〈p〉R = K and R[x]/〈p〉R[x] = K[x]. For a subset B ⊆ R, we denote
B/〈p〉R := {b + 〈p〉R | b ∈ B} ⊆ K. The following lemma shows how to
preserve non-degeneracy of sparse polynomials over R under substitution.
The proof works by reduction to sparse PIT over K.

Lemma 4.2.22. Let ` ≥ 0, let δ, s ≥ 1, and let D ≥ δ + 1. Let I = {i1 <
· · · < ir} ∈

(
[n]
r

)
be an index set with complement [n] \ I = {ir+1 < · · · < in}.

For q ≥ 1 and c ∈ R, define the R-algebra homomorphism

ΦI,q,c : R[x]→ R[z], xij 7→

{
zj, if j ∈ [r],

cbD
j−r−1cq , if j ∈ [r + 1, n].

(4.2.19)

Let g ∈ R[x] be a polynomial of sparsity at most s and degree at most δ which
is not (`+ 1)-degenerate.

Then there exists a set B1 ⊂ P of primes with |B1| ≤ (s−1)b(n−r) log2Dc
satisfying the following property: For all q ∈ P\B1 there exists a set B2 ⊆ R
with |B2/〈p〉R| < δq such that ΦI,q,c(g) is not (` + 1)-degenerate for all c ∈
R \B2.

Proof. Write g =
∑

β∈Nr gβx
β
I with gβ ∈ R[x[n]\I ]. Since g is not (` + 1)-

degenerate, there exists α ∈ Nn such that the coefficient cα ∈ R of xα in g is
not divisible by pmin{vp(α),`}+1. Let α′ ∈ Nr be the components of α indexed
by I, and let α′′ ∈ Nn−r be the components of α indexed by [n] \ I. The
polynomial gα′ is not divisible by pmin{vp(α),`}+1, because cα appears as the
coefficient of xα

′′

[n]\I .

If we have q ≥ 1 and c ∈ R such that ΦI,q,c(gα′) is not divisible by
pmin{vp(α),`}+1, then ΦI,q,c(gα′) cannot be divisible by the possibly higher power
pmin{vp(α′),`}+1. This means that ΦI,q,c(g) is not (` + 1)-degenerate, because
ΦI,q,c(gα′) appears as the coefficient of zα

′
.

Now write gα′ = peh, where 0 ≤ e ≤ min{vp(α), `} and h ∈ R[x[n]\I ] is
not divisible by p. We have sp(h) ≤ s and deg(h) ≤ δ. If we have q ≥ 1 and
c ∈ R such that ΦI,q,c(h) 6= 0 in R/〈p〉R, then ΦI,q,c(gα′) is not divisible by
pmin{vp(α),`}+1, as desired. Since R/〈p〉R ∼= K is a field, the assertion follows
from Lemma 4.2.16.

The following lemma constitutes the proof of Theorem 4.2.21. By the ex-
plicit Witt-Jacobian criterion, preserving the transcendence degree of poly-
nomials over K boils down to preserving the non-degeneracy of an associated
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Witt-Jacobian polynomial over R. For the latter, we may use Lemma 4.2.22.
Unfortunately, due to the extra leading factors of the Witt-Jacobian polyno-
mial, its sparsity is exponential in the sparsity of the given polynomials.

Lemma 4.2.23. Let 1 ≤ r ≤ n, let δ, s ≥ 1, and let D ≥ rδr+1 + 1. For
I ∈

(
[n]
r

)
, q ≥ 1, and c ∈ K, let ΦI,q,c : K[x]→ K[z] be defined as in (4.2.18).

Let f1, . . . , fm ∈ K[x] be polynomials of sparsity at most s, degree at most δ,
and transcendence degree at most r.

Then there exist I ∈
(
[n]
r

)
and a set B1 ⊂ P of primes with |B1| <

(s+δr)rsr!sr(n−r) log2D satisfying the following property: For all q ∈ P\B1

there exists a set B2 ⊆ K with |B2| < rδr+1q such that ΦI,q,c is faithful to
{f1, . . . , fm} for all c ∈ K \B2.

Proof. We may assume that f1, . . . , fr are algebraically independent over K
(if the transcendence degree is less than r, we can append algebraically inde-
pendent variables). By lifting the coefficients of f1, . . . , fr, we obtain polyno-
mials g1, . . . , gr ∈ R[x] of sparsity at most s such that fi = gi (mod 〈p〉R[x])
for all i ∈ [r]. Set ` := br logp δc ∈ N. By Lemma 4.1.17, we have

` ≥ logp[K(x) : K(f1, . . . , fr)]insep.

By Theorem 4.1.24, there exists I ∈
(
[n]
r

)
such that the polynomial g :=

WJP`+1,xI (g1, . . . , gr) ∈ R[x] is not (` + 1)-degenerate. We have deg(g) ≤
rδ(p` − 1) + r + r(δ − 1) ≤ rδp` ≤ rδr+1 and

sp(g) ≤
(
s+ (p` − 1)− 1

s− 1

)r
· r!sr ≤

(
s+ δr

)rs · r!sr.
Applying Lemma 4.2.22 to g provides a set B1 ⊂ P of primes with |B1| <
(s+δr)rsr!sr(n−r) log2D. Let q ∈ P\B1 and let B′2 ⊆ R be the corresponding
set provided by Lemma 4.2.22. Set B2 := B′2/〈p〉R ⊆ K. Then we have
|B2| < rδr+1q. Now let c ∈ K \ B2 and let c′ ∈ R \ B′2 such that c =
c′ (mod 〈p〉R). By Lemma 4.2.22, the polynomial Φ′I,q,c′(g) is not (` + 1)-
degenerate, where Φ′I,q,c′ : R[x] → R[z] is defined as in (4.2.19). Therefore,
the Witt-Jacobian polynomial

WJP`+1,z

(
Φ′I,q,c′(g1), . . . ,Φ

′
I,q,c′(gr)

)
= Φ′I,q,c′(g)

is not (`+ 1)-degenerate. Since we have

` ≥ logp[K(z) : K(ΦI,q,c(f1), . . . ,ΦI,q,c(fr))]insep

by Lemma 4.1.17 and ΦI,q,c(fi) = Φ′I,q,c′(gi) (mod 〈p〉R[z]) for all i ∈ [r],
Theorem 4.1.24 implies that ΦI,q,c(f1), . . . ,ΦI,q,c(fr) are algebraically inde-
pendent over K.
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4.2.5 Products of Constant-Degree Polynomials

In this section we consider products of constant-degree polynomials. Our
first result is the construction of faithful homomorphisms for sets of those
polynomials of transcendence degree 2. The second result is a hitting set
construction for ΣΠΣΠ-circuits with constant top and bottom fan-in.

Preserving coprimality

The constructions in this section are based on criteria that rely on unique
factorization of polynomials. In order to fulfill those criteria, we will require
homomorphisms that preserve the coprimality of a given set of polynomials.

We start with the definition of a graded version of the homomorphisms
ΛD,q,c given in (4.2.12). Let D, q ≥ 1. Define the K-algebra homomorphisms

ΛD : K[x]→ K[w,x, t], xi 7→ xi + tD
i−1

w,

ΛD,q : K[x]→ K[w,x, t], xi 7→ xi + tbD
i−1cqw,

(4.2.20)

where i ∈ [n] and w, t are new variables. For c ∈ K, define the K-algebra
homomorphism

ΛD,q,c : K[x]→ K[w,x], xi 7→ xi + cbD
i−1cqw, (4.2.21)

where i ∈ [n]. For f ∈ K[x], we have ΛD,q,c(f) = ΛD,q(f)|t=c and ΛD,q,c(f) =
ΛD,q,c(f)|w=1.

We say that a polynomial f ∈ K[w,x] is quasi-monic in w if it is non-
zero and satisfies degw(f) = deg(f), i. e. the leading coefficient of f , viewed
as a polynomial in w with coefficients in K[x], is an element of K. For almost
all D ≥ 1, q ∈ P, and c ∈ K, the homomorphism ΛD,q,c sends a non-zero
polynomial to a polynomial that is quasi-monic in w. The following lemma
bounds the number of bad choices for the parameters q and c.

Lemma 4.2.24. Let δ, s ≥ 1 and let D ≥ δ+ 1. Let f ∈ K[x] be a non-zero
polynomial of sparsity at most s and degree at most δ.

Then there exists a set B1 ⊂ P of primes with |B1| ≤ (s − 1)bn log2Dc
satisfying the following property: For all q ∈ P\B1 there exists a set B2 ⊆ K
with |B2| < δq such that

degw(ΛD,q,c(f)|x=0) = degw(ΛD,q,c(f)) = deg(ΛD,q,c(f)) = deg(f)

for all c ∈ K \B2.
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Proof. The coefficient of the term wdeg(f) in ΛD(f), viewed as a polynomial
in w,x with coefficients in K[t], is

ΛD(g)|x=0 = g
(
t, tD, . . . , tD

n−1)
,

where g ∈ K[x] \ {0} is the homogeneous degree-deg(f) part of f . Now all
assertions follow from Lemma 4.2.16.

The following lemma shows how a K-algebra homomorphism Ψ: K[x]→
K[z] (that sends the variables to polynomials with constant term zero) can
be turned into a homomorphism that preserves the coprimality of given
polynomials. If Ψ is graded of degree 1, then so is the new homomor-
phism. The construction is efficient if the polynomials under consideration
are of constant degree. We prove this lemma via resultants which are de-
fined in Appendix A.3.2. The main idea of the proof is that polynomials
f, g ∈ K[w,x], which are non-constant and quasi-monic in w, are coprime if
and only if their w-resultant is non-zero. Therefore, preserving coprimality
boils down to preserving the non-zeroness of resultants. A useful fact in this
regard is that a homomorphism ϕ : K[w,x] → K[w, z] with w 7→ w satis-
fies ϕ(resw(f, g)) = resw(ϕ(f), ϕ(g)) if f, g are quasi-monic in w. Note that
homomorphisms do not commute with resultants in general.

Lemma 4.2.25. Let δ ≥ 1, let D1 ≥ 2δ2 + 1, and let D2 ≥ δ + 1. Let
Ψ: K[x]→ K[z] be a K-algebra homomorphism such that Ψ(xi)|z=0 = 0 for
all i ∈ [n]. For q ∈ N2

>0 and c ∈ K2, we define the K-algebra homomorphism

Φq,c : K[x]→ K[w, z], xi 7→ Ψ(xi) + c
bDi−1

1 cq1
1 w1 + c

bDi−1
2 cq2

2 w2, (4.2.22)

where w = {w1, w2} and i ∈ [n]. Let f1, . . . , fm ∈ K[x] be non-constant
polynomials of degree at most δ.

Then there exists a set B2,1 ⊂ P of primes with |B2,1| < mn
(
n+δ
δ

)
log2D2

such that for all q2 ∈ P \ B2,1 there exists a set B2,2 ⊆ K with |B2,2| < mδq2
such that for all c2 ∈ K \ B2,2 there exists a set B1,1 ⊂ P of primes with

|B1,1| <
(
m
2

)
n
(
n+2δ2

2δ2

)
log2D1 satisfying the following property: For all q1 ∈

P \ B1,1 there exists a set B1,2 ⊆ K with |B1,2| <
(
m
2

)
2δ2q1 such that for all

c1 ∈ K \B1,2 we have

(a) Φq,c(fi) is non-constant and quasi-monic in w2 for all i ∈ [m], and

(b) gcd(Φq,c(fi),Φq,c(fj)) = 1 for all i, j ∈ [m] with gcd(fi, fj) = 1.

Proof. We first set up some notation. We extend Ψ to the K-algebra homo-
morphism Ψ: K[w,x]→ K[w,x] by wi 7→ wi for i ∈ [2] and xi 7→ Ψ(xi) for
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i ∈ [n]. Furthermore, for D, q ≥ 1 and c ∈ K, we define the K-algebra homo-
morphism ΛD,q,c : K[w2,x]→ K[w,x] by w2 7→ w2 and xi 7→ xi+cbD

i−1cq ·w1

for i ∈ [n], and we define the K-algebra homomorphism ΓD,q,c : K[x] →
K[w2,x] by xi 7→ xi + cbD

i−1cq ·w2 for i ∈ [n]. Note that the homomorphisms
ΛD,q,c and ΓD,q,c are essentially defined as (4.2.21). We have

Φq,c = Ψ ◦ ΛD1,q1,c1 ◦ ΓD2,q2,c2

for all q ∈ N2
>0 and c ∈ K2.

Now we proceed to the proof. For i ∈ [m], we have sp(fi) ≤
(
n+δ
δ

)
, thus

applying Lemma 4.2.24 to fi provides a set B2,1,i ⊂ P of primes with |B2,1,i| <
n
(
n+δ
δ

)
log2D2. Set B2,1 := B2,1,1 ∪ · · · ∪ B2,1,m and let q2 ∈ P \ B2,1. For

i ∈ [m], let B2,2,i ⊆ K be the subset with |B2,2,i| < δq2 provided by Lemma
4.2.24 applied to fi. Set B2,2 := B2,2,1∪· · ·∪B2,2,m and let c2 ∈ K \B2,2. For
i ∈ [m], denote gi := ΓD2,q2,c2(fi) ∈ K[w2,x]. By Lemma 4.2.24, g1, . . . , gm
are quasi-monic in w2 and we have degw2

(gi) = deg(gi) = deg(fi) > 0 for all
i ∈ [m].

Now let i, j ∈ [m] with i < j such that gcd(fi, fj) = 1 in K[x]. Since
ΓD2,q2,c2 can be extended to an automorphism of K[w2,x] by w2 7→ w2, we
also have gcd(gi, gj) = 1 in K[w2,x]. Since gi, gj are quasi-monic in w2,
Lemma A.3.4 (b) implies that the resultant gi,j := resw2(gi, gj) ∈ K[x] is

a non-zero polynomial. We have deg(gi,j) ≤ 2δ2, hence sp(gi,j) ≤
(
n+2δ2

2δ2

)
.

