
Polynomial Identity Testing and Lower
Bounds for Sum of Special Arithmetic

Branching Programs

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Arpita Korwar

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

July, 2016

CERTIFICATE

It is certified that the work contained in the thesis entitled “Polynomial Identity Test-

ing and Lower Bounds for Sum of Special Arithmetic Branching Programs”, by “Arpita

Korwar”, has been carried out under our supervision and that this work has not been

submitted elsewhere for a degree.

——————————————

Manindra Agrawal

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

——————————————

Nitin Saxena

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

July, 2016

SYNOPSIS

Polynomials are fundamental objects studied in mathematics. Though univariate poly-

nomials are fairly well-understood, multivariate polynomials are not. Arithmetic circuits

are the primary tool used to study polynomials in computer science. They allow for the

classification of polynomials according to their complexity.

Polynomial identity testing (PIT) asks if a polynomial, input in the form of an arith-

metic circuit, is identically zero. Though the PIT problem is interesting in itself, it is also

important in computational complexity. E.g. it is related to lower bounds.

One way to check whether the polynomial computed by the circuit is zero is to set its

variables to constants. If the circuit evaluates to a non-zero value, we definitely know that

the polynomial is non-zero. But, what if the circuit evaluates to zero at this point? A

black-box PIT is a set of points, such that if the polynomial is non-zero, then it evaluates

to a non-zero constant at at least one of these points. A white-box PIT algorithm is

allowed to make use of the internal structure of the circuit.

We don’t yet have a deterministic polynomial time algorithm for PIT. But we do

have an exponential time algorithm, obtained by unrolling the legendary Schwartz-Zippel

lemma. Can we get a deterministic PIT algorithm which takes less than exponential time?

An arithmetic branching program (ABP) is an iterated product of polynomial matrices.

It is a model for computing polynomials and is a special arithmetic circuit. It is known to

be equivalent to the determinant. The important complexity-theoretic parameters related

to an ABP are its number of variables, n, the width of the ABP, w and the size of the

ABP. The width of the ABP is the maximum dimension of any matrix in the iterated

matrix product.

v

vi

One special kind of ABPs are read-once oblivious ABPs (ROABPs), which can be

written as a product of univariate polynomial matrices over distinct variables. Besides

the properties inherited from the ABP, the ROABPs are also parametrized by are π, the

sequence of these variables and d, the degree of the variables.

Sum of ROABPs: We give the first polynomial time (nO(1)) whitebox PIT and the first

quasi-polynomial time (nlog
O(1) n) blackbox PIT for the sum of constantly many ROABPs.

Though a polynomial time whitebox algorithm and a quasi-polynomial time blackbox

algorithm was known for an ROABP, only a trivial, exponential time PIT was known

for the sum of two ROABPs before this work. The sum of two ROABPs is provably a

stronger model than a single ROABP. We match the complexity of identity testing of the

sum of constantly many ROABPs with that of a single ROABP. Both of our algorithms

are doubly exponential in the number of ROABPs.

The basic idea we use is that the dependencies amongst the ‘partial evaluations of

the polynomial’ (polynomials obtained by substituting various constants for a subset of

the variables) essentially define the ROABP computing the polynomial. The proof of the

blackbox PIT shows that ‘low-support rank concentration’ in a polynomial can be achieved

by shifting it by a ‘basis isolating weight assignment’.

Sparse, Invertible-factor ROABPs: We next study a natural restriction that can be

applied to the ROABPs: that the matrix layers of the ROABP are invertible. Now, a layer

can have more than one variable, but the ABP is still read-once. We give a (nδs)O(w2 logw)

time PIT for this model, where δ is the degree of each polynomial layer (which is a matrix)

and s is its sparsity.

It is known that the PIT of depth-3 circuits, which are general enough, reduces to

the PIT of width-2 ABP with invertible layers. Also, polynomial-sized formulas reduce to

width-3 invertible-factor ABPs. So, invertible-factor ABPs are strong enough. But, the

‘read-once’ restriction weakens the model.

When the layers are univariate, we get a (nδ)O(w2) time blackbox PIT. Further, we

could do away with the invertibility restriction for width-2 ROABPs. We got a polynomial

vii

time PIT for a width-2 ROABP.

Towards impossibility results for the sum of two width-2 invertible ABPs: It

was known that the polynomial f = x1x2 + x3x4 + · · ·+ x15x16 cannot be computed by a

width-2 ABP with linear polynomials as its entries. We address the question of whether

the polynomial f can be computed as a sum of two width-2 ABPs. We make partial

progress towards this question by addressing the question:

Can f be computed as a sum of two width-2 ABPs, A and B, where the

determinant of each layer in the ABP is a non-zero field constant?

With a width-2 ABP, A, where the determinant of each layer in the ABP is a non-zero

field constant, we can associate a set, LA, of linear forms (linear forms are homogeneous

degree 1 linear polynomials. I.e. they have no constant term). We show that if A+B = f ,

then, the sets of linear forms, LA and LB, have to be equal. For a subset S of LA, we

naturally define the polynomial A|S , the polynomial computed by the ABP A, restricted

to the subset of linear forms S. It could be viewed as a ‘derivative of the ABP’ with

respect to the complement of S. We show that if A+B = f , then, for almost all subsets

S of LA = LB, A|S +B|S = 0.

This is a partial progress towards proving that f cannot be computed as a sum of two

width-2 ABPs.

Acknowledgements

This is my thesis. But its existence would be very difficult if not for the constant support

of the people around me.

Thank you, Biswas Sir, for meeting with me and listening to my ideas, even though

you were never my guide officially. You have always been my go-to person.

Thank you, Manindra Sir, for guiding me for all these years. You have time and again

extended yourself for my sake. I was very grateful when Coco died and to help me, you

invoked God. It is tough for an academic to talk about God in the presence of a student.

You attended all my presentations. When I had called you for some work, you told me

what to do and then said, “If need be, I will come tomorrow”. After processing that for

some time, I realized that the next day was the main day of Diwali! You have suffered my

faults with me and have only encouraged me.

Thank you, Nitin, for all the meetings and discussions and for trying to teach me

algebra. Thank you for spending so much time with me. Thank you for reading my thesis.

Thank you, Rohit, for being a good listener. You have influenced my work so much...

even while writing the thesis, I thought about you every day (almost :-)). “We had

discussed this in that canteen”, “Rohit had been so enthusiastic about this”, “I had called

Rohit on the phone for this”, and so on. Thank you for being around.

Thank you, Prof. Thierauf for inviting me to the Ulm University twice and for being

so generous with your time when I was there and when you were here at IITK. When I

said, “I don’t want to work on matching, I will work on PIT”, you said OK, and the we

worked on PIT. It meant a lot to me.

Thank you, Jochen, for your infectious enthusiasm and thoroughness. You have caught

ix

x

so many defective proofs. :)

Thank you, Simon Straub, for the discussions.

Thank you, Amit Sinhababu, for all the doubts. I am very grateful for all the gyan I

could give you. Thank you for reading a chapter in this thesis.

Thank you, Kartik Kale for proof-reading a chapter in this thesis and the feedback.

Thank you, Rishabh Vaid, for being you. When I was your TA, you corrected me!

You did your own thing... like the wall-hanging problem. Your answers were different,

but insightful.

Thank you, Chandan, for hosting me at IISc. I learnt a lot during that time. Your

sincerity is inspiring.

Thank you, Ramprasad, for being you! You are so enthusiastic about maths. Whatever

doubts I had, nothing could stump you. Not even for 5 seconds! In fact, you are that way

about everything, not just maths. You are one-of-a-kind and I am lucky that you were

my senior at IITK.

Thank you to Aurko Roy and Mrinalkanti Ghosh for awesome discussions and talks.

Thank you to the CSE department at IITK for the financial support through all these

years. This department has been home for me for all these years. Thank you for the

unconditional support throughout.

Thank you, Ganguly Sir, SSax Sir, TVP Sir, Prof. S.K. Mehta and Raghunath for

always being kind to me and for constructive feedback.

Thank you, Sharmistha Ma’am, the counsellor at IITK. Over the years, I have come

to you so many times. You have always listened to me patiently, helping me clear my

thoughts and even shared your own experiences. The time you spent with me meant a lot

to me. My PhD (and M.Tech) would have been very different if you had not been around.

Thank you to my lab-mates, especially Sudhanshu, Purushottam and Umair for the

bulla sessions.

Thank you, Mradula, Monica and Abhishek of CCD for the awesome coffee and the

conducive environment.

Thank you to the Paws family - Bhagat, Kajree, Custard, Dora, Oreo, Coco, Butter

xi

and Muddy for your unconditional love. And to their human caregivers - Pallavi, Gagan,

Amrita, Sanjukta, Esha. When I said that I don’t want to continue contributing to the

good (but hard) work we are doing, you said OK. In fact, you encouraged me. I am

grateful that you let me go.

Thank you to the Taekwondo club and the Yoga class at IITK.

Thank you to the Jorapur family for the support and advice over the years.

Thank you, Amma and Amrita. You are my life.

And finally, thank you Raghavendra Swami. :)

Contents

List of Publications xvii

1 Introduction 1

1.1 Polynomial identity testing (PIT) . 1

1.2 Arithmetic branching programs (ABP) . 6

1.3 Read-once Oblivious ABP (ROABP) . 7

1.4 Contribution of this thesis . 10

1.4.1 Sum of ROABPs (Chapter 3) . 10

1.4.2 Sparse-Invertible-Factor ROABP (Chapter 4) 13

1.4.3 Sum of two width-2 ABPs (Chapter 5) 14

2 Related models and Techniques 17

2.1 Notation . 17

2.2 A randomized algorithm for PIT . 18

2.3 Basics and some common techniques . 20

2.3.1 Hitting sets . 20

2.3.2 Kronecker substitution . 20

2.3.3 Generator . 22

2.3.4 Lagrange interpolation . 22

2.4 Arithmetic branching programs (ABPs) . 24

2.5 Read-once oblivious ABPs (ROABPs) . 25

2.5.1 Evaluation Dimension . 28

xiii

xiv

2.5.2 Whitebox PIT [RS05] . 29

2.5.3 Basis Isolating Weight Assignment 31

2.5.4 Shifting and concentration . 32

2.6 Depth-3 circuits . 35

2.7 Multilinear depth-3 circuits . 36

2.7.1 Set-multilinear depth-3 circuits . 37

2.7.2 Low-distance multilinear depth-3 circuits 37

3 Deterministic PIT for Sum of ROABPs 41

3.1 Introduction . 42

3.2 Preliminaries . 44

3.2.1 Notation . 44

3.2.2 Equivalence of evaluation dimension and partial coefficient dimension 46

3.2.3 Arithmetic branching programs . 47

3.2.4 Read-once oblivious arithmetic branching programs 48

3.3 Whitebox Identity Testing . 54

3.3.1 Equivalence of two ROABPs . 54

3.3.2 Sum of constantly many ROABPs 57

3.4 Blackbox Identity Testing . 59

3.4.1 Sum of ROABPs . 60

3.4.2 Concentration in matrix polynomials 66

3.5 Low Support Concentration in ROABPs . 68

3.6 Discussion . 75

4 Sparse, Invertible Constant-Width ROABP 77

4.1 Introduction . 77

4.2 Preliminaries . 79

4.2.1 Notations and definitions . 79

4.2.2 Proof Idea . 80

4.3 `-block-concentration when Di,0s are invertible 82

xv

4.4 Achieving invertibility and low-support concentration through shifting . . . 84

4.5 Concentration in D(x) . 86

4.5.1 From Concentration to Hitting Set 87

4.6 Width-2 Read Once ABP . 88

4.7 Discussion . 90

5 Towards Impossibility Results for the Sum of Two Width-2 Invertible

ABPs 91

5.1 Introduction . 91

5.1.1 Result and Proof Outline . 93

5.1.2 Overview of the Chapter . 94

5.2 Preliminaries . 94

5.2.1 Lower bounds using partial derivatives 95

5.2.2 Annihilating polynomials . 96

5.2.3 Isomorphism between F [l1, l2, . . . , lk] and F [y1, y2, . . . , yk] 96

5.2.4 Operations on an ABP . 97

5.3 Width-2 ABP . 98

5.3.1 Canonical form of a width-2 invertible ABP: Triangular ABP 99

5.4 Sum of Two Triangular ABPs . 104

5.4.1 Dimension of the linear forms . 105

5.4.2 Comparison of linear forms in the two ABPs 106

5.4.3 Restricting the ABP . 107

5.4.4 3-wise independent linear forms . 109

5.5 Discussion . 111

6 Conclusion 113

Index 121

List of Publications

[GKST15] Deterministic Identity Testing for Sum of Read-Once Oblivious

Arithmetic Branching Programs

with Rohit Gurjar, Nitin Saxena, and Thomas Thierauf.

Conference on Computational Complexity (CCC), 2015

[AGKS15] Hitting-sets for ROABP and Sum of Set-Multilinear Circuits

with Manindra Agrawal, Arpita Korwar, and Nitin Saxena.

SIAM Journal of Computing (SICOMP) 2015

Chapter 3 is based on [GKST15] and Chapter 4 is based on a part of [AGKS15]. The

work in Chapter 5 is yet unpublished.

xvii

Chapter 1

Introduction

1.1 Polynomial identity testing (PIT)

Definition and applications: Polynomial identity testing asks if a given n-variate

polynomial is identically zero. I.e. whether all the coefficients of the given polynomial are

zero. We know that (x+ y)2 − x2 − y2 − 2xy is zero because we have seen the expansion

of (x + y)2 in high school. It may take us a little more time to check if the polynomial

(ux+ vy)2 + (uy − vx)2 − (u2 + v2)(x2 + y2) is zero or not.

Though the PIT problem is natural and interesting in itself, it is also important in

computational complexity. E.g. it is related to lower bounds [KI03, Agr05, HS80, DSY09].

Also, many important problems in computer science reduce to solving PIT for special

class of polynomials. E.g. a perfect matching exists in a graph G if and only if the

determinant of a related matrix MG (which has polynomial entries) is not identically

zero [Lov79, Tut47, MVV87]. The non-trivial direction of IP = PSPACE is to show that

PSPACE ⊆ IP. Since TQBF is PSPACE-complete, it is enough to show that the truth

value of a given quantified boolean formula can be determined by an IP system. This is

done by reducing the given quantified boolean formula to a series of polynomial identity

tests [LFKN92, Sha92]. Checking if a number n is prime reduces to checking if a related

polynomial fn is identically zero in an appropriate ring [AKS02]. Checking if a read-

once boolean branching program A accepts any string reduces to checking if a related

1

2

multilinear polynomial fA is identically zero.

Form of the input to the PIT algorithm: How the polynomial is input plays a big

role in the design of the PIT algorithm. If the polynomial was input as a list of coefficient-

monomial pairs, then PIT is in linear time and trivial. It is not always efficient to expand

the given polynomial and reduce it to this form. E.g. the polynomial f(x1, x2, . . . , xn) =∏n
i=1(1 + xi) is a simple polynomial. It is obtained by adding 1 to each variable in the

polynomial g(x1, x2, . . . , xn) = x1x2 · · ·xn. But, it has 2n terms. So, we cannot expand

the polynomial efficiently.

However, it is easy to compute an evaluation of the polynomial by substituting the

variables with constants. If the polynomial evaluates to a non-zero value, we definitely

know that the polynomial is non-zero. But, if it evaluates to zero, we cannot say that it

is the zero polynomial. E.g. the polynomial x − y evaluates to zero at infinite number

of points: {(1, 1), (2, 2), . . .}. The points where a polynomial evaluates to zero are called

as its roots. Schwartz-Zippel [DL78, Sch80, Zip79] proved that the roots of a non-zero

polynomial occur with small probability. This gives us a randomized algorithm for PIT:

pick a point randomly and evaluate our polynomial at that point. It puts the problem

of PIT in the complexity class co-RP. This was the first randomized algorithm for PIT.

Consequently, there were other randomized PIT algorithms which traded the number of

random bits with the time required or the error parameter [CK97, LV98, AB03, KS01].

Since all problems with randomized polynomial-time solutions are conjectured to have

deterministic polynomial-time algorithms, we expect that such an algorithm exists for

PIT.

For a family of polynomials P, a black-box PIT or equivalently, a hitting set is a set of

evaluation points {a1,a2, . . . ,as}, such that for every non-zero polynomial P ∈ P, given

as a black-box, there is at least one evaluation point a such that P (a) 6= 0. The PIT

algorithm is not allowed to access the structure of the circuit.

P ∈ P
(a1, a2, . . . , an) P (a1, a2, . . . , an) = 0?

3

For example, let P be the set of all univariate polynomials of degree bounded by d.

Then, any polynomial in P can have ≤ d roots. So, the set {a1, a2, . . . , ad+1} of d + 1

distinct points acts as a hitting set for P.

In contrast, a white-box PIT algorithm is allowed to make use of the internal structure

of the polynomial. This brings us back to the question: how is the polynomial input to

the algorithm. The internal structure of the polynomial available to us highly depends on

how the polynomial is input to the algorithm.

Arithmetic circuits: Arithmetic circuits are the most natural model for polynomial

computation. They are the primary tool used to study polynomials in computer science.

They allow for the classification of polynomials according to their complexity.

Arithmetic circuits are defined over a field F. They are directed acyclic graphs, where

every node is a ‘+’ or ‘×’ gate and each input gate is a constant from the field F or a

variable from x = {x1, x2, . . . , xn}. The syntactic degree of an input gate is 1. Every edge

has a weight from the underlying field F. The computation is done in the natural way,

starting with the input nodes and proceeding towards the output node. At each step, the

weight of the edge (u, v) is multiplied with the output of the previous gate u and then

input to the next gate, v. So, every gate of the circuit computes a polynomial in F[x].

The syntactic degree at a ‘+’ node is the max of the syntactic degrees of the polynomials

input to it. The syntactic degree at a ‘×’ node is the sum of the syntactic degrees of the

polynomials input to it. An output node has no outgoing edges. The polynomial computed

at this node is said to be the polynomial computed by the circuit.

The size of the circuit is the number of edges in it. The degree of the circuit is the

syntactic degree of the output gate. The depth of the circuit is the number of nodes in a

longest path from an input node to the output node. The size, the degree and the depth

are used to calculate the complexity of the circuit.

E.g. Both of the following arithmetic circuits compute (x− y)2.

4

−1

x y

+

×

−1

x + y

1 1

× × ×

+

Size = 4 Size = 12

Depth = 3 Depth = 4

Degree = 2 Degree = 3

Without loss of generality one can assume that the addition (+) and multiplication

(×) gates in an arithmetic circuit appear in alternate layers.

Lower bounds and the complexity classes VP and VNP: Arithmetic circuits are

a very important part of computational complexity, because of the VP Vs VNP question.

VP is the algebraic analogue of the complexity class P and VNP is the algebraic analogue

of the counting class #P. VP is the class of polynomials with polynomial degree that are

computed by polynomial size arithmetic circuits. VNP is the class of polynomials {pn}n>0

such that there exists a polynomial family {qn}n>0 ∈ VP such that for all n:

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m
qm+n(x1, x2, . . . , xn, e1, e2, . . . em),

where m is polynomial in n.

It is known that VP = VNP =⇒ P = NP. But the implication in the other way is not

true. We would like to prove that VP 6= VNP; it is an easier version of the P Vs NP question.

So, we want to know if there are lower bounds for polynomials in VNP. I.e. if there are

polynomials in VNP that don’t have polynomial sized circuits. Over the past few years,

there has been tremendous interest and progress in this question. We now know that lower

bounds for arithmetic circuits give polynomial identity test and vice versa. [KI03] says

that lower bounds for the permanent polynomial imply sub-exponential time PIT exists

for arithmetic formulas. They also prove that if we have a polynomial-time whitebox PIT

5

for polynomials in VP, then we are guaranteed that at least one lower bound exists - an

arithmetic lower bound or a boolean lower bound; the permanent polynomial is not in

VP or NEXP * P/poly. We expect both these lower bounds to be true. [Agr05, HS80]

show that under stronger assumptions - a polynomial-time blackbox PIT, a stronger lower

bound can be proved. [DSY09] shows connections between PIT and lower bounds for

bounded depth circuits.

We also know that to prove lower bounds for arithmetic circuits over fields of charac-

teristic 0, it is enough to prove strong enough lower bounds for depth-3 circuits [GKKS13].

History of PIT: [GKKS13] actually showed that a polynomial computed by a poly-

nomial sized circuit over a field of characteristic zero can also be computed by a depth-3

circuit of sub-exponential size. This shows that PIT for depth-3 circuits is a very im-

portant question. Polynomial-time PIT for depth-3 circuits would imply sub-exponential

time PIT for a general circuit.

For PIT of arithmetic circuits computing polynomial f(x), we can always assume that

the top gate is ‘+’. If it was a ‘×’ gate, then the polynomial f is a product of polynomials

f = f1f2 · · · fk. Then, PIT for these factor polynomials would give a PIT for f , the

product. If we want a blackbox PIT for f = f1f2 . . . fk, then, using the blackbox PIT for

the fis and with the idea of ‘interpolation’, a blackbox PIT for the product polynomial f

can be obtained.

We don’t yet have a deterministic polynomial-time algorithm for PIT. But we do have

an exponential-time algorithm, obtained by de-randomizing the Schwartz-Zippel lemma.

So, a valid open question is whether we can give a deterministic polynomial-time algorithm

for PIT. Or even, any deterministic PIT algorithm which takes sub-exponential time. An

efficient deterministic solution for PIT is known only for very restricted input models.

One of the first non-trivial PIT algorithms was for depth-2 circuits. They are also

known as ΣΠ circuits; Σ signifies the top ‘+’ gate and Π signifies the layer of ‘×’ gates

which feed to it. If the fan-in of the top ‘+’ gate is k (denoted by Σ[k]Π), then these circuits

compute k-sparse polynomials - polynomials with ≤ k terms. They have a polynomial-time

6

hitting set [BOT88, KS01, AB03].

The class of polynomials for which PIT would be most interesting is the class of depth-

3 circuits because general circuits reduce to it. They are ΣΠΣ circuits and compute sum

of product of linear polynomials. They have a (nd)k
O(1)

size hitting set, where k is the top

fan-in and d is the degree of the circuit [DS07, KS07, KS09, KS11, SS11, SS12, SS13]. So,

when the top fan-in k is constant, it has a polynomial-time algorithm.

Read-k multilinear formulas are formulas where a variable is read only k times. They

have a nk
O(k)

whitebox PIT algorithm and a nlogn+k
O(k)

time blackbox test [AvMV11].

Multilinear depth-4 circuits (ΣΠΣΠ circuits or sum of products of sparse polynomials)

have a nk
O(1)

time hitting set [KMSV13, SV11].

There are other restricted arithmetic circuits: set-multilinear circuits, ROABPs, etc.

for which non-trivial hitting sets and white box PIT are known. We will study these in

detail throughout this thesis. See also the surveys [Sax09, Sax14, SY10].

1.2 Arithmetic branching programs (ABP)

Arithmetic branching programs (ABP) are special arithmetic circuits. An arithmetic

branching program is a directed layered graph with a source and a sink. The edges

starting at layer i go only to layer i + 1 and are labelled by ‘simple’ polynomials. Each

path of this graph computes the product of the labels on its edges and the ABP computes

the sum of these products over all paths from the source to the sink. The size of the ABP

is the number of nodes in it. The width of the ABP is the maximum number of nodes in

any layer.

The width of an ABP is an important parameter. It is known that the class of width-2

ABPs is an incomplete model [AW11]. I.e. there are polynomials that cannot be computed

by width-2 ABPs, irrespective of the size of the ABP. All polynomials can be computed

by width-3 ABPs. Also, constant width ABPs are equivalent to constant depth formulas.

ABPs are equivalent to iterated matrix multiplication and symbolic determinant. I.e.

any size s ABP can be written as a size s iterated matrix multiplication and vice versa.

7

A size s ABP can be written as a size s symbolic determinant. The symbolic determinant

of a s× s matrix can be written as a size s3 ABP.

Also, any circuit in VP (polynomial size circuit with polynomially large syntactic de-

gree) can be reduced to a quasi-polynomial size ABP1. Thus, ABP is VP-complete under

quasi-polynomial reductions.

The power of the ABPs lies between that of arithmetic circuits and arithmetic formulas.

I.e. any polynomial computed by an arithmetic formula of size s can be computed by an

ABP of size s and any polynomial computed by an ABP of s1 nodes and s2 edges can

be computed by an arithmetic circuit of size s1 + s2. Out of all the children of the

multiplication gates in these arithmetic circuits obtained from ABPs, only one can be a

non-input node. [LMS15] have studied it in the non-commutative model. See [Raz05]’s

lecture notes for a good overview. We do not know if these inclusions are strict.

Let us now study a restricted subclass of ABPs, which are known to to be weaker than

ABPs.

1.3 Read-once Oblivious ABP (ROABP)

A read-once oblivious ABP is an ABP such that each variable occurs in only one layer2.

With a small overhead, a given ROABP can be converted so that each variable occurs in

only one layer. Thus, it can be written as a product of univariate polynomial matrices

over distinct variables. A permutation on the variables x can be associated with any

ROABP. Hence, the defining properties of an ROABP are n, its number of variables, π,

the sequence of these variables, d, the degree of these variables and w, the width, which

is the maximum dimension of any matrix.

Besides the white-box and the black-box settings, ROABP allows for a hitting set when

the sequence of the variables is known, but we cannot see the actual edge weights. This,

we shall call as the grey-box setting.

1A function f(n) = 2logc n is quasi-polynomial in n if c > 1 is a constant. If c = 1, f(n) is polynomial
in n.

2In a read-once ABP, each variable occurs at most once on every path from the source to the sink. A
read-once oblivious ABP has the property that every variable occurs in only one layer.

8

There has been a long chain of work on identity testing for ROABP. [RS05] gave a

polynomial-time white-box algorithm for the identity testing of ROABPs. In [FS13b],

Forbes and Shpilka gave a nO(logn logw) i.e. quasi-polynomial-time grey-box hitting-set.