Applying Lemma 4.2.16 to gi,j provides a set B1,1,i,j ⊂ P of primes with

|B1,1,i,j| < n
(
n+2δ2

2δ2

)
log2D1. Set B1,1 :=

⋃
i,j B1,1,i,j, where the union is over

all i, j ∈ [m] as above, and let q1 ∈ P \ B1,1. For i, j ∈ [m] as above,
let B1,2,i,j ⊆ K be the subset with |B1,2,i,j| < 2δ2q1 provided by Lemma
4.2.16 applied to gi,j. Set B1,2 :=

⋃
i,j B1,2,i,j, where the union is over all

i, j ∈ [m] as above, and let c1 ∈ K \ B1,2. By Lemma 4.2.16, we have
ΛD2,q2,c2(gi,j)|w1=1,x=0 6= 0 for all i, j ∈ [m] as above.

To finish the proof, we have to verify that Φq,c satisfies (a) and (b). We
have (Ψ ◦ΛD1,q1,c1)(w2) = w2 and (Ψ ◦ΛD1,q1,c1)(xi) ∈ K[w1, z] for all i ∈ [n].
Since gi is quasi-monic in w2 and non-constant for all i ∈ [m], this implies
(a). To show (b), let i, j ∈ [m] with i < j such that gcd(fi, fj) = 1 in K[x].
By the just stated property, the homomorphism Ψ ◦ΛD1,q1,c1 commutes with
taking resultants of polynomials that are quasi-monic in w2. Therefore, we
have

resw2

(
Φq,c(fi),Φq,c(fj)

)
= resw2

(
(Ψ ◦ ΛD1,q1,c1)(gi), (Ψ ◦ ΛD1,q1,c1)(gj)

)
= (Ψ ◦ ΛD1,q1,c1)

(
resw2(gi, gj)

)
= (Ψ ◦ ΛD1,q1,c1)(gi,j) 6= 0,
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because (Ψ ◦ ΛD1,q1,c1)(gi,j)|w1=1,z=0 = ΛD1,q1,c1(gi,j)|w1=1,x=0 6= 0 by the as-
sumption on Ψ. By Lemma A.3.4 (b), we get (b).

The following corollary is a variant of Lemma 4.2.25 with one w variable
less.

Corollary 4.2.26. Let δ ≥ 1, let D1 ≥ 2δ2 + 1, and let D2 ≥ δ + 1. Let
Ψ: K[x]→ K[z] be a K-algebra homomorphism such that Ψ(xi)|z=0 = 0 for
all i ∈ [n]. For q ∈ N2

>0 and c ∈ K2, we define the K-algebra homomorphism

Φq,c : K[x]→ K[w, z], xi 7→ Ψ(xi) + c
bDi−1

1 cq1
1 + c

bDi−1
2 cq2

2 w, (4.2.23)

where i ∈ [n]. Let f1, . . . , fm ∈ K[x] be non-constant polynomials of degree
at most δ.

Then there exists a set B2,1 ⊂ P of primes with |B2,1| < mn
(
n+δ
δ

)
log2D2

such that for all q2 ∈ P \ B2,1 there exists a set B2,2 ⊆ K with |B2,2| < mδq2
such that for all c2 ∈ K \ B2,2 there exists a set B1,1 ⊂ P of primes with

|B1,1| <
(
m
2

)
n
(
n+2δ2

2δ2

)
log2D1 satisfying the following property: For all q1 ∈

P \ B1,1 there exists a set B1,2 ⊆ K with |B1,2| <
(
m
2

)
2δ2q1 such that for all

c1 ∈ K \B1,2 we have

(a) Φq,c(fi) is non-constant and quasi-monic in w for all i ∈ [m], and

(b) gcd(Φq,c(fi),Φq,c(fj)) = 1 for all i, j ∈ [m] with gcd(fi, fj) = 1.

Proof. This can be proven, mutatis mutandis, like Lemma 4.2.25.

Transcendence degree two

Now we turn our attention to homogeneous products of constant-degree poly-
nomials. We will construct faithful homomorphisms for sets of those polyno-
mials of transcendence degree at most 2.

Theorem 4.2.27. Let n ≥ 2 and let 1 ≤ δ ≤ d. Set D1 := 2δ2 + 1 and
D2 := δ + 1. For q ∈ N2

>0 and c ∈ K2, define the K-algebra homomorphism

Φq,c : K[x]→ K[z1, z2], xi 7→ c
bDi−1

1 cq1
1 · z1 + c

bDi−1
2 cq2

2 · z2, (4.2.24)

where i ∈ [n].
There exists an effectively computable N ∈ N with N = poly

(
nδ

2
, δ, d

)
such that for all N-subsets S ⊆ K we have the following: For all homogeneous
polynomials f1, . . . , fm ∈ K[x] of degree at most d, transcendence degree at
most 2, and with irreducible factors of degree at most δ, there exist q ∈ [N ]2

and c ∈ S2 such that Φq,c is faithful to {f1, . . . , fm}.
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Proof. Using Corollary A.1.2 (b), the assertion follows from Lemma 4.2.31
below.

The proof is based on a criterion for the algebraic independence of two
homogeneous polynomials (Corollary 4.2.30) which can be derived from a
homogeneous version of Lüroth’s Theorem.

Theorem 4.2.28 (Extended Lüroth’s Theorem). Let K ⊆ L ⊆ K(x) be
field extensions such that trdeg(L/K) = 1.

(a) There exists f ∈ K(x) such that L = K(f).

(b) If L∩K[x] contains a non-constant polynomial, then there exists a poly-
nomial f ∈ K[x] such that L = K(f).

(c) If L∩K[x] contains a non-constant homogeneous polynomial, then there
exists a homogeneous polynomial f ∈ K[x] such that L = K(f).

Proof. Parts (a) and (b) are proven in [Sch00, Section 1.2, Theorem 3 and 4].
To show (c), let g ∈ L ∩K[x] be a non-constant homogeneous polynomial.
By (b), L = K(f) for some f ∈ K[x]. We may assume that f(0) = 0. By
Lemma 4.2.29 below, there exists G ∈ K[y] such that g = G(f). Denote
by Gmax, Gmin ∈ K[y] the homogeneous components of G of maximal and
minimal degree, respectively, and likewise denote by fmax, fmin ∈ K[x] the
homogeneous components of f of maximal and minimal degree, respectively.
Since f(0) = 0, we have fmin /∈ K. Therefore, the homogeneous compo-
nents of G(f) of maximal and minimal degree are given by Gmax(fmax) and
Gmin(fmin), respectively. But since g = G(f) is homogeneous, this implies
fmax = fmin, hence f is homogeneous.

The following lemma was used in the proof of part (c) of the Extended
Lüroth Theorem.

Lemma 4.2.29. Let f ∈ K[x]. Then we have K(f) ∩K[x] = K[f ].

Proof. For f ∈ K the assertion is evident, so assume that f is non-constant.
We have K[f ] ⊆ K(f) ∩ K[x]. To show the converse inclusion, let g ∈
K(f) ∩ K[x]. Then there exist coprime polynomials G1, G2 ∈ K[y] with
G2(f) 6= 0 such that g = G1(f)/G2(f). Division with remainder yields
polynomials Q,R ∈ K[y] such that G1 = Q · G2 + R and either R = 0 or
degy(R) < degy(G2). If R = 0, then the coprimality of G1 and G2 implies

G2 ∈ K, thus g = G−12 ·G1(f) ∈ K[f ] and we are done. So let R 6= 0. We have
g ·G2(f) = G1(f) = Q(f) ·G2(f) + R(f), hence R(f) = (g −Q(f)) ·G2(f).
Since f is non-constant, we have deg(R(f)) = degy(R) · deg(f) < degy(G2) ·
deg(f) = deg(G2(f)). This implies g = Q(f) ∈ K[f ].
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The Extended Lüroth Theorem implies that two non-constant homoge-
neous polynomials of transcendence degree 1 have associated powers, provid-
ing us with an annihilating polynomial of simple shape.

Corollary 4.2.30. Let f1, f2 ∈ K[x] be non-constant homogeneous polyno-
mials of degree at most D ≥ 1. Then f1, f2 are algebraically dependent over
K if and only if fd11 = c · fd22 for some d1, d2 ∈ [D] and some c ∈ K∗.

Proof. If fd11 = c · fd22 for some d1, d2 ∈ [D] and some c ∈ K∗, then f1, f2 are
clearly algebraically dependent over K.

Conversely, assume that f1, f2 are algebraically dependent over K. Since
f1, f2 are non-constant, the field L := K(f1, f2) has transcendence degree
1 over K. By Theorem 4.2.28 (c), there exists a homogeneous polynomial
h ∈ K[x] such that L = K(h). Since f1, f2 are non-zero and homogeneous,
f1 = c1h

d2 and f2 = c2h
d1 for some d1, d2 ∈ [D] and some c1, c2 ∈ K∗. Setting

c := cd11 c
−d2
2 ∈ K∗, we obtain fd11 = cd11 h

d1d2 = c · cd22 hd1d2 = c · fd22 .

The following lemma constitutes the proof of Theorem 4.2.27. The main
idea of the proof is that, in view of Corollary 4.2.30, two algebraically in-
dependent homogeneous polynomials can become dependent under a graded
homomorphism only if the coprimality of some pair of their factors gets vio-
lated. Therefore, preserving the algebraic independence of two homogeneous
polynomials reduces to preserving the coprimality of their irreducible factors.
For the latter, we can invoke Lemma 4.2.25.

Lemma 4.2.31. Let n ≥ 2, let 1 ≤ δ ≤ d, let D1 ≥ 2δ2 + 1, and let
D2 ≥ δ + 1. For q ∈ N2

>0 and c ∈ K2, let Φq,c be defined as in (4.2.24).
Let f1, . . . , fm ∈ K[x] be homogeneous polynomials of degree at most d, tran-
scendence degree at most 2, and with irreducible factors of degree at most δ.

Then there exists a set B2,1 ⊂ P of primes with |B2,1| < 2nd
(
n+δ
δ

)
log2D2

such that for all q2 ∈ P \B2,1 there exists a set B2,2 ⊆ K with |B2,2| < 2δdq2
such that for all c2 ∈ K \ B2,2 there exists a set B1,1 ⊂ P of primes with

|B1,1| <
(
2d
2

)
n
(
n+2δ2

2δ2

)
log2D1 satisfying the following property: For all q1 ∈

P \ B1,1 there exists a set B1,2 ⊆ K with |B1,2| <
(
2d
2

)
2δ2q1 such that Φq,c is

faithful to {f1, . . . , fm} for all c1 ∈ K \B1,2.

Proof. We may assume that f1, f2 are algebraically independent over K (if
the transcendence degree is less than 2, we can append algebraically inde-
pendent variables). Let g1, . . . , gk ∈ K[x] be the (pairwise non-associated)
irreducible factors of f1 and f2. We have k ≤ 2d.

Now let Φ: K[x]→ K[z1, z2] be a graded K-algebra homomorphism. We
want to show the following claim: If Φ(gi) is non-constant for all i ∈ [k],
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and if gcd(Φ(gi),Φ(gj)) = 1 in K[z1, z2] for all i, j ∈ [k] with i 6= j, then
Φ(f1),Φ(f2) are algebraically independent over K. To this end, let d1, d2 ≥
1. Let α, β ∈ Nk such that f1 = u1 · gα1

1 · · · g
αk
k and f2 = u2 · gβ11 · · · g

βk
k

for some u1, u2 ∈ K∗. Since f1, f2 are algebraically independent over K,
the powers fd11 and fd22 are not associated. Hence, by unique factorization,
there exists i ∈ [k] such that d1αi 6= d2βi. By the assumptions on Φ, the
images Φ(g1), . . . ,Φ(gk) are non-zero (not necessarily irreducible) non-units
and pairwise coprime. By unique factorization, we can infer that Φ(f1)

d1 =
u1 · Φ(g1)

α1d1 · · ·Φ(gk)
αkd1 and Φ(f2)

d2 = u2 · Φ(g1)
β1d2 · · ·Φ(gk)

βkd2 are not
associated. Since Φ is graded, Φ(f1) and Φ(f2) are homogeneous, hence
Corollary 4.2.30 implies that Φ(f1),Φ(f2) are algebraically independent over
K and the claim is proven.

Now the assertion follows from Lemma 4.2.25 applied to the homomor-
phism Ψ: K[x] → K defined by xi 7→ 0 for all i ∈ [n], and to the poly-
nomials g1, . . . , gk. Note that in this case, for q ∈ N2

>0 and c ∈ K2, the
definition of Φq,c : K[x]→ K[w1, w2] in (4.2.22) agrees with the definition of
Φq,c : K[x]→ K[z1, z2] in (4.2.24) when w1, w2 are replaced by z1, z2.

A rank-based approach to identity testing of ΣΠΣΠ-circuits with
constant top and bottom fan-in

We continue with a hitting set construction for ΣΠΣΠ-circuits, which are
sums of products of sparse polynomials. Our method is a generalization of
the rank-based approach for ΣΠΣ-circuits by Dvir, Karnin & Shpilka [DS07,
KS11a].

Definition 4.2.32. Let n, k, d, δ ≥ 1 and consider the arithmetic circuit

C =
k∑
i=1

d∏
j=1

fi,j, (4.2.25)

where fi,j ∈ K[x] \ {0} are polynomials (in sparse ΣΠ-representation) of
degree at most δ. The set of all circuits as in (4.2.25) is denoted by ΣkΠdΣΠδ.

(a) The parameters k and δ are called top and bottom fan-in of C, respec-
tively. For i ∈ [k], the product Ti :=

∏d
j=1 fi,j is called a multiplication

term of C. We call S(C) := {fi,j | i ∈ [k] and j ∈ [d]} ⊆ K[x] the set of
sparse polynomials of C.

(b) The content of C is defined as cont(C) := gcd(T1, . . . , Tk) ∈ K[x]\{0}.
If cont(C) = 1, then C is called simple. The simple part of C is
defined as the arithmetic circuit sim(C) := C/ cont(C).
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(c) For I ⊆ [k], we define the arithmetic circuit CI :=
∑

i∈I Ti. If CI 6= 0 for
all non-empty proper subsets I ⊂ [k], then C is called minimal.