In [FSS14], Forbes, Saptharishi and Shpilka gave a (ndw)O(d log2 n) i.e. quasi-polynomial-

time hitting-set for the black-box setting. So, there is an exponential dependence on the

individual degree, d. Their basic idea is that a shift of the variables condenses the rank

of the coefficients of all monomials into the coefficients of small monomials. This was

further improved by Agrawal et al. [AGKS15] to (ndw)O(logn) time. They removed the

exponential dependence on the degree d. Their test is based on the idea of basis isolating

weight assignment . Given a polynomial over an algebra, it assigns weights to the variables,

and naturally extends it to monomials, such that there is a unique minimum weight basis

among the coefficients of the polynomial.

In another work, Jansen et al. [JQS10] gave a blackbox test for a sum of constantly

many arithmetic branching programs which they also call ROABP . However, they define

a much weaker model where every variable may appear on at most one edge in the ABP.

Applications of ROABP: ROABP is one of the few models for which a polynomial-

time identity test is known in the whitebox regime, but not in the blackbox regime. It also

has a lot of structure to it, as we will see in this thesis. Hence, a blackbox PIT algorithm

for ROABP is expected in the next few years.

Arithmetic branching programs have been defined on the lines of (boolean) branching

programs, also known as Binary Decision Diagrams. A boolean branching program is

also a directed acyclic graph with a ‘start’ vertex. But the out degree of all vertices is 2.

Each vertex is labelled with a variable and one outgoing edge from that vertex has label 0

and the other outgoing edge from that vertex has label 1. Given an input boolean string

b1b2 · · · bn ∈ {0, 1}n, at a vertex with label xi, we take the edge which has the value bi.

There are two vertices - terminal vertices - which have no outgoing edges. They are the

‘accept’ and ‘reject’ vertices. We accept the string b1b2 · · · bn if the ‘accept’ vertex can be

reached from the start node by reading this input string b1b2 · · · bn.

9

In a reduced ordered binary decision diagram, an order is associated with the boolean

variables and the variables occur in the binary decision diagram in this order. Moreover, all

the isomorphic sub-graphs of the binary decision diagram are merged. So, for every input

string, there is a single path from the start node to one of the terminal nodes. Checking if a

reduced ordered binary decision diagram accepts any string reduces to PIT of a multilinear

ROABP. Similarly, the equality of two read-once boolean branching programs reduces to

the equality of two ROABPs.

The branching programs with ‘read-once oblivious’ property are called Oblivious Boolean

Decision Diagrams (OBDDs). A log n seed length pseudo-random generator for OB-

DDs would de-randomize RL. It would bring it into the complexity class L. Presently,

only a O(log2 n) seed length pseudo-random generator is known for OBDDs [RR99]. A

polynomial-time hitting set for ROABPs may give us new directions towards improving

this bound.

Recall that a polynomial computed by any circuit in VP can be computed by a depth-3

circuit of sub-exponential size. Hence, finding a PIT algorithm for depth-3 circuits almost

solves the general case. But for now, even a sub-exponential solution for depth-3 circuits

seems elusive. However, an efficient test for depth-3 multilinear circuits looks within reach

as a lower bound against this class of circuits is already known [RY09]. A circuit is called

multilinear if all its gates compute a multilinear polynomial, i.e. polynomials such that the

maximum degree of any variable is one. Hence, each product gate in a depth-3 multilinear

circuits induces a partition on the variables.

A circuit is called depth-3 set-multilinear if it is a depth-3 multilinear (ΣΠΣ) circuit

such that all the product gates in it induce the same partition on the set of variables.

It is easy to see that a depth-3 multilinear circuit is a sum of at most k depth-3 set-

multilinear circuits, where k is the fan-in of the top addition gate. [RS05] gave the first

polynomial-time whitebox PIT for set-multilinear circuits. [ASS13] gave the first quasi-

polynomial-time hitting set for set-multilinear circuits using the concept of low-support

rank concentration, which they introduced in this paper.

[AGKS15] gave a sub-exponential whitebox algorithm for multilinear circuits when

10

the top fan-in is constant. Then, [dOSV15] gave an unconditional sub-exponential time

blackbox test for depth-3 multilinear circuits.

ROABPs subsume depth-3 set-multilinear circuits; for each product gate of such a

circuit, one can construct a width-2 ROABP in the same variable order. Adding such

width-2 ROABPs, set-multilinear circuits with top fan-in k reduce to ROABPs of width

2k.

Diagonal circuits (
∑∧∑

) compute sum of powers of linear polynomials, i.e. polyno-

mials of the form
∑k

i=1 (`i)
di . After the polynomial-time hitting set for depth-3 circuits

with constant top fan-in, these were the ‘simplest’ depth-3 circuits open to attack. There

are exponential lower bounds known for this circuit family [NW96, Sax08]. The proof uses

the partial derivative method and has one of the most elementary lower bound proofs. So,

it is used to introduce lower bounding techniques. [Sax08] gave the first polynomial-time

whitebox PIT for this model. [FSS14] a blackbox PIT which takes nO(log logn) time. Be-

fore that, a nO(logn) time blackbox PIT algorithm was known [ASS13, FS13b, FS13a] .

Diagonal circuits reduce to ROABPs through Saxena’s trick [Sax08].

Though interesting models like set-multilinear circuits and diagonal circuits reduce

to ROABPs, the ROABPs are not a very strong model. Kayal et al. [KNS16] showed a

polynomial f that can be computed by a small multilinear circuit, but any ROABP that

computes f would take exponential size.

1.4 Contribution of this thesis

In this thesis, we work with ROABPs and width-2 ABPs.

1.4.1 Sum of ROABPs (Chapter 3)

[RS05] gave a polynomial-time white box PIT for set-multilinear circuits. The same algo-

rithm works for a generalization of set-multilinear circuits: the ROABPs. [ASS13] gave a

quasi-polynomial-time hitting set for set-multilinear circuits.

In the whitebox arena, there was a 2O(
√
n)-time PIT for sum of two set-multilinear

11

circuits [AGKS15]. But, this time bound degraded rapidly with PIT for sum of more

set-multilinear circuits. Then, de Oliveira, Shpilka and Volk [dOSV15] gave a blackbox

2Õ(n2/3)-time PIT for multilinear circuits, And, in effect for sum of two multilinear circuits.

In this thesis, we give the first polynomial-time whitebox algorithm, and the first quasi-

polynomial-time blackbox algorithm, for the sum of two depth-3 set-multilinear circuits.

Our results actually hold for a stronger model, the sum of two ROABPs. In fact, it holds

for the sum of constantly many ROABPs.

As we already saw, there is a polynomial-time whitebox PIT [RS05] and a (ndw)O(logn)

time blackbox hitting set for an ROABP [AGKS15]. [KNS16] showed that the sum of

two ROABPs is strictly stronger than a single ROABP. Hence, the results of [RS05] or

[AGKS15] cannot be used for the sum of two ROABPs. However, our algorithm for the

sum of constantly many ROABPs matches their respective time complexities:

There is a poly(n, d, w2c) time whitebox PIT algorithm and a (ndw)O(c2c log(ndw))

time hitting set for any n-variate polynomial computed as the sum of c ROABPs,

each of width w and individual variable degree d.

Consequently, [AFS+16] gave a sub-exponential time whitebox PIT for a generalization

of this model: the read-c ABP. Their algorithm takes 2n
O(1− 1

2c−1)
time. So, it takes worse

time. On the other hand, they solve a more general case. The algorithm presented in this

thesis is the best known for sum of ROABP.

We want to test if an n-variate polynomial, given as sum of c ROABPs, A1 + A2 +

· · ·+Ac, each of width w and with potentially different permutations on the variables, is

identically zero. A PIT for this model is equivalent to testing if A1
?
= A2 + A3 + · · ·Ac.

Let us first consider the question A
?
= B.

Whitebox test

Our algorithm uses the fact that the evaluation dimension of an ROABP is equal to the

width of the ROABP [Nis91a, FS13a]. The evaluation dimension of a polynomial is the

dimension of its partial evaluations with respect to a subset of variables. Essentially, the

12

linear dependencies among the partial evaluations of a polynomial define the ROABP

computing it. We also use the fact that the identity testing of the sum of two ROABPs

is the same as testing the equivalence of two ROABPs. Our algorithm is inspired from

a similar result in the boolean case. The boolean version of an ROABP is called an

oblivious binary decision diagram (OBDD). Testing the equivalence of two OBDDs is in

polynomial-time [SW97]. OBDDs have a similar property of small evaluation dimension.

However, when considering partial evaluations, the notion of linear dependence becomes

equality in the boolean setting. Our equivalence test for two ROABPs A and B takes

linear dependencies among partial evaluations of A and verifies them for the corresponding

partial evaluations of B. As B is an ROABP, the verification of these dependencies reduces

to identity testing for a single ROABP.

In Section 3.3.2, we generalize this test to the sum of c ROABPs. There we take A

as one ROABP and B as the sum of the remaining c − 1 ROABPs. In this case, the

verification of the dependencies for B becomes the question of identity testing of a sum

of c− 1 ROABPs, which we solve recursively.

Blackbox test

Like the whitebox test, we reduce the question to identity testing for a single ROABP, using

the low evaluation dimension property. But, just a hitting-set for ROABP does not suffice

here, we need an efficient shift of the variables which gives low-support concentration

in any polynomial computed by an ROABP. An `-concentration in a polynomial P (x)

means that all of its coefficients are in the linear span of its coefficients corresponding to

monomials with support < ` (Support of a monomial is the set of variables that occur non-

trivially in that monomial. E.g. Support of x1
500 is {x1}. Support of x1

5x2 is {x1, x2}).

Essentially, we show that a shift which achieves low-support concentration for an ROABP

of width w2c also works for a sum of c ROABPs. This is surprising because, as mentioned

above, a sum of c ROABPs is not captured by an ROABP with polynomially bounded

width [KNS16].

A novel part of our proof is the idea that for a polynomial over a k-dimensional F-

13

algebra Ak, a shift by a basis isolating weight assignment achieves low-support concentra-

tion. To elaborate, let w : x→ N be a basis isolating weight assignment for a polynomial

P (x) ∈ Ak[x] and let t be a new variable. Then P (x) shifted by tw, namely P (x1 +

tw(x1), . . . , xn + tw(xn)) has O(log k)-concentration over F(t). As Agrawal et al. [AGKS15]

gave a basis isolating weight assignment for ROABPs, we can use it to get low-support con-

centration. Forbes et al. [FSS14] had also achieved low-support concentration in ROABPs,

but with a higher cost. Our concentration proof significantly differs from the older rank

concentration proofs [ASS13, FSS14], which always assume distinct weights for all the

monomials or coefficients. Here, we only require that the weight of a coefficient is greater

than the weight of the basis coefficients that it depends on.

1.4.2 Sparse-Invertible-Factor ROABP (Chapter 4)

The next model we study is an ROABP with a natural restriction: invertibility. The input

is of the kind: A = M0M1M2 · · ·MnMn+1 is an ROABP, where M0 and Mn+1 are constant

vectors and Mi ∈ F[xπ(i)]w×w is invertible for all i. Here, π is a permutation on [n].

Ben-Or and Cleve [BOC92] reduce formulas to width-3 ABP with invertible factors.

Saha, Saptharishi and Saxena [SSS09] reduce PIT for depth-3 circuits to PIT for width-

2 ABP with invertible factors. So, ABPs with invertible layers are general enough. It

seems that the ‘read-once, oblivious’ restriction weakens the model, because of which, we

can find a hitting set. Though the model is weakened, it includes the interesting class of

diagonal circuits. Saxena’s trick [Sax08] reduces diagonal circuits (sum of power of linear

polynomials) to ROABPs with invertible factors of polynomial width.

The result we prove is:

There is a (nδ)O(w2)-time hitting-set for the class of n-variate invertible ROABPs

of width w and individual degree δ.

We basically do this by achieving w2-support concentration.

Any monomial of k support, when viewed as a word with the variable ordering xπ(1) ≺

xπ(2) ≺ · · · ≺ xπ(n), has k + 1 prefixes and 2k substrings. Let coeff(m1) be a prefix of

14

coeff(m2). We show that if coeff(m1) is linearly dependent on substrings of coeff(m1), then

using this dependency and the invertibility condition, We show that coeff(m2) is linearly

dependent on substrings of coeff(m2). Using this, we can prove (w2 + 1)-concentration

among the coefficients.

We actually give a hitting set when each layer of the invertible-factor ROABP may have

more that one variable. We work with the model A = M0M1(x1)M2(x2) · · ·Md(xd)Md+1,

where M0 ∈ F1×w,Md+1 ∈ Fw×1 as before. Mis are invertible for all i, as before. But

now, Mis are possibly over more than one variable. But the ROABP is still read-once,

oblivious. I.e. there is a partition of the variables x = x1 t x2 t · · · t xd such that Mi

is a matrix polynomial over variables in xi. We call this the class of sparse invertible

ROABPs. We saw that with a small increase in the width, the ABP can be written as a

product of univariates. But, this gives a better time complexity than when we convert it

to univariates and apply the hitting set from above.

There is a (nδs)w
2 logw-time hitting-set for the class of n-variate s-sparse

invertible ROABPs of width w and individual degree δ.

For this, we have to concentrate the coefficients within a matrix Mi to coefficients of

low-support monomials.

1.4.3 Sum of two width-2 ABPs (Chapter 5)

Our third contribution is regarding the sum of width-2 ABPs. We study the question:

Is there a polynomial which cannot be computed as a sum of two width-2

ABPs?

Width-2 ABP is interesting because an efficient PIT for width-2 ABP would imply an

efficient PIT for depth-3 circuits [SSS09], and hence, effectively, for all polynomials in VP

[GKKS13].

Allender and Wang [AW11] showed that x1x2+x3x4+ · · ·+x15x16 cannot be computed

by a single width-2 ABP; it is an incomplete model. They show that if a general width-2

ABP computes x1x2 +x3x4 + · · ·+x15x16, then, a width-2 ABP where the determinant of

15

each layer of the ABP is a non-zero field constant3 computes x1x2+x3x4. They then show

that the highest degree homogeneous part4 of any polynomial computed by an invertible

width-2 ABP can always be written as a product of homogeneous linear polynomials. I.e.

with any invertible width-2 ABP A, we can associate a multiset LA of homogeneous linear

polynomials, such that the highest degree homogeneous part of the polynomial computed

by the ABP A is
∏
l∈LA l. Thus, x1x2 + x3x4 cannot be computed by any invertible ABP.

In contrast, the family of width-3 ABPs can compute all polynomials. It is a complete

model. This is analogous to the fact that
∏∑

circuits cannot compute x1x2 + x3x4, but

the family of
∑∏

circuits can compute all polynomials.

We are interested in this question for the sum of two width-2 ABPs. It is easy to see

that x1x2 + x3x4 can be computed by a single width-2 ABP. So, x1x2 + · · ·+ x7x8 can be

written as a sum of two width-2 ABPs.

Can the polynomial x1x2 + x3x4 + · · · + x9x10 be computed as a sum of two

width-2 ABPs?

We will be studying a restriction of this model: the sum of two width-2 invertible ABPs.

It is easy to see that a width-2 invertible ABP can compute x1x2. Hence, the polynomial

x1x2 + x3x4 can be computed as a sum of two invertible width-2 ABPs.

Can the polynomial x1x2 +x3x4 +x5x6 be computed as a sum of two invertible

width-2 ABPs?

We show that if A + B = f , then, the sets of linear forms, LA and LB, have to be

equal.

If the multiset LA of homogeneous linear polynomials associated with one of the ABPs

A is 3-independent, then, we show that x1x2 + x3x4 + x5x6 cannot be computed as a sum

3We call this as an invertible ABP. If the determinant of any layer in the ABP is a non-constant
polynomial, then, it is not invertible. Hence, this definition for an invertible layer is not the same as that
in the previous problem.

4Suppose a given polynomial f has degree d. Let S be the set of all n-variate monomials of degree d.
Then, the highest degree homogeneous part of f is∑

m∈S

coefff (m) ·m.

16

of two width-2 ABPs. We actually prove a generalization of this.

For a subset S of LA, we naturally define the polynomial A|S , the polynomial computed

by the ABP A, restricted to the subset of linear forms S. It could be viewed as a ‘derivative

of the ABP’ with respect to the complement of S. We show that

If A+B = f , then, for almost all subsets S of LA = LB, A|S +B|S = 0.

This is a partial progress towards proving that f cannot be computed as a sum of two

width-2 ABPs. Using the above result, we hope to prove that if A + B = f , then, for

S = LA = LB, A|S +B|S = 0. I.e. A+B = 0, a contradiction.

Chapter 2

Related models and Techniques

In this chapter, we will study some related models of computation and the known identity

testing algorithms for them. We will also study a few well-known techniques used in

this area. Many of the open problems in the field of ‘Polynomial Identity Testing’ are to

improve the time complexity of the PIT for these models. Let us get familiar with the

notations used first.

2.1 Notation

• x will denote the set of variables {x1, x2, . . . , xn}.

• Sometimes, there may be a sequence on the variables and we use x for that also.

• By [n], we represent the set {1, 2, . . . , n}.

• We will sometimes denote a monomial as a = (a1, a2, . . . , an) ∈ Nn. Then, xa

denotes the monomial
∏n
i=1 x

ai
i .

• We will denote by coeffD(xa), the coefficient of the monomial xa in the polynomial

D(x).

• coeffs(p) is the set of the coefficients of the polynomial p(x). The coefficients of the

polynomial p(x) could be field elements or vectors or matrices.

17

18

• We overload the notation for inner product and say that the inner product 〈A,B〉

of two matrices Am×n and Bm×n is defined as
∑

(i,j)∈[m]×[n]Ai,jBi,j .

• Polynomials as vectors- Let S be a set of polynomials from F[x]. If the set of

monomials with non-zero coefficient in all of these polynomials is finite, then, the

polynomials in S can be viewed as vectors over F, indexed by a finite number of

monomials. Now, the notions related to linear algebra like span, basis, independent

set, etc. carry over to polynomials.

• We use the terms ‘easily computable’, ‘efficient’ and ‘small set’ to mean polynomial

size/polynomial time.

• For a polynomial f(x1, x2, . . . , xn),degxi(f) is the degree of the variable xi in the

polynomial f .

• A polynomial tuple g ∈ F[y]n is a tuple (g1, g2, . . . , gn), where gi ∈ F[y].

• Ak is used to denote a k-dimensional algebra over some field F. Recall that an

algebra is a vector space over the field F, endowed with bilinear multiplication.

We work with the following algebras in this thesis:

– The algebra of w × w matrices over the field F.

– The k-dimensional Hadamard algebra Hk(F) over the field F.

• Part(S) denotes the set of all possible partitions of the set S. Elements in a partition

are called colors.

2.2 A randomized algorithm for PIT

Given that this thesis is about PIT, it is fitting that the first lemma we study is the

following classical randomized algorithm that puts PIT in the complexity class RP.

19

Lemma 2.2.1 (Schwartz-Zippel Lemma 1). Let f(x) 6= 0 ∈ F[x] be a nonzero degree d

polynomial over a field F. Let S be a set of field values of size > d. Then,

Pr
a∈Sn

[f(a) = 0] ≤ d

|S|
.

Proof. The proof is by induction on n, the number of variables. When n = 1, the polyno-

mial is univariate. Hence, it can have ≤ d roots.

Induction hypothesis: We assume that for any n− 1-variate polynomial g of degree d,

Pr
a∈Sn−1

[g(a) = 0] ≤ d

|S|
.

Induction step: We can assume without loss of generality that degx1(f) > 0. Let d′ =

degx1(f). Write f(x1, x2, . . . , xn) =
∑d′

i=0 x1
i ·fi(x2, x3, . . . , xn). Note that deg(fi) ≤ d− i.

Then,

Pr
a∈Sn

[f(a) = 0] = Pr
a∈Sn

[f(a) = 0 | ∀i : fi(a) = 0] · Pr
a∈Sn

[∀i : fi(a) = 0]

+ Pr
a∈Sn

[f(a) = 0 | ∃i : fi(a) 6= 0] · Pr
a∈Sn

[∃i : fi(a) 6= 0]

≤ 1 · Pr
a∈Sn

[∀i : fi(a) = 0]

+ Pr
a∈Sn

[f(a) = 0 | ∃i : fi(a) 6= 0] · 1

≤ Pr
a∈Sn

[fd′(a) = 0] + Pr
a∈Sn

[f(a) = 0 | ∃i : fi(a) 6= 0]

By the induction hypothesis, we know that

Pra∈Sn [fd′(a) = 0] ≤ d− d′

|S|
.

Now, suppose there exists i ∈ [d′] such that fi(a) 6= 0. Let a = (a1, a2, . . . , an). Then,

the univariate polynomial f ′(x) = f(x, a2, a3, . . . , an) 6= 0. Now, deg(f ′) ≤ d′. Hence,

Pr
a∈Sn

[f(a) = 0 | ∃i : fi(a) 6= 0] ≤ d′

|S|
.

1Though the lemma is commonly called Schwartz-Zippel Lemma, DeMillo-Lipton had also given the
same bounds. See [DL78, Sch80, Zip79].

20

Thus,

Pr
a∈Sn

[f(a) = 0] ≤ d− d′

|S|
+

d′

|S|
=

d

|S|
.

Thus, we need that that the field size is > d.

Also, this bound is tight. That is because we can find univariate polynomials which

have d unique roots.

We can de-randomize the above lemma by evaluating the polynomial at all the points

in Sn. And we can take S to be any set of d+ 1 distinct field elements. Observe that we

only need blackbox access to the polynomial for this test to work.

We also use a special case of Alon’s Combinatorial Nullstellensatz.

Lemma 2.2.2 ([Alo99]). Let f(x) 6= 0 ∈ F[x] be a nonzero individual degree d polynomial

over a field F. Let S be a set of field values of size > d. Then, there exists a point a ∈ Sn

such that f(a) 6= 0.

2.3 Basics and some common techniques

2.3.1 Hitting sets

Definition 2.3.1. A set H ⊆ Fn is a hitting-set for a class P of n-variate polynomials,

if for every nonzero polynomial A(x) ∈ P, there is a point a ∈ H such that A(a) 6= 0.

Is is well known that a hitting set is equivalent to blackbox testing. For a hitting-set

to exist, we will need enough points in the underlying field F. E.g. the polynomial x2 + x

over the field F2 is a nonzero polynomial. But it evaluates to 0 at every point in the

field. Hence, to find enough points for a hitting set, we may have to go to a large enough

field extension. Henceforth, we will assume that the field F is large enough such that the

constructions below go through (see [AL86] for constructing large F).

2.3.2 Kronecker substitution

The following lemma is a classic tool.

21

Lemma 2.3.2 (Kronecker map [Kro82]). Given a set of k monomial pairs {(mi,m
′
i)}

k
i=1

where each monomial is over n variables {x1, x2, . . . , xn}, and has individual variable

degree < d, there exists a prime p ≤ N logN such that ψp(mi) 6= ψp(m
′
i) for all i ≤ k,

under the map ψp : xi 7→ (yd
i−1

mod (yp − 1)). Here, N = nk log d.

This gives a polynomial time mapping that separates all the given monomials pairs

and thus, a polynomial size hitting set for a
√
k-sparse polynomial with bounded degree.

Proof. LetM be the set of n-variate monomials with individual variable degree d. Consider

the monomial map ψ : M −→
{
y0, y1, . . . , yd

n−1} defined as ψ : xi 7−→ yd
i−1

. It maps a

monomial
∏n
i=1 xi

ai to y
∑n
i=1 ai·di−1

. Since ai < d for all i, (d1, d2, . . . , dn) is the base-d

representation of the natural number
∑n

i=1 ai · di−1. Thus, the map ψ is bijective. This

separates all the given monomial pairs. Let the degrees of the monomials ψ(mi) and ψ(m′i)

be di and d′i respectively. But, the degree is now dn − 1, which is exponential. We bring

this degree down by taking the degrees modulo a prime p; ψp : xi 7→ (yd
i−1

mod (yp−1)).

This no longer guarantees that all the monomial pairs are separated. There may exist an

i such that di ≡ d′i mod p, i.e. p|(di − d′i). So, we try many primes. We want a small set

of primes P, such that ∃p ∈ P, ∀1 ≤ i ≤ k : p - (di−d′i). Thus, we want
∏
p∈P -

∏
(di−d′i).

I.e.
∏
p∈P -

∏
|di − d′i|. We achieve that by ensuring

∏
p∈P >

∏
i≤k|di − d′i|. Let us find a

satisfactory set of primes, P. Let |P| = N . Since every prime is ≥ 2,
∏
p∈P > 2N . Now,

for every i, |di − d′i| < dn. Thus, we want 2N ≥ dnk. I.e. N = nk log d will suffice.

Corollary 2.3.3. We can efficiently compute a monomial map where every monomial

over c variables and individual variable degree < d, maps to a monomial in y with degree

dc and assigns distinct degrees to every monomial. Note that if c is a constant, then every

monomial is mapped to a monomial in y with polynomial degree.

Thus, a lower bound for a model with the restriction of multi-linearity also gives a

lower bound for a model computing an exponential degree polynomial.

22

2.3.3 Generator

A concept equivalent to a hitting set is that of a generator (see [SY10, Section 4.1]). Instead

of a set of points (hitting set) where we check the value of the polynomial A(x1, x2, . . . , xn),

we replace the variables {x1, x2, . . . , xn} with polynomials. These polynomials are over a

constant number of variables. So, the substituted polynomial A is ‘simpler’.

Definition 2.3.4 (Generator). Let P be a class of n-variate polynomials. We use c

new variables {t1, t2, . . . , tc}. We call a map φ : {x1, x2, . . . , xn} −→ F[t1, t2, . . . , tc]

with φ : xi 7−→ fi(t1, t2, . . . , tc) a generator for the class P if for every nonzero poly-

nomial A(x1, x2, . . . , xn) ∈ P, A(f1, f2, . . . , fn) 6= 0.

The degree of this generator φ is max {deg(fi)}ni=1.

Finding a generator is equivalent to finding a hitting set. That is because by Lemma

2.2.1, given a c-variate, degree d generator for a family of polynomials of degree δ, we can

find a hitting set of size (dδ + 1)c. And, for the opposite direction, given a hitting set, by

Corollary 2.3.6 below, we can find a generator.

2.3.4 Lagrange interpolation

Suppose we are given a set of points β1, β2, . . . , βk and a set of values a1, a2, . . . , ak and we

want to construct a univariate polynomial f(x) such that f evaluates to ai at the point βi,

i.e. f |x=βi = ai for all i ≤ k. The following polynomial is the smallest degree polynomial

for which this holds.

f(x) =
k∑
i=1

∏
j 6=i(x− βj)∏
j 6=i(βi − βj)

ai.

Each summand corresponds to an index i. When x = βi, the ith summand evaluates to

ai and the other summands evaluate to 0. The degree of this polynomial is k − 1.

In this thesis, we use the Lagrange interpolation to find a small degree polynomial that

takes a set of values a1, a2, . . . , ak at some points (we don’t care which points). We do

that by choosing the set of points {β1, β2, . . . , βk} arbitrarily.

Lemma 2.3.5. Suppose G is a set of polynomial tuples for a class of polynomials C such

that for any polynomial C ∈ C, there exists a polynomial tuple g ∈ F[t]n in G that acts as

23

a generator for C, i.e. C(g) 6= 0. Let all the polynomial tuples in G be univariate in the

variable t and d = max {deg(g)g∈G}. Then, there exists a single polynomial ĝ ∈ F[t, y]n

such that for every nonzero polynomial C(x) ∈ C, C(ĝ) 6= 0.

Moreover, degt(ĝ) = max {deg(g)}g∈G and degy(ĝ) = |G| − 1.

Proof. Let h = |G| and G = {g1,g2, . . . ,gh}, where each gi ∈ F[t]n. Let {βi}hi=1 be an

arbitrary set of constants. The Lagrange interpolation ĝ(y) of the polynomial tuples in G

is defined as follows

ĝ(y) =
h∑
i=1

∏
j 6=i(y − βj)∏
j 6=i(βi − βj)

gi.

The key property of the interpolation is that when we put y = βi, ĝ(βi) = gi for all i ∈ [h].

We know that for any C ∈ C, C(gi) 6= 0, for some i ∈ [h]. Hence, C(ĝ(y)) as a

polynomial in y, t is nonzero because C(ĝ(βi)) = C(gi) 6= 0. So, we can say C(ĝ(y)) 6= 0

as a polynomial in y, t.

Moreover, degt(ĝ) = max {deg(gi)}i∈[h] and degy(ĝ) = h− 1.

Thus, the ĝ from the above Lemma is a generator for the class of polynomials C.

A corollary of Lemma 2.3.5 is given below.

Corollary 2.3.6. Suppose H is a hitting-set for a class of polynomials C. Let C ′(x) =

C1(x)C2(x) · · ·Cm(x), be a degree δ′ polynomial over F, where Ci ∈ C for all i ∈ [m].

There is a hitting-set of size δ′|H| for C ′(x).

Proof. A set G defined above is a generalization of a hitting set. Let h = |H|. Hence,

we can find a polynomial ĝ over the variable y (the gis are points in the hitting set, and

hence, constants. So, there is no variable t.), such that for any C ∈ C, C(ĝ) 6= 0. Also,

deg(ĝ) = degy(ĝ) = h− 1.

So, For any a ∈ [m], Ca(ĝ) 6= 0. So, C ′(ĝ) 6= 0.

Degree of ĝ(y) is h − 1. So, degree of C ′(ĝ(y)) is bounded by δ′(h − 1). We can put

δ′h distinct values of y to get a hitting-set for C ′(ĝ(y)).

24

2.4 Arithmetic branching programs (ABPs)

An arithmetic branching program (ABP) is a directed acyclic graph with two special

vertices: the start node, s and the end node, t. All the edges in the graph have weights

from the polynomial ring F[x], for some field F. For an edge e, let us denote its weight

by W (e). For a path p, its weight W (p) is defined to be the product of weights of all the

edges in it,

W (p) =
∏
e∈p

W (e).

The polynomial A(x) computed by the ABP is the sum of the weights of all the paths from

s to t,

A(x) =
∑

p path s t

W (p).

These edge weights are the building blocks of the ABP. We study the ABP by putting

various restrictions on its edge weights. For example, the following ABP, which computes

the generic univariate polynomial
∑d

i=0 aix
i has edge weights from the set F ∪ {x} 2 .

x x x

a0 a1 a2 an−1 an

In chapter 3 on the sum of ROABPs, we assume that the weights in each layer are

univariate polynomials over distinct variables. In chapter 4 on invertible ROABPs, we

assume that the edge weights are sparse and the variables in a layer are not used in

any other layer. Whereas in chapter 5 on width-2 ABPs, the edge weights are linear

polynomials.

We will assume that the ABP is layered, i.e. the vertices are partitioned into layers

and the edges only go to successive layers. I.e. an edge from the ith layer can only go to

the (i + 1)th layer. The length of an ABP is the length of a longest path from s to t.

The width if an ABP is the maximum number of vertices in a layer.

Observe that the inner product of two w-dimensional vectors a, b can equivalently be

represented by a length 2 ABP of width w. Extending this idea, we can represent the

2Drawings of ABPs in this thesis: the edges are directed from left to right. We do not draw the
edges with 0 weight. When an edge is present, but without any weight on it, it is assumed to have weight
1. The leftmost vertex is the start node and the rightmost vertex is the end node.

25

arithmetic branching program as a matrix product.

By adding dummy vertices, we can assume that every layer has exactly w vertices,

where w is the width of the ABP. Let the set of nodes in the ith layer be {vi,j | j ∈ [w]}

for 1 ≤ i ≤ d − 1. Let the length of the ABP be d. Then, the arithmetic branching

program can alternately be represented by a matrix product
∏d
i=1Di, where D1 ∈ F[x]1×w,

Di ∈ F[x]w×w for 2 ≤ i ≤ d− 1, and Dd ∈ F[x]w×1 such that

D1(j) = W (s, v1,j), for 1 ≤ j ≤ w,

Di(j, k) = W (vi−1,j , vi,k), for 1 ≤ j, k ≤ w and 2 ≤ i ≤ n− 1,

Dd(k) = W (vd−1,k, t), for 1 ≤ k ≤ w.

From this formulation, it is easy to see that ABPs are equivalent to iterated matrix

multiplication.

2.5 Read-once oblivious ABPs (ROABPs)

Recall that an ABP can be written as a product of matricesD(x) = D1(x)D2(x) · · ·Dd(x),

where each layer Di(x) is a matrix of polynomials (for 2 ≤ i < d) and D1(x) and Dd(x)

are vectors of polynomials.

Equivalently, we can also write the ABP as D0D1(x1)D2(x2) · · ·Dd(xd)Dd+1, where

D0 ∈ F1×w and Dd+1 ∈ Fw×1.

Definition 2.5.1. An ABP is a read-once oblivious ABP (ROABP) if every variable xi

is present in only one of the layers of the ABP.

Sequence of variable partitions- This naturally associates a partition x = x1 tx2 t

· · · t xd of the variables to the ROABP according to the variables present in the various

layers of the ROABP. Moreover, we can also associate a sequence (x1,x2, . . . ,xd) on these

variable partitions, according to the sequence of the layers that are present in the ROABP.

Let |xi| = ni. Thus,
∑d

i=1 ni = n.

26

Polynomial over matrices- Observe that a matrix of polynomials is also a polyno-

mial over matrices. I.e. any layer Di(xi) ∈ F[xi]
w×w can also be written as Di(xi) =∑

a∈Nni Di,ax
a
i , where xa

i are monomials over the variables in xi and Di,a ∈ Fw×w is a ma-

trix of field constants. E.g.

x+ y x2 − x+ 1

−y 5y − 3

 =

0 1

0 0

x2+

1 −1

0 0

x+

 1 0

−1 5

 y+

0 1

0 −3

 1.

Coefficients of a monomial in an ROABP are easy to compute- An exponent

a ∈ Nn can be viewed as (a1,a2, . . . ,ad), where ai is the subsequence of the tuple a,

corresponding to the variables in xi. Now, since the variables in the layers are not repeated,

coeffD(xa) =
d∏
i=1

coeffDi (xi
ai) . (2.1)

Some examples- The following is an example of an ROABP computing the polynomial∏
i∈[n](1 + xi) =

∑
S⊆[n]

∏
i∈S xi.

x1

x1

x2

x2

x3

x3

xn

xn

And the following is an example of an ROABP computing the symmetric polynomial

of degree k over n variables,
∑

S⊆[n],|S|=k
∏
i∈S xi.

27

x1

x2

x3

x2

x3

x3

xk

xk

xk+1

xk+1

xn−k

xn−k+1

xn

k

n-k

Each path from s to t takes k-many northward steps and n−k-many southward steps.

On every northward step, we associate a unique variable.

Though the ROABP can compute some interesting polynomials, the ‘read-once’ restric-

tion severely limits the power of the arithmetic branching program. E.g. Kayal, Nair and

Saha showed a polynomial that cannot be computed by any ROABP of sub-exponential

size [KNS16].

Sparse layers: We already know that the variables are partitioned into x1tx2t· · ·xd,

where the ith layer Di is a matrix polynomial over the variables xi.

Lemma 2.5.2. If the sparsity of each of the entries of each layer is s, then, there exists

a width sw2 ROABP with univariate layers that computes the same polynomial.

Proof. There are ≤ w2 edges between any two layers. We replace each of these lines with

≤ s parallel lines, one for each monomial which has a non-zero coefficient in that edge

weight polynomial. Now, each of these lines is responsible for one monomial. We can

28

order the variables in xi arbitrarily and replace each line with a with ni edges. E.g. An

edge with weight x1
2x2 + 2x1x2

2 + 3 becomes

3

x1

2x1
2

x2
2

x2

Hence, if s and w are both polynomially large, then we can assume without loss of

generality that the ROABP has univariate layers.

Permutation associated with an ROABP: A permutation π of the variables (xi)
n
i=1

can be associated with an ROABP. If the variables (x1, x2, . . . , xn) occur in the ROABP

in the sequence
(
xπ(1), xπ(2), . . . , xπ(n)

)
, then the permutation π is associated with it. It

is an important property of the ROABP. An ROABP of a small width for a polyno-

mial may exist in one permutation π. But, it may not exist in some other permutation.

E.g. The polynomial f(x,y) =
∏n
i=1(1 + xiyi) has a width 2 ROABP when the per-

mutation is (x1, y1, x2, y2, . . . , xn, yn). That is because (1 + xiyi) has a width-2 ROABP.

y1 y2 ynx1 x2 xn

But, it is known that when the permutation is (y1, y2, . . . , yn, x1, x2, . . . , xn), any

ROABP which computes f(x,y) has width 2n. See section 2.5.1 below for the proof

sketch.

2.5.1 Evaluation Dimension

Definition 2.5.3. Let y = (y1, y2, . . . , ym) be a subset of the variables x and let a =

(a1, a2, . . . , am) ∈ Fm. Given a polynomial f(x), let f |y=a be the partial evaluation of the

polynomial f obtained by substituting yi with ai for i ∈ [m]. Thus, f |y=a ∈ F[x \y]. Then

the evaluation dimension, EvalDimy(f) of the polynomial f(x) with respect to the set of

variables y is defined as span {f |y=a | a ∈ Fm}.

29

Suppose an ROABP of width w and permutation of variables x computes a polynomial

f(x). Now, if y is a prefix of x, then, the evaluation dimension of f with respect to y,

EvalDimy(f) ≤ w. (A modification of the proof of Lemma 3.2.3 proves this statement.)

Now, consider the polynomial f(x,y) =
∏n
i=1(1 + xiyi) =

∑
S⊆[n]

∏
i∈S xiyi. Consider

its partial evaluation polynomial f |y=b, where b ∈ {0, 1}n. Let b be the indicator vector

for the set Sb. Then the monomial xSb
occurs with coefficient 1 in the partial evaluation

polynomial f |y=b and occurs with coefficient 0 in f |y=b′ for all Sb′ (Sb. Thus the poly-

nomials {f |y=b}b∈{0,1}n are linearly independent. There are 2n such partial evaluations.

Hence, w ≥ EvalDimy(f) = 2n.

This method is used to show lower bounds on ROABPs. See [KNS16] for examples.

We introduce the partial coefficient dimension in Chapter 3. (See Equation 3.1.) The

partial coefficient space and the partial evaluation space of any polynomial f with respect

to any subset of variables y are equal. See section 3.2.2 for a proof.

Coefficient space of an ROABP- Let the polynomial computed be D0D(x)Dd+1 =〈(
D0
>D>d+1

)
, D(x)

〉
, the inner product, where D0 ∈ F1×w and Dd+1 ∈ Fw×1. Thus,

D0D(x)Dd+1 computes the zero polynomial iff
(
D0
>D>d+1

)
is ‘orthogonal’ to every coef-

ficient of D(x). I.e.
(
D0
>D>d+1

)
is orthogonal to the space spanned by the coefficients

of D(x), the coefficient space of D(x). Hence, we should find the basis of the coefficient

space of D(x).

The dimension of the coefficients of D(x) is small; dim(coeffs(D)) ≤ w2.

2.5.2 Whitebox PIT [RS05]

Using the distributivity of algebras and the read-once property of ROABPs, we can give a

polynomial time PIT for ROABPs. We use the property that the coefficient of a monomial

is the product of the corresponding coefficients in various layers (See Equation 2.1). The

black box PIT for set-multilinear circuits by [ASS13], the blackbox PIT for ROABPs by

[FS12, FSS14, AGKS15] are all based on this idea.

There are two variants of this method: the primal method and the dual method.

30

Primal method

We will assume that the ROABP is D0D1(x1)D2(x2) · · ·Dd(xd)Dd+1, where D0 ∈ F1×w

and Dd+1 ∈ Fw×1 and the sparsity of each Di is s for 1 ≤ i ≤ d. We wish to find the

coefficient space of D1(x1)D2(x2) · · ·Dd(xd).

Starting with j = 1, we go iteratively over all the layers j for 1 ≤ j ≤ d and compute the

basis of the vector space of the coefficients in D1D2 . . . Dj . Let the basis of the coefficients

of D1D2 . . . Dj−1 be Bj−1. Then, because of Equation 2.1, span {coeffs(D1D2 · · ·Dj)} =

span {coeffs(D1D2 · · ·Dj−1)× coeffs(Dj)} = span {Bj−1 × coeffs(Dj)}.

Since the coefficients are w2 dimensional, |Bj−1| ≤ w2. Hence, |Bj−1 × coeffs(Dj)| ≤

w2s and we can find the basis Bj of the coefficients of D1D2 . . . Dj in time polynomial in

w, s. We do this for n rounds and get the coefficient space of D1(x)D2(x) · · ·Dn(x).

Dual method

In the dual method, in the jth round, we conserve the nullspace Nj of D1D2 · · ·Dj . Thus,

in effect, we conserve the coefficient space of D1D2 · · ·Dj .

Recall that the w2 entries in D1 form a linear space with the monomials acting as the

indices. Let us call this set of w2 entries {p1, p2, . . . , pw2}.

Let us recall the method of finding the basis of the nullspace of a vector space and

apply it to the set {p1, p2, . . . , pw2}: Initially, the basis B1 = ∅ 3. For 1 ≤ i ≤ w2, if the

polynomial pi is in the space spanned by the basis B1 constructed till now, i.e. if pi =∑
pr∈B1 αrpr, then, we represent it as that linear combination. This linear combination

(ᾱ,−1, 0, 0, . . . , 0) represents a basis element of the nullspace and is added to N1. If pi is

not in this space, we add p1 to the basis B1.

Now, for the ROABP, we follow a similar process in each round. We start with D1.

The polynomials in the basis B1 are replaced with new variables y1, y2, . . . , y|B1|. The

polynomials not in the basis are replaced with their linear dependence on the polynomials

in the basis. Now, all the entries are linear polynomials in yis. There are ≤ w2 such new

3This basis comprises of the entries of the matrices, which are in F[x]. Thus, it is s dimensional, where
s is the sparsity of the layers.

31

variables. Moreover, the since the nullspace is the same, the coefficient span of the new

matrix is the same as that of D1.

In the jth round (j ≥ 2), we assume that the preceding matrix product D1D2 · · ·Dj−1

is replaced by a single matrix D′j−1 with linear entries in y1, y2, . . . , y|Bj−1|. The coefficient

space of D′j−1 is the same as that of D1D2 · · ·Dj−1. In the next round, we consider

D1D2 · · ·Dj whose coefficient span is span
{

coeffs(D′j−1)× coeffs(Dj)
}

. There are ≤ w2s

monomials. Thus, the above procedure of replacing polynomial entries with polynomials

linear in the new variables y1, y2, . . . , y|Bj | can be done efficiently.

2.5.3 Basis Isolating Weight Assignment

[AGKS15] gave a possible framework, ‘Basis Isolating Weight Assignment’ for identity

testing of polynomials of the kind c>P , where c is a vector of field constants and P is a

vector of polynomials. Note that ROABP is such a model. If the ROABP is D0D(x)Dd+1,

where D(x) is an ROABP computing a w × w matrix, D0 ∈ F1×w and Dd+1 ∈ Fw×1,

then D0DDd+1 can be written as c = flattened(flattened(D0) flattened(Dd+1)
>) is a w2-

dimensional vector, where the ‘flattened’ operator takes a k× k matrix and writes it row-

by-row, as a k2-dimensional vector. Let P = flattened(D(x)), a w2-dimensional vector of

polynomials. Then, D0DDd+1 = c>P . If we could give a polynomial substitution ψ for

the variables, such that the coefficient space of P is maintained, then the identity testing

of c>P is equivalent to the identity testing of c>ψ(P).

They gave a quasi-polynomial degree univariate substitution which preserves the non-

zeroness of the polynomial computed by an ROABP. This substitution xi 7−→ tw(i) for

all i, with w : [n] −→ N is called as a basis isolating weight assignment. When this map

is naturally extended to monomials, it ensures that there is a unique basis of the set

of coefficients of D(x) which has the minimum weight. [AGKS15] could find this map

efficiently.

Lemma 2.5.4 ([AGKS15]). Let N = (nwd)logn. We can find in time poly(N) a family

of weight assignments
{

w1,w2, . . . ,wpoly(N)

}
such that at least one weight w is a basis

isolating weight assignment for the given ROABP of width w, over n variables, where the

32

individual degree of the variables is d.

2.5.4 Shifting and concentration

One way to find a hitting-set is by showing a low-support concentration in the polynomial.

It was first defined by Agrawal, Saha, and Saxena in [ASS13]. Low-support concentration

in the polynomial D(x) means that the coefficients of the low-support monomials in D(x)

span the whole coefficient space of D(x). So, to check whether the polynomial is 0 or not,

we just have to check the coefficients of the low-support monomials.

Now, we define `-concentration for a polynomial over an algebra.

Definition 2.5.5 (`-concentration). The polynomial D(x) ∈ Ak[x] is `-concentrated if

rankF{coeffD(xa) | a ∈ Nn, supp(a) < `} = rankF{coeffD(xa) | a ∈ Nn}.

For a polynomial C(x) ∈ F[x], its coefficients form a one-dimensional vector space

over F. Thus, it has `-support concentration if and only if it has at least one nonzero

coefficient of support < `.

Low-support concentration in polynomial D(x) implies low-support concentration in

the polynomial cD(x) for any c ∈ Fk. I.e. C(x) will have a nonzero coefficient for at least

one of the low-support monomials.

Lemma 2.5.6. Let D(x) ∈ Ak[x] be `-concentrated. Let C(x) = 〈c,D(x)〉 =
∑

i ciDi for

some constant vector c ∈ Fk. Then, C(x) ∈ F[x] is `-concentrated.

Proof. Suppose C(x) 6= 0, but all the (< `) support monomials of C(x) have zero coeffi-

cient. So, there exists a (≥ `) support monomial xb of C(x) with a nonzero coefficient.

Since D is `-concentrated, it is in the span of the coefficients of low-support monomials.

Let M = {a ∈ Nn | suppxa < `} be the set of low-support monomials. Then,

coeffD(xb) =
∑
a∈M

γa coeffD(xa),

where γa is a field constant for all monomials a. Taking inner product of the above

equation with c, 〈
c, coeffD(xb)

〉
=
∑
a∈M

γa 〈c, coeffD(xa)〉 .

33

So,

coeffC(xb) =
∑
a∈M

γa coeffC(xa).

But, coeffC(xa) = 0 for all low-support monomials xa. So, coeffC(xb) = 0, which is a

contradiction.

In other words, when D is low-support concentrated, C(x) will have a nonzero coeffi-

cient for at least one of the low-support monomials. Thus, we get a hitting set by testing

these low-support coefficients. We use the following Lemma from [ASS13].

Lemma 2.5.7 ([ASS13]). Given n, d, `, the set H = {h ∈ {0, β1, . . . , βd}n | supp(h) < `}

of size O(nd)` is a hitting-set for all n-variate `-concentrated polynomials A(x) ∈ F[x] of

individual degree d, where {βi}i are distinct nonzero elements in F.

Proof. It is easy to see that |H| = O(nd)`. `-Concentration for C(x) simply means that

it has at least one (< `)-support monomial with nonzero coefficient. Our set H will

essentially test all these (< `)-support coefficients. We go over all subsets S of x with

size `− 1 and do the following: Substitute 0 for all the variables outside the set S. There

will be at least one choice of S, for which the polynomial C(x) remains nonzero after the

substitution. Now, it is an (`− 1)-variate nonzero polynomial of individual degree d.

We take the hitting set obtained from Lemma 2.2.2: {0, β1, . . . , βd}`−1 for this poly-

nomial.

Hence, once we have low-support concentration, we solve blackbox PIT.

Note that not every polynomial has low-support concentration, for example C(x) =

x1x2 · · ·xn is not n-concentrated. However, Agrawal, Saha, and Saxena [ASS13] showed

that for depth-3 set-multilinear circuits , low-support concentration can be achieved through

an appropriate shift of the variables.

Let f = (fi(t))
n
i=1 be a tuple of polynomials, where fi ∈ F[t] for each i. By ‘shifting by

a tuple f ’, we mean replacement of xi with xi + fi. Note that C(x+ f) 6= 0 if and only if

C(x) 6= 0. Hence, finding a blackbox PIT for C(x+ f) is equivalent to finding a blackbox

PIT for C(x).

34

In the example of the polynomial C(x) = x1x2 · · ·xn, we shift every variable by 1.

That is, we consider C(x + 1) = (x1 + 1)(x2 + 1) · · · (xn + 1). Observe that C(x + 1)

has 1-concentration. To get some understanding about shifts, we will show that a shift

preserves the coefficient space of a polynomial.

Lemma 2.5.8. Let A(x) be an n-variate polynomial and f = (f1, f2, . . . , fn) ∈ Fn[t].

Then A(x) and A(x+ f) have the same coefficient space.

Proof. We show that the coefficients of A(x+f) are in the span of the coefficients of A(x+

f) Recall that M = {0, 1, . . . , d}n denotes the set of the exponents of all the monomials

in x of individual degree bounded by d.

For A(x) =
∑

a∈M cax
a, we have A′(x) = A(x + f) =

∑
a∈M ca(x + f)a. Expand

all the expressions (x+ f)a in the latter sum and sort according to xb, for every b ∈M .

Then, we get

coeffA′(x
b) =

∑
a∈M

(
a

b

)
f (a−b) · ca, (2.2)

where
(
a
b

)
=
∏n
i=1

(
bi
ai

)
for any a, b ∈ Nn. Hence, the coefficient of xb in A′(x + f) is a

linear combination of the coefficients ca.

Since a shift is an invertible process, we also conclude that the coefficients ca are in

the span of the coefficients of A′(x+ f).

We will next see how to unify multiple shifts into one.

Lagrange Interpolation of a set of maps for `-concentration

Lemma 2.5.9 ([GKST15]). Let C ⊆ Ak(x) be a class of n-variate polynomials. Let G

be a set of univariate maps {gi(t)}
N
i=1, where gi(t) ∈ F[t]n for all i, such that for every

polynomial A(x) ∈ C ⊆ Ak(x), there exists gi ∈ G such that A′ = A(x + gi) is `-

concentrated. Let N = |G| and dt = max {deg(gi)}i∈[N]. Then, there exists a univariate

map ĝ(t) that `-concentrates every polynomial in C.

Moreover, deg(ĝ(t)) = O(dtN).

Proof. The outline of the proof is as follows. We will first create a single bivariate map

g′(y, t) ∈ F[y, t]n that `-concentrates every polynomial A(x) ∈ C. Moreover, the degree

35

of the map will be bounded as: degt(g
′) = dt and degy(g

′) = N − 1. Let dy = degy(g
′).

We will then replace the two variables with a single variable using Lemma 2.3.3 to get a

univariate map ĝ of degree dy + (dy + 1)dt = O(dydt) = O(dtN).

So, now, we just have to get a single bivariate map g′(y, t) ∈ F[y, t]n of bounded degree

that `-concentrates every polynomial A(x) ∈ C. We claim that when g′ is the Lagrange

interpolation of {gi(t)}
N
i=1, this property holds.