(d) The rank of C is defined as rk(C) := trdegK(S(C)).

(e) Let Rδ(k, d) be the smallest r ∈ N>0 with the following property: Every
simple and minimal ΣkΠdΣΠδ-circuit C computing the zero polynomial
satisfies rk(C) < r.

For δ = 1 and fi,j homogeneous for all i ∈ [k] and j ∈ [d], those definitions
agree with the respective notions for ΣΠΣ-circuits.

Simple and minimal ΣkΠdΣΠδ-circuits computing the zero polynomial are
in a sense the smallest polynomial identities in this class.

We will assume that the top fan-in k and the bottom fan-in δ are con-
stants. Note that for k unbounded, there are no efficient PIT algorithms
known even for ΣΠΣ-circuits. On the other hand, if k = 2 and δ is un-
bounded, we obtain an instance of the as yet unsolved sparse factorization
problem [vzGK85, SSS11]. One of the difficulties that arise when δ is un-
bounded is that factors of sparse polynomials are not sparse in general.

Except for the top fan-in 2 case (and the previously known bottom fan-
in 1 case), our hitting set construction is conditional in the sense that its
efficiency depends on a good upper bound for Rδ(k, d). We will discuss this
question below. The following theorem shows how to reduce the number
of variables of a ΣkΠdΣΠδ-circuit from n to Rδ(k, d) + 1 while preserving
non-zeroness.

Theorem 4.2.33. Let n, δ, d, k ≥ 1 and let r := Rδ(k, d). For D =
(D2, D3) ∈ N2

>0, q = (q2, q3) ∈ N2
>0 and c = (c1, c2, c3) ∈ K3, define the

K-algebra homomorphism

ΦD,q,c : K[x]→ K[w, z],

xi 7→
( r∑
j=1

ai,j(c1) · zj
)

+ c
bDi−1

2 cq2
2 + c

bDi−1
3 cq3

3 w, (4.2.26)

where i ∈ [n] and ai,j ∈ K[t] are defined as in (4.2.8).

(a) Let char(K) be arbitrary. Set D2 := 2δr+1+1 and D3 := δ+1. Then there
exists an effectively computable N ∈ N with N = poly

(
nkr

2δr+1
, δr, dk

)
such that for all N-subsets S ⊆ K we have the following: For all non-zero
C ∈ ΣkΠdΣΠδ there exist q ∈ [N ]2 and c ∈ S3 such that ΦD,q,c(C) 6= 0.

(b) Let char(K) = 0 or char(K) > δr. Set D2 := 2δ2r + 1 and D3 :=
δ + 1. Then there exists an effectively computable N ∈ N with N =
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poly
(
nrkδ

2
, rr, δdk

)
such that for all N-subsets S ⊆ K we have the fol-

lowing: For all non-zero C ∈ ΣkΠdΣΠδ there exist q ∈ [N ]2 and c ∈ S3

such that ΦD,q,c(C) 6= 0.

The proof of this theorem, given below, is based on the following lemma.
It is a generalization of [KS11a, Theorem 3.4] to ΣΠΣΠ-circuits. Accord-
ing to this lemma, a homomorphism preserves the non-zeroness of a given
ΣkΠdΣΠδ-circuit C if it preserves the simple part of CI and rank at least
Rδ(k, d) of the simple part of CI for all non-trivial subcircuits CI of C.

Lemma 4.2.34. Let n, r, k, d, δ ≥ 1. Let C be a ΣkΠdΣΠδ-circuit and let
ϕ : K[x]→ K[z] be a K-algebra homomorphism of degree 1 that satisfies

(a) ϕ(sim(CI)) = sim(ϕ(CI)) and

(b) rk(ϕ(sim(CI))) ≥ min{rk(sim(CI)), Rδ(k, d)}
for all non-empty I ⊆ [k]. Then we have C = 0 if and only if ϕ(C) = 0.

Proof. If C = 0, then clearly ϕ(C) = 0. Conversely, assume that ϕ(C) = 0.
Since ϕ(C) = ϕ(CI1)+ · · ·+ϕ(CIm) for some non-empty I1, . . . , Im ⊆ [k] with
ϕ(CIi) zero and minimal for all i ∈ [m], we may assume that ϕ(C) is simple.
By assumption (a), we have ϕ(sim(C)) = sim(ϕ(C)), thus ϕ(sim(C)) is a
minimal and simple circuit computing the zero polynomial. Since ϕ is of de-
gree 1, we have ϕ(sim(C)) ∈ ΣkΠdΣΠδ, hence rk(ϕ(sim(C))) < Rδ(k, d). By
assumption (b), this implies rk(ϕ(sim(C))) = rk(sim(C)), thus ϕ is faithful
to S(sim(C)). Lemma 4.2.7 yields sim(C) = 0, hence C = 0.

The following lemma demonstrates that the simple part of a ΣΠΣΠ-
circuit C can be preserved by preserving the coprimality of the constant-
degree polynomials in S(C). The latter can be accomplished by Corollary
4.2.26.

Lemma 4.2.35. Let C be a ΣkΠdΣΠδ-circuit and let f1, . . . , fm ∈ K[x] be
the (pairwise non-associated) irreducible factors of the polynomials in S(C).
Let ϕ : K[x]→ K[z] be a K-algebra homomorphism such that

(a) ϕ(fi) 6= 0 for all i ∈ [m], and

(b) gcd(ϕ(fi), ϕ(fj)) = 1 for all i, j ∈ [m] with i < j.

Then we have ϕ(sim(C)) = sim(ϕ(C)).

Proof. Replacing C by its simple part, we may assume that C is simple. Then
we have to verify that ϕ(C) is again simple. To this end, write C =

∑k
i=1 Ti,

where T1, . . . , Tk ∈ K[x] are multiplication terms with gcd(T1, . . . , Tk) = 1.
Now assume for the sake of contradiction that cont(ϕ(C)) 6= 1. Then k ≥ 2



4.2. Faithful Homomorphisms 115

and there exists an irreducible polynomial g ∈ K[x] dividing ϕ(Ti) for all
i ∈ [k]. Therefore, there exist j1, . . . , jk ∈ [m] such that fji divides Ti and g
divides ϕ(fji) for all i ∈ [k]. Since gcd(T1, . . . , Tk) = 1, there exist i1, i2 ∈ [k]
such that ji1 < ji2 . This implies that g divides gcd(ϕ(fji1 ), ϕ(fji2 )) = 1, a
contradiction.

Proof of Theorem 4.2.33. We start with some easy estimates. Let C be a
ΣkΠdΣΠδ-circuit. Then sp(f) ≤

(
n+δ
δ

)
for all f ∈ S(C). If f1, . . . , fm ∈

K[x] are the (pairwise non-associate) irreducible factors of the polynomials
in S(C), then we have m ≤ kdδ.

Now we show (a). By Lemma 4.2.19, Corollary 4.2.26, and Corollary
A.1.2 (b), there exists an effectively computable N ∈ N with

N = poly
(
nkr

2δr+1

, δr, dk
)

such that for all N -subsets S ⊆ K and all C ∈ ΣkΠdΣΠδ there exist q ∈ [N ]2

and c ∈ S3 such that

(a) ΦD,q,c(fi) 6= 0 for all i ∈ [m] and gcd(ΦD,q,c(fi),ΦD,q,c(fj)) = 1 for
all i, j ∈ [m] with i < j, where f1, . . . , fm ∈ K[x] are the (pairwise
non-associate) irreducible factors of the polynomials in S(C), and

(b) ΦD,q,c is faithful to some subset {f1, . . . , fm} ⊆ S(sim(CI)) of transcen-
dence degree min{rk(sim(CI)), Rδ(k, d)} for all non-empty I ⊆ [k].

By Lemmas 4.2.34 and 4.2.35, we obtain assertion (a).
Part (b) can be shown similarly, with the difference that we can use

Lemma 4.2.20 instead of Lemma 4.2.19 in zero or large characteristic.

Rank bounds

First we state some trivial upper bounds for Rδ(k, d). We have Rδ(k, d) ≤
kd, because |S(C)| ≤ kd for all C ∈ ΣkΠdΣΠδ and S(C) is algebraically
dependent over K if C = 0. In the top fan-in 2 case, we have Rδ(2, d) = 1,
because a simple, minimal, and zero Σ2ΠdΣΠδ-circuit is of the form c− c for
some c ∈ K.

Rank bounds for ΣkΠΣd-circuits were studied in [DS07, SS11a, KS09,
SS10]. Since linear forms are algebraically independent if and only if they
are linearly independent, those rank bounds also apply toR1(k, d). By [SS10],
we have R1(k, d) = O(k2 log d) for arbitrary fields K, and R1(k, d) = O(k2)
for ordered fields K.

On the other hand, examples in [KS07, SS11a] demonstrate R1(k, d) =
Ω(k) if char(K) = 0, and R1(k, d) = Ω(k logp d) if char(K) = p > 0.
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Finding a good upper bound for Rδ(k, d) in the general case remains an
open question. The experience with ΣΠΣ-circuits leads us to the following
natural conjecture.

Conjecture 4.2.36. We have

Rδ(k, d) =

{
poly(δk), if char(K) = 0,

poly(δk logp d), if char(K) = p > 0.

4.2.6 Summary

We summarize the results of Sections 4.2.1 to 4.2.5. We constructed hitting
sets for the circuit classes listed in the following table.

# Circuit class char(K) Hitting set size Comment

(a) Algτ,D Σ any poly
(
n,Dτ

)
(b) Algτ,D Πδ any poly

(
(nδD)τ

)
(c) Algτ,D ΣsΠδ any poly

(
nδ

τ
, nτ

2
, (δD)τ

)
(d) 0 or > δτ poly

(
(nsδD)τ

)
(e) p > 0 poly

(
δτ

2s, (nτD)τ , sτs
)

K ⊆ Fp
(f) Alg2,D ΠdΣΠδ any poly

(
nδ

2
, δdD

)
(g) ΣkΠdΣΠδ any poly

(
nkr

2δr+1
, (δd)r, k

)
r = Rδ(k, d)

(h) 0 or > δr poly
(
nrkδ

2
, (δdr)r, k

)
r = Rδ(k, d)

The hitting sets of (a)–(f) are based on Theorem 4.2.4 in conjunction
with the construction of faithful homomorphisms in Theorems 4.2.8, 4.2.9,
4.2.17 (a), 4.2.17 (b), 4.2.21, and 4.2.27, respectively. Items (g) and (h) use
Theorem 3.2.4 together with Theorem 4.2.33. Note that the latter theorem
also uses the concept of faithfulness.

Remark 4.2.37. In [ASSS12], faithful homomorphisms were constructed for
sets of products of linear forms using the Jacobian Criterion. Thereby, for
char(K) = 0 or char(K) > δτ , they obtained hitting sets for Algτ,D ΠδΣ of

size poly
(
n, (δD)τ

)
, where ΠδΣ denotes the set of products of linear forms

of degree δ.

4.3 Algebraic Independence Testing

In this section we study the complexity of testing algebraic independence of
arithmetic circuits.
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Problem 4.3.1. Let K be a computable field and let C be a circuit class over
K. Then the algebraic independence testing problem AlgIndepK(C) is
defined as follows: Given circuits C1, . . . , Cm ∈ C, decide whether the polyno-
mials C1, . . . , Cm are algebraically independent over K. We set AlgIndepK :=
AlgIndepK(Call).

Algebraic independence testing of a constant number of arithmetic
circuits

We start with the special case where the number of arithmetic circuits is
fixed. Here the degree bound for annihilating polynomials yields an efficient
randomized algorithm for polynomial-degree circuits.

Let K be a computable field and let C be a circuit class over K. For fixed
m ≥ 1, we denote by AlgIndepK(C)m the following problem: Given circuits
C1, . . . , Cm ∈ C, decide whether the polynomials C1, . . . , Cm are algebraically
independent over K.

Theorem 4.3.2. Let m ≥ 1, and let K = Q or K = Fq for some prime
power q. Then we have AlgIndepK(Cpoly-deg)m ∈ RP.

Proof. Using Lemma 4.3.3 below, we can reduce to the linear independence
testing problem (see Corollary 3.3.3).

Lemma 4.3.3. Let f1, . . . , fm ∈ K[x] be polynomials of degree at most δ ≥ 1.
Then f1, . . . , fm are algebraically independent over K if and only if{

f i11 · · · f imm | i ∈ Nm such that |i| ≤ δm
}

is K-linearly independent.

Proof. The lemma is a direct consequence of Theorem 4.1.5.

Algebraic independence testing over Q

In characteristic zero, testing algebraic independence reduces to (the com-
plement of) PIT by the Jacobian Criterion (cf. [DGW09, Kay09]).

Theorem 4.3.4. Let K be a computable field with char(K) = 0. Then the
problems AlgIndepK and PITK are polynomial-time equivalent.

Proof. Let C be an arithmetic circuit over K[x]. Then C 6= 0 if and only
if C · x1 is algebraically independent over K. Therefore, PITK reduces to
AlgIndepK .
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Conversely, let C1, . . . , Cm be arithmetic circuits over K[x]. We may
assume m ≤ n (instances with m > n are algebraically dependent over K
and can be mapped to the zero circuit). Consider the polynomial

det


J

tm+1,1 · · · tm+1,n
...

...
tn,1 · · · tn,n


∈ K[t,x],

where J := Jx(C1, . . . , Cm) ∈ K[x]m×n is the Jacobian matrix of C1, . . . , Cm
and t = {ti,j | i ∈ [m+ 1, n] and j ∈ [n]} are new variables. An arithmetic
circuit C for this polynomial can be computed in polynomial time, using
[BS83] for the partial derivatives and the Berkowitz algorithm (see Lemma
A.3.1) for the determinant. By the Jacobian criterion, C1, . . . , Cm are alge-
braically independent over K if and only if rkK(x)(J) = m if and only if J
can be completed to a non-singular matrix of K(x)n×n if and only if C 6= 0.
Therefore, AlgIndepK reduces to PITK .