Suppose there exists A(x) ∈ C such that shifting by the interpolation g′ does not

`-concentrate A. We know that there exists a polynomial g ∈ G such that A′ = A(x +

g) is `-concentrated. I.e. rk {coeffs(A)} = rk {coeffA′(x
a) | supp(xa) < `} = k′, but

rk {coeffA′′(x
a) | supp(xa) < `} < k′, where k′ ≤ k is the dimension of the coefficient

space of A and A′′ = A(x + g′) is the shifted polynomial. Hence, there exists a set

S = {xa1 ,xa2 , . . . ,xak′} of < `-support monomials such that the coefficients of these

monomials are linearly independent in A′. But the coefficients of these same monomials

are dependent in A′′. So, there exists a linear dependency (γa1 , γa2 , . . . , γak′) 6= 0 such

that ∑
xa∈S

γa coeffA′′(x
a) = 0. (2.3)

But, ∑
xa∈S

γa coeffA′(x
a) 6= 0. (2.4)

But, by the property of Lagrange interpolation, for any monomial xa, coeffA′(x
a) ∈ F[t]

is obtained by restricting y to a constant in coeffA′′(x
a) ∈ F[y, t]. Thus, Equations 2.3

and 2.4 cannot hold simultaneously. This is a contradiction.

2.6 Depth-3 circuits

A depth-3 circuit is usually defined as a ΣΠΣ circuit: the circuit gates are in three layers,

the top layer has an output gate which is +, second layer has all × gates and the last layer

has all + gates. In other words, the polynomial computed by a ΣΠΣ circuit is of the form

C(x) =
∑k

i=1 ai
∏ni
j=1 `ij , where ais are field constants, ni is the number of input lines to

the i-th product gate and `ij is a linear polynomial of the form b0+
∑n

r=1 brxr. An efficient

36

solution for depth-3 PIT is still not known. The depth-3 model has recently gained much

importance, as it has become a stepping-stone to understanding general arithmetic circuits:

it was shown by Gupta et al. [GKKS13], that depth-3 circuits are almost as powerful as

general circuits. A polynomial time hitting-set for a depth-3 circuit implies a quasi-poly-

time hitting-set for general circuits. Till now, for depth-3 circuits, efficient PIT is known

when the top fan-in is assumed to be constant [DS07, KS07, KS09, KS11, SS11, SS12, SS13]

and for certain other restrictions [Sax08, SSS13, ASSS12].

2.7 Multilinear depth-3 circuits

A polynomial is said to be multilinear if the degree of every variable in every term is at

most 1. The circuit C(x) is a multilinear circuit if the polynomial computed at every gate

is multilinear.

There are exponential lower bounds for depth-3 multilinear circuits [RY09]. Since there

is a connection between lower bounds and PIT [Agr05], we can hope that solving PIT for

depth-3 multilinear circuits should also be feasible. This should also lead to new tools for

general depth-3.

A polynomial time algorithm is known only for a sub-class of multilinear depth-3

circuits, called depth-3 set-multilinear circuits. This algorithm is due to Raz and Shpilka

[RS05] and is whitebox (See Section 2.5.2). In a depth-3 multilinear circuit, since every

product gate computes a multilinear polynomial, a variable occurs in at most one of the

ni linear polynomials input to it. Thus, each product gate naturally induces a partition of

the variables, where each color (i.e. part) of the partition contains the variables present in

a linear polynomial `ij . Further, if the partitions induced by all the k product gates are

the same then the circuit is called a depth-3 set-multilinear circuit.

Any multilinear circuit C(x) can also be written as C(x) = cD(x), where D(x) is a

small ΠΣ circuit over Hk(F) and c ∈ F1×k.

37

2.7.1 Set-multilinear depth-3 circuits

Agrawal et al. [ASS13] gave a quasi-polynomial time blackbox algorithm for the class

of depth-3 set-multilinear circuits. Their approach is to view the vector of k products,

D(x) = (
∏ni
j=1 `ij)

k
i=1 as a polynomial over the Hadamard algebra, Hk(F), and to achieve

a low-support concentration in it. Recall that low-support concentration means that all

the coefficient vectors in D(x) are linearly dependent on low-support coefficient vectors.

2.7.2 Low-distance multilinear depth-3 circuits

In our attempt to give a hitting set for general multilinear circuits, we studied low-distance

multilinear depth-3 circuits. We defined a notion of distance for multilinear depth-3 circuits

(say, in n variables and k product gates) that measures how far are the partitions from

a mere refinement. The 1-distance strictly subsumes the set-multilinear model, while

n-distance captures general multilinear depth-3.

Each product gate in a depth-3 multilinear circuit induces a partition on the variables.

Let these partitions be P1,P2, . . . ,Pk. Recall that Part(S) denotes the set of all possible

partitions of the set S. Elements in a partition are called colors.

Definition 2.7.1 (Distance for a partition sequence, d(P1, . . . ,Pk)). Let P1,P2, . . . ,Pk ∈

Part([n]) be the k partitions of the variables {x1, x2, . . . , xn}. Then d(P1,P2, . . . ,Pk) = δ

if ∀i ∈ {2, 3, . . . , k},

∀colors Y1 ∈ Pi, ∃Y2, Y3, . . . , Yδ′ ∈ Pi (δ′ ≤ δ) such that Y1 ∪ Y2 ∪ · · · ∪ Yδ′ equals a union

of some colors in Pj , ∀j ∈ [i− 1].

In other words, in every partition Pi, each color Y1 has a set of colors called ‘friendly

neighborhood’, {Y1, Y2, . . . , Yδ′}, consisting of at most δ colors, which is exactly partitioned

in the ‘upper partitions’. We call Pi an upper partition relative to Pj (and Pj a lower

partition relative to Pi), if i < j. For a color Xa of a partition Pj , let nbdj(Xa) denote its

friendly neighborhood. The friendly neighborhood nbdj(xi) of a variable xi in a partition

Pj is defined as nbdj(colorj(xi)), where colorj(xi) is the color in the partition Pj that

contains the variable xi. The friendly neighborhood nbdj({xi}i∈I) of a set of variables

38

{xi}i∈I in a partition Pj is given by
⋃
i∈I nbdj(xi).

Definition 2.7.2 (δ-distance circuits). A multilinear depth-3 circuit C has δ-distance if

its product gates can be ordered to correspond to a partition sequence (P1, . . . ,Pk) with

d(P1,P2, . . . ,Pk) ≤ δ.

The corresponding ΠΣ circuit D(x) over Hk(F) is also said to have δ-distance.

Every depth-3 multilinear circuit is thus an n-distance circuit. A circuit with a par-

tition sequence, where the partition Pi is a refinement of the partition Pi+1,∀i ∈ [k − 1],

exactly characterizes a 1-distance circuit. All depth-3 multilinear circuits have distance

between 1 and n. Also observe that the circuits with 1-distance subsume set-multilinear

circuits.

Friendly neighborhoods - To get a better picture, we ask: Given a color Xa of a par-

tition Pj in a circuit D(x), how do we find its friendly neighborhood nbdj(Xa)? Consider

a graph Gj which has the colors of the partitions {P1,P2, . . . ,Pj}, as its vertices. For all

i ∈ [j − 1], there is an edge between the colors X ∈ Pi and Y ∈ Pj if they share at least

one variable. Observe that if any two colors Xa and Xb of partition Pj are reachable from

each other in Gj , then, they should be in the same neighborhood. As reachability is an

equivalence relation, the neighborhoods are equivalence classes of colors.

Moreover, observe that for any two variables xa and xb, if their respective colors in

partition Pj , colorj(xa) and colorj(xb) are reachable from each other in Gj then their

respective colors in partition Pj+1, colorj+1(xa) and colorj+1(xb) are also reachable from

each other in Gj+1. Hence,

Observation 2.7.3. If at some partition, the variables xa and xb are in the same neigh-

borhood, then, they will be in the same neighborhood in all of the lower partitions. I.e.

nbdj(xa) = nbdj(xb) =⇒ nbdi(xa) = nbdi(xb), ∀i ≥ j.

In other words, at the level of the variables, the neighborhoods in the upper partitions

are refinements of the neighborhoods in the lower partitions.

We will now show that a depth-3 multilinear circuit with δ-distance reduces to a

polynomial size ROABP. As a toy case, we will show that a depth-3 multilinear circuit

39

with 1-distance reduces to a polynomial size ROABP.

Lemma 2.7.4. A depth-3, top fan-in k multilinear circuit where the partition Pi is a

refinement of the partition Pi+1, ∀i ∈ [k − 1] reduces to a width-2k ROABP.

Proof. Firstly, observe that a linear polynomial can be computed as a width-2 commutative

ROABP. Thus, for every product gate Pi, we get a product of width-2 ROABPs. We put

these ROABPs in parallel to get a width-2k ABP.

We will use the fact that the circuit has distance 1 to convert this into an ROABP

in k iterations. Recall that if a polynomial A(x) ∈ F(x) is a product of polynomials

A = A1A2 · · ·Ad, where each factor Ai(x) ∈ F(x) is computed by an ROABP, then the

factors can also commute. In the ith iteration, we consider a color X in the i-th partition,

Pi. We shift all the ROABPs corresponding to the colors in nbdj(X), so that they are in

the same ROABP layer as that of color X for all the upper partitions j < i. We do this

for all the colors X in the ith layer.

Lemma 2.7.5. A depth-3, δ-distance multilinear circuit with top fan-in k reduces to a

width-2k ROABP.

Proof. We multiply out the linear polynomials corresponding to each of the neighborhoods

in each of the partitions. Then, we get a Σ[k]ΠΣ[nδ]Π distance-1 circuit4. Since the distance

of the original circuit is ≤ δ and since there are ≤ n variables in each linear polynomial,

each partition is now a product of polynomials with sparsity ≤ nδ. Each of the factors in

a partition has distinct variables.

C(x) =

k∑
i=1

ni∏
j=1

Qij ,

where, Qijs are nδ-sparse and for every i, {Qij}j are over distinct variables. Moreover,

for every partition P′i in this new circuit, for every Qij ,∃
{
Qi−1,j1 , Qi−1,j2 , . . . , Qi−1,jmj

}
,

a set of factors in Pi−1 such that the union of their variables equals the variables in Qij .

The partition P′i is a refinement of the partition P′i+1.

4Σ[m] means that all the summation gates at that particular level have fan-in m.

40

We build a commutative ROABP of width nδ for each of the factors in each partition.

Once we have these building blocks, we use the same trick as Lemma 2.7.4 to build one

single ROABP of width knδ.

Thus, from Lemma 2.5.4, we have a (knδ)O(logn) time hitting set for a δ-distance

depth-3 multilinear circuit.

Chapter 3

Deterministic PIT for Sum of

ROABPs

Abstract

A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branch-

ing program (ABP) where each variable occurs in at most one layer. In this chapter,

we give the first polynomial time whitebox identity test for a polynomial computed

by a sum of constantly many ROABPs. We also give a corresponding blackbox

algorithm with quasi-polynomial time complexity nO(logn). In both the cases, our

time complexity is double exponential in the number of ROABPs.

ROABPs are a generalization of set-multilinear depth-3 circuits. The prior results

for the sum of constantly many set-multilinear depth-3 circuits were only slightly

better than brute-force, i.e. exponential-time.

Our techniques are a new interplay of three concepts for ROABP: low evaluation di-

mension, basis isolating weight assignment and low-support rank concentration. We

relate basis isolation to rank concentration and extend it to a sum of two ROABPs

using evaluation dimension.

41

42

3.1 Introduction

We consider the sum of ROABPs. In the following figure, we have two ROABPs, A and

B. The variable sequence of these ROABPs need not be the same.

B(x)

A(x)

The following ABP is obtained by introducing a new source node and connecting it

with the old source nodes using edges of weight 1. A similar operation is done for the sink

nodes. The ABP in the figure below computes A+B, the sum of two ROABPs.

A(x) +B(x)

A(x)

B(x)

Kayal, Nair and Saha [KNS16, Theorem 2] have shown that there is a polynomial P (x)

computed by a sum of two ROABPs such that any single ROABP that computes P (x)

has exponential size. Hence, the previous results on single ROABPs do not help here.

In Section 3.3 we show our first main result, a whitebox PIT for the sum of ROABPs

(Theorem 3.3.2):

PIT for the sum of constantly many ROABPs is in polynomial time.

The exact time bound we get for the PIT-algorithm is (ndw2c)O(c), where n is the number

of variables, d is the degree bound of the variables, c is the number of ROABPs and w is

43

their width. Hence our time bound is double exponential in c, but polynomial in n, d, w.

Techniques

In the whitebox case, we try to build an ROABP for B in the same variable sequence as

that of A. If A = B, obviously, such an ROABP exists. We build the ROABP for B in

iterations, layer-by-layer. It is known that the partial coefficient dimension of an ROABP

is equal to its width [Nis91a]. The linear dependencies amongst the partial coefficients at

any layer describe the ROABP exactly. So, if we knew these partial dependencies for B,

we could build the ROABP for B. But, given a polynomial, there is no technique known

which can find these linear dependencies amongst the partial coefficients. However, in this

case, help is available. A small set of candidate linear dependencies which describe the

ROABP B completely are provided by the ROABP A. If A = B, all the dependencies of A

must hold for B. If A 6= B, there exist dependencies of A which do not hold for B, unless

A = βB, for some constant β (which can be checked easily). Checking if a candidate

linear dependency holds for B is equivalent to PIT for a single ROABP of O(w2) width.

Thus, we reduce PIT of sum of ROABPs to many PITs of single ROABPs (one for each

linear dependency). We use [RS05] for the PIT of a single ROABP.

Blackbox PIT: In Section 3.4, we give an identity test for a sum of ROABPs in the

blackbox setting. That is, we are given blackbox access to a sum of ROABPs and not to

the individual ROABPs. Our main result here is as follows (Theorem 3.4.5):

There is a blackbox PIT for the sum of constantly many ROABPs that works in

quasi-polynomial time.

Our exact time bound for the PIT-algorithm is (ndw)O(c 2c log(ndw)), where n is the number

of variables, d is the degree bound of the variables, c is the number of ROABPs and w

is their width. Hence our time bound is double exponential in c, and quasi-polynomial

in n, d, w. In an independent work, Kayal et al. [KNS16] give a quasi-polynomial time

blackbox PIT for the sum of c depth-3 set-multilinear circuits, where the dependence on

c is only exponential. However, they impose the restriction on the circuit that it is a

44

superposition of a small number of depth-3 set-multilinear circuits. That is, there is a

partition of the variables into a small number of sets, such that with respect to each set,

the circuit is set-multilinear.

Techniques

Like the whitebox test, we check if the linear dependencies of the partial coefficients of

A are satisfied by B. But, we cannot do that directly when we don’t have whitebox

access to the ROABPs. So, we shift the variables and achieve low-support concentration,

which ensures that the coefficients of an ROABP are spanned by the coefficients of its low

support monomials. This ensures that if a dependency of partial coefficients in A is not

followed by B, then, a nonzero monomial of low-support survives.

This idea is then extended to a sum of constantly many variables. We show that a

shift which concentrates a width-w2c ROABP also concentrates a polynomial computed

as the sum of c ROABPs, each of width-w (Lemma 3.4.4).

In the proof, we show that shifting the input polynomial by a basis isolating weight

assignment achieves low-support concentration.

3.2 Preliminaries

3.2.1 Notation

Let x = (x1, x2, . . . , xn) be a tuple of n variables. For any a = (a1, a2, . . . , an) ∈ Nn,

we denote by xa the monomial
∏n
i=1 x

ai
i . The support size of a monomial xa is given by

supp(a) = |{ai 6= 0 | i ∈ [n]}|.

Let F be some field. Let A(x) be a polynomial over F in n variables. A polynomial

A(x) is said to have individual degree d, if the degree of each variable is bounded by d for

each monomial in A(x). When A(x) has individual degree d, then the exponent a of any

monomial xa of A(x) is in the set

M = {0, 1, . . . , d}n .

45

By coeffA(xa) ∈ F we denote the coefficient of the monomial xa in A(x). Hence, we can

write

A(x) =
∑
a∈M

coeffA(xa)xa .

The sparsity of polynomial A(x) is the number of nonzero coefficients coeffA(xa).

We also work with matrix polynomials where the coefficients coeffA(xa) are w × w

matrices, for some w. In an abstract setting, these are polynomials over a w2-dimensional

F-algebra A. Recall that an F-algebra is a vector space over F with a multiplication which

is bilinear and associative, i.e. A is a ring. The coefficient space is then defined as the

span of all coefficients of A, i.e., spanF{coeffA(xa) | a ∈M}.

Consider a partition of the variables x into two parts y and z, with |y| = k. A

polynomial A(x) can be viewed as a polynomial in variables y, where the coefficients

are polynomials in F[z]. For monomial ya, let us denote the coefficient of ya in A(x)

by A(y,a) ∈ F[z]. For example, in the polynomial A(x) = x1 + x1x2 + x1
2, we have

A(x1,1) = 1 + x2, whereas coeffA(x1) = 1. Observe that coeffA(ya) is the constant term in

A(y,a).

Thus, A(x) can be written as

A(x) =
∑

a∈{0,1,...,d}k
A(y,a) y

a . (3.1)

The coefficient A(y,a) can also be expressed as a partial derivative ∂A
∂ya evaluated at y =

0 (and multiplied by an appropriate constant), see [FS13a, Section 6]. Therefore, we

sometimes call the coefficients A(y,a) the partial derivative polynomials of A.

For a set of polynomials P, we define their F-span as

spanF P =

{∑
A∈P

αAA | αA ∈ F for all A ∈ P

}
.

The set of polynomials P is said to be F-linearly independent if
∑

A∈P αAA = 0 holds only

for αA = 0, for all A ∈ P. The dimension dimF P of P is the cardinality of the largest

F-linearly independent subset of P.

46

3.2.2 Equivalence of evaluation dimension and partial coefficient dimen-

sion

Partial evaluation was introduced in Section 2.5.1. We will now show that the partial

evaluation space and the partial coefficient space are equivalent.

Lemma 3.2.1. The partial coefficient space and the partial evaluation space of any poly-

nomial A(x) with respect to any subset of variables y are equal.

Proof. Equation (3.1) says

[ya1 ya2 · · · yaN]

A(y,a1)

A(y,a2)

...

A(y,aN)

= [A]. (3.2)

Recall that A|y=b is the polynomial obtained by substituting y with b in the polynomial

A(x). So,

[ba1 ba2 · · · baN]

A(y,a1)

A(y,a2)

...

A(y,aN)

= [A|y=b].

So, every partial evaluation is a linear combination of the partial coefficients. Now, by

substituting the appropriate set of values for y, we can ensure that the first matrix in the

left hand side of the below equation is invertible.

ba1
1 ba2

1 · · · baN1

ba1
2 ba2

2 · · · baN2
...

...
. . .

...

ba1
N ba2

N · · · baNN

A(y,a1)

A(y,a2)

...

A(y,aN)

=

A|y=b1

A|y=b2

...

A|y=bN

.

Thus, the partial coefficient space is also a linear combination of the partial evaluation

space.

For a matrix R, we denote by R(i, ·) and R(·, i) the i-th row and the i-th column of R,

47

respectively. For any a ∈ Fk×k′ , b ∈ F`×`′ , the tensor product of a and b is denoted by

a⊗ b. For any a,R ∈ Fw×w, let 〈a,R〉 =
∑w

i=1

∑w
j=1 aijRij be the inner product of a and

R, when both are viewed as vectors.

3.2.3 Arithmetic branching programs

An arithmetic branching program (ABP) is a directed graph with ` + 1 layers of vertices

(V0, V1, . . . , V`). The layers V0 and V` each contain only one vertex, the start node, v0 and

the end node, v`, respectively. The edges from any layer Vi are only allowed to go to its

successive layer Vi+1. All the edges in the graph have weights from F[x], for some field F.

The length of an ABP is the length of a longest path in the ABP, i.e. `. An ABP has

width w, if |Vi| ≤ w for all 0 ≤ i ≤ `.

For an edge e, let us denote its weight by W (e). For a path p, its weight W (p) is

defined to be the product of weights of all the edges in it,

W (p) =
∏
e∈p

W (e).

The polynomial A(x) computed by the ABP is the sum of the weights of all the paths from

v0 to v`,

A(x) =
∑

p path v0 v`

W (p).

Let the set of nodes in Vi be {vi,j | j ∈ [w]}. The branching program can alternately

be represented by a matrix product
∏`
i=1Di, where D1 ∈ F[x]1×w, Di ∈ F[x]w×w for

2 ≤ i ≤ `− 1, and D` ∈ F[x]w×1 such that

D1(j) = W (v0, v1,j), for 1 ≤ j ≤ w,

Di(j, k) = W (vi−1,j , vi,k), for 1 ≤ j, k ≤ w and 2 ≤ i ≤ `− 1,

D`(k) = W (v`−1,k, v`), for 1 ≤ k ≤ w.

Here we use the convention that W (u, v) = 0 if (u, v) is not an edge in the ABP.

48

3.2.4 Read-once oblivious arithmetic branching programs

An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in every layer

are univariate polynomials in the same variable, and every variable occurs in at most one

layer. Hence, the length of an ROABP is n, the number of variables. The entries in the

matrix Di defined above come from F[xπ(i)], for all i ∈ [n], where π is a permutation on the

set [n]. The order (xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROABP.

We will view Di as a polynomial in the variable xπ(i), whose coefficients are w-

dimensional vectors or matrices. Namely, for an exponent a = (a1, a2, . . . , an), the co-

efficient of

• xaπ(1)π(1) in D1(xπ(1)) is the row vector coeffD1(x
aπ(1)
π(1)) ∈ F1×w,

• xaπ(i)π(i) in Di(xπ(i)) is the matrix coeffDi(x
aπ(i)
π(i)) ∈ Fw×w, for i = 2, 3, . . . , n− 1, and

• xaπ(n)π(n) in Dn(xπ(n)) is the vector coeffDn(x
aπ(n)
π(n)) ∈ Fw×1.

The read once property gives us an easy way to express the coefficients of the polyno-

mial A(x) computed by an ROABP.

Lemma 3.2.2. For a polynomial A(x) =
∏n
i=1Di(xπ(i)) computed by an ROABP, we

have

coeffA(xa) =
n∏
i=1

coeffDi

(
x
aπ(i)
π(i)

)
∈ F . (3.3)

We also consider matrix polynomials computed by an ROABP. A matrix polynomial

A(x) ∈ Fw×w[x] is said to be computed by an ROABP if A = D1D2 · · ·Dn, where

Di ∈ Fw×w[xπ(i)] for i ∈ [n] and some permutation π on [n]. Similarly, a vector polynomial

A(x) ∈ F 1×w[x] is said to be computed by an ROABP if A = D1D2 · · ·Dn, where D1 ∈

F 1×w[xπ(1)] and Di ∈ Fw×w[xπ(i)] for i ∈ {2, . . . , n}. Usually, we will assume that an

ROABP computes a polynomial in F[x], unless mentioned otherwise.

Let A(x) be the polynomial computed by an ROABP and let y and z be a partition

of the variables x such that y is a prefix of the variable order of the ROABP. Recall from

Equation (3.1) that A(y,a) ∈ F[z] is the coefficient of monomial ya in A(x). Nisan [Nis91a]

showed that for every prefix y, the dimension of the set of coefficient polynomials A(y,a)

49

is bounded by the width of the ROABP1. This holds in spite of the fact that the number

of these polynomials is large.

Lemma 3.2.3 ([Nis91a], Prefix y). Let A(x) be a polynomial of individual degree d,

computed by an ROABP of width w with variable order (x1, x2, . . . , xn). Let k ≤ n and

y = (x1, x2, . . . , xk) be the prefix of length k of x. Then dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤

w.

Proof. Let the polynomial A(x) = D1(x1)D2(x2) · · · Dn(xn), where D1 ∈ F1×w[x1], Dn ∈

Fw×1[xn] and Di ∈ Fw×w[xi], for 2 ≤ i ≤ n − 1. Let z = (xk+1, xk+2, . . . , xn) be the

remaining variables of x. Define P (y) = D1D2 · · ·Dk and Q(z) = Dk+1Dk+2 · · ·Dn.

Then P and Q are vectors of length w,

P (y) = [P1(y) P2(y) · · · Pw(y)],

Q(z) = [Q1(z) Q2(z) · · · Qw(z)]T ,

where Pi(y) ∈ F[y] and Qi(z) ∈ F[z], for 1 ≤ i ≤ w, and we have A(x) = P (y)Q(z).

We get the following generalization of Equation (3.3): for any a ∈ {0, 1, . . . , d}k, the

coefficient A(y,a) ∈ F[z] of monomial ya can be written as

A(y,a) =
w∑
i=1

coeffPi(y
a)Qi(z). (3.4)

That is, every A(y,a) is in the F-span of the polynomials Q1, Q2, . . . , Qw. Hence, the claim

follows.

The above lemma is used to prove lower bounds for ROABPs (e.g. [KNS16]). Basically,

if we prove that the partial coefficient space of a polynomial A is large with respect to any

subset of cardinality m of variables, then the width of an ROABP computing A should be

large.

Observe that Equation (3.4) tells us that the polynomials A(y,a) can also be computed

by an ROABP of width w: by Equation (3.3), we have coeffPi(y
a) =

∏
xi∈y coeffDi(x

ai
i).

Hence, in the ROABP for A, we simply have to replace the matrices Di which belong

1Nisan [Nis91a] showed it for non-commutative ABP, but the same proof works for ROABP.

50

to P by the coefficient matrices coeffDi(x
ai
i). Here, we have that y is a prefix of x. But

note that this is not necessary for the construction to work. The variables in y can be

arbitrarily distributed in x. We summarize this observation in the following Lemma.

Lemma 3.2.4 (Arbitrary y). Let A(x) be a polynomial of individual degree d, computed

by an ROABP of width w and y = (xi1 , xi2 , . . . , xik) be any k variables of x. Then the

polynomial A(y,a) can be computed by an ROABP of width w, for every a ∈ {0, 1, . . . , d}k.

Moreover, all these ROABPs have the same variable order, inherited from the order of the

ROABP for A.

For a general polynomial, the dimension considered in Lemma 3.2.3 can be exponen-

tially large in n. We will next show the converse of Lemma 3.2.3: if this dimension is small

for a polynomial then there exists a small width ROABP for that polynomial. Hence,

this property characterizes the class of polynomials computed by ROABPs. Forbes et

al. [FS13a, Section 6] give a similar characterization in terms of evaluation dimension, for

polynomials which can be computed by an ROABP, in any variable order. In contrast, we

work with a fixed variable order.