As a consequence of Theorem 4.3.4, we obtain an efficient randomized
algorithm for the algebraic independence testing problem over Q.

Corollary 4.3.5. We have AlgIndepQ ∈ RP.

Proof. This follows from Theorems 4.3.4 and 2.5.7.

Algebraic independence testing over finite fields

In [DGW09, Kay09] the question was posed whether there are efficient ran-
domized algorithms for testing algebraic independence over finite fields. The
previously best known complexity bound was AlgIndepFq ∈ PSPACE. This
result can be obtained from the degree bound for annihilating polynomials
and linear algebra. Using the Witt-Jacobian Criterion (see Section 4.1.3),
we show that algebraic independence over finite fields can be tested by a
non-deterministic polynomial-time Turing machine with a #P-oracle. Since
we have the inclusion NP#P ⊆ PSPACE, this is an improvement over the
previously known complexity bound.

Theorem 4.3.6. We have AlgIndepFq ∈ NP#P for all prime powers q.

For the proof and algorithm, given below, we will require an explicit
realization of the truncated Witt ring W`+1(Fpt) of a finite field Fpt . We
will make use of the fact that this Witt ring is isomorphic to the Galois ring
G`+1,t (see Appendix A.6.1), which can be represented as follows.
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Lemma 4.3.7. Let p be a prime, let ` ≥ 0, and let t ≥ 1. There exists a
monic polynomial h ∈ Z/〈p`+1〉[x] of degree t, dividing xp

t−1 in Z/〈p`+1〉[x],
such that h := h (mod 〈p〉) is irreducible in Fp[x] and ξ := x + 〈h〉 is a
primitive (pt − 1)-th root of unity in Fp[x]/〈h〉. Then we have isomorphisms

G`+1,t
∼= Z/〈p`+1〉[x]

/
〈h〉 and Fpt ∼= Fp[x]

/
〈h〉,

and ξ := x+ 〈h〉 is a primitive (pt − 1)-th root of unity in G`+1,t.

Proof. This follows from the proof of [Wan03, Theorem 14.8].

The idea of the algorithm is that, by the explicit Witt-Jacobian Criterion,
given circuits C1, . . . , Cm over Fq[x] are algebraically independent over Fq if
and only if the associated (`+ 1)-th Witt-Jacobian polynomial with respect
to some xI , where I ∈

(
[n]
m

)
, has a term xα whose coefficient is not divisible

by pmin{vp(α),`}+1. A non-deterministic Turing machine can guess I and α.
The computationally hardest part consists of computing the coefficient of
xα. For this step, we use the interpolation formula in the following lemma
which is motivated by [KS11b, Theorem IV.1]. The formula comprises an
exponential number of summands, but can be computed with the help of a
#P-oracle.

Lemma 4.3.8. In the situation of Lemma 4.3.7, let f ∈ G`+1,t[z] be a poly-
nomial of degree at most pt − 2. Then the coefficient of zd in f is given
by

(pt − 1)−1 ·
pt−2∑
i=0

ξ−id · f(ξi) ∈ G`+1,t

for all d ∈ [0, pt − 2].

Proof. Set u := pt−1 ∈ N>0. Note that u is a unit in G`+1,t, because u /∈ 〈p〉.
It suffices to show that

∑u−1
i=0 ξ

−idξij = u · δd,j for all d, j ∈ [0, u− 1]. This is
clear for d = j, so let d 6= j. Then

∑u−1
i=0 ξ

−idξij =
∑u−1

i=0 ξ
i(j−d) = 0, because

ξj−d is a u-th root of unity 6= 1 and ξj−d−1 is a non-zerodivisor in G`+1,t.

Now we can state the algorithm, whose steps are explained in more detail
in the proof beneath. Note that the algorithm makes just a single call to the
#P-oracle.

Algorithm 4.3.9 (Algebraic independence testing over finite fields).
Input: Arithmetic circuits C1, . . . , Cm over K[x1, . . . , xn], where and K is a
finite field.
Acceptance: If C1, . . . , Cm are algebraically independent over K, then there
exists an accepting computation path, otherwise all computation paths re-
ject.
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(1) Set s ← max1≤i≤m|Ci|, δ ← ss, ` ← bm logp δc, and D ← mδm+1 + 1.
Let t ≥ 1 be the least multiple of logp|K| such that pt > Dn.

(2) Using non-determinism, guess a monic polynomial h ∈ Z/〈p`+1〉[x] of
degree t. Let h ∈ Fp[x] such that h = h (mod 〈p〉), and set ξ ← x+ 〈h〉
and ξ ← x + 〈h〉. Check that h divides xp

t−1 − 1 in Z/〈p`+1〉[x], h is
irreducible in Fp[x], and ξ has order pt − 1 in Fp[x]/〈h〉 (for the last
test, also guess a prime factorization of pt− 1), otherwise reject. Finally,
set G`+1,t ← Z/〈p`+1〉[x]/〈h〉 and Fpt ← Fp[x]/〈h〉, and compute an
embedding K ⊆ Fpt .

(3) Using non-determinism, guess I ∈
(
[n]
m

)
and α ∈ [0, D − 1]n.

(4) Compute arithmetic circuits C ′1, . . . , C
′
m over G`+1,t[x] such that Ci = C ′i

(mod 〈p〉G`+1,t[x]) for all i ∈ [m].

(5) Compute an arithmetic circuit C over G`+1,t[x] for the Witt-Jacobian
polynomial WJP`+1,xI (C

′
1, . . . , C

′
m).

(6) Compute an arithmetic circuit C ′ over G`+1,t[z] for the Kronecker sub-
stitution C

(
z, zD, . . . , zD

n−1)
and set d←

∑n
i=1 αiD

i−1 ∈ N.

(7) Using a #P-oracle, compute

c←
pt−2∑
i=0

ξ−id · C ′(ξi) ∈ G`+1,t. (4.3.1)

(8) If c is divisible by pmin{vp(α),`}+1 in G`+1,t, then reject, otherwise accept.

Proof of Theorem 4.3.6. We show that Algorithm 4.3.9 works correctly and
can be implemented to run in polynomial time on a non-deterministic Turing
machine with a #P-oracle. For this, we use the notation of the algorithm
and, in addition, set u := pt − 1 ∈ N>0.

In step (1), various constants are computed satisfying the following es-
timates. By Lemma 2.2.4, we have deg(Ci) ≤ δ for all i ∈ [m]. Conse-
quently, we obtain deg(C) ≤ mδ(p` − 1) +m+m(δ − 1) ≤ mδm+1 < D and
degz(C

′) ≤ Dn − 1 ≤ u− 1.

In step (2), representations of the Galois ring G`+1,t and the field Fpt
are computed according to Lemma 4.3.7. The irreducibility of h can be
tested efficiently by checking whether gcd(h, xp

i − x) = 1 in Fp[x] for all

i ∈ {1, . . . , bt/2c} (see Lemma A.3.5). For the order test, verify ξ
i 6= 1 for

all maximal divisors i of u (using its prime factorization). An embedding
K ⊆ Fpt can be computed efficiently as described in [Len91, §2] and is used
to convert the constants of the input circuits into the new representation.



4.3. Algebraic Independence Testing 121

In step (3), an index set I and an exponent vector α are chosen non-
deterministically to determine a monomial of a Witt-Jacobian polynomial
whose degeneracy condition is checked in the subsequent steps of the algo-
rithm.

The arithmetic circuits C ′1, . . . , C
′
m in step (4) can be computed by lifting

all constants a ∈ Fpt of C1, . . . , Cm to some a ∈ G`+1,t with a = a (mod 〈p〉).
Since G`+1,t is a free Z/〈p`+1〉-module with basis 1, ξ, . . . , ξt−1, this lifting can
be done coordinate-wise in our representation.

To compute the arithmetic circuit C in step (5) in polynomial time, we
use [BS83] for the partial derivatives, the Berkowitz algorithm (see Lemma
A.3.1) for the determinant, and repeated squaring for the high power.

The Kronecker substitution in step (6) can be computed again by repeated
squaring. Since deg(C) < D, Lemma 2.6.2 implies that the coefficient of
xα in C equals the coefficient of zd in C ′. Since degz(C

′) ≤ u − 1, this
coefficient is u−1c by Lemma 4.3.8. Since u is a unit in G`+1,t, Theorem 4.1.24
implies that the test in step (8) correctly decides the algebraic independence
of C1, . . . , Cm.

It remains to show that the computation of c in step (7) can be performed
in polynomial time with the help of a #P-oracle. For i ∈ [0, u− 1], the sum-
mand ci := ξ−id ·C ′(ξi) ∈ G`+1,t of (4.3.1) can be written as ci =

∑t−1
j=0 ci,jξ

j

with ci,j ∈ Z/〈p`+1〉. Therefore, each ci can be represented by a tuple
ci ∈ [0, p`+1 − 1]t of integers, and a desired representation of c is given
by the component-wise integer sum c :=

∑u−1
i=0 ci ∈ [0, N − 1]t, where

N := u · p`+1 ∈ N. Those tuples can be encoded into single integers via
the bijection

ι : [0, N − 1]t → [0, N t − 1], (n0, . . . , nt−1) 7→
t−1∑
j=0

njN
j

from Lemma 2.6.2. This bijection and its inverse are efficiently computable,
and we have ι(c) =

∑u−1
i=0 ι(ci). Hence it suffices to show that ι(c) can be

computed in #P. To this end, we design a non-deterministic polynomial-
time Turing machine that, given G`+1,t, ξ and C ′ as input, has exactly ι(c)
accepting computation paths for the corresponding c. First we branch non-
deterministically over all integers i ∈ [0, u−1]. In each branch i, we compute
ci. This can be done in polynomial time, because C ′ can be efficiently evalu-
ated and the powers of ξ can be obtained by repeated squaring. If ι(ci) = 0,
we reject, otherwise we branch again non-deterministically into exactly ι(ci)
computation paths that all accept. This implies that the machine has alto-
gether

∑u−1
i=0 ι(ci) = ι(c) accepting computation paths.
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4.4 Computation of Algebraic Relations

In the final section of this chapter we investigate the complexity of computing
the algebraic relations of arithmetic circuits.

Exponential-space computation of algebraic relations

Let K be a field and let K[x] = K[x1, . . . , xn] be a polynomial ring over K.
The algebraic relations AlgRelK[y](f1, . . . , fm) of polynomials f1, . . . , fm ∈
K[x] can be expressed as an elimination ideal in K[x,y].

Lemma 4.4.1 ([KR00, Corollary 3.6.3]). Let f1, . . . , fm ∈ K[x] be polyno-
mials. Then we have

AlgRelK[y](f1, . . . , fm) =
〈
y1 − f1, . . . , ym − fm

〉
K[x,y]

∩K[y], (4.4.1)

where y = {y1, . . . , ym} are new variables.

This elimination ideal can be computed via Gröbner basis methods (for an
introduction to Gröbner bases, we refer to [KR00]). Since Gröbner bases can
be computed in exponential space [KM96], we obtain the following theorem.

Theorem 4.4.2. Let K = Q or K = Fq for some prime power q. Then there
exists an exponential-space bounded Turing machine that, given arithmetic
circuits C1, . . . , Cm over K[x], computes a generating system of the ideal
AlgRelK[y](C1, . . . , Cm).

Proof sketch. Let C1, . . . , Cm be arithmetic circuits over K[x] and denote
J := 〈y1 − C1, . . . , ym − Cm〉K[x,y]. By Lemma 4.4.1, we have

AlgRelK[y](C1, . . . , Cm) = J ∩K[y].

Let σ be a term ordering on T(x,y) which is an elimination ordering for
x. Let G ⊂ K[x,y] be a σ-Gröbner basis of J . Then, by [KR00, Theorem
3.4.5 (b)], G∩K[y] is a σ′-Gröbner basis of J∩K[y], where σ′ is the restriction
of σ to T(y).

Let s :=
∑m

i=1 size(Ci) and let δ := ss. By Lemma 2.2.4, we have deg(yi−
Ci) ≤ δ for all i ∈ [m].

First let K = Q. The bit-size of the coefficients of y1−C1, . . . , ym−Cm is
bounded by B := ss+1. By [KM96], a σ-Gröbner basis G ⊂ K[x,y] of J can
be computed in space poly

(
2n, logm, log δ, B

)
= poly

(
2n, ss

)
(in [KM96] the

input polynomials are given in sparse representation, but we can compute
the coefficients of y1−C1, . . . , ym−Cm in space poly(ss)). This algorithm can
be modified to output just the polynomials in G that contain no x-variables.
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If K = Fq for some prime power q, then the algorithm in [KM96] works
mutatis mutandis. Most notably, the underlying degree bound for Gröbner
bases in [Dub90] holds over any field.

Remark 4.4.3. The exponential-space upper bound for computing Gröbner
bases is best possible [MM82]. However, it is conceivable that the computa-
tion of elimination ideals of the shape (4.4.1) is easier.

Hardness of computing minimal polynomials

Kayal obtained hardness results connected with the computation of annihilat-
ing polynomials [Kay09]. We prove one of his results in a slightly generalized
setting.

Let K be a field and let K[x] = K[x1, . . . , xn] be a polynomial ring over
K. We consider a situation where we have a more reasonable bound on the
size of a generating system of the algebraic relations than in the general case.
Let f1, . . . , fm ∈ K[x] be polynomials such that trdegK(f1, . . . , fm) = m− 1.
Then, by Lemma 4.1.6, the ideal AlgRelK[y](f1, . . . , fm) is generated by a
minimal polynomial F ∈ K[y] of f1, . . . , fm (recall Definition 4.1.7). If
K = Q or K = Fq for some prime power q, then the degree bound for annihi-
lating polynomials implies that a minimal polynomial of arithmetic circuits
C1, . . . , Cm of transcendence degree m − 1 can be computed in polynomial
space.

The following theorem gives evidence that the computation of minimal
polynomials is hard [Kay09, Section V]. It shows that, if φ is a boolean circuit
over x with arithmetization arithφ, then a minimal polynomial of arithφ,
x21 − x1, . . . , x

2
n − xn encodes information about the number of satisfying

assignments of φ. Recall that computing this number is a #P-hard problem
[AB09, Theorem 17.10].

Theorem 4.4.4. Let φ be a boolean circuit over x and let N ∈ [0, 2n] be
the number of satisfying assignments of φ. Let C := arithφ ∈ K[x] be the
arithmetization of φ and let fi := x2i − xi ∈ K[x] for i ∈ [n]. Let F ∈
K[y, y1, . . . , yn] be a minimal polynomial of C, f1, . . . , fn. Then we have

F (y, 0, . . . , 0)k = c · (y − 1)N · y2n−N

for some k ≥ 1 and c ∈ K∗.

Before we give the proof of this theorem, we draw some consequences. Let
K = Q or K = Fq for some prime power q. Suppose we were able to efficiently
compute an arithmetic circuit G for the polynomial F (y, 0, . . . , 0) ∈ K[y] of
encoding size poly(|φ|, n). Then, by checking whether G(1) = 0, we could
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decide the satisfiability of φ, an NP-hard problem. Note that, in contrast to
[Kay09], we do not require G to be monic. Therefore, in the case K = Q,
the only efficient test for the zeroness of G(1) we know of is a randomized
check.

Now let K = Q. We have

G(−1)G(2)

G(1/2)2
= 23·2n/k and

G(−1)4

G(1/2)2G(2)2
= 26N/k.

Using random modular evaluations of G, it is possible to efficiently extract
the exponents 3 · 2n/k and 6N/k (cf. the proof of [Kay09, Claim 15.2]) from
which we obtain N . This implies that computing an arithmetic circuit for G
(more precisely, a suitably defined function problem) is even #P-hard under
randomized reductions (cf. [Kay09, Theorem 15]; note that we do neither
require G to be monic nor to be over Z).

For the proof of Theorem 4.4.4 we set up some notation. Let σ be a term
ordering on T(x), let δ1, . . . , δn ≥ 1, and let f1, . . . , fn ∈ K[x] be polynomials
such that ltσ(fi) = xδii for all i ∈ [n]. Moreover, let b = (b1, . . . , bs) ∈ K

n
.

By Lemma 4.1.3, f1 − b1, . . . , fn − bn are algebraically independent over K.
Define the ideal

Ib :=
〈
f1 − b1, . . . , fn − bn

〉
K[x]

.

By [KR00, Corollary 2.5.10], {f1 − b1, . . . , fn − bn} is a σ-Gröbner basis of
Ib, and by [KR00, Proposition 3.7.1], Ib is a zero-dimensional ideal, hence
Ab := K[x]/Ib is finite-dimensional as a K-vector space. More precisely,
Bb := B + Ib is a K-basis of Ab, where

B :=
{
xα | α ∈ [0, δ1 − 1]× · · · × [0, δn − 1]

}
⊂ T(x),

in particular, we have dimK(Ab) = δ1 · · · δn =: d.
Now let f ∈ K[x] be another polynomial. Multiplication by f in Ab

yields a K-linear map

mb
f : Ab → Ab, g + Ib 7→ fg + Ib.

Let Mb
f ∈ K

d×d
be the matrix of mb

f with respect to Bb and let χMb
f
∈ K[y]

be the characteristic polynomial of Mb
f .

Let a ∈ VKn(Ib) and let Ab
a := U−1a Ab be the localization of Ab with

respect to the multiplicatively closed set

Ua :=
{
f + Ib | f ∈ K[x] such that f(a) 6= 0

}
⊂ Ab.

The number µ(a) := dimK(Ab
a) ∈ N>0 is called the multiplicity of a.
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Theorem 4.4.5 (Stickelberger’s Theorem). Let VKn(Ib) = {a1, . . . ,am}.
Then we have Ab ∼=

∏m
i=1A

b
ai

and χMb
f

=
∏m

i=1(y − f(ai))
µ(ai).

Proof. For char(K) = 0, this is [BPR06, Theorem 4.94 and Theorem 4.98].
The assumption on the characteristic is only used in [BPR06, Lemma 4.90],
however, the fact that K is infinite is sufficient.

The following lemma sheds light on the connection between minimal poly-
nomials of f, f1, . . . , fn and the characteristic polynomial of Mb

f .

Lemma 4.4.6. Let b ∈ Kn
and let F ∈ K[y, y1, . . . , yn] be a minimal poly-

nomial of f, f1, . . . , fn. Then F (y, b)k = c · χMb
f

for some k ≥ 1 and c ∈ K∗.

Proof. Let y := {y1, . . . , yn} and define

Iy :=
〈
f1 − y1, . . . , fn − yn

〉
K(y)[x]

.

Then Ay := K(y)[x]/Iy is finite-dimensional as a K(y)-vector space. More
precisely, By := B + Iy is a K(y)-basis of Ay, hence dimK(y)(A

y) = d. Let

my
f : Ay → Ay, g + Iy 7→ fg + Iy

and let My
f ∈ K(y)

d×d
be the matrix of my

f with respect to By. Let xα ∈ B.
By [KR00, Corollary 2.5.10], {f1− y1, . . . , fn− yn} ⊂ K[y][x] is a σ-Gröbner
basis of Iy with monic leading terms. By the Division Algorithm [KR00,
Theorem 1.6.4], there exist polynomials q1, . . . , qn, r ∈ K[y][x] such that
f · xα = q1(f1 − y1) + · · · + qn(fn − yn) + r and Supp(r) ⊆ B. This shows
that, in fact, we have My

f ∈ K[y]d×d and Mb
f = My

f (b) for all b ∈ Kn
. In

particular, we have χMy
f
∈ K[y,y] and χMb

f
= χMy

f
(y, b).

Now we want to show that F vanishes on V
K
n+1(χMy

f
). To this end, let

(c0, c) = (c0, c1, . . . , cn) ∈ V
K
n+1(χMy

f
). Then χMc

f
(c0) = χMy

f
(c0, c) = 0.

Thus, c0 is an eigenvalue of Mc
f . By Theorem 4.4.5, there exists a ∈ VKn(Ic)

such that f(a) = c0. Therefore, we have F (c0, c) =
(
F (f, f1, . . . , fn)

)
(a) =

0.
By Hilbert’s Nullstellensatz (see Theorem A.4.1), F is in the radical of

〈χMy
f
〉K[y,y], and since F is irreducible, there exist k ≥ 1 and c ∈ K∗ such

that F k = c · χMy
f
. We conclude F (y, b)k = c · χMy

f
(y, b) = c · χMb

f
.

Proof of Theorem 4.4.4. We have VKn(f1, . . . , fn) = {0, 1}n, thus m = 2n =
d (with the notation above). By Theorem 4.4.5, we have µ(a) = 1 for all
a ∈ {0, 1}n and, together with Lemma 2.3.6 (a), we obtain

χM0
C

=
∏

a∈{0,1}n
(y − C(a)) = (y − 1)N · y2n−N .
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Therefore, the assertion follows from Lemma 4.4.6.



Chapter 5

Conclusion

In this thesis we used the concept of faithful homomorphisms to construct
hitting sets for various classes of arithmetic circuits. By those techniques,
we also obtained a promising blackbox algorithm candidate for ΣkΠdΣΠδ-
circuits, when k and δ are constants. To be useful, a good upper bound for
Rδ(k, d) has to be found (see Conjecture 4.2.36). Even bounds for the special
cases k = 3 and δ = 2 would be interesting. Another direction for research
on small-depth PIT is to consider ΣkΠδΣ-circuits with unbounded top fan-in
k.

Another question that has not yet been answered in a satisfactory way is
the complexity status of algebraic independence testing over a finite field Fq.
Using the Witt-Jacobian Criterion, we could make some progress by showing
AlgIndepFq ∈ NP#P. We conjecture, however, that AlgIndepFq ∈ BPP. This
could be shown by devising an efficient randomized test for non-degeneracy
of Witt-Jacobian polynomials. It was shown by Stefan Mengel that testing
2-degeneracy of general arithmetic circuits is hard [MSS12]. It is conceivable
that degeneracy testing of Witt-Jacobian polynomials is easier due to their
special shape.
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Appendix A

Preliminaries

A.1 Notation

We fix some notation.

Sets

By N, Z, Q, R, and C we denote the sets of non-negative integers, integers,
rational numbers, real numbers, and complex numbers, respectively.

The power set of a set S will be denoted by 2S, and, for k ≥ 0, the set of
k-subsets of S will be denoted by

(
S
k

)
. If S is a subset of T , we write S ⊆ T ,

and if S is a strict subset of T , we write S ⊂ T .
For m,n ∈ Z, we define [m,n] := {m,m+ 1, . . . , n} (with the convention

[m,n] = ∅ if m > n) and [n] := [1, n]. The group of permutations [n]→ [n]
will be denoted by Sn for n ≥ 1.

Asymptotic notation

Let f, g : Nk → R≥0 be functions. We write g = O(f) if there exist c > 0 and
N ≥ 0 such that g(n1, . . . , nk) ≤ c · f(n1, . . . , nk) for all n1, . . . , nk ≥ N . If
f = O(g), then we write g = Ω(f). Finally, if g = O(f) and f = O(g), then
we write g = Θ(f).

Let f1, . . . , fm : Nk → R≥0 be functions and let g : Nmk → R≥0 be another
function. We write g = poly(f1, . . . , fm) if there exists a fixed polynomial
F ∈ N[x1, . . . , xm] such that g = O

(
F (f1, . . . , fm)

)
.

Prime numbers

We denote the set of prime numbers by P. The following theorem gives a
lower bound on the number of primes in an interval.

129
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Theorem A.1.1 ([RS62, Corollary 1, (3.5)]). Let k ≥ 17. Then we have

|[k] ∩ P| > k/ log k.

Corollary A.1.2. Let k ≥ 2. Then we have

(a) |[2k] ∩ P| ≥ 2k/k, and

(b) |[k2] ∩ P| ≥ k.

Proof. Since [16]∩P = {2, 3, 5, 7, 11, 13}, (a) and (b) hold for k = 2, 3, 4. For
k ≥ 5, (a) and (b) follow from Theorem A.1.1.

A.2 Complexity Theory

The model of computation for the complexity considerations in this the-
sis is that of Turing machines. For the definition of deterministic, non-
deterministic, and probabilistic Turing machines, we refer to the stan-
dard references [Pap94, AB09]. Furthermore, we assume familiarity with the
complexity classes in the tower

L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE.

We say that problems in P can be decided efficiently.

Randomized computation

The complexity class RP consists of problems for which there exists a ran-
domized polynomial-time Turing machine that accepts yes-instances with
probability ≥ 1/2 and always rejects no-instances. Similarly, the class coRP
consists of problems for which there exists a randomized polynomial-time
Turing machine that always accepts yes-instances and rejects no-instances
with probability ≥ 1/2. The classes RP and coRP represent the problems
that can be solved by efficient randomized algorithms with one-sided er-
ror. We have P ⊆ RP ⊆ NP and P ⊆ coRP ⊆ coNP. Finally, problems
in ZPP := RP∩ coRP can be solved by algorithms that never err, but run
in expected polynomial time.

The complexity class BPP consists of problems for which there exists
a randomized polynomial-time Turing machine that accepts yes-instances
with probability ≥ 2/3 and accepts no-instances with probability ≤ 1/3. It
represents the class of problems that can be solved by efficient randomized
algorithms with two-sided error. We have RP ⊆ BPP and coRP ⊆ BPP.
It is known that BPP is in the second level of the polynomial hierarchy, but
it is conjectured that BPP = P.



A.3. Rings, Modules, and Algebras 131

Parallel computation

We say that a problem can be decided efficiently in parallel, if it can be de-
cided in polylogarithmic time on a parallel random-access machine (PRAM)
with a polynomial number of processors. The class of those problems is de-
noted by NC. We have NL ⊆ NC ⊆ P. The complexity classes RNC and
coRNC are randomized versions of NC with one-sided error and are defined
analogously to RP and coRP. It is conjectured that RNC = NC.

Complexity of counting

The complexity class #P was defined in [Val79] and is the set of functions
f : {0, 1}∗ → N for which there exists a non-deterministic polynomial-time
Turing machine that on input x ∈ {0, 1}∗ has exactly f(x) accepting compu-
tation paths. In Section 4.3 we consider the complexity class NP#P of prob-
lems whose yes-instances are accepted by a non-deterministic polynomial-
time Turing machine with an oracle for a #P-function. We have the inclu-
sions

PH ⊆ P#P ⊆ NP#P ⊆ PSPACE.

A.3 Rings, Modules, and Algebras

In this thesis, “ring” means commutative ring with unity, unless stated oth-
erwise. We denote the group of units of a ring R by R∗.

Let R be a ring, let M be an R-module, and let S ⊆ M be a subset.
Then we write 〈S〉R for the submodule of M generated by S. If M = R is a
ring, this means that 〈S〉R is the ideal generated by S. If R = K is a field,
then M is a K-vector space and 〈S〉K denotes the K-subspace of M spanned
by S.

Let R be a ring. An R-algebra is a ring A together with a structural
homomorphism R → A. Given a subset S ⊆ A, we write R[S] for the R-
subalgebra of A generated by S. Now let R = K be a field. Then a K-algebra
6= {0} is a ring containing K as a subring. A finitely generated K-algebra
is called affine K-algebra, and an affine K-algebra which is an integral
domain is called affine K-domain.

A.3.1 Matrices and Determinants

In this section we introduce some notation for matrices and collect a few
lemmas concerning determinants.
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Let R be a ring and let A =
(
ai,j
)
i,j ∈ Rm×n be a matrix. For non-empty

index sets I ⊆ [m] and J ⊆ [n], we call AI,J :=
(
ai,j
)
i∈I,j∈J ∈ R|I|×|J | the

submatrix of A indexed by I and J .
Now let B ∈ Rr×s be another matrix. Then the Kronecker product of

A and B is defined as the block matrix

A⊗B :=

a1,1B · · · a1,nB
...

...
am,1B · · · am,nB

 ∈ Kmr×ns.