As a preparation to prove this characterization we define a characterizing set of de-

pendencies of a polynomial A(x) of individual degree d, with respect to a variable order

(x1, x2, . . . , xn). This set of dependencies will essentially give us an ROABP for A in the

variable order (x1, x2, . . . , xn).

Definition 3.2.5. Let A(x) be a polynomial of individual degree d. For any 0 ≤ k ≤ n

and yk = (x1, x2, . . . , xk), suppose

dimF{A(yk,a)
| a ∈ {0, 1, . . . , d}k} ≤ w.

For 0 ≤ k ≤ n, we recursively define the spanning sets spank(A) and the dependency sets

dependk(A) as subsets of {0, 1, . . . , d}k as follows.

For k = 0, let depend0(A) = ∅ and span0(A) = {ε}, where ε = () denotes the empty

tuple. For k > 0, let

• dependk(A) = {(a, j) | a ∈ spank−1(A) and 0 ≤ j ≤ d}, i.e. dependk(A) contains all

51

possible extensions of the tuples in spank−1(A).

• spank(A) ⊆ dependk(A) is any set of size ≤ w, such that for any b ∈ dependk(A),

the polynomial A(yk,b)
is in the span of {A(yk,a)

| a ∈ spank(A)}.

The dependencies of the polynomials in {A(yk,a)
| a ∈ dependk(A)} over {A(yk,a)

| a ∈

spank(A)} are the characterizing set of dependencies.

The definition of spank(A) is not unique. For our purpose, it does not matter which

of the possibilities we take, we simply fix one of them.

Note that |dependk+1(A)| ≤ w(d + 1) and for k = n, we have yn = x and therefore

A(yn,a)
= coeffA(xa) is a constant for every a. Hence, the coefficient space has dimension

one in this case, and thus |spann(A)| = 1.

Lemma 3.2.6 ([Nis91a], Converse of Lemma 3.2.3). Let A(x) be a polynomial of individual

degree d with x = (x1, x2, . . . , xn), such that for some w and for any 1 ≤ k ≤ n and

yk = (x1, x2, . . . , xk), we have

dimF{A(yk,a)
| a ∈ {0, 1, . . . , d}k } ≤ w .

Then there exists an ROABP of width w for A(x) in the variable order (x1, x2, . . . , xn).

Proof. To keep the notation simple, we assume that |spank(A)| = w for each 1 ≤ k ≤ n−1.2

Let spank(A) = {ak,1,ak,2, . . . ,ak,w} and spann(A) = {an,1}.

To prove the claim, we construct matrices D1, D2, . . . , Dn, where D1 ∈ F[x1]
1×w,

Dn ∈ F[xn]w×1, and Di ∈ F[xi]
w×w, for i = 2, . . . , n − 1, such that A(x) = D1D2 · · ·Dn.

This representation shows that there is an ROABP of width w for A(x).

The matrices are constructed inductively such that for any k ∈ [n− 1],

A(x) = D1D2 · · ·Dk [A(yk,ak,1)
A(yk,ak,2)

· · · A(yk,ak,w)
]T . (3.5)

To construct D1 ∈ F[x1]
1×w, consider the equation

A(x) =
d∑
j=0

A(y1,j)
xj1. (3.6)

2 Otherwise we would have to use a separate value wk = |spank(A)| ≤ w for every k.

52

Recall that depend1(A) = {0, 1, . . . , d}. By the definition of span1(A), every A(y1,j)
is in

the span of the A(y1,a)
’s for a ∈ span1(A). That is, there exist constants {γj,i}i,j such

that for all 0 ≤ j ≤ d, we have

A(y1,j)
=

w∑
i=1

γj,iA(y1,a1,i). (3.7)

From Equations (3.6) and (3.7) we get, A(x) =
∑w

i=1

(∑d
j=0 γj,i x

j
1

)
A(y1,a1,i). Hence, we

define D1 = [D1,1 D1,2 · · · D1,w], where D1,i =
∑d

j=0 γj,i x
j
1, for all i ∈ [w]. Then we have

A = D1 [A(y1,a1,1) A(y1,a1,2) · · · A(y1,a1,w)]
T . (3.8)

To construct Dk ∈ F[xk]
w×w for 2 ≤ k ≤ n− 1, we consider the equation

[A(yk−1,ak−1,1) · · ·A(yk−1,ak−1,w)]
T = Dk [A(yk,ak,1)

· · ·A(yk,ak,w)
]T . (3.9)

We know that for each 1 ≤ i ≤ w,

A(yk−1,ak−1,i) =
d∑
j=0

A(yk,(ak−1,i,j)) x
j
k. (3.10)

Observe that (ak−1,i, j) is just an extension of ak−1,i and thus belongs to the set dependk(A).

Recall that spank(A) = {ak,h}wh=1. Hence, there exists a set of constants {γi,j,h}i,j,h such

that for all 0 ≤ j ≤ d we have

A(yk,(ak−1,i,j)) =

w∑
h=1

γi,j,hA(yk,ak,h)
. (3.11)

From Equations (3.10) and (3.11), for each 1 ≤ i ≤ w we get

A(yk−1,ak−1,i) =
w∑
h=1

 d∑
j=0

γi,j,h x
j
k

A(yk,ak,h)
.

Hence, we can define Dk(i, h) =
∑d

j=0 γi,j,h x
j
k, for all i, h ∈ [w]. Then Dk is the desired

matrix in Equation (3.9).

Finally, we obtain Dn ∈ Fw×1[xn] in an analogous way. Instead of Equation (3.9) we

53

consider the equation

[A(yn−1,an−1,1) · · ·A(yn−1,an−1,w)]
T = D′n [A(yn,an,1)

] . (3.12)

Recall that A(yn,an,1)
∈ F is a constant that can be absorbed into the last matrix D′n,

i.e. we define Dn = D′nA(yn,an,1)
. Combining Equations (3.8), (3.9), and (3.12), we get

A(x) = D1D2 · · ·Dn.

Consider the polynomial Pk defined as the product of the first k matricesD1, D2, . . . , Dk

from the above proof, i.e. Pk(yk) = D1D2 · · ·Dk. We can write Pk as

Pk(yk) =
∑

a∈{0,1,...,d}k
coeffPk(yak)yak ,

where coeffPk(yak) is a vector in F1×w. We will see next that it follows from the proof of

Lemma 3.2.6 that the coefficient space of Pk, i.e., spanF{coeffPk(yak) | a ∈ {0, 1, . . . , d}k}

has full rank w.

Corollary 3.2.7 (Full Rank Coefficient Space). Let D1, D2, . . . , Dn be the matrices con-

structed in the proof of Lemma 3.2.6 with A = D1D2 · · ·Dn. For k ∈ [n], define the

polynomial Pk(yk) = D1D2 · · ·Dk and let spank(A) = {ak,1,ak,2, . . . ,ak,w}.

Then for any ` ∈ [w], we have coeffPk(y
ak,`
k) = e`, where e` is the `-th elementary

unit vector, e` = (0, . . . , 0, 1, 0, . . . , 0) of length w, with a one at position `, and zero at

all other positions. Hence, the coefficient space of Pk has full rank w.

Proof. In the construction of the matrices Dk in the proof of Lemma 3.2.6, consider the

special case in Equations (3.7) and (3.11) that the exponent (ak−1,i, j) is in spank(A),

say (ak−1,i, j) = ak,` ∈ spank(A). Then the γ-vector to express A(yk,(ak−1,i,j)) in Equa-

tion (3.7) and (3.11) can be chosen to be e`, i.e. (γi,j,h)h = e`. By the definition of ma-

trix Dk, vector e` becomes the i-th row of Dk for the exponent j, i.e., coeffDk(i,·)(x
j
k) = e`.

This proves the claim for k = 1, because coeffP1(x
a1,`

1) = coeffD1(x`−11) = e`.

For larger k, the claim follows by induction because, for (ak−1,i, j) = ak,`, we have

coeffPk(y
ak,`
k) = coeffPk−1

(y
ak−1,i

k−1) coeffDk(xjk) . By the induction hypothesis, we have,

coeffPk−1
(y

ak−1,i

k−1) = ei. The product of ei with the w × w-matrix coeffDk(xjk) picks the

54

i-th row of the matrix, which is e` as explained above. Hence, coeffPk(y
ak,`
k) = e` as

claimed.

3.3 Whitebox Identity Testing

We will use the characterization of ROABPs provided by Lemmas 3.2.3 and 3.2.6 in

Section 3.3.1 to design a polynomial-time algorithm to check if two given ROABPs are

equivalent. This is the same problem as checking whether the sum of two ROABPs is

zero. In Section 3.3.2, we extend the test to check whether the sum of constantly many

ROABPs is zero.

3.3.1 Equivalence of two ROABPs

Let A(x) and B(x) be two polynomials of individual degree d, given by two ROABPs.

If the two ROABPs have the same variable order then one can combine them into a

single ROABP which computes their difference. Then one can apply the PIT for one

ROABP [RS05]. So, the problem is non-trivial only when the two ROABPs have different

variable order. W.l.o.g. we assume that A has order (x1, x2, . . . , xn). Let w bound the

width of both ROABPs. In this section we prove that we can find out in polynomial time

whether A(x) = B(x).

Theorem 3.3.1. The equivalence of two ROABPs can be tested in time polynomial

in n, d, w, the number of variables, the individual degree, and the width, respectively.

The idea is to determine the characterizing set of dependencies among the partial

derivative polynomials of A, and verify that the same dependencies hold for the cor-

responding partial derivative polynomials of B. By Lemma 3.2.6, these dependencies

essentially define an ROABP. Hence, our algorithm is to construct an ROABP for B in

the variable order of A. Then it suffices to check whether we get the same ROABP, that

is, whether all the matrices D1, D2, . . . , Dn constructed in the proof of Lemma 3.2.6 are

the same for A and B. We give some more details with emphasis on the computability.

55

Construction of spank(A) and the characterizing set of dependencies of A. Let

A(x) = D1(x1)D2(x2) · · ·Dn(xn) of width w. We give an iterative construction, starting

from span0(A) = {ε}. Let 1 ≤ k ≤ n. By definition, dependk(A) consists of all possible

one-step extensions of spank−1(A). Let b = (b1, b2, . . . , bk) ∈ {0, 1, . . . , d}k. Define

Cb =
k∏
i=1

coeffDi(x
bi
i) .

Recall that coeffD1(xb11) ∈ F1×w and coeffDi(x
bi
i) ∈ Fw×w, for 2 ≤ i ≤ k. Therefore

Cb ∈ F1×w for k < n. Since Dn ∈ Fw×1, we have Cb ∈ F for k = n. By Equation (3.4), we

have

A(yk,b)
= CbDk+1 · · ·Dn . (3.13)

Consider the set of vectors Dk = {Cb | b ∈ dependk(A)}. This set has dimension bounded

by w since the width of A is w. Hence, we can determine a set Sk ⊆ Dk of size ≤ w

such that Sk spans Dk. Thus we can take spank(A) = {a | Ca ∈ Sk}. Then, for any

b ∈ dependk(A), vector Cb is a linear combination

Cb =
∑

a∈spank(A)

γb,aCa .

Recall that |dependk(A)| ≤ w(d+ 1), i.e. this is a small set. Therefore, we can efficiently

compute the coefficients γb,a for every b ∈ dependk(A) . Note that by Equation (3.13)

we have the same dependencies for the polynomials A(yk,b)
. That is, with the same

coefficients γb,a, we can write

A(yk,b)
=

∑
a∈spank(A)

γb,aA(yk,a)
. (3.14)

Verifying the dependencies for B. We want to verify that the dependencies in Equa-

tion (3.14) computed for A hold for B as well, i.e. that for all k ∈ [n] and b ∈ dependk(A),

B(yk,b)
=

∑
a∈spank(A)

γb,aB(yk,a)
. (3.15)

Recall that yk = (x1, x2, . . . , xk) and that the ROABP for B has a different variable

order. By Lemma 3.2.4, every polynomial B(yk,a)
has an ROABP of width w and the

56

same order on the remaining variables as the one inherited from B. It follows that each

of the w + 1 polynomials that occur in Equation (3.15) has an ROABP of width w and

the same variable order. Hence, we can construct one ROABP for the polynomial

B(yk,b)
−

∑
a∈spank(A)

γb,aB(yk,a)
. (3.16)

Simply identify all the start nodes and all the end nodes and use the appropriate con-

stants γb,a as the weights. Then we get an ROABP of width w(w + 1). In order to

verify Equation (3.15), it suffices to do a zero-test for this ROABP. This can be done in

polynomial time [RS05].

As we will soon see (Section 3.3.2), this step blows up the complexity of the algorithm

as the number of ROABPs increases. Hence, a more efficient algorithm to verify the

dependencies for B would reduce the time complexity for the sum of ROABPs drastically.

Constructing ROABP for B in the same sequence as A. Recall Lemma 3.2.6 and

its proof. There, we constructed an ROABP just from the characterizing dependencies

of the given polynomial. Hence, the construction applied to B will give an ROABP of

width w for B with the same variable order (x1, x2, . . . , xn) as for A. The matrices Dk will

be the same as those for A because their definition uses only the dependencies provided

by Equation (3.15), and they are the same as those for A in Equation (3.14).

The last matrix Dn can be written as D′nA(yn,an,1)
, similar to Equation (3.12). Since

the dependencies of the coefficients in dependn(B) over coefficients in spann(B) are the

same as those for A, we have B(x) = D1D2 · · ·D′nB(yn,an,1)
.

Checking Equality. Clearly, if Equation (3.15) fails to hold for some k and b, then

A 6= B. When Equation (3.15) holds for all k and b, we only need to check if A(yn,an,1)
=

B(yn,an,1)
, which is a single evaluation of each ROABP.

The following pseudo-code summarizes the equivalence test.

57

Equivalence(A,B)

∗ input: Two ROABPs computing polynomials A(x) and B(x), respectively.

∗ The ROABP A = D1(x1)D2(x2) · · ·Dn(xn).

1 span0(A)← {ε}

2 for k ← 1 to n do

3 dependk(A)← spank−1(A)× {0, 1, . . . , d}

4 for each b ∈ dependk(A) do Cb ←
∏k
i=1 coeffDi(x

bi
i)

5 compute a basis Sk ⊆ Dk = {Cb | b ∈ dependk(A)}

6 spank(A)← {a | Ca ∈ Sk}

7 for each b ∈ dependk(A) do

8 determine coefficients {γb,a}a∈spank(A) such that Cb =
∑

a∈spank(A) γb,aCa,

9 if B(yk,b)
6=
∑

a∈spank(A) γb,aB(yk,a)
then output ‘A 6= B’

10 if B(yn,an,1)
= A(yn,an,1)

then output ‘A = B’ else output ‘A 6= B’

The verification of the condition in line 9 involves the construction of ROABPs and a

zero-test as discussed above in the verification paragraph.

Time Complexity. In the construction part, it takes O(ndw3) steps to compute all

the coefficients Cb and γb,a in line 4 and lines 5 - 8. The running time is dominated by

the zero-tests for the ROABPs in line 9. Note that one can easily derive a zero-test for

an ROABP from our algorithm by choosing B = 0. The running time we get is that

of the construction part. However, the ROABPs we get in line 9 have width w(w + 1).

Therefore, the zero-test takes O(ndw6) steps. There are ndw such tests. Hence, we get a

total running time of O(n2d2w7). This proves Theorem 3.3.1.

3.3.2 Sum of constantly many ROABPs

Let A1(x), A2(x), . . . , Ac(x) be polynomials of individual degree d, given by c ROABPs.

Our goal is to test whether A1 +A2 + · · ·+Ac = 0. Here again, the question is interesting

58

only when the ROABPs have different variable orders. We show how to reduce the problem

to the case of the equivalence of two ROABPs from the previous section. For constant c

this will lead to a polynomial-time test.

We start by rephrasing the problem as an equivalence test. Let A = −A1 and B =

A2 + A3 + · · · + Ac. Then the problem reduces to checking whether A = B. Since A is

computed by a single ROABP, we can use the same approach as in Section 3.3.1. Hence,

we again get the dependencies from Equation (3.14) for A. Next, we have to verify these

dependencies for B, i.e. Equation (3.15). Now, B is not given by a single ROABP, but is

a sum of c − 1 ROABPs. For every k ∈ [n] and b ∈ dependk(A), define the polynomial

Q = B(yk,b)
−
∑

a∈spank(A) γb,aB(yk,a)
. By the definition of B we have

Q =
c∑
i=2

Ai(yk,b) − ∑
a∈spank(A)

γb,aAi(yk,a)

 . (3.17)

As explained in the previous section for Equation (3.16), for each summand in Equa-

tion (3.17) we can construct an ROABP of width w(w + 1). Thus, Q can be written as a

sum of c−1 ROABPs, each having width w(w+1). To test whether Q = 0, we recursively

use the same algorithm for the sum of c − 1 ROABPs. The recursion ends when c = 2.

Then we directly use the algorithm from Section 3.3.1.

To bound the running time of the algorithm, let us see how many dependencies we

need to verify. There is one dependency for every k ∈ [n] and every b ∈ dependk(A).

Since |dependk(A)| ≤ w(d+ 1), the total number of dependencies verified is ≤ nw(d+ 1).

Thus, we get the following recursive formula for T (c, w), the time complexity for testing

zeroness of the sum of c ≥ 2 ROABPs, each having width w. For c = 2, we have

T (2, w) = poly(n, d, w), and for c > 2,

T (c, w) = nw(d+ 1) · T (c− 1, w(w + 1)) + poly(n, d, w).

As solution, we get T (c, w) = wO(2c)poly(nc, dc), i.e. polynomial time for constant c.

Theorem 3.3.2. Let A(x) be an n-variate polynomial of individual degree d, computed

by a sum of c ROABPs of width w. Then there is a PIT for A(x) that works in time

59

wO(2c)(nd)O(c).

3.4 Blackbox Identity Testing

In this section, we extend the blackbox PIT of Agrawal et. al [AGKS15] for one ROABP

to the sum of constantly many ROABPs. In the blackbox model we are only allowed

to evaluate a polynomial at various points. Hence, for PIT, our task is to construct a

hitting-set.

We achieve this by shifting the input polynomial by an appropriate polynomial. That

is, we give a polynomial tuple f(t) = (f1(t) f2(t) · · · fn(t)), such that given any nonzero

polynomial A(x) computed as the sum of c ROABPs, each of width w, the shifted polyno-

mial A(x+f) = A(x1+f1(t), x2+f2(t), . . . , xn+fn(t)) has a low-support monomial with a

nonzero coefficient. Once, low support concentration is achieved, then a hitting set can be

found efficiently (Lemma 2.5.7). See Section 2.5.4 for an introduction to `-concentration

and shifting.

For our purposes, any efficient shift that achieves low support concentration for ROABPs

will suffice. In Section 3.5, we will give a new shift for ROABPs with quasi-polynomial

cost. Namely, Theorem 3.5.6 states that

We can compute a shift polynomial f(t) ∈ F[t]n of degree (ndw)O(logn) in

time (ndw)O(logn) such that for every A(x) of individual degree d, computed

by an ROABP of width w, the shifted polynomial A(x + f(t)) has O(logw)-

concentration.

The shift also works for polynomials computed as vectors or matrices.

In this section, we show that the shift for a single ROABP can be applied to obtain a

shift for the sum of constantly many ROABPs. The construction of a shift to obtain low

support concentration for single ROABPs is postponed to Section 3.5.

60

3.4.1 Sum of ROABPs

We will first give a hitting set for the sum of two ROABPs, A+B. We will then extend this

result for the sum of c ROABPs. Let A ∈ F[x] be a polynomial of individual degree d that

has an ROABP of width w, with variable order (x1, x2, . . . , xn). Let B ∈ F[x] be another

polynomial. We start by reconsidering the whitebox test from the previous section. The

dependency Equations (3.14) and (3.15) were used to construct an ROABP for B ∈ F[x]

in the same variable order as for A, and the same width. If this succeeds, then the

polynomial A + B has one ROABP of width 2w. Since there is already a blackbox PIT

for one ROABP [AGKS15], we are done in this case.

Hence, the interesting case that remains is when the dependency Equations (3.14)

for A do not carry over to B as in Equation (3.15). Let k ∈ [n] be the first such index.

In the following Lemma 3.4.1 we decompose A and B into a common ROABP R up to

layer k, and the remaining different parts P and Q. That is, for yk = (x1, x2, . . . , xk)

and zk = (xk+1, . . . , xn), we obtain A = RP and B = RQ, where R ∈ F[yk]
1×w′ and

P,Q ∈ F[zk]
w′×1, for some w′ ≤ w(d + 1). The construction we give is such that the

coefficient space of R has full rank w′. Since the dependency Equations (3.14) for A do

not fulfill Equation (3.15) for B, we get a constant vector Γ ∈ F1×w′ such that ΓP = 0

but ΓQ 6= 0. Since R is full rank, Γ lies in the coefficient space of R. Hence, low support

concentration of R ensures that Γ lies in the space of the small support coefficients of R.

The simultaneous low support concentration of R,P and Q ensures that R(P +Q) has low

support concentration. We thus get low support concentration for A+B (Lemma 3.4.2).

In the next lemma, we will decompose ROABPs A and B as A = RP and B = RQ.

Lemma 3.4.1 (Common ROABP R). Let A(x) be a polynomial of individual degree d,

computed by an ROABP of width w in variable order (x1, x2, . . . , xn). Let B(x) be another

polynomial for which there does not exist an ROABP of width w in the same variable order.

Then there exists k ∈ [n] such that for some w′ ≤ w(d + 1), there are polynomials

R ∈ F[yk]
1×w′ and P,Q ∈ F[zk]

w′×1, such that

1. A = RP and B = RQ,

61

2. there exists a vector Γ ∈ F1×w′ with supp(Γ) ≤ w+ 1 such that ΓP = 0 and ΓQ 6= 03,

3. the coefficient space of R has full rank w′.

Proof. Let D1, D2, . . . , Dn be the matrices constructed in Lemma 3.2.6 for A. Assume

again w.l.o.g. that spank(A) = {ak,1,ak,2, . . . ,ak,w} has size w for each 1 ≤ k ≤ n − 1,

and spann(A) = {an,1}. Then we have D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi],

for 2 ≤ i ≤ n− 1.

In the proof of Lemma 3.2.6, we consider the dependency equations for A and carry

them over to B. By the assumption of the Lemma, there is no ROABP of width w for B

now. Therefore, there is a smallest k ∈ [n] where a dependency for A is not followed by B.

That is, the coefficients γa computed for Equation (3.14) do not fulfill Equation (3.15)

for B. Since the dependencies carry over up to this point, the construction of the matrices

D1, D2, . . . , Dk−1 work out fine for B. Hence, by Equation (3.5), we can write

A(x) = D1D2 · · ·Dk−1

A(yk−1,ak−1,1)

A(yk−1,ak−1,2)

...

A(yk−1,ak−1,w)

(3.18)

B(x) = D1D2 · · ·Dk−1

B(yk−1,ak−1,1)

B(yk−1,ak−1,2)

...

B(yk−1,ak−1,w)

(3.19)

Since the difference between A and B occurs at xk, we consider all possible extensions

from xk−1. That is, by Equation (3.10), for every i ∈ [w] we have

A(yk−1,ak−1,i) =

d∑
j=0

A(yk,(ak−1,i,j))x
j
k . (3.20)

Recall that our goal is to decompose polynomial A into A = RP . We first define

polynomial P ∈ F[zk]
1×w′ , where w′ = w(d+1), as the vector of coefficient polynomials of

all the one-step extensions of spank−1(A), i.e., P =
(
A(yk,(ak−1,i,j))

)
1≤i≤w, 0≤j≤d

. Written

3supp(Γ) is the number of nonzero entries in the vector Γ.

62

explicitly, this is

P =

A(yk,(ak−1,1,0))

...

A(yk,(ak−1,1,d))

...

A(yk,(ak−1,w,0))

...

A(yk,(ak−1,w,d))

.

To define R ∈ F[yk]
1×w′ , let Iw be the w×w identity matrix. Define matrix Ek ∈ F[xk]

w×w′

as the tensor product

Ek = Iw ⊗
[
x0k x

1
k · · · xdk

]
.

From Equation (3.20), we get that
A(yk−1,ak−1,1)

...

A(yk−1,ak−1,w)

 = Ek P.

Thus, Equation (3.18) can be written as A(x) = D1D2 · · ·Dk−1EkP . Hence, when we

define

R(yk) = D1D2 · · ·Dk−1Ek

then we have A = RP as desired. By an analogous argument we get B = RQ for

Q =
(
B(yk,(ak−1,i,j))

)
1≤i≤w, 0≤j≤d

.

For the second claim of the lemma, let b ∈ dependk(A) such that the dependency

Equation (3.14) for A is fulfilled, but not Equation (3.15) for B. There may be more that

one such dependencies. We choose any one. Define Γ ∈ F1×w′ to be the vector that has

the values γa used in Equation (3.14) at the position where P has entry A(yk,a)
, and zero

at all other positions. Then supp(Γ) ≤ w + 1 and we have ΓP = 0 and ΓQ 6= 0.

It remains to show that the coefficient space of R has full rank. By Corollary 3.2.7, the

coefficient space of D1D2 · · ·Dk−1 has full rank w. Namely, for any ` ∈ [w], the coefficient

of the monomial y
ak−1,`

k−1 is e`, the `-th standard unit vector. Therefore the coefficient of

63

R(yk) = D1D2 · · ·Dk−1Ek at monomial y
(ak−1,`,j)
k is

coeffR(y
ak−1,`,j
k) = e` coeffEk(xjk),

for 1 ≤ ` ≤ w and 0 ≤ j ≤ d. By the definition of Ek, we get coeffR(y
ak−1,`,j
k) =

e(`−1)(d+1)+j+1. As we vary ` and j, we cover
{
e1, . . . , ew(d+1)

}
. Thus, the coefficient

space of R has full rank w′.