The following result is due to Berkowitz [Ber84]. It gives rise to an effi-
cient, parallelizable, and division-free algorithm for the computation of de-
terminants.

Lemma A.3.1 (Berkowitz’s Algorithm, [Sol02, §2]). Let R be a ring and

let A =
(
ai,j
)
∈ Rn×n. For k ∈ [n], define the matrix B(k) =

(
b
(k)
i,j

)
∈

R(n+2−k)×(n+1−k) by

b
(k)
i,j :=


0, if i ≤ j − 1,

1, if i = j,

−ak,k, if i = j + 1,

−A{k},[k+1,n] · Ai−j−2[k+1,n],[k+1,n] · A[k+1,n],{k}, if i ≥ j + 2,

for i ∈ [n+ 2−k] and j ∈ [n+ 1−k]. Denote (cn, . . . , c0)
> := B(1) · · ·B(n) ∈

Rn+1. Then the characteristic polynomial of A is given by

det(yIn − A) =
n∑
i=0

ciy
i ∈ R[y].

In particular, we have det(A) = (−1)nc0.

The Cauchy–Binet Formula is a generalization of the product rule for
determinants of square matrices.

Lemma A.3.2 (Cauchy–Binet Formula, [Zen93]). Let R be a ring, and let
A ∈ Rn×m and B ∈ Rm×n be matrices over R. Then

det(AB) =
∑
I

det(A[n],I) · det(BI,[n]),

where the sum is over all I ∈
(
[m]
n

)
.
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Finally, Hadamard’s Inequality provides an upper bound for the absolute
value of the determinant of a complex matrix.

Lemma A.3.3 (Hadamard’s Inequality, [Coh93, Proposition 2.2.4]). Let A ∈
Cn×n be a matrix with columns a1, . . . , an ∈ Cn. Then

|det(A)| ≤
n∏
j=1

‖aj‖2.

A.3.2 Polynomial Rings

In this section we fix some notation related to polynomial rings. For more
about polynomials we refer to [KR00]. Let n ≥ 1, let K be a field, and let
K[x] = K[x1, . . . , xn] be a polynomial ring over K.

A polynomial of the form xα := xα1
1 · · ·xαnn , where α ∈ Nn is some expo-

nent vector, is called a term. The set of all terms is denoted by T(x). A
polynomial of the form cxα for some c ∈ K and α ∈ N is called a monomial.
Note that some authors define monomial and term conversely.

A polynomial f ∈ K[x] can be written uniquely as f =
∑

α∈Nn cαx
α, with

cα ∈ K for all α ∈ Nn such that the support of f , defined by Supp(f) :=
{xα | cα 6= 0} ⊂ T(x), is finite. We define the logarithmic support of f
as LSupp(f) := {α ∈ Nn | cα 6= 0}. The number sp(f) := # Supp(f) ∈ N is
called the sparsity of f . If xα ∈ Supp(f), then xα is called a term of f and
cαx

α is called a monomial of f .
A term ordering σ on T(x) is a well-ordered binary relation <σ on the

terms that respects multiplication. We denote the leading term, leading
coefficient, and leading monomial of a non-zero polynomial f ∈ K[x]
with respect to σ by ltσ(f), lcσ(f), and lmσ(f), respectively.

Let f ∈ K[x] be a non-zero polynomial. We denote by deg(f) the (total)
degree of f . For i ∈ [n], we denote by degxi(f) the degree of f viewed
as a polynomial in xi with coefficients in K[x \ {xi}]. We do not define
the degree of the zero polynomial, though, at some places we will implicitly
assume deg(0) = −∞. Now let α ∈ Rn

≥0. For a weight vector w ∈ Nn, we
set |α|w :=

∑n
i=1wiαi ∈ R≥0. For the weight vector 1 := (1, . . . , 1) ∈ Nn,

we set |α| := |α|1. We define the w-weighted degree of f as degw(f) :=
max{|α|w | α ∈ LSupp(f)} ∈ N. In particular, deg1(f) is the total degree of
f .

Let d ≥ 0. We denote by T(x)d ⊂ T(x) the set of terms of degree d and
by T(x)≤d ⊂ T(x) the set of terms of degree ≤ d. Furthermore, we define
the K-vector spaces K[x]d := 〈T(x)d〉K and K[x]≤d := 〈T(x)≤d〉K . The
polynomial ring is graded by K[x] =

⊕
i≥0K[x]i. The elements of K[x]d
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are called homogeneous polynomials or forms of degree d. In particular,
elements of K[x]1 are called linear forms. Note that the zero polynomial
is homogeneous of every degree. We have dimK K[x]d = |T(x)d| =

(
n+d−1

d

)
and dimK K[x]≤d = |T(x)≤d| =

(
n+d
d

)
≤ (n+ 1)d.

Let K[z] = K[z1, . . . , zr] be another polynomial ring over K, and let
ϕ : K[x]→ K[z] be a K-algebra homomorphism given by xi 7→ fi for i ∈ [n],
where f1, . . . , fn ∈ K[z]. We define the degree of ϕ by

deg(ϕ) := max
{

deg(f1), . . . , deg(fn), 0
}
∈ N.

If f1, . . . , fn are homogeneous, then ϕ is called graded. The image of a
homogeneous polynomial of degree d under a graded homomorphism ϕ is
homogeneous of degree d · deg(ϕ). Finally, if f1, . . . , fn are monomials, then
ϕ is called toric. Toric homomorphisms are sparsity-preserving, i. e. they
satisfy sp(ϕ(f)) ≤ sp(f) for all f ∈ K[x].

Resultants

Below we state a lemma about resultants that will be used in Section 4.2.5.
Let f, g ∈ K[w,x] be polynomials such that d := degw(f) > 0 and e :=
degw(g) > 0. Write f =

∑d
i=0 fi · wi and g =

∑e
j=0 gj · wj with fi, gj ∈ K[x]

for i ∈ [d] and j ∈ [e]. Then the Sylvester matrix of f and g with respect
to w is defined as

sylw(f, g) :=



f0
f1 f0

f1
. . .

...
. . . f0

... f1
fd

fd
...

. . .

fd︸ ︷︷ ︸
e columns

g0
g1 g0

g1
. . .

...
. . . g0

... g1
ge

ge
...

. . .

ge


︸ ︷︷ ︸

d columns

∈ K[x](d+e)×(d+e).

The w-resultant of f and g is defined as resw(f, g) := det sylw(f, g) ∈ K[x].

Lemma A.3.4 ([CLO97, Chapter 3, §6, Proposition 1]). Let f, g ∈ K[w,x]
be polynomials such that degw(f) > 0 and degw(g) > 0.

(a) We have resw(f, g) ∈ 〈f, g〉K[w,x].
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(b) We have resw(f, g) = 0 if and only if f and g have a common factor
h ∈ K[w,x] with degw(h) > 0.

A.3.3 Field Theory

We review some concepts from field theory. For more about fields, we refer
to [Lan02, Mor96]. Let L/K be a field extension, i. e. K is a subfield of L.
For a subset B ⊆ L, we denote by K(B) the field extension of K generated
by B. The field L is a K-vector space and [L : K] := dimK(L) ∈ N∪ {∞} is
called the degree of L/K. If [L : K] <∞, then L/K is called finite. A field
extension is finite if and only if it is algebraic and finitely generated. For the
algebraic closure of K we write K.

A subset B ⊂ L is called a transcendence basis of L/K if B is al-
gebraically independent over K and L/K(B) is algebraic. Transcendence
bases exist for every field extension. All transcendence bases of L/K have
the same cardinality, which is called the transcendence degree of L/K
and is denoted by trdeg(L/K) ∈ N ∪ {∞}.

Finite fields

Let p be a prime, let d ≥ 1, and let q = pd. We denote by Fq the (up to
isomorphism) unique finite field with q elements. There exists an irreducible
polynomial f ∈ Fp[x] such that Fq ∼= Fp[x]/〈f〉. The following lemma char-
acterizes irreducible polynomials over finite fields.

Lemma A.3.5 (Ben-Or irreducibility test, [Ben81, Lemma 1]). Let d ≥ 1,
let q be a prime power and let f ∈ Fq[x] be a polynomial of degree d. Then f
is irreducible in Fq[x] if and only if

gcd
(
f, xq

k − x
)

= 1

for all k ∈ {1, . . . , bd/2c}.

Separability

Let K be a field. A univariate polynomial f ∈ K[x] is called separable if
it has no multiple roots in K. Now assume that f is irreducible. Then f is
separable if and only if its formal derivative ∂xf is non-zero. Consequently,
if char(K) = 0, then f is always separable, and if char(K) = p > 0, then f
is separable if and only if f /∈ K[xp].

Let L/K be a field extension. If an element a ∈ L is algebraic over
K, then it is called separable over K if its minimal polynomial in K[x]
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is separable. Those separable elements form a field K ⊆ Ksep ⊆ L which
is called the separable closure of K in L. Now assume that L/K is an
algebraic extension. Then [L : K]sep := [Ksep : K] ∈ N>0 and [L : K]insep :=
[L : Ksep] ∈ N>0 are called the separable and inseparable degree of L/K,
respectively. If L = Ksep, then L/K is called separable. The extension
L/Ksep is purely inseparable, i. e., for all a ∈ L we have ap

e ∈ Ksep for
some e ≥ 0.

A finitely generated field extension L/K is called separable if it has a
transcendence basis B ⊂ L such that the finite extension L/K(B) is separa-
ble. In this case, B is called a separating transcendence basis of L/K.
If L/K is separable, then every generating system of L over K contains a
separating transcendence basis. If K is a perfect field, then every finitely
generated field extension of K is separable.

A.4 Algebraic Geometry

We state some preliminaries from algebraic geometry required mainly in Sec-
tion 2.7. For more detailed information on this topic, see [Eis95] and [Kem11].

Let L/K be a field extension and let K[x] = K[x1, . . . , xn] be a polyno-
mial ring over K. For a subset S ⊆ K[x], we define the affine L-variety

VLn(S) :=
{
a ∈ Ln | f(a) = 0 for all f ∈ S

}
.

The affine L-varieties satisfy the axioms of closed sets in a topology. We call
this topology the Zariski topology on Ln with coefficients in K. On
a subset X ⊆ Ln, we define the Zariski topology as the induced subspace
topology. The closure of a subset X ⊆ Ln in the Zariski topology is called the
Zariski closure of X and is denoted by X. We have X = VLn(IK[x](X)),
where

IK[x](X) :=
{
f ∈ K[x] | f(a) = 0 for all a ∈ X

}
is the vanishing ideal of X in K[x]. In the setting L = K, Hilbert’s famous
Nullstellensatz holds.

Theorem A.4.1 (Hilbert’s Nullstellensatz, [Kem11, Theorem 1.17 and Ex-
ercise 1.9]). Let I ⊆ K[x] be an ideal. Then we have

IK[x]

(
VKn(I)

)
=
√
I,

where
√
I denotes the radical ideal of I.
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Affine varieties are Noetherian topological spaces. Recall that a topo-
logical space X is called Noetherian if there exists no infinite strictly de-
scending chain of closed subsets in X. A topological space X is called ir-
reducible if X 6= ∅ and X cannot be written as the union of two proper
closed subsets. A Noetherian space X can be uniquely written (up to order)
as X = C1 ∪ · · · ∪ Cm, where m ≥ 0 and C1, . . . , Cm ⊆ X are irreducible
closed subsets with Ci * Cj for i 6= j. The sets C1, . . . , Cm are called the
irreducible components of X.

The Krull dimension of a topological space X, denoted by dim(X),
is defined as the supremum over all m ≥ 0 for which there exists a chain
X0 ⊂ · · · ⊂ Xm of distinct irreducible closed subsets of X. If no irreducible
closed subset exists, we set dim(X) = −1.

Let X ⊆ Lm and Y ⊆ Ln be affine varieties, and let f1, . . . , fn ∈
K[x1, . . . , xm] be polynomials. Then the map

ϕ : X → Y, a 7→ (f1(a), . . . , fn(a))

is called a morphism. We say that ϕ is dominant if its image is dense in
Y , i. e. ϕ(X) = Y . We define the degree of ϕ by

deg(ϕ) := max
{

deg(f1), . . . , deg(fn), 0
}
∈ N.

Note that this definition depends on the choice of f1, . . . , fn.

From now on, we switch to the setting K = L = K. The following lemma
provides a bound on the dimension of fibers of morphisms.

Lemma A.4.2 ([Kem11, Corollary 10.6]). Let X ⊆ K
m

be an irreducible
affine variety, let Y ⊆ K

n
be an affine variety, and let ϕ : X → Y be a

morphism. Then we have

dim(ϕ−1(b)) ≥ dim(X)− dim(Y )

for all b ∈ ϕ(X).

Let X be a topological space. A subset Y ⊆ X is called locally closed if
Y is the intersection of an open and a closed subset of X. A subset C ⊆ X is
called constructible if C is the union of finitely many locally closed subsets.

Lemma A.4.3 ([Kem11, Exercise 10.7]). Let X ⊆ K
n

be a constructible set.
Then there exists a subset U ⊆ X which is open and dense in X.

The following theorem shows that the image of a constructible set under
a morphism is again constructible.

Theorem A.4.4 (Chevalley’s Theorem, [Kem11, Corollary 10.8 and Exercise
10.9]). Let X ⊆ K

m
and Y ⊆ K

n
be affine varieties, let ϕ : X → Y be

a morphism, and let C ⊆ X be a constructible set. Then ϕ(C) is again
constructible.
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The degree of a variety

Now we will define the degree of a variety according to [Hei83]. Recall that
an affine linear subspace is a variety defined by polynomials of degree at
most 1.

Definition A.4.5. Let X ⊆ K
n

be an irreducible affine variety and let
r = dim(X). Then the degree of X is defined as

degKn(X) := max

{
|X ∩ E|

∣∣∣∣ E ⊆ K
n

affine linear subspace s. t.

dim(E) = n− r and |X ∩ E| <∞

}
∈ N>0.

For a constructible set X ⊆ K
n
, we define

degKn(X) :=
m∑
i=1

degKn(Ci) ∈ N,

where C1, . . . , Cm ⊆ K
n

are the irreducible components of X.