Lemma 3.4.1 provides the technical tool to obtain low support concentration for the

sum of several ROABPs by the shift developed for a single ROABP. We start with the

case of the sum of two ROABPs. Like we stated earlier, the shift that `-concentrates

every single ROABP of width w is given in Theorem 3.5.6. For now, we proceed with the

assumption that it can efficiently computed.

Lemma 3.4.2. Let A(x) and B(x) be two n-variate polynomials of individual degree d,

each computed by an ROABP of width w. Define Ww,2 = (d + 1)(2w)2 and `w,2 =

log(W 2
w,2 + 1). Let fw,2(t) ∈ F[t]n be a shift that `w,2-concentrates any polynomial (or

matrix polynomial) that is computed by an ROABP of width ≤Ww,2.

Then (A+B)′ = (A+B)(x+ fw,2) is 2 `w,2-concentrated.

Proof. If B can be computed by an ROABP of width w in the same variable order as the

one for A, then there is an ROABP of width 2w that computes A + B. In this case, the

Lemma follows because 2w ≤Ww,2. So let us assume that there is no such ROABP for B.

Then, the assumption from Lemma 3.4.1 is fulfilled. Hence, we have a decomposition of A

and B at the k-th layer into A(x) = R(yk)P (zk) and B(x) = R(yk)Q(zk), and there is a

vector Γ ∈ F1×w′ such that ΓP = 0 and ΓQ 6= 0, where w′ = (d+1)w and supp(Γ) ≤ w+1.

Define R′, P ′, Q′ as the polynomials R,P,Q shifted by fw,2, respectively. Since ΓP = 0,

we also have ΓP ′ = 0.

By the definition of R, there is an ROABP of width w′ that computes R. Since

w′ ≤Ww,2, polynomial R′ is `w,2-concentrated by the assumption of the Lemma.

We argue that ΓQ′ is also `w,2-concentrated: let Q = [Q1Q2 · · ·Qw′]T ∈ F[zk]
w′×1.

By Lemma 3.2.4, from the ROABP for B we get an ROABP for each Qi of the same

64

width w and the same variable order. Therefore we can combine them into one ROABP

that computes ΓQ =
∑w′

i=1 γiQi. Its width is w(w + 1) because supp(Γ) ≤ w + 1. Since

w(w + 1) ≤Ww,2, the polynomial ΓQ′ is `w,2-concentrated.

Since ΓQ 6= 0 and ΓQ′ is `w,2-concentrated, there exists at least one monomial b ∈

{0, 1, . . . , d}n−k with supp(b) < `w,2 such that Γ coeffQ′(z
b
k) 6= 0. Because ΓP = 0, we

have Γ coeffP ′(z
b
k) = 0, and therefore

Γ coeffP ′+Q′(z
b
k) 6= 0. (3.21)

Recall that the coefficient space of R has full rank w′. Since a shift preserves the

coefficient space, R′ also has a full rank coefficient space. Because R′ is `w,2-concentrated,

already the coefficients of the (< `w,2)-support monomials of R′ have full rank w′. That

is, for M`w,2 = {a ∈ {0, 1, . . . , d}k | supp(a) < `w,2}, we have rankF(t){coeffR′(y
a
k) | a ∈

M`w,2} = w′. Therefore, we can express Γ as a linear combination of these coefficients,

Γ =
∑

a∈M`w,2

αa coeffR′(y
a
k),

where αa is a rational function in F(t), for all a ∈M`w,2 . Hence, from Equation (3.21) we

get

Γ coeffP ′+Q′(z
b
k) =

 ∑
a∈M`w,2

αa coeffR′(y
a
k)

 coeffP ′+Q′(z
b
k)

=
∑

a∈M`w,2

αa coeffR′(P ′+Q′)(y
a
k z

b
k)

=
∑

a∈M`w,2

αa coeff(A+B)′(x
(a,b))

6= 0 .

Since supp(a, b) = supp(a) + supp(b) < 2`w,2, it follows that there is a monomial in (A+

B)′ of support < 2`w,2 with a nonzero coefficient. In other words, (A + B)′ is 2`w,2-

concentrated.

65

Time Complexity. In Section 3.5, Theorem 3.5.6, we will show that the shift polyno-

mial fw,2(t) ∈ F[t]n used in Lemma 3.4.2 can be computed in time (ndw)O(logn). The

degree of fw,2(t) is also (ndw)O(logn). Recall that when we say that we shift by fw,2(t),

we actually mean that we plug in values for t up to the degree of fw,2(t). That is,

we have a family of (ndw)O(logn) shifts, and at least one of them will give low support

concentration. By Lemma 2.5.7, we get for each t, a potential hitting-set Ht of size

(nd)O(`w,2) = (nd)O(log dw),

Ht = {h+ f(t) | h ∈ {0, β1, . . . , βd}n and supp(h) < 2`w,2} .

The final hitting-set is the union of all these sets, i.e.H =
⋃
tHt, where t takes (ndw)O(logn)

distinct values. Hence, save for a proof of Theorem 3.5.6, we have the following main result.

Theorem 3.4.3. Given n, d, w, in time (ndw)O(logndw) one can construct a hitting-set

for all n-variate polynomials of individual degree d, that can be computed by a sum of two

ROABPs of width w.

We now extend Lemma 3.4.2 to the sum of c ROABPs.

Lemma 3.4.4. Let A = A1 + A2 + · · · + Ac, where the Ai’s are n-variate polynomials

of individual degree d, each computed by an ROABP of width w. Define Ww,c = (d +

1)(2w)2
c−1

and `w,c = log(W 2
w,c + 1). Let fw,c(t) ∈ F[t]n be a shift that `w,c-concentrates

any polynomial (or matrix polynomial) that is computed by an ROABP of width Ww,c.

Then A′ = A(x+ fw,c) is c `w,c-concentrated.

Proof. The proof is by induction on c. Lemma 3.4.2 provides the base case c = 2. For

the induction step let c ≥ 3. We follow the proof of Lemma 3.4.2 with A = A1 and

B =
∑c

j=2Aj . Consider again the decomposition of A and B at the k-th layer into

A = RP and B = RQ, and let Γ ∈ F1×w′ such that ΓP = 0 and ΓQ 6= 0, where

w′ = (d+ 1)w and the number of nonzero entries in Γ, supp(Γ) ≤ w + 1.

The only difference with the proof of Lemma 3.4.2 is Q = [Q1Q2 · · ·Qw′]T . Recall

66

from Lemma 3.4.1 that Qi = B(yk,ai)
=
∑c

j=2Aj(yk,ai)
, for ai ∈ dependk(A). Hence,

ΓQ =
w′∑
i=1

γi

 c∑
j=2

Aj(yk,ai)

 =
c∑
j=2

w′∑
i=1

γiAj(yk,ai)
.

By Lemma 3.2.4, ΓQ can be computed by a sum of c−1 ROABPs, each of width w(w+1) ≤

2w2 = w′′, because supp(Γ) ≤ w + 1. Our definition of Ww,c was chosen such that

Ww′′,c−1 = (d+ 1)(2w′′)2
c−2

= (d+ 1)(2 · 2w2)2
c−2

= (d+ 1)(2w)2
c−1

= Ww,c .

Hence, fw,c(t) is a shift that `w′′,c−1-concentrates any polynomial that is computed by an

ROABP of widthWw′′,c−1. By the induction hypothesis, we get that ΓQ′ = ΓQ(x+fw,c(t))

is (c− 1) `w′′,c−1-concentrated, which is the same as (c− 1) `w,c-concentrated.

Now we can proceed as in the proof of Lemma 3.4.2 and get that (A+B)′ =
∑c

j=1A
′
j

has a monomial of support < `w,c + (c− 1) `w,c = c `w,c.

We combine the lemmas similarly as for Theorem 3.4.3 and obtain our main result for

the sum of constantly many ROABPs.

Theorem 3.4.5. Given n,w, d, in time (ndw)O(c 2c logndw) one can construct a hitting-set

for all n-variate polynomials of individual degree d, that can be computed by the sum of c

ROABPs of width w.

3.4.2 Concentration in matrix polynomials

As a by-product, we show that low support concentration can be achieved even when

we have a sum of matrix polynomials, each computed by an ROABP. For a matrix

polynomial A(x) ∈ Fw×w[x], an ROABP is defined similar to the standard case. We

have layers of nodes V0, V1, . . . , Vn connected by directed edges from Vi−1 to Vi. Here,

V0 = {v0,1, v0,2, . . . , v0,w} and Vn = {vn,1, vn,2, . . . , vn,w} also consist of w nodes. The

polynomial Ai,j(x) at position (i, j) in A(x) is the polynomial computed by the standard

ROABP with start node v0,i and end node vn,j .

Note that Definition 2.5.5 for `-support concentration can be applied to polynomials

over any F-algebra.

67

We need the following Lemma which is also of independent interest.

Lemma 3.4.6. Let A ∈ Fw×w[x] be an n-variate polynomial and f(t) be a shift. Then

A(x+ f(t)) is `-concentrated iff ∀α ∈ Fw×w, 〈α,A〉 (x+ f(t)) is `-concentrated.

Proof. Assume that A′(x) = A(x + f) is not `-concentrated. Then there exists a mono-

mial xb such that coeffA′(x
b) /∈ spanF(t){coeffA′(x

a) | supp(a) < `}. Hence, there exists

an α ∈ Fw×w such that 〈α, coeffA′(x
a)〉 = 0, for all a with supp(a) < `, but 〈α,A′〉 6= 0.

We thus found an α ∈ Fw×w such that 〈α,A〉 (x+ f(t)) is not `-concentrated.

For the other direction, let A(x+f) be `-concentrated. So, any coefficient coeffA′(x
a)

can be written as a linear combination of the small support coefficients,

coeffA′(x
a) =

∑
b

supp(b)<`

γb coeffA′(x
b),

for some γb ∈ F. Hence, for any α ∈ Fw×w, we also have

〈α, coeffA′(x
a)〉 =

〈
α,

∑
b

supp(b)<`

γb coeffA′(x
b)

〉
.

That is, 〈α,A〉 (x+ f(t)) is `-concentrated.

Now we can show low support concentration for a sum of matrix polynomials, each

computed by an ROABP, analogous to Lemma 3.4.4.

Corollary 3.4.7 (Of Lemma 3.4.4). Let A = A1+A2+ · · ·+Ac, where each Ai ∈ Fw×w[x]

is an n-variate matrix polynomials of individual degree d, each computed by an ROABP

of width w. Let fw,c and `w,c be defined as in Lemma 3.4.4.

Then A(x+ fw2,c) is c`w2,c-concentrated.

Proof. Let α ∈ Fw×w and consider the dot-product 〈α,Ai〉 ∈ F[x]. This polynomial can

be computed by an ROABP of width w2: we take the ROABP for Ai which is of width w

and make w copies of it, and add two new nodes s and t. We add the following edges.

• Connect the new start node s to the h-th former start node v0,h of the h-th copy of

the ROABP Ai by edges of weight one, for all 1 ≤ h ≤ w.

68

• Connect the j-th former end node of the h-th copy of the ROABP to the new end

node t by an edge of weight αh,j , for all 1 ≤ h, j ≤ w.

The resulting ROABP has width w2 and computes 〈α,Ai〉.

Now consider the polynomial 〈α,A〉 = 〈α,A1〉 + 〈α,A2〉 + · · · + 〈α,Ac〉. It can be

computed by a sum of c ROABPs, each of width w2, for every α ∈ Fw×w. Hence, by

Lemma 3.4.4, the polynomial 〈α,A〉 (x+fw2,c) is c`w2,c-concentrated, for every α ∈ Fw×w.

By Lemma 3.4.6, it follows that A(x+ fw2,c) is c`w2,c-concentrated.

3.5 Low Support Concentration in ROABPs

To complete the proof of Theorem 3.4.5, we need to prove that there exists a shift of

quasi-polynomial cost which concentrates any width-w ROABP over n variables.

Recall that a polynomial A(x) over an F-algebra A is called low-support concentrated

if its low-support coefficients span all its coefficients. We will show an efficient shift

which achieves concentration in matrix polynomials computed by ROABPs via the quasi-

polynomial size hitting-set for ROABPs given by Agrawal et al. [AGKS15]. Their hitting-

set is based on a basis isolating weight assignment which we define next.

Recall that M = {0, 1, . . . , d}n denotes the set of all exponents of monomials in x of

individual degree bounded by d. For ` ≥ 1, we define the set M` ⊆M as the exponents of

low support,

M` = {a ∈M | supp(a) < `}.

For a weight function w: [n] → N and a = (a1, a2, . . . , an) ∈ M , let the weight of a be

w(a) =
∑n

i=1 w(i)ai. Let Ak be a k-dimensional algebra over the field F. For any two sets

of monomials, M1,M2, an M1 ×M2 matrix will be a matrix whose rows and columns are

indexed by the elements in the sets M1 and M2 respectively.

Definition 3.5.1. A weight function w: [n]→ N is called a basis isolating weight assign-

ment for a polynomial A(x) ∈ Ak[x], if there exists S ⊆M with |S| ≤ k such that

• ∀a 6= b ∈ S, w(a) 6= w(b) and

69

• ∀a ∈ S := M − S, coeffA(xa) ∈ spanF{coeffA(xb) | b ∈ S and w(b) < w(a)}.

The definition of the basis isolating weight assignment is such that if it exists, then, a

unique basis of the coefficients of the polynomial A(x) has the minimum weight and the

monomials in this basis have distinct weights.

Proof idea- Agrawal et al. [AGKS15, Lemma 8] presented a quasi-polynomial time

construction of such a weight function (w(1),w(2), . . . ,w(n)) for any polynomial A(x) ∈

Fw×w[x] computed by an ROABP.

Lemma 3.5.2 ([AGKS15]). Given n,w, d, a set of N weight functions {w1,w2, . . . ,wN}

can be constructed in time (nwd)O(logn) such that for any n-variate, individual degree d

polynomial A(x) ∈ Fw×w[x] computed by a width-w ROABP, there exists i ∈ [N] such

that wi is a basis isolating weight assignment for A(x). Here, N = (nwd)O(logn).

Our approach now is to use this weight function for a shift of A(x) by
(
tw(i)

)n
i=1

.

Let A′(x) denote the shifted polynomial,

A′(x) = A(x+ tw) = A
(
x1 + tw(1), x2 + tw(2), . . . , xn + tw(n)

)
.

We will prove that A′ has low support concentration. There is a standard method of

proving this. We follow the ideas from [ASS13, AGKS13, FSS14] to show low support

concentration. We write the coefficients of A′ as linear combinations of the coefficients of

A. Since they are linear combinations, there exists a transfer matrix D−1TD (Equation

3.23). To study the coefficients of the (< `)-support monomials of the shifted polynomial,

we truncate the matrices in Equation 3.23 appropriately (Equation 3.24). We then prove

that the truncated transfer matrix D−1` T`D is a rank extractor. See the section on rank

extractors in the Introduction chapter.

Formulation of the shifting via matrices- Recall from Lemma 2.5.8 that the coeffi-

cients of A′ are linear combinations of the coefficients of A. Adapting Equation (2.2), we

have

coeffA′(x
a) =

∑
b∈M

(
b

a

)
tw(b−a) · coeffA(xb), (3.22)

70

where
(
b
a

)
=
∏n
i=1

(
bi
ai

)
for any a, b ∈ Nn.

Equation (3.22) can be expressed in terms of matrices. Let C be the coefficient matrix

of A, i.e. the M × [k] matrix with the coefficients coeffA(xa) as rows,

C(a, ·) = coeffA(xa)> .

Similarly, let C ′ be the M × [k] matrix with the coefficients coeffA′(x
a) as rows. Let

furthermore T be the M ×M transfer matrix given by

T (a, b) =

(
b

a

)
,

and D be the M ×M diagonal matrix given by

D(a,a) = tw(a) .

The inverse of D is the diagonal matrix given by D−1(a,a) = t−w(a). Now Equation (3.22)

becomes

C ′ = D−1TDC . (3.23)

As shifting is an invertible operation, the matrix T is also invertible and rank(C ′) =

rank(C).

Lemma 3.5.3 (Isolation to concentration). Let A(x) be a polynomial over a k-dimensional

algebra Ak. Let w be a basis isolating weight assignment for A(x). Then A(x + tw) is

`-concentrated, where ` = dlog(k + 1)e.

Proof. Let A′(x) = A(x + tw). We reconsider Equation (3.23) with respect to the low

support monomials. Recall that M` = {a ∈M | supp(a) < `}. We define the matrices

C ′` : the M` × [k] sub-matrix of C ′ that contains the coefficients of A′ of

support < `,

T` : the M` ×M sub-matrix of T restricted to the rows a ∈M`,

D` : theM`×M` sub-matrix ofD restricted to the rows and columns fromM`.

To show that A′ is `-concentrated, we need to prove that rank(C ′`) = rank(C). By Equa-

71

tion (3.23), matrix C ′` can be written as

C ′` = D−1` T`DC. (3.24)

Since D−1` is a diagonal matrix with nonzero entries, it has full rank. Hence, it suffices to

show that rank(T`DC) = rank(C).

Now, recall that w is a basis isolating weight assignment. Hence, there exists a set

S ⊆M such that the set of coefficients {coeffA(b)}b∈S spans all coefficients coeffA(a), for

a ∈M . Without loss of generality, we assume that the rows and columns in all the above

matrices that are indexed by M or M` are ordered according to the increasing weight w(a)

of the indices a. If there is an index a /∈ S and index b ∈ S such that w(a) = w(b), then

the index a is put before the index b. Amongst all the indices with the same weight, only

one index can belong to the set S. The other rows with the same weight can be arranged

in an arbitrary order.

The set {coeffA(b)}b∈S is the spanning set of all the rows of C. In terms of the

coefficient matrix C, for any a ∈M we can write

C(a, ·) ∈ span{C(b, ·) | b ∈ S and w(b) < w(a)}. (3.25)

This property can be used to factorize the coefficients matrix C as follows. Let S =

{s1, s2, . . . , sk′} for some k′ ≤ k. Let C0 be the k′ × k sub-matrix of C whose i-th

row is C(si, ·), i.e. C0(i, ·) = C(si, ·). By (3.25), for every a ∈ M , there is a vector

γa = (γa,1, γa,2, . . . , γa,k′) ∈ Fk′ such that C(a, ·) =
∑k′

j=1 γa,j C0(j, ·). Let Γ = (γa,j)a,j

be the M × [k′] matrix with these vectors as rows. Then we get

C = ΓC0 .

Observe that the si-th row of Γ is simply ei, the i-th standard unit vector. By (3.25),

the coefficient C(si, ·) is used to express C(a, ·) only when w(a) > w(si). Recall that the

rows of the matrices indexed by M , like Γ, are in order the of increasing weight of the

index. Therefore, when we consider the i-th column of Γ from the top, the entries are all

72

zero down to row si, where we hit on the one from ei,

Γ(si, i) = 1 and ∀a 6= si, w(a) ≤ w(si) =⇒ Γ(a, i) = 0 . (3.26)

Recall that our goal is to show rank(T`DC) = rank(C). For this, it suffices to show that

the M`×k′ matrix R = T`DΓ has full column rank k′, because then we have rank(T`DC) =

rank(T`DΓC0) = rank(RC0) = rank(C0) = rank(C).

To show that R has full column rank k′, observe that the j-th column of R can be

written as

R(·, j) =
∑
a∈M

T`(·,a) Γ(a, j) tw(a) . (3.27)

By (3.26), the term with the lowest degree in Equation (3.27) is tw(sj). By lc(R(·, j))

we denote the coefficient of the lowest degree term in the polynomial R(·, j). Because

Γ(sj , j) = 1, we have

lc(R(·, j)) = T`(·, sj) .

We define the M`× [k′] matrix R0 whose j-th column is lc(R(·, j)), i.e. R0(·, j)) = T`(·, sj).

We will show in Lemma 3.5.4 below that the columns of matrix T` indexed by the set S

are linearly independent. Therefore the k′ columns of R0 are linearly independent.

Hence, there are k′ rows in R0 such that its restriction to these rows, say R′0, is a square

matrix with nonzero determinant. Let R′ denote the restriction of R to the same set of

rows. Now observe that the lowest degree term in det(R′) has coefficient precisely det(R′0),

i.e., lc(det(R′)) = det(R′0). This is because the lowest degree term in det(R′) has degree∑k′

j=1 w(sj), and this degree can only be obtained when the degree w(sj) term is taken

from the j-th column, for all j. We conclude that det(R′) 6= 0 and hence R has full column

rank.

It remains to show that the k′ ≤ k columns of matrix T` indexed by the set S are linearly

independent. In fact, we will show that any k = 2` − 1 columns of T` are independent.

For any polynomial V (x) =
∑

a vax
a ∈ F[x], when it is shifted by 1, the new coeffi-

73

cients are given by the equation

coeffV ′(x
a) =

∑
b

(
b

a

)
vb = T (a, ·)v ,

where the matrix T comes from Equation 3.23. The matrix T` was obtained by truncating

the matrix T to its rows indexed by the (< `)-support monomials. To show that any

k columns of T` are linearly independent, we need to show that when the any k-sparse

polynomial v(x) ∈ F[x] is shifted by 1, it becomes `-concentrated.

Lemma 3.5.4. Let T` be the M` ×M matrix with T`(a, b) =
(
b
a

)
. Any 2` − 1 columns of

matrix T` are linearly independent.

Proof. Let S ⊆ M now be any set of size k = 2` − 1. Let T`,k be the M` × S sub-matrix

of T` that consists of the columns indexed by S. To prove the Lemma we will show that

for any 0 6= v ∈ Fk we have T`,kv 6= 0.

Let v = (va)a∈S . Define the polynomial V (x) =
∑

a∈S vax
a ∈ F[x]. Let V ′(x) be

the polynomial where every variable in V (x) is shifted by 1: V ′(x) = V (x + 1). From

Equation (3.22) we get that for any a ∈M`,

coeffV ′(x
a) =

∑
b∈S

(
b

a

)
vb = T`,k(a, ·)v .

Hence, T`,kv gives all the coefficients of V ′(x) of support < `. Now it remains to show

that at least one of these coefficients is nonzero. We show this in our next claim about

concentration in sparse polynomials.

Claim 3.5.5. Let V (x) ∈ F[x] be a non-zero n-variate polynomial with sparsity bounded

by 2` − 1. Then V ′(x) = V (x+ 1) has a nonzero coefficient of support < `.

We prove the claim by induction on n, the number of variables. For n = 1, poly-

nomial V (x) is univariate, i.e. all monomials in V (x) have support 1. Hence, for ` > 1

it suffices to show that V ′(x) 6= 0. But this is equivalent to V (x) 6= 0, which holds by

assumption. If ` = 1, then V (x) is a univariate polynomial with exactly one monomial,

and therefore V (x+ 1) has a nonzero constant part.

74

Now assume that the claim is true for n− 1 and let V (x) have n variables. Let xn−1

denote the set of first n−1 variables. Let us write V (x) =
∑d

i=0 Ui x
i
n, where Ui ∈ F[xn−1],

for every 0 ≤ i ≤ d. Let U ′i(xn−1) = Ui(xn−1 + 1) be the shifted polynomial, for every

0 ≤ i ≤ d. We consider two cases:

Case 1: There is exactly one index i ∈ [0, d] for which Ui 6= 0. Then Ui has sparsity

≤ 2` − 1. Because Ui is an (n − 1)-variate polynomial, U ′i has a nonzero coefficient of

support < ` by inductive hypothesis.

Thus, V ′(x) = (xn + 1)i U ′i also has a nonzero coefficient of support < `.

Case 2: There are at least two Ui’s which are nonzero. Then there is at least

one index in i ∈ [0, d] such that Ui has sparsity 2`−1 − 1. And hence, by the inductive

hypothesis, U ′i has a nonzero coefficient of support < ` − 1. Consider the largest index j

such that U ′j has a nonzero coefficient of support < `−1. Let the corresponding monomial

be xa
n−1. Now, as V ′(x) =

∑d
i=0 U

′
i (xn + 1)i, we have that

coeffV ′(x
a
n−1x

j
n) =

d∑
r=j

(
r

j

)
coeffU ′r(x

a
n−1).

By our choice of j we have coeffU ′j (x
a
n−1) 6= 0 and coeffU ′r(x

a
n−1) = 0, for r > j. Hence,

coeffV ′(x
a
n−1x

j
n) 6= 0. The monomial xa

n−1x
j
n has support < `, which proves our claim and

the Lemma.

Unifying many maps into one using Lagrange interpolation - We can use Lemma

3.5.3 to get concentration in a polynomial computed by an ROABP. LetA(x) ∈ Fw×w[x] be

a polynomial in n variables of individual degree d that can be computed by an ROABP of

width w. Agrawal et al. [AGKS15, Lemma 8] constructed a family B = {w1,w2, . . . ,wN}

of weight assignments such that at least one of the weights is a basis isolating weight

assignment for A(x), where N = (ndw)O(logn). Hence, by Lemma 3.5.3, at least one of

the n-tuples in the family F = {tw1 , tw2 , . . . , twN } gives log(w2 + 1)-concentration in A(x)

upon shifting by it. F can be generated in time (ndw)O(logn).

Thus, by Lemma 3.5.3, we now have an alternative PIT for one ROABP because we

could simply try all f i ∈ F as a shift, and we know that at least one will provide low-

75

support concentration. However, in Lemmas 3.4.2 and 3.4.4 we apply the shift to several

ROABPs simultaneously, and we have no guarantee that one of the shifts works for all of

them. We solve this problem by combining the n-tuples in F into one single shift that

works for every ROABP.

Theorem 3.5.6. There exists an n-tuple f(t) ∈ F[t]n, of degree bounded by (ndw)O(logn)

and computable in time (ndw)O(logn), such that given any polynomial A(x) ∈ Fw×w[x] (or

F1×w[x], or F[x]) computed by an ROABP over n variables, of individual degree d and of

width w, A(x+ f(t)) is log(w2 + 1)-concentrated.

Proof. We take the family F of maps for the polynomials computed by n-variate, individ-

ual degree d ROABPs of width w. The maps in F are of degree (ndw)O(logn) and there

are (ndw)O(logn) of them. For any polynomial A computed by an ROABP of the above

description, there exists a map f ∈ F such that A(x+ f) is log(w2 + 1)-concentrated.

By Lemma 2.5.9, there exists a single univariate map f of degree (ndw)O(logn) that

log(w2 + 1)-concentrates the ROABPs.

Now, consider the case when the ROABP computes a polynomial A(x) ∈ F1×w[x].

It is easy to see that there exist S ∈ F1×w and B ∈ Fw×w[x] computed by a width-w

ROABP such that A = SB. We know that B(x+f(t)) has log(w2 + 1)-concentration. As

multiplying by S is a linear operation, one can argue as in the proof of Lemma 3.4.6 that

any linear dependence among coefficients of B(x+ f(t)) also holds among coefficients of

A(x+f(t)). Hence, A(x+f(t)) has log(w2 +1)-concentration. A similar argument would

work when A(x) ∈ F[x], by writing A = SBT , for some S ∈ F1×w and T ∈ Fw×1.

3.6 Discussion

The first question is whether one can make the time complexity for PIT for the sum of c

ROABPs proportional to wO(c) instead of wO(2c). This blow up happens because, when

we want to combine w + 1 partial derivative polynomials given by ROABPs of width w,

we get an ROABP of width O(w2). There are examples where this bound seems tight.

So, a new property of sum of ROABPs needs to be discovered.

76

It also needs to be investigated if these ideas can be generalized to work for sum of

more than constantly many ROABPs, or depth-3 multilinear circuits.

In this thesis chapter, the hitting set for a sum of ROABPs is obtained by shifting

the ROABPs, so that the polynomial computed by the ROABPs is `-concentrated. A

hitting set which does not go through shifting and concentrating the polynomial would be

interesting. The earlier hitting sets for depth-3 set multilinear circuits and ROABPs made

use of shifting and concentrating techniques [ASS13, FSS14]. But, [AGKS15] had mapped

all the variables to polynomials directly. This may be possible for sum of ROABPs also.

As mentioned in the introduction, the idea for equivalence of two ROABPs was inspired

from the equivalence of two read once boolean branching programs (OBDD). It would be

interesting to know if there are concrete connections between arithmetic and boolean

branching programs. In particular, can ideas from identity testing of an ROABP be

applied to construct pseudo-randomness for OBDD.

Chapter 4

Sparse, Invertible Constant-Width

ROABP

Abstract

In this chapter, we explore the model of read-once arithmetic branching programs

(ROABP) where the factor-matrices are invertible (called invertible-factor ROABP).

We design a hitting-set in time poly(nw
2
) for width-w invertible-factor ROABP.

Further, we could do without the invertibility restriction when w = 2. Before this,

the best result for width-2 ROABP was quasi-polynomial time (Forbes-Saptharishi-

Shpilka, STOC 2014).

4.1 Introduction

Our result is for ROABP with the restriction that all the matrices in the matrix product,

except the left-most and the right-most matrices, are invertible. We give a blackbox test

for this class of ROABP. Our test works in polynomial time if the dimension of the matrices

is constant. We can handle univariate factor matrices with any degree.

Note that the class of ABP, where the factor matrices are invertible, is quite powerful,

77

78

as Ben-Or and Cleve [BOC92] actually reduce formulas to width-3 ABP with invertible

factors. Saha, Saptharishi and Saxena [SSS09] reduce PIT for depth-3 circuits to PIT

for width-2 ABP with invertible factors. The class of invertible ROABPs subsume the

class of diagonal circuits through Saxena’s trick ([Sax08]). But the read-once constraint

seems to restrict the computing power of ABP, because of which we can find a hitting

set for invertible ROABPs of constant width. Interestingly, an analogous class of read-

once boolean branching programs called permutation branching programs has been studied

recently [KNP11, De11, Ste12]. These works give pseudo-random generators for this class

(for constant width) with seed-length O(log n). In other words, they give polynomial

size sample set which can fool these programs. Our polynomial size hitting sets for the

arithmetic setting is analogous to this result.

Our algorithm works even when the factor matrices have their entries as general sparse

polynomials (still over disjoint sets of variables) instead of univariate polynomials. Gurjar

et al. recently found a nO(logw) time PIT for ROABPs over fields of zero characteristic (or

with large enough characteristic) [GKS16]. Hence, it has a much better dependence on the

width w of the ROABP. But, their PIT [GKS16] is grey-box. I.e. the variable sequence of

the ROABP is input to the PIT algorithm. The poly(nw
2
) time hitting set presented in

this chapter is still the best known for constant width invertible-factor ROABP over fields

of small characteristic.

If the matrices are 2 × 2, we do not need the assumption of invertibility (see Theo-

rem 4.6.3). Here again, there is a comparable result in the boolean setting. Pseudo-random

generators with O(log n) seed-length (polynomial size sample set) are known for width-2

boolean branching programs [BDVY13].

We will show a hitting-set for a sparse-factor ROABP D0

(∏d
i=1Di

)
Dd+1, where the

Dis are invertible matrices, for all i ∈ [d]. Hence, we name this model sparse-invertible-

factor ROABP. A polynomial C(x) computed by a s-sparse-factor width-w ROABP can

be written as D0

(∏d
i=1Di

)
Dd+1, where D0 ∈ F1×w, Dd+1 ∈ Fw×1, Di ∈ Fw×w[xi] is an

s-sparse polynomial for all i ∈ [d], and x1,x2 . . . ,xd are disjoint sets of variables.

For a polynomial D, let its sparsity s(D) be the number of monomials in D with

79

nonzero coefficients.

Theorem 4.1.1. Let x = x1 t · · · t xd, with |x| = n. Let C(x) = D>0 DDd+1 ∈ F[x] be a

polynomial with D0, Dd+1 ∈ Fw, D(x) =
∏d
i=1Di(xi), and for all i ∈ [d], Di ∈ Fw×w[xi]

is an invertible matrix. For all i ∈ [d], Di has degree bounded by δ and sparsity s(Di) ≤ s.

Then there is a hitting-set of size poly((nδs)w
2 logw) for C(x).

Remark [1]. If the width w is constant, then it is clear that we get a polynomial sized

hitting-set.

Remark [2]. If the Dis are univariate, then we get a (nδ)O(w2) sized hitting-set. The

proof is presented along with the proof of Theorem 4.1.1.

4.2 Preliminaries

4.2.1 Notations and definitions

Let x be the set of variables {x1, x2 . . . , xn}. For an exponent a = (a1, a2, . . . , am) ∈ Zm+ ,

and for a set of variables y = {y1, y2, . . . , ym}, ya will denote y1
a1y2

a2 . . . ym
am . For any

a ∈ Zn+, support of the monomial xa is defined as S(a) = {i ∈ [n] | ai 6= 0} and support

size is defined as s(a) = |S(a)|.

We will shift C(x) by univariate polynomials, say, given by the map φ : t → {ta}a≥0,

where t = {t1, t2, . . . , tn}. The φ is said to be an efficient map if φ(ti) is efficiently

computable, for each i ∈ [n].

Let the matrix product D(x) =
∏d
i=1Di correspond to an ROABP such that Di ∈

Fw×w[xi] for all i ∈ [d]. Let ni be the cardinality of xi and let n =
∑d

i=1 ni. Viewing Di

as belonging to Fw×w[xi], one can write Di =
∑

a∈Zni+
Di,axa

i , where Di,a ∈ Fw×w, for all

a ∈ Zni+ . In particular Di,0 refers to the constant part of the polynomial Di.

Any monomial xa for a ∈ Zn+, can be seen as a product
∏d
i=1 xi

ai , where ai ∈ Zni+ for

all i ∈ [d], such that a = (a1,a2, . . . ,ad).

Definition 4.2.1 (Block-support and block-support size of a monomial). We define the

block-support of the monomial a, bS(a) as {i ∈ [d] | ai 6= 0} and block-support size of a,

bs(a) = |bS(a)|.

80

Thus, the block-support of a monomial is the set of blocks which contribute non-

trivially to the monomial. The coefficient of the monomial xa is Da =
∏d
i=1Di,ai . Observe

that when i /∈ bS(a), the i-th block contributes its constant part, Di,0 to the coefficient.

We will now import some terminology from the ‘string’ data-type to the coefficient of a

monomial. Analogous to the definition of a subsequence of a string, we define a substring

of a coefficient.

Definition 4.2.2 (Substring). The coefficient Db is called a substring of the coefficient

Da if bs(b) < bs(a) and bi = ai whenever bi 6= 0. We will use the operator substrings(a)

to denote the set of monomials {b | Db is a substring of Da}.

Consider the toy example D = (A1+B11x1+B12x1
2)(A2+B2x2)(A3+B3x3+B4x3x4).

Here, Di,0 = Ai, for all i and the block-support of the monomial x1x3x4 is {1, 3}. A1B2B3

is a substring of B12B2B3, whereas B11B2B3 is not.

Analogous to the definition of a prefix of a string, we define a prefix of a coefficient.

Definition 4.2.3 (Prefix). A substring Db of the coefficient Da is called its prefix if

∀i (bi 6= ai =⇒ (∀j ≥ i, bj = 0)).

In the above example, it means that only the trailing Bs can be replaced with the

corresponding As. Thus, B12A2A3 is a prefix of B12B2B4, whereas B12A2B4 is not, though

both are its substrings.

Definition 4.2.4 (Db−1a, when the Di,0s are invertible and Db is a prefix of Da). Observe

that when the Di,0s are invertible, if Db is a prefix of Da, then we can write Da = DbA
−1B,

where A =
∏d
i=r+1Di,0 and B =

∏d
i=r+1Di,ai with r = max {bS(b)}. For a prefix Db of

the coefficient Da, we will denote the matrix product A−1B as Db−1a.

4.2.2 Proof Idea

We find a hitting-set by showing a low-support concentration. Low-support concentra-

tion in the polynomial D(x) =
∏d
i=1Di means that the coefficients of the low-support

monomials in D(x) span the whole coefficient space of D(x).

Throughout this chapter, we will let ` = w2 + 1 and `′ = dlogw2e + 1. There are

81

four steps that we take to prove low-support concentration in the sparse, invertible-factor,

width-w ROABP D.

1. Given an invertible matrix Di ∈ Fw×w[xi], we use a shift, so that the constant part

of the shifted matrix is invertible.

2. Assuming the constant part of the shifted matrix D is invertible, we show that any

coefficient with block support (= `) is linearly dependent on its substrings with (< `)

block support (Lemma 4.3.3).

3. We use this Lemma to show that any coefficient in D is linearly dependent on its

substrings with < ` block support (Lemma 4.3.4).

4. We show that the shifted polynomial has `′-concentration within each of the blocks.

The novel part of this chapter is in the second step.

We will give the proof idea for the second step through a toy example. Consider

D = (A1 + B1x1)(A2 + B2x2) · · · (An + Bnxn), where each of the Ais are invertible and

Ai, Bi ∈ Fw×w, ∀i. Take the `-block-support monomial x[`] = x1x2 · · ·x`. We will show

that its coefficient is linearly dependent on its substrings with (< `) block-support. Let

Mj =
∏j
i=1Bi

∏`
i=j+1Ai, for 0 ≤ j ≤ `. Consider the set of matrices {Mj}`j=0. These

` + 1 matrices lie in Fw×w. Hence, there exists a r ∈ [`] such that Mr =
∑r−1

j=0 γjMj ,

where γj ∈ F. All the Mjs on the right hand side have < r many Bs. Since the Ais

are invertible, we can post-multiply throughout by (
∏`
i=r+1Ai)

−1∏`
i=r+1Bi

∏n
i=`+1Ai to

obtain that the coefficient of x[`] is linearly dependent on strictly smaller block-support

coefficients.

The third step is a simple extension of the above idea. For the first and fourth steps,

we use an appropriate shift (Section 4.4). The sparsity of Di is used crucially here.

For Di,0 to be invertible, we have to assume that Di(xi) is an invertible matrix for all

i ∈ [d]. For the shifted polynomial D′i(xi) = Di(xi + φ(ti)), its constant term D′i,0 is just

an evaluation of Di(x), i.e. Di|xi=φ(ti). Hence, if det(Di(xi)) = 0 (viewing Di(xi) as an

element in (F[xi])
w×w), then det(D′i,0) = 0. This means that if det(Di(xi)) = 0, then even

after shifting, D′i,0 cannot become invertible.

82

4.3 `-block-concentration when Di,0s are invertible

In this section, we will prove that when Di,0 are invertible for all 1 ≤ i ≤ d, then D is

`-block-concentrated.

Definition 4.3.1 (`-Block-concentration). D(x) is `-block-concentrated if any coefficient

in D(x) is dependent on coefficients in D with block-support ≤ `− 1.

First, us now prove that a particular kind of dependency can be lifted.

Lemma 4.3.2. Let D be an ROABP, such that Di,0 are invertible for all 1 ≤ i ≤ d. Let

Da be a prefix of Da∗. Then, if Da is linearly dependent on its substrings, then Da∗ is

linearly dependent on its substrings.

Proof. Since Da is a prefix of Da∗ ,

Da∗ = DaDa−1a∗ . (4.1)

Let the dependence of Da on its substrings be the following:

Da =
∑

b∈substrings(a)

γbDb.

Using Equation (4.1) we can write,

Da∗ =
∑

b∈substrings(a)

γbDbDa−1a∗ .

Now, we just need to show that for any substring Db of Da, DbDa−1a∗ is a valid coefficient

of some monomial in D(x) and also that it is a substring of Da∗ .

Let r = max{bS(a)}. Recall that Da−1a∗ = A−1B, where A =
∏d
i=r+1Di,0 and

B =
∏d
i=r+1Di,a∗i

. Thus, DbDa−1a∗ is the coefficient of xb∗ =
∏r
i=1 xi

bi
∏d
i=r+1 xi

a∗i .

Since b ∈ substrings(a) and a ∈ substrings(a∗), b ∈ substrings(a∗). From these two facts,

it is easy to see that DbDa−1a∗ is a substring of Da∗ .

We will now prove the existence of a dependency for any `-block-support coefficient.

83

Lemma 4.3.3. Let Da be a coefficient in D with bs(a) = `. Then Da F-linearly depends

on its substrings.

Proof. Consider the set of coefficients {M0,M1, . . . ,M`}, where Mj is the prefix of Da

with block support size j, for 0 ≤ j < `. And M` = Da. These ` + 1 vectors lie in

F` ∼= Fw×w. Hence, there exists an r ∈ [`] such that Mr is linearly dependent on {Mj}r−1j=0.

(Note that Mr = 0 is also a dependency.) The coefficients in the set {Mj}r−1j=0 are prefixes

of Mr, and thus, substrings of Mr.

Now, by applying Lemma 4.3.2, we conclude thatDa is dependent on its substrings.

Lemma 4.3.3 implies that coefficients with block-support ` depend on coefficients with

block-support ≤ `− 1. We will next show that this is true for all coefficients of D(x).

We will now prove that when the Di,0s are invertible, D is `-block-concentrated.

Lemma 4.3.4 (`-Block-concentration). Let D(x) =
∏d
i=1Di(xi) ∈ Fw×w[x] be a polyno-

mial with Di,0 being invertible for each i ∈ [d]. Then D(x) has `-block-concentration.

Proof. We will actually prove that for any coefficient Da with bs(a) ≥ ` (the case when

bs(a) < ` is trivial),

Da ∈ span{Db | b ∈ Zn+, b ∈ substrings(a) and bs(b) ≤ `− 1}.

We will prove this by induction on the block-support of Da, bs(a).

Base case: When bs(a) = `, it has been already shown in Lemma 4.3.3.

Induction Hypothesis: For any coefficient Da with bs(a) = i− 1 for i− 1 ≥ `,

Da ∈ span{Db | b ∈ Zn+, b ∈ substrings(a) and bs(b) ≤ `− 1}.

Induction step: Let us take a coefficient Da with bs(a) = i. Consider the unique prefix

Da′ of Da such that bs(a′) = i− 1.

As bs(a′) = i − 1, by our induction hypothesis, Da′ is linearly dependent on its

substrings. So, from Lemma 4.3.2, Da is linearly dependent on its substrings. In other

words,

Da ∈ span{Db | b ∈ substrings(a) and bs(b) ≤ i− 1}. (4.2)

84

Again, by our induction hypothesis, for any coefficient Db, with bs(b) ≤ i− 1,

Db ∈ span{Dc | c ∈ substrings(b) and bs(c) ≤ `− 1}. (4.3)

Combining Equations (4.2) and (4.3), we get,

Da ∈ span{Dc | c ∈ substrings(a) and bs(c) ≤ `− 1}.

In Lemma 4.3.4, we had assumed that the constant term Di,0 is invertible for every

block Di. In the next subsection, we will show how to achieve this invertibility and low-

support concentration within each block Di.

4.4 Achieving invertibility and low-support concentration

through shifting

Let the shifted polynomial D′ = D(x+φ(t)). Then, D′ =
∏d
i=1D

′
i and D′i,0 is the constant

part of D′i. Shifting will serve two purposes.

• Recall that for Lemmas 4.3.2 and 4.3.4, we need invertibility of the constant term

D′i,0 in D′i, for all i ∈ [d].

• D′i should have low-support concentration after shifting.

Now, we want a shift for Di which would ensure that det(D′i,0) 6= 0 and that D′i has

low-support concentration. For both the goals we use the sparsity of the polynomial.

Definition 4.4.1. For a polynomial p, let its sparsity set S(p) be the set of monomials

in p with nonzero coefficients and s(p) be its sparsity, i.e. s(p) = |S(p)|. Let Sw(p) =

{m1m2 · · ·mw | mi ∈ S(p), ∀i ∈ [w]}.

A map φ over t separates all the monomials in a set S if for any two monomials

ta1 , ta2 ∈ S, φ(ta1) 6= φ(ta2).

Let us now characterize the shift which makes the determinant of D′i,0 nonzero.

85

Lemma 4.4.2. Suppose Di is invertible. Let φ : t → {ti}∞i=0 be a monomial map which

separates all the monomials in Sw(Di). Then, the constant term D′i,0 of the shifted poly-

nomial D′i = Di(x+ φ(t)) is invertible.

Proof. Observe that S(det(Di)) ⊆ Sw(Di).

Since φ separates all the monomials in det(Di(t)) and since det(Di) 6= 0, we get

det(Di|x=φ(t)) 6= 0. Hence, det(D′i,0) = det(Di|x=φ(t)) 6= 0.

In Lemma 3.5.3, we prove that shifting by a basis isolating weight assignment gives

concentration. The proof of Lemma 4.4.3 uses this. Let w be basis isolating weight

assignment for D (Definition 3.5.1). Then, D(x + tw) has (dlogw2e + 1)-concentration.

Recall that `′ = dlogw2e+ 1.

Lemma 4.4.3. Let φ : t→ {ti}∞i=0 be a monomial map which separates all the monomials

in S(Di). Then, D′i = Di(x+ φ(t)) is `′-concentrated.

Proof. Di is a polynomial over a w2-dimensional algebra, Fw×w. A map φ which separates

all the monomials in S(Di) is trivially a basis isolating weight assignment for Di. Thus,

by Lemma 3.5.3, Di(x+ φ(t)) is (dlogw2e+ 1)-concentrated.

We will now show how to find such a map φ.

Lemma 4.4.4. Let D(x) =
∏d
i=1Di(xi) be a polynomial in Fw×w[x] such that for all

i ∈ [d], det(Di) 6= 0, Di has degree bounded by δ and the sparsity s(Di) ≤ s. Let M =

n2s2w log(wδ). There is a set of M monomial maps with degree bounded by 2M logM such

that for at least one of the maps φ, all D′is are `′-concentrated and all D′i,0s are invertible,

where D′ = D(x+ φ(t)).

Proof. We will provide a map φ that satisfies the pre-conditions of Lemmas 4.4.2 and

4.4.3. This will ensure that all D′is are `′-concentrated and all D′i,0s are invertible.

Observe that a map which separates all the monomials in Sw(Di) also separates all

the monomials in S(Di). This can be proved by considering the two monomials M1 =

m1m2 . . .mw and M ′1 = m′1m2 . . .mw, where mj ∈ S(Di),∀j ∈ [w] and m′1 ∈ S(Di).

M1,M
′
1 ∈ Sw. Thus, if φ separates M1 and M ′1, then φ should also separate m1 and m′1.

86

Hence, it is enough if φ separates all the monomial pairs in Sw(Di), for i ∈ [d] simul-

taneously. There are n variables, the number of monomial pairs is ≤ d · s2w ≤ n · s2w

and degree of the monomials (in the determinant of Dis) is bounded by w · δ. Hence, by

Lemma 2.3.2, M = n2s2w log(wδ) suffices.

4.5 Concentration in D(x)

Now, we want to show that if D(x) =
∏d
i=1Di has low-block-concentration, and moreover

if each Di has low-support concentration, then D(x) has an appropriate low-support

concentration.

Lemma 4.5.1 (Composition). If D(x) has `-block-concentration and Di(xi) has `′-support

concentration for all i ∈ [d] then D(x) has ((`− 1)(`′ − 1) + 1)-support concentration.

Proof. We have to prove that the any monomial xa,

Da = coeffD(xa) ∈ span
{

coeffD(xc) | s(c) ≤ (`− 1)(`′ − 1)
}
.

Since D(x) has `-block-concentration,

Da ∈ span {Db | bs(b) < `} . (4.4)

Recall that as Di’s are polynomials over disjoint sets of variables, any coefficient Db in

D(x) can be written as

Db =

d∏
i=1

Di,bi , (4.5)

where b = (b1, b2, . . . , bd) and Di,bi is the coefficient corresponding to the monomial xbi
i

in Di for all i ∈ [d]. Also, |{i : bi 6= 0}| < `.

From `′-support concentration of Di(xi), we know that for any coefficient Di,bi ,

Di,bi ∈ span{Di,ci | ci ∈ Zni+ , s(ci) ≤ `′ − 1}. (4.6)

87

Using Equations (4.5) and (4.6), we can write the following for any coefficient Db:

Db ∈ span

{
d∏
i=1

Di,ci | ci ∈ Zni+ , s(ci) ≤ `′ − 1, ∀i ∈ [d]

and ci = 0, ∀i /∈ bS(b)

}
.

Note that the product
∏d
i=1Di,ci will be the coefficient of a monomial xc such that bS(c) ⊆

bS(b) because ci = 0, ∀i /∈ bS(b). Clearly, if s(ci) ≤ `′ − 1, ∀i ∈ bS(b) then s(c) ≤

(`′ − 1) bs(b). So, one can write

Db ∈ span{Dc | c ∈ Zn+, s(c) ≤ (`′ − 1) bs(b)}. (4.7)

Using Equations (4.4) and (4.7), we can write for any coefficient Da,

Da ∈ span{Dc | c ∈ Zn+, s(c) ≤ (`′ − 1)(`− 1)}.

We are now ready to go to the final step of the proof - getting the actual hitting set.

4.5.1 From Concentration to Hitting Set

Let C(x) = D0DDd+1 ∈ F[x]. Since any coefficient coeffC(xb) in C can be written as

D0 coeffD(xb)Dd+1, we can use Lemma 2.5.6 to get the following.

Lemma 4.5.2 (Concentration in C). Let C(x) = D0DDd+1 ∈ F[x] be a polynomial with

D0 ∈ F1×w and Dd+1 ∈ Fw×1. If D(x) has ((` − 1)(`′ − 1) + 1)-concentration then C(x)

has ((`− 1)(`′ − 1) + 1)-concentration.

Now, we come back to the proof of Theorem 4.1.1. From Lemmas 4.4.4, 4.3.4, 4.5.1

and 4.5.2, we get poly(nswlog(wδ)) maps, such that for at-least one map φ : t→ {ti}∞i=0,

C ′(x) = C(x + φ(t)) is (w2dlogw2e + 1)-concentrated. The degree of t is bounded by

poly(nswlog(wδ)).

By Lemma 2.5.7 we get a hitting set for C ′(x) = C(x+φ(t)) of size (nδ)O(w2 logw). Each

of these evaluations of C will be a polynomial in t with degree bounded by poly(nswlog(wδ)).

88

Hence, total time complexity becomes poly(sw(nδ)w
2 logw).

For the proof of Remark 2, observe that when the Dis are univariate, D′is are 1-

concentrated and sparsity s ≤ δ. Thus, when the Dis are univariate, we get a (nδ)O(w2)

sized hitting-set.

4.6 Width-2 Read Once ABP

In the previous section, the crucial part in finding a hitting-set for an ROABP is the

assumption that the matrix product D(x) is invertible. Now, we will show that for width-

2 ROABP, this assumption is not required. Via a factorization property of 2× 2 matrices,

we will show that PIT for width-2 sparse-factor ROABP reduces to PIT for width-2

sparse-invertible-factor ROABP. This factorization of width-2 ABPs has also been studied

by Allender and Wang [AW11]. But their reduction cannot maintain the sparsity of the

matrix entries.

Lemma 4.6.1 (2 × 2 invertibility). Let C(x) = D0

(∏d
i=1Di

)
Dd+1 be a polynomial

computed by a width-2 sparse-factor ROABP. Then for some nonzero γ ∈ F[x] and some

m ≤ d, we can write γ(x)C(x) = C1(x)C2(x) · · ·Cm+1(x), where each of the Cis are of the

form PiQiRi. Qi ∈ F2×2[x] is a polynomial computed by a width-2 sparse-invertible-factor

ROABP, Pi ∈ F1×2[x], Ri ∈ F2×1[x], and Pi, Qi and Ri are over disjoint sets of variables

for all i ∈ [m+ 1].