We have degKn(K
n
) = 1. For non-constant polynomials f ∈ K[x], the

affine variety X := VKn(f) is called affine hypersurface and we have
dim(X) = n − 1 and degKn(X) ≤ deg(f). If deg(f) = 1, X is called affine
hyperplane.

Lemma A.4.6 ([Hei83, Remark 2.1]). Let X ⊆ K
n

be an irreducible affine
variety and let U ⊆ X be a non-empty open subset. Then there exists
an affine linear subspace E ⊆ K

n
with dim(E) = n − dim(X) such that

degKn(X) = |U ∩ E|.

The following theorem is an affine version of the classical Bézout’s The-
orem (without multiplicities).

Theorem A.4.7 (Bézout’s Inequality, [Hei83, Theorem 1]). Let X, Y ⊆ K
n

be constructible sets. Then we have

degKn(X ∩ Y ) ≤ degKn(X) · degKn(Y ).

Corollary A.4.8 ([HS80a, Proposition 2.3]). Let X1, . . . , Xm ⊆ K
n

be affine
varieties. Then we have

degKn

(
m⋂
i=1

Xi

)
≤ degKn(X1) ·

(
max{degKn(Xi) | i ∈ [2,m]}

)dim(X1).
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A.5 Differentials and the de Rham Complex

In this section we introduce Kähler differentials and the de Rham Complex.
For more on differential modules, we refer to [Eis95, Mor96].

Definition A.5.1. Let R be a ring, let A be an R-algebra, and let M be an
A-module.

(a) An R-linear map D : A→ M is called an R-derivation of A into M , if
it satisfies the Leibniz rule

D(ab) = aD(b) +D(a) b

for all a, b ∈ A. The set DerR(A,M) of all such derivations forms an
A-module in a natural way.

(b) The module of Kähler differentials of A over R, denoted by Ω1
A/R,

is the A-module generated by the set of symbols {da | a ∈ A} subject to
the relations

d(ra+ sb) = r da+ s db, (R-linearity)

d(ab) = a db+ b da (Leibniz rule)

for all r, s ∈ R and a, b ∈ A. The map d: A→ Ω1
A/R defined by a 7→ da

is an R-derivation called the universal R-derivation of A.

For m ≥ 0, let Ωm
A/R :=

∧m Ω1
A/R be the m-th exterior power over A. The

universal derivation d: Ω0
A/R → Ω1

A/R extends to the exterior derivative

dm : Ωm
A/R → Ωm+1

A/R given by

dm(a da1 ∧ · · · ∧ dam) = da ∧ da1 ∧ · · · ∧ dam

for a, a1, . . . , am ∈ A. It satisfies dm+1 ◦ dm = 0, so we obtain a complex of
R-modules

Ω•A/R : 0→ A
d−→ Ω1

A/R
d1−→ · · · → Ωm

A/R
dm−→ Ωm+1

A/R → · · ·

called the de Rham complex of A over R. The direct sum ΩA/R :=⊕
m≥0 Ωm

A/R is a differential graded R-algebra. Recall that a differential

graded R-algebra is a graded R-algebra M =
⊕

i≥0M
i which is graded

skew-commutative, i. e. we have ωη = (−1)ijηω for ω ∈ M i and η ∈ M j,
together with an R-derivation d: M i → M i+1 satisfying d ◦ d = 0 and the
graded Leibnitz rule d(ωη) = η dω + (−1)iω dη for ω ∈M i and η ∈M .
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The de Rham complex of K[x]

Let K be a field and let K[x] = K[x1, . . . , xn] be a polynomial ring over
K. Then Ω1

K[x]/K is a free K[x]-module of rank n with basis {dx1, . . . , dxn}.
The universal derivation d: K[x]→ Ω1

K[x]/K is given by f 7→
∑n

i=1(∂xif) dxi,
where ∂xif ∈ K[x] denotes the i-th formal partial derivative of f for
i ∈ [n].

Let f1, . . . , fm ∈ K[x] be polynomials and let u ⊆ x be a subset of the
variables. Write u = {xj1 , . . . , xjr} with 1 ≤ j1 < · · · < jr ≤ n. The
Jacobian matrix of f1, . . . , fm with respect to u is defined as

Ju(f1, . . . , fm) :=

∂xj1f1 · · · ∂xjrf1
...

...
∂xj1fm · · · ∂xjrfm

 ∈ K[x]m×r. (A.5.1)

Now let m ≤ n and let I = {j1 < . . . < jm} ∈
(
[n]
m

)
be an index set. We

use the notations xI = {xj1 , . . . , xjm} and
∧
j∈I dxj := dxj1 ∧ · · ·∧dxjm . The

K[x]-module Ωm
K[x]/K is free of rank

(
n
m

)
with basis

{∧
j∈I dxj | I ∈

(
[n]
m

)}
.

An element df1 ∧ · · · ∧ dfm ∈ Ωm
K[x]/K can be represented in this basis as

df1 ∧ · · · ∧ dfm =
∑
I

det JxI (f1, . . . , fm) ·
∧
j∈I dxj, (A.5.2)

where the sum is over all I ∈
(
[n]
m

)
. If m > n, then we have Ωm

K[x]/K = {0}.

Lemma A.5.2. Let f1, . . . , fm ∈ K[x] be polynomials. Then

df1 ∧ · · · ∧ dfm 6= 0 in Ωm
K[x]/K

if and only if rkK(x) Jx(f1, . . . , fm) = m.

Proof. By (A.5.2), the differential df1 ∧ · · · ∧ dfm is non-zero if and only if
the Jacobian matrix Jx(f1, . . . , fm) has a non-zero m×m-minor.

Let K[z] = K[z1, . . . , zr] be another polynomial ring over K. Let f ∈
K[x] and and let g1, . . . , gn ∈ K[z]. By the chain rule, we have

∂zi
(
f(g1, . . . , gn)

)
=

n∑
j=1

(∂xjf)(g1, . . . , gn) · ∂zi(fj)

for all i ∈ [r]. Now let ϕ : K[x] → K[z] be the K-algebra homomorphism
given by xi 7→ gi for i ∈ [n] and let f1, . . . , fm ∈ K[x]. Then the chain rule
implies the matrix equation

Jz(ϕ(f1), . . . , ϕ(fm)) = ϕ
(
Jx(f1, . . . , fm)

)
· Jz(g1, . . . , gn).
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Transfer lemmas

Lemma A.5.3 (Base change). Let R be a ring, let A and R′ be R-algebras.
Then A′ := R′⊗RA is an R′-algebra and, for all m ≥ 0, there is an A′-module
isomorphism

R′ ⊗A Ωm
A/R → Ωm

A′/R′

given by b⊗(da1∧· · ·∧dam) 7→ b d(1⊗ a1)∧· · ·∧d(1⊗ am) for a1, . . . , am ∈ A
and b ∈ R′.
Proof. The case m = 0 is evident, the case m = 1 is [Eis95, Proposition 16.4]
and for m ≥ 2 the statement follows from [Eis95, Proposition A2.2 b].

Lemma A.5.4 (Localization). Let R be a ring, let A be an R-algebra and let
B = S−1A for some multiplicatively closed set S ⊆ A. Then, for all m ≥ 0,
there is a B-module isomorphism

B ⊗A Ωm
A/R → Ωm

B/R

given by b ⊗ (da1 ∧ · · · ∧ dam) 7→ b da1 ∧ · · · ∧ dam for a1, . . . , am ∈ A and
b ∈ B. The universal R-derivation d: B → Ω1

B/R satisfies d(s−1) = −s−2 ds
for s ∈ S.

Proof. The case m = 0 is evident, the case m = 1 and the second statement
is [Eis95, Proposition 16.9] and for m ≥ 2 the statement follows from [Eis95,
Proposition A2.2 b].

Lemma A.5.5 (Separable extension). Let L/K be an algebraic and separable
field extension and let R be a subring of K. Then, for all m ≥ 0, there is an
L-vector space isomorphism

L⊗K Ωm
K/R → Ωm

L/R

given by b ⊗ (da1 ∧ · · · ∧ dam) 7→ b da1 ∧ · · · ∧ dam for a1, . . . , am ∈ K and
b ∈ L.

Proof. The case m = 0 is evident, the case m = 1 is [Eis95, Lemma 16.15]
and for m ≥ 2 the statement follows from [Eis95, Proposition A2.2 b].

Separability

The separability of a finitely generated field extension is characterized by the
vector space dimension of its Kähler differentials.

Lemma A.5.6 ([Eis95, Corollary 16.17 a]). Let L/K be a finitely generated
field extension. Then

dimL Ω1
L/K ≥ trdeg(L/K),

with equality if and only if L/K is separable.
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A.6 The Ring of Witt Vectors and the de

Rham-Witt Complex

In this section we introduce Witt rings [Wit37] and the de Rham-Witt com-
plex constructed by Illusie [Ill79].

A.6.1 The Ring of Witt Vectors

Let p be a fixed prime. For n ≥ 0, the n-th Witt polynomial is defined as

wn :=
n∑
i=0

pi xp
n−i

i ∈ Z[x0, . . . , xn].

For all n ≥ 0, there exist unique polynomials Sn, Pn ∈ Z[x0, . . . , xn, y0, . . . yn]
such that

wn(S0, . . . , Sn) = wn(x0, . . . , xn) + wn(y0, . . . , yn) and

wn(P0, . . . , Pn) = wn(x0, . . . , xn) · wn(y0, . . . , yn)

(see [Haz09, Theorem 5.2]). The polynomials Sn, Pn can be determined re-
cursively by the formulas

Sn = p−n
(
wn(x0, . . . , xn) + wn(y0, . . . , yn)−

n−1∑
i=0

pi Sp
n−i

i

)
and

Pn = p−n
(
wn(x0, . . . , xn) · wn(y0, . . . , yn)−

n−1∑
i=0

pi P pn−i

i

)
,

in particular, we have

S0 = x0 + y0, S1 = x1 + y1 −
p−1∑
i=1

p−1
(
p

i

)
xi0y

p−i
0 ,

P0 = x0y0, P1 = xp0y1 + x1y
p
0 + p x1y1.

Definition A.6.1. Let p be a fixed prime and let A be a ring. The ring
of (p-typical) Witt vectors of A, denoted by W(A), is the set AN with
addition and multiplication defined by

a+ b := (S0(a0, b0), S1(a0, a1, b0, b1), . . . ) and

a · b := (P0(a0, b0), P1(a0, a1, b0, b1), . . . ),

for all a = (a0, a1, . . . ), b = (b0, b1, . . . ) ∈W(A). The additive and multiplica-
tive identity elements of W(A) are (0, 0, 0, . . . ) and (1, 0, 0, . . . ), respectively.
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By [Haz09, Theorem 5.14], W(A) is indeed a ring and we have a ring
homomorphism

w : W(A)→ AN, a 7→ (w0(a), w1(a), . . . ),

where AN is the usual product ring.
Let ` ≥ 1. The projection W`(A) of W(A) to the first ` coordinates is

again a ring which is called the ring of truncated Witt vectors of A of
length `. We have W1(A) = A.

The Teichmüller lift of a ring element a ∈ A is defined as [a] :=
(a, 0, 0, . . . ) ∈ W(A). The image of [a] in W`(A) is denoted by [a]≤`. The
map A → W(A), a 7→ [a] is multiplicative, i. e. we have [ab] = [a][b] for all
a, b ∈ A.

Restriction, Verschiebung, and Frobenius maps

For ` ≥ 1, we have ring epimorphisms

R: W`+1(A)→W`(A), (a0, . . . , a`) 7→ (a0, . . . , a`−1),

called restriction maps. We obtain a projective system of rings W•(A) =
((W`(A))`≥1,R: W`+1(A)→W`(A)) with limit W(A).

The additive group homomorphism

V: W(A)→W(A), (a0, a1, . . . ) 7→ (0, a0, a1, · · · )

is called Verschiebung (shift). It induces additive maps V: W`(A) →
W`+1(A), and we have exact sequences

0→W(A)
V`−→W(A)→W`(A)→ 0,

0→Wr(A)
V`−→W`+r(A)

Rr−→W`(A)→ 0

for all `, r ≥ 1.
Now let A be an Fp-algebra. Then the Frobenius endomorphism F: A→

A, a 7→ ap induces a ring endomorphism

F: W(A)→W(A), (a0, a1, . . . ) 7→ (ap0, a
p
1, . . . ) (A.6.1)

which we call Frobenius endomorphism, too. We have V F = F V = p
and a V b = V(F a · b) for all a, b ∈ W (A), in particular, V[1] = p. For
` ≥ 1, the Frobenius also induces endomorphisms F: W`(A)→W`(A). If A
is perfect, i. e. F is an automorphism of A, then the induced endomorphisms
are automorphisms as well.



144 A. Preliminaries

Witt vectors of finite fields

The Witt vectors of finite fields form (the unramified extensions of) the p-
adic integers [Kob84, Rob00]. First we consider the prime field Fp. Then
W(Fp) is the ring of p-adic integers, denoted by Zp. Its quotient field
Qp = Quot(Zp) is called the field of p-adic numbers.

Now let q = pt for some t ≥ 1. There exists a unique unramified extension
of Qp (in its algebraic closure Qp) of degree t, which we denote by Qq. The
integral closure of Zp in Qq is denoted by Zq. We have Zq = W(Fq).

The truncated Witt rings of Fq are Galois rings [Wan03]. A finite ring R
is called Galois ring if the set of its zerodivisors together with zero is the
ideal 〈p〉R. Then R is a local ring of characteristic p` for some ` ≥ 1 with
residue field Fpt = R/〈p〉 for some t ≥ 1, and we have |R| = p`t. A Galois
ring of characteristic p` with p`t elements exists for all `, t ≥ 1, is unique up
to isomorphism, and will be denoted by G`,t. For the construction of G`,t,
see Lemma 4.3.7. By [Rag69, (3.5)]), we have W`(Fpt) = G`,t, in particular
W`(Fp) = Z/〈p`〉.