Proof. Let us say, for some i ∈ [d], Di(xi) is not invertible. Let Di =
[
ai bi
ci di

]
with

ai, bi, ci, di ∈ F[xi] and aidi = bici. Without loss of generality, at least one of {ai, bi, ci, di}

is nonzero. Let us say ai 6= 0 (other cases are similar). Then we can write,ai bi

ci di

 =
1

ai

ai
ci

[ai bi

]
.

In other words, we can write γiDi = AiBi, where Ai ∈ F2×1[xi], Bi ∈ F1×2[xi] and

0 6= γi ∈ {ai, bi, ci, di}. Note that s(γi), s(Ai), s(Bi) ≤ s(Di). Let us say that the set of

89

non-invertible Dis is {Di1 , Di2 , . . . , Dim}. Writing all of them in the above form we get,

C(x)
m∏
j=1

γij =
m+1∏
j=1

Cj ,

where

Cj =

D0

(∏i1−1
i=1 Di

)
Ai1 if j = 1,

Bij−1

(∏ij−1
i=ij−1+1Di

)
Aij if 2 ≤ j ≤ m,

Bim

(∏d
i=im+1Di

)
Dd+1 if j = m+ 1.

Clearly, for all j ∈ [m+ 1],
(∏ij−1

i=ij−1+1Di

)
can be computed by a sparse-invertible-factor

ROABP. The required Pj is Bij−1 and the required Qj is Aij . Moreover, Pj , Qj and Rj

are over disjoint variables for all j.

Now, from the above Lemma it is easy to construct a hitting-set.

Consider the polynomial C(x) = P (x)Q(x)R(x), where Q ∈ Fw×w[x] is a polynomial

computed by a width-w s-sparse-invertible-factor ROABP, P ∈ F1×w[x], R ∈ Fw×1[x],

and P,Q and R are over disjoint sets of variables for all i ∈ [m + 1]. It is similar to

the polynomial described in Theorem 4.1.1, except that P and R are now polynomials

over Fw. By adapting the proof of Theorem 4.1.1, we can show a hitting set of size

poly(nδs)w
2 logw in such a model. Lemma 4.4.3 can also be applied to P and R to make

them (dlogw2e+1)-concentrated. Since Q is (w2+1)-block-concentrated by Lemma 4.3.4,

C would be (w2 +2)-block-concentrated. The rest of the proof goes through similarly. We

thus get the following Lemma.

Lemma 4.6.2. Let C(x) = P (x)Q(x)R(x), where Q ∈ Fw×w[x] is a polynomial computed

by a width-w s-sparse-invertible-factor ROABP, P ∈ F1×w[x], R ∈ Fw×1[x], and P,Q and

R are over disjoint sets of variables. Let the degree of each layer in Q be bounded by δ

and the sparsity of each layer in Q be bounded by s. Then there is a hitting-set of size

poly((nδs)w
2 logw) for C(x).

Note that a hitting-set for γ(x)C(x) is also a hitting-set for C(x) if γ is a nonzero

polynomial. We get a hitting-set for each of the factors by Lemma 4.6.2. Lemma 4.6.1

tells us how to factorize a width-2 ROABP into a product of width-2 invertible ROABPs.

90

Combining these results with Corollary 2.3.6 we get the following.

Theorem 4.6.3. Let C(x) = D0(x0)
(∏d

i=1Di(xi)
)
Dd+1(xd+1) be a polynomial in F[x]

computed by a width-2 ROABP such that for all 1 ≤ i ≤ d, Di has degree bounded by δ

and sparsity s(Di) bounded by s. Then there is a hitting-set of size poly(nδs).

4.7 Discussion

Subsequent to the development of this method, a new hitting set in time nO(logw) was

developed for constant-width ROABPs over fields of large characteristic ([GKS16]). It is a

grey-box test. So, if the ROABP is over a field of small characteristic or if we do not know

the variable sequence, we can use the hitting set presented in this chapter. Otherwise, we

should use the more efficient hitting set from [GKS16].

However, it does remain a unique method for proving `-concentration in an invertible

ROABP. Hence, it would be worth our while to bear this result in mind in our strife

towards finding a polynomial time hitting set of ROABPs.

Chapter 5

Towards Impossibility Results for

the Sum of Two Width-2

Invertible ABPs

Abstract

In the other chapters, we worked with ROABPs. In this chapter, we will specialize

the ABP by bounding its width to 2. We wish to give a polynomial which cannot

be computed as the sum two width-2 invertible ABPs. Though we have not been

successful in this endeavor yet, we will give some partial results.

5.1 Introduction

The basic model we will study in this chapter is the width-2 ABP. Now, the weights of

the edges of the ABP are linear polynomials in F[x] and the variables are repeated across

the layers.

A width-2 ABP can be seen as a product of 2× 2 matrices, with linear polynomials as

its entries. These matrices are also called as the layers of the ABP. The entries of these

91

92

matrices are linear polynomials in F[x]. The polynomial P (x) computed by the ABP is

P (x) = M1M2 · · ·Md,

where M1 ∈ F[x]1×2, Md ∈ F[x]2×1 and M2,M3, . . . ,Md−1 ∈ F[x]2×2.

The width-2 arithmetic branching programs and their sums are interesting because

of the following result by Ben-Or and Cleve [BOC92]. Any polynomial computed by an

arithmetic formula of depth-d and fan-in 2 can be computed by a width-3 ABP of size

4d. Using [GKKS13] (any polynomial computed by an arithmetic circuit in VPQ
1 can be

computed by a depth-3 circuit of size nÕ(
√
r), where r is the degree of the polynomial),

and by unrolling the resulting depth-3 circuit, we get a formula of size nÕ(r) and fan-in

2. Now, given a formula of size s computing a polynomial p(x), there exists a formula of

log s depth computing the polynomial p(x) (See [SY10, Theorem 2.6]). So, we get a size

nÕ(r) width-3 ABP for all polynomials in VPQ. In fact, given any polynomial, there exists

a large enough width-3 ABP that can compute it.

Saha, Saptharishi and Saxena [SSS09] had proven that for any polynomial p(x) com-

puted by a depth-3 arithmetic circuit, there exists a polynomial q(x) such that p(x) · q(x)

can be computed by a small width-2 ABP. Hence, the PIT question for depth-3 arith-

metic circuits reduces to the PIT question for width-2 ABP. Gupta, Kamath, Kayal and

Saptharishi proved that any polynomial in the complexity class VP can be computed by

a sub-exponential size depth-3 circuit [GKKS13]. Thus, polynomial time PIT for width-2

ABP will give sub-exponential time PIT for the complexity class VP.

Impossibility results for a family of circuits C are polynomials which can never be

computed by C, irrespective of the size of the circuit. E.g. polynomials which cannot

be factorized into linear polynomials cannot be computed by a
∏∑

circuit. If there

is a polynomial which cannot be computed by a particular model, then that model is

incomplete. [AW11] proved that the family of width-2 ABPs is incomplete. In contrast,

the family of width-3 ABPs is complete.

The width-2 ABP model is provably incomplete. So, it has known lower bounds. PIT

1VPQ is the set of polynomial degree polynomial families over rationals, which are computed by poly-
nomial size arithmetic circuits.

93

for width-2 ABP is provably hard. This make the width-2 ABP model quite peculiar. In

a way, lower bounds and PIT are considered equivalent for general circuits [HS80, KI03,

Agr05, DSY09]. The discovery of lower bounds for a model raises the hope of finding

efficient PIT for it and vice versa. In many cases, these predictions come true; there are

models where both lower bounds and PIT are known. E.g. diagonal circuits, ROABPs,

set-multilinear circuits. But, the width-2 ABP defies these expectations.

5.1.1 Result and Proof Outline

Allender and Wang [AW11] had proven that x1x2+x3x4+· · ·+x15x16 cannot be computed

by a width-2 ABP. We will see an overview of their proof in Section 5.3. We simplify

Allender and Wang’s invertible ABP to a triangular ABP.

We introduce the triangular ABP which encapsulates the power of the width-2 ABP;

a lower bound for triangular ABP implies a lower bound for width-2 ABP.

A triangular ABP A has a multi-set LA of linear forms (homogeneous linear polynomi-

als) associated with it. The highest degree homogeneous part of the polynomial computed

by such an ABP is the product of all the linear forms in the multi-set,
∏
l∈LA l. Thus,

the highest degree homogeneous parts of all polynomials computable by triangular ABPs

factorize completely into linear forms.

We study the sum of two triangular ABPs, A+B, and ask if such a model can compute

x1x2 + x3x4 + x5x6. Since a single triangular ABP cannot compute this polynomial, it

means that deg(A) = deg(B) = d, say. Moreover, if d ≥ 3, then the highest degree

homogeneous parts of A and B cancel, A[d] + B[d] = 0. We also show that if the sum of

two triangular ABPs computes x1x2+x3x4+x5x6, then, the dimension of the linear forms

in the ABPs A and B should be 6,

dim(LA) = dim(LB) = 6.

Using these, we conclude that d ≥ 6.

We then define a restriction A|S , which is another width-2 ABP, on the ABP A with

respect to a subset S of the linear forms LA. This restriction could be seen, roughly, as

94

the partial derivative of the circuit with respect to the complement of S. We then show

that:

Given two triangular ABPs A and B such that A+B = x1x2 +x3x4 +x5x6, then,

for almost all S ⊆ LA, A|S +B|S = 0.

Using this result, we show that when the linear forms in the triangular ABPs A and B

are 3-wise linearly independent, then x1x2 + x3x4 + x5x6 cannot be computed as A+B.

5.1.2 Overview of the Chapter

In Section 5.3, we study the impossibility result by Allender and Wang, which says that

x1x2 + x3x4 + · · · + x15x16 cannot be computed by a width-2 ABP. An impossibility

result for triangular ABP (Definition 5.3.7) is the most important stepping stone for

proving the impossibility result for general width-2 ABP. In Section 5.4, we try to prove

an impossibility result for a sum of two triangular ABPs. We are able to prove such an

impossibility result when the linear forms appearing in the two ABPs are 3-wise linearly

independent (Definition 5.4.6). For that, we use a lower bound on the dimension of the

span of linear forms appearing in the two ABPs (Lemma 5.4.1).

5.2 Preliminaries

L = {` ∈ F[x] | deg(`) ≤ 1} is the set of all linear polynomials over the field F.

A linear form is a homogeneous, degree 1 polynomial. Thus, it is of the form
∑

i∈[n] aixi.

In this chapter, a linear polynomial is denoted by ` and a linear form is denoted by l

(with subscripts and superscripts, as needed).

In the drawings of ABPs, the edge with weight 0 is not drawn. The edge with weight

1 is drawn, but no weight is written on it.

We define A[δ] to be the degree δ homogeneous part of the multivariate polynomial

A(x).

In many places in this chapter, we take an ABP A and apply operations on it. The

operations are such that the polynomial computed by the ABP remains the same. We now

95

consider this new, modified ABP and, with abuse of notation, we reuse the ABP name A.

Partial coefficient with respect to a subset of variables: Let the set of variables

y be a disjoint union of its subsets z1 and z2, y = z1tz2. Then, any polynomial f ∈ F[y]

can be viewed as a polynomial in F[z1][z2]. I.e. f is a polynomial over the variables z2,

with coefficients coming from F[z1]. Let f(z2,m) ∈ F[z1] denote the partial coefficient of

the monomial m in the polynomial f with respect to the subset of variables z2. Thus,

f =
∑

m∈M f(z2,m)m, where M is the set of all monomials over z2.

Observation 5.2.1. If f(y) = g(y), then for all z2 ⊆ y and for all monomials m over

the variables z2, f(z2,m) = g(z2,m).

5.2.1 Lower bounds using partial derivatives

The partial derivative method is a powerful technique for proving circuit lower bounds.

Nisan [Nis91b] first used it to prove that the permanent polynomial cannot be computed by

a small non-commutative ABP. Nisan and Wigderson [NW96] had used the partial deriva-

tives method to show that homogeneous depth-3 circuits cannot compute the permanent.

See [Sap16] for more examples.

There are many variants of the partial derivative method. We will be using only first

order partial derivatives with respect to all the variables. We define

∂i(p(x)) =
∂

∂xi
p(x)

as the partial derivative of the polynomial p(x) with respect to the variable xi and

∂(=1)(p(x)) =

{
∂

∂xi
p(x)

}n
i=1

as the set of all first order partial derivatives of the polynomial p(x).

In Lemma 5.4.1, we use it to show that invertible ABPs need at least 6 layers to

compute the polynomial x1x2 + x3x4 + x5x6.

96

5.2.2 Annihilating polynomials

Definition 5.2.2 (Annihilating polynomial). Given a set {p1(x), p2(x), . . . , pk(x)} of

polynomials over the field F, a polynomial A(y1, y2, . . . , yk) 6= 0 ∈ F[y1, y2, . . . , yk] is called

the annihilating polynomial of (p1, p2, . . . , pk) if A(p1, p2, . . . , pk) = 0. I.e. in the polyno-

mial A, when yi is substituted with pi for all i, the polynomial becomes 0.

E.g. When p1(x) = x2 and p2(x) = x, then, A(y1, y2) = y1 − y22 is an annihilating

polynomial for (p1, p2). When p1(x1, x2) = x1 and p2(x1, x2) = x2, then, no annihilating

polynomial exists.

Polynomials p1, p2, . . . , pk are algebraically dependent if an annihilating polynomial of

(p1, p2, . . . , pk) exists. Otherwise, they are algebraically independent. See Kayal’s paper

[Kay09] and Mittmann’s PhD thesis [Mit13] for a good introduction to this topic.

The following Lemma is well-known and can be proved through the Jacobian Criterion.

The proof holds for fields of all characteristics. Mittmann’s thesis [Mit13] alludes to this

in Section 4.2.1.

Lemma 5.2.3 (For linear forms, linear and algebraic independence are equivalent). Let

{l1, l2, . . . , lk} be a set of k linear forms. Then {l1, l2, . . . , lk} are algebraically dependent

if and only if they are linearly dependent.

5.2.3 Isomorphism between F [l1, l2, . . . , lk] and F [y1, y2, . . . , yk]

Let P = {pi}di=1 be a set of polynomials. Then F[p1, p2, . . . , pd] is the set of all polynomials

over {pi}di=1. We can define a homomorphism map ψ : F[p1, p2, . . . , pd] −→ F[y1, y2, . . . , yd],

defined by ψ : pi 7−→ yi for all 1 ≤ i ≤ d and a 7−→ a, where a ∈ F. Polynomials over

{pi}di=1 are mapped accordingly. I.e. ψ(q1q2) = ψ(q1)ψ(q2) and ψ(q1 +q2) = ψ(q1)+ψ(q2).

But, first we have to check if this map well-defined. I.e. for every p ∈ F[p1, p2, . . . , pd], is

ψ(p) is unique? This is not true necessarily. But when the set {pi}di=1 is special, the map

is well-defined. When {pi}di=1 is a set of linearly independent linear forms, then not only

is the map ψ well-defined, but it is also an isomorphism.

The following Lemma was stated in [KS07] without proof. For the sake of completeness,

we provide the proof here.

97

Lemma 5.2.4 (Isomorphism between F [l1, l2, . . . , lk] and F [y1, y2, . . . , yk]). Let {li}ki=1 be

a set of linearly independent linear forms in F[x1, x2, . . . , xn]. Consider the homomorphism

map ψ : F [l1, l2, . . . , lk] −→ F [y1, y2, . . . , yk], defined by ψ : li 7−→ yi for all 1 ≤ i ≤ k and

a 7−→ a, where a ∈ F. Then the map ψ is a ring isomorphism.

Proof. We will use the homomorphism map φ : F [y1, y2, . . . , yk] −→ F [l1, l2, . . . , lk], de-

fined by φ : yi 7−→ li for all 1 ≤ i ≤ k and a 7−→ a, where a ∈ F.

We will first prove that the map ψ is well-defined. I.e. every polynomial in F[l1, l2, . . . , lk]

maps to only one polynomial under ψ. Let p ∈ F[l1, l2, . . . , lk] be a polynomial that maps

to two polynomials f, g ∈ F[y1, y2, . . . , yk] under ψ. Thus, p = φ(f) = φ(g), but f 6= g.

Thus, h := f − g 6= 0, but φ(h) = 0. Thus, h(y1, y2, . . . , yk) is a non-zero annihilating

polynomial for the set of linearly independent linear forms {l1, l2, . . . , lk}. But by Lemma

5.2.3, we know that algebraically dependent linear forms are also linearly dependent, a

contradiction. Thus, the map is well-defined.

To see that the map ψ is surjective, we need to show that for every polynomial

f(y1, y2, . . . , yk), there exists a polynomial in F[l1, l2, . . . , lk] that maps to f . Given

f(y1, y2, . . . , yk), ψ(φ(f)) = f .

We next prove that ψ is injective. Let f(y1, y2, . . . , yk) = 0. Then, φ(f), which is

obtained by substituting li for every yi is 0.

5.2.4 Operations on an ABP

One polynomial can be computed by many ABPs. E.g. both the ABPs [1 2] [x1 x2
x3 x4] [12]

and [2 1] [x3 x4
x1 x2] [12] compute the polynomial x1 + 2x2 + 2x3 + 4x4. We will introduce a

few operations on an ABP, such that the resulting ABP computes the same polynomial.

Our operations are obtained by the introduction of NN−1 between two layers, where N

is a ‘valid’ invertible 2× 2 matrix.

Let us see an example below, which we will use frequently.

Lemma 5.2.5. Let A = M1M2 · · ·Md be a width-2 ABP. Let 1 ≤ i ≤ d − 1. Let N be

an invertible layer, i.e. det(N) ∈ F \ {0}. Then, A′ = M1M2 · · ·MiNN
−1Mi+1 · · ·Md

computes the same polynomial as A.

98

Also, det(MiN) = 0 if and only if det(Mi) = 0 and det(N−1Mi+1) = 0 if and only if

det(Mi+1) = 0.

Definition 5.2.6 (Mul(A, i,N)). The operation Mul(A, i,N) returns the ABP A′ from

the above Lemma.

5.3 Width-2 ABP

We will now study the impossibility result given by Allender and Wang [AW11] in some

detail. They show that the polynomial x1x2 +x3x4 + · · ·+x15x16 cannot be computed by

a width-2 ABP. First, they classify the matrices occurring in the ABP according to their

determinants.

Definition 5.3.1 (Classification of 2 × 2 matrices, [AW11]). A matrix M ∈ F[x]2×2 is

classified according to the value of its determinant, |M |. If |M | = 0, then it is called

a degenerate layer. If 0 6= |M | ∈ F, then it is called an invertible layer. Otherwise,

|M | ∈ F[x] \ F. In that case, M is called as a potentially degenerate layer.

To show that x1x2 + · · ·+x15x16 cannot be computed by an ABP, it is enough to prove

that x1x2 + x3x4 + ` cannot be computed by an ABP with only invertible layers, for any

linear polynomial `. This follows from the following Theorem.

Theorem 5.3.2 (Allender and Wang [AW11]). 1. If there exists a width-2 ABP with de-

generate layers that computes x1x2 + · · · + x15x16, then there exists a width-2 ABP

without degenerate layers that computes x1x2 + · · ·+ x15x16.

2. If there exists a width-2 ABP with potentially degenerate layers that computes x1x2 +

· · ·+x15x16, then there exists a width-2 ABP with only invertible layers that computes

x1x2 + x3x4 + `, for some linear polynomial `.

3. A width-2 ABP with only invertible layers cannot compute x1x2 + x3x4 + ` for any

linear polynomial `.

For this thesis, we wish to bring the invertible width-2 ABP into a canonical form. We

start with the form of the invertible ABP, as given by Allender and Wang [AW11] and

modify it into a simpler form.

99

Lemma 5.3.3 (Allender and Wang [AW11]). Every invertible ABP can be transformed

so that its layers M2,M3, . . . ,Md−1 are only of the form
[
a 0
` d

]
or
[
a `
0 d

]
or
[
a b
c d

]
, where `

is a non-zero linear polynomial in F[x], a, b, c, d ∈ F with a, d 6= 0, b and c are not both 0

and the layers are invertible.

The first layer, M1 is of the form [a `] and the last layer Md is of the form
[
b
`

]
or[

`
b

]
.

Definition 5.3.4 (AW-ABP). We call an invertible width-2 ABP of the above form as

an AW-ABP.

In this thesis, we will call these matrix forms as Z,mirror-Z and X respectively. The

name comes from the appearance of these layers in the graphical form:

Definition 5.3.5 (Z,mirror-Z and X layers).

Z =
{[

c 0
` d

]
| c, d ∈ F \ {0}, ` ∈ L \ {0}

}
,

mirror-Z =
{[

c `
0 d

]
| c, d ∈ F \ {0}, ` ∈ L \ {0}

}
,

X =
{[

a b
c d

]
| a, d 6= 0, (b, c) 6= (0, 0), ad− bc 6= 0

}
.

c

`

d

The Z layer,
[
c 0
` d

]
c

`

d

The mirror-Z layer,
[
c `
0 d

]
a

b c

d

The X layer,
[
a b
c d

]

Observe that Z ∩X 6= ∅. Similarly, mirror-Z∩X 6= ∅. But, Z ∩mirror-Z = ∅.

Observation 5.3.6 ([AW11]). Without loss of generality, an AW-ABP contains no two

consecutive Z layers (mirror-Z and X layers respectively).

That is because two consecutive Z layers (mirror-Z and X layers respectively) can be

multiplied together to give another Z layer (mirror-Z and X layer respectively).

5.3.1 Canonical form of a width-2 invertible ABP: Triangular ABP

We will now show that the X matrix is not required. I.e. any polynomial which can be

computed by an invertible ABP can also be computed by an invertible ABP that consists

of only the Z and mirror-Z layers. Let us first see what such an ABP would look like.

100

Definition 5.3.7 (Triangular ABP). A width-2 triangular ABP contains Z \ X and

mirror-Z \X layers alternately.

Thus, the linear polynomials in the Z and mirror-Z layers are not constants. We use

this name because of the graphical appearance of such an ABP:
c1

`1

c2

`2

d2

c3

`3

d3

c4

`4

d4

cs−2

`s−2

ds−2

cs−1

`s−1

ds−1

`s

ds

Since every path which goes through ci has to go through ci+1 (for an odd i), we can

replace the consecutive cici+1 with a constant ai. Similarly, we can replace the consecutive

didi+1 (for an even i) with a constant ai.
a1

`1 `2

a2

a3

`3 `4

as−2

`s−2 `s−1

as−1

`s

A triangular ABP has a simple representation as a graph, as can be seen in the diagram

above. It is represented as an iterated matrix product by assuming that the Z layers are

of the form
[
1 0
` a

]
and mirror-Z layers are of the form

[
a `
0 1

]
.

In Lemma 5.3.11, we will see how to get rid of the X layer. Before that, we need to

define a few operations on the AW-ABP which will help us simplify the AW-ABP.

Definition 5.3.8 (Unitizei(A)). This operation takes an AW-ABP A = M1M2 · · ·Md. If

M1 = [a `], then Unitize1(A) = Mul
(
A, 1,

[
1
a

0
0 1

])
, so that the first layer is of the form

[1 `].

For 2 ≤ i ≤ d− 1,

• If Mi =
[
c 0
` d

]
∈ Z,Unitizei(A) = Mul

(
A, i,

[
1
c

0

0 1
d

])
, so that the ith layer is of the

form
[
1 0
`′ 1

]
.

• If Mi =
[
c `
0 d

]
∈ mirror-Z,Unitizei(A) = Mul

(
A, i,

[
1
c

0

0 1
d

])
, so that the ith layer is of

the form
[
1 `′
0 1

]
.

• If Mi =
[
a b
c d

]
∈ X \ Z, i.e. if a, b 6= 0, Unitizei(A) = Mul

(
A, i,

[
1
a

0

0 1
b

])
, so that the

ith layer is of the form
[

1 1
c′ d′

]
.

Lemma 5.3.9 (Introducing a swap layer). Let A = M1M2 · · ·Md be an AW-ABP that

101

computes the polynomial p(x). Define the swap layer S = [0 1
1 0]. Then, for every 1 ≤ i < d,

there is an ABP A′ = M1M2 · · ·MiSM
′
i+1 · · ·M ′d that computes the same polynomial p(x).

Moreover, for all j such that i+ 1 ≤ j ≤ d− 1,

• if Mj is a Z layer, then M ′j is a mirror-Z layer,

• if Mj is a mirror-Z layer, then M ′j is a Z layer and

• if Mj is an X layer, then M ′j is also an X layer.

Proof. First, we observe that S−1 = S. We then introduce SS−1 = SS between Mj and

Mj+1 for all i ≤ j < d. Define M ′j = SMjS for i < j < d. Now, if Mj is a Z layer, then

SMjS is a mirror-Z layer. If Mj is a mirror-Z layer, then SMjS is a Z layer and if Mj is

an X layer, then SMjS is also an X layer.

So, in the graphical representation of the ABPs, the layer M ′j is the ‘reflection’ of the

layer Mj for all j such that i+ 1 ≤ j ≤ d.

Definition 5.3.10 (Swapi(A)). The operation Swapi(A) returns the ABP A′ from the

above Lemma.

In the proof of Lemma 5.3.11, we would be multiplying the layers Mi and S, obtained

after applying a Swap operation, into a single layer of some desirable form, so that the

polynomial computed is again an AW-ABP. Observe that the operations Unitizei(A) and

Swapi(A) affect only the ith and later layers. Hence, we can start from the leftmost layer

M1 of the ABP and bring it to some desirable form. We can then do the same to the next

layer, and so on.

Let us now see how to convert an AW-ABP into a triangular ABP.

Lemma 5.3.11. Every polynomial computed by a width-2 invertible ABP can be computed

by a triangular width-2 ABP.

Proof. Let A = M1M2 · · ·Md be the width-2 AW-ABP, where M1 is a 1 × 2 matrix,

M2,M3 . . . ,Md−1 are 2× 