Some lemmas

Lemma A.6.2. Let A be an Fp-algebra and let a, b ∈W(A) such that a−b ∈
V W(A). Then

ap
` − bp` ∈ V`+1 W(A)

for all ` ≥ 0.

Proof. We use induction on `. The case ` = 0 holds by assumption, so let
` ≥ 1. By induction, there exists c ∈ V` W(A) such that ap

`−1
= bp

`−1
+ c.

Using V F = p and p−1
(
p
i

)
∈ N for i ∈ [p− 1], we conclude

ap
` − bp` =

(
bp
`−1

+ c
)p − bp`

= cp +

p−1∑
i=1

(
p

i

)
V F
(
bp
`−1(p−i)ci

)
∈ V`+1 W(A),

finishing the proof.

Definition A.6.3. The p-adic valuation vp : Q→ Z∪{∞} of Q is defined
as follows. If a ∈ Q is non-zero, then vp(a) is the unique integer v ∈ Z such
that a = pv r

s
, where r, s ∈ Z \ pZ. For a = 0, we set vp(a) :=∞. For vectors

α ∈ Qs, we extend this notion by setting vp(α) := min{vp(α1), . . . , vp(αs)} ∈
Z ∪ {∞}.
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Lemma A.6.4. Let α, β ∈ Qs. Then vp(α + β) ≥ min{vp(α), vp(β)}, with
equality if vp(α) 6= vp(β).

Proof. Let i ∈ [s] such that vp(α + β) = vp(αi + βi). Then vp(α + β) =
vp(αi + βi) ≥ min{vp(αi), vp(βi)} ≥ min{vp(α), vp(β)}.

Now assume vp(α) 6= vp(β), say vp(α) < vp(β). Let i ∈ [s] such that
vp(α) = vp(αi). Then vp(αi) < vp(βi), therefore vp(α + β) ≤ vp(αi + βi) =
min{vp(αi), vp(βi)} = vp(αi) = vp(α) = min{vp(α), vp(β)}.

Lemma A.6.5 ([Sin80, Theorem 32]). Let ` ≥ 0 and let i ∈ Ns such that

|i| = p`. Then p`−vp(i) divides
(
p`

i

)
.

Lemma A.6.6. Let A = R[a] = R[a1, . . . , am] be a finitely generated R-
algebra, where R is an Fp-algebra and a1, . . . , am ∈ A. Let ` ≥ 0 and let
f =

∑s
i=1 cia

αi be an element of A, where ci ∈ R and αi ∈ Nm for i ∈ [s].
Then, in W`+1(A), we have

[f ] =
∑
|i|=p`

p−`+vp(i)
(
p`

i

)
V`−vp(i) F−vp(i)

(
[c1a

α1 ]i1 · · · [csaαs ]is
)
, (A.6.2)

where the sum is over all i = (i1, . . . , is) ∈ Ns.

Remark A.6.7. Note that the RHS of (A.6.2) is a well-defined element of

W(A), because p−`+vp(i) ·
(
p`

i

)
∈ N by Lemma A.6.5, vp(i) ≤ `, and p−vp(i) ·i ∈

Ns for all i ∈ Ns with |i| = p`.

Proof of Lemma A.6.6. We have [f ] =
∑s

i=1[cia
αi ] in W1(A), so Lemma

A.6.2 implies

F`[f ] = [f ]p
`

=

( s∑
i=1

[cia
αi ]

)p`
=
∑
|i|=p`

(
p`

i

)
[c1a

α1 ]i1 · · · [csaαs ]is

in W`+1(A). Since V F = F V = p, we see that this is equal to F`w, where
w denotes the RHS of (A.6.2). The injectivity of F implies [f ] = w in
W`+1(A).

A.6.2 The de Rham-Witt Complex

Let p be a fixed prime.

Definition A.6.8. A de Rham V-pro-complex is a projective system
M• = ((M)`≥1,R: M`+1 → M`) of differential graded Z-algebras together
with additive homomorpisms (V: Mm

` →Mm
`+1)m≥0,`≥1 such that R V = V R

and the following properties are satisfied:
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(a) M0
1 is an Fp-algebra and M0

` = W`(M
0
1 ), where R: M0

`+1 → M0
` and

V: M0
` →M0

`+1 are the restriction and Verschiebung maps of Witt rings,

(b) V(ω dη) = (Vω) dV η for all ω ∈Mm
` and η ∈Mn

` , and

(c) (Vw) d[a] = V([a]p−1w) dV[a] for all a ∈M0
1 and w ∈M0

` .

Theorem A.6.9 ([Ill79, Théorème I.1.3]). Let A be an Fp-algebra. Then
there exists a functorial de Rham V-pro-complex W•Ω•A with W` Ω0

A = W`(A)
for all ` ≥ 1. We have an epimomorphism of differential graded Z-algebras
π` : Ω•W`(A)/W`(Fp) � W` Ω•A for all ` ≥ 1 such that π0

` is the identity and π1
is an isomorphism.

Definition A.6.10. Let A be an Fp-algebra. The de Rham V-pro-complex
W•Ω•A from Theorem A.6.9 is called the de Rham-Witt pro-complex of
A.

The Frobenius map

Theorem A.6.11 ([Ill79, Théorème I.2.17]). Let A be an Fp-algebra. The
morphism of projective systems of rings R F = F R: W•(A) → W•−1(A)
extends uniquely to a morphism of projective systems of graded algebras
F: W•Ω•A →W•−1 Ω•A such that

(a) F d[a]≤`+1 = [a]p−1≤` d[a]≤` for all a ∈ A and ` ≥ 1, and

(b) F dV = d in W` Ω1
A for all ` ≥ 1.

Let A be an Fp-algebra. Define the canonical filtration

Fil` W`+i Ω
•
A := ker

(
Ri : W`+i Ω

•
A →W` Ω•A

)
for all ` ≥ 1 and i ≥ 0.

Lemma A.6.12. Let K be a perfect field. Then we have

ker
(
Fi : W`+i Ω

m
K(x) →W` Ωm

K(x)

)
⊆ Fil` W`+i Ω

m
K(x)

for all i,m ≥ 0 and ` ≥ 1.

Proof. Let i,m ≥ 0, let ` ≥ 1, and let ω ∈ W`+i Ω
m
K(x) such that Fi ω = 0.

Applying Vi : W` Ωm
K(x) →W`+i Ω

m
K(x) and using Vi Fi = pi, we obtain piω =

0. By [Ill79, Proposition I.3.4], we conclude ω ∈ Fil` W`+i Ω
m
K(x).
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Transfer lemmas

Lemma A.6.13 (Base change, [Ill79, Proposition I.1.9.2]). Let K ′/K be an
extension of perfect fields of characteristic p. Let A be a K-algebra and set
A′ := K ′ ⊗K A. Then there is a natural W`(K

′)-module isomorphism

W`(K
′)⊗W`(K) W` Ωm

A →W` Ωm
A′

for all ` ≥ 1 and m ≥ 0.

Lemma A.6.14 (Localization, [Ill79, Proposition I.1.11]). Let A be an Fp-
algebra and let B = S−1A for some multiplicatively closed set S ⊆ A. Then
there is a natural W`(B)-module isomorphism

W`(B)⊗W`(A) W` Ωm
A →W` Ωm

B

for all ` ≥ 1 and m ≥ 0.

Lemma A.6.15 (Finite separable extension). Let L/K be a finite separable
field extension of characteristic p. Then there is a natural W`(L)-module
isomorphism

W`(L)⊗W`(K) W` Ωm
K →W` Ωm

L

for all ` ≥ 1 and m ≥ 0.

Proof. Since L/K is finite and separable, the induced morphism K → L is
étale. Now the assertion follows from [Ill79, Proposition I.1.14].

A.6.3 The de Rham-Witt Complex of K[x]

Let p be a fixed prime, let K/Fp be an algebraic extension, and let K[x] =
K[x1, . . . , xn] be a polynomial ring over K. In [Ill79, §I.2], an explicit de-
scription of W•Ω•K[x] is given for the case K = Fp. By virtue of Lemma
A.6.13, this construction can be generalized to our setting (note that K is
perfect).

Let R := W(K) be the Witt ring of K and let Q := Quot(R) be its
quotient field. Furthermore, define the ring Q[xp

−∞
] :=

⋃
i≥0Q[xp

−i
]. For

m ≥ 0, we use the abbreviations

Ωm
R[x] := Ωm

R[x]/R and Ωm
Q[xp−∞ ]

:= Ωm
Q[xp−∞ ]/Q

.

Since the universal derivation d: Q[xp
−∞

]→ Ω1
Q[xp−∞ ]

satisfies

d
(
xp
−i

j

)
= p−ixp

−i

j dxj/xj
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for all i ≥ 0 and j ∈ [n], every differential form ω ∈ Ωm
Q[xp−∞ ]

can be written

uniquely as

ω =
∑
I

cI ·
∧
j∈I d log xj, (A.6.3)

where the sum is over all I ∈
(
[n]
m

)
, the cI ∈ Q[xp

−∞
] are divisible by

(
∏

j∈I xj)
p−i for some i ≥ 0, and d log xj := dxj/xj. The cI are called

coordinates of ω. The form ω is called integral if all its coordinates have
coefficients in R. For m ≥ 0, we define

Em := Em
K[x] :=

{
ω ∈ Ωm

Q[xp−∞ ]
| both ω and dω are integral

}
.

Then E :=
⊕

m≥0 Em is a differential graded subalgebra of Ωm
Q[xp−∞ ]

contain-

ing Ωm
R[x].

Let F: Q[xp
−∞

]→ Q[xp
−∞

] be the unique Qp-algebra automorphism ex-
tending the Frobenius automorphism of R and sending

F
(
xp
−i

j

)
= xp

−i+1

j

for all i ≥ 0 and j ∈ [n]. The map F extends to an automorphism

F: Ωm
Q[xp−∞ ]

→ Ωm
Q[xp−∞ ]

of differential graded algebras by acting on the coordinates of the differential
forms. We also define

V := pF−1 : Ωm
Q[xp−∞ ]

→ Ωm
Q[xp−∞ ]

.

Then we have d F = pF d and V d = p d V, in particular, E is closed under
F and V. Setting

Fil` Em := V` Em + d V` Em−1

for all `,m ≥ 0, we obtain a filtration E = Fil0 E ⊇ Fil1 E ⊇ · · · of differential
graded ideals of E. This yields a projective system E• = ((E`)`≥1,R: E`+1 →
E`) of differential graded algebras, where E` := E /Fil` E and R: E`+1 � E`

for all ` ≥ 0.

Theorem A.6.16. Let E• = ((E`)`≥1,R: E`+1 → E`) be the projective sys-
tem defined above.

(a) The projective system E• together with V is a de Rham V-pro-complex,
where E0

` is identified with W`(K[x]) for all ` ≥ 1 via a W(K)-algebra
isomorphism

τ : W`(K[x])→ E0
`

satisfying τ V = V τ and τ([xi]) = xi for all i ∈ [n].
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(b) We have an isomorphism W•Ω•K[x]
∼= E• of de Rham V-pro-complexes.

Proof. The case K = Fp follows from [Ill79, Théorème I.2.5]. Now let K/Fp
be an algebraic extension. Then K is perfect, thus Lemma A.6.13 yields an
isomorphism

W•Ω•K[x]
∼= W•(K)⊗W(Fp) W•Ω•Fp[x]

of de Rham V-pro-complexes.

Lemma A.6.17 ([Ill79, Corollaire I.2.13]). For all ` ≥ 0, we have an injec-
tive map p : E` → E`+1, induced by multiplication with p in E.
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polytope, 53
integral, 53
Newton, 53
sparsity, 53
vertex, 53

prime numbers, 129
problem

algebraic independence test-
ing, 117

evaluation, 23
linear independence testing, 64
polynomial identity testing, 21
zero function testing, 21

PSPACE, 130

Q
Q, 129
Qq, 144
quasi-monic, 106

R
R, 129
R, 143, 145
Rδ(k, d), 113
rank, 42

of a ΣΠΣΠ-circuit, 113
rank-preserving hom., 43
rank-preserving matrix, 47
relation

algebraic, 72
linear, 42

resw(f, g), 134
restriction map, 143, 145
resultant, 134
rkK(S), 42
RNC, 131
RP, 130

S
S(C), 112
Sn, 129
separable, 135
separable closure, 136
separable degree, 136
ΣC, 46
ΣΠΣ-circuit, 56
ΣΠΣΠ-circuit, 112

minimal, 113
simple, 112

simple part
of a ΣΠΣΠ-circuit, 112

size
of a boolean circuit, 22
of an arithmetic circuit, 12

sp(f), 133
sparsity
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of a polynomial, 133
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sparsity-preserving hom., 134
submatrix, 132
Supp(f), 133
support, 133

logarithmic, 133
sylw(f, g), 134
Sylvester matrix, 134

T
T(x), 133
Teichmüller lift, 143
term, 133

leading, 133
ordering, 133

Θ(f), 129
top fan-in

of a ΣΠΣ-circuit, 56
of a ΣΠΣΠ-circuit, 112

toric homomorphism, 134
transcendence basis, 135

separating, 136
transcendence degree, 72, 135
trdegK(S), 72
trdeg(L/K), 135
truncated Witt vector, 143
Turing machine, 130

deterministic, 130
non-deterministic, 130
oracle, 131
probabilistic, 130

U
universal derivation, 139

V
V, 143, 145
V (C), 12
VLn(S), 136
valuation, 144
vanishing ideal, 136
variety, 136
Verschiebung, 143, 145
Vert(P ), 53
vertex

of a polytope, 53
of an arithmetic circuit, 12

W
W(A), 142
W•Ω•A, 146
weight vector, 133

isolating, 34
weighted degree, 133
wire, 12
Witt polynomial, 142
Witt vector, 142

truncated, 143
Witt-Jacobian differential, 81
Witt-Jacobian polynomial, 84
WJ`+1,A(a1, . . . , am), 81
WJP`+1,u(g1, . . . , gm), 84

Z
Z, 129
Zq, 144
Zariski closure, 136
ZFTK , 21
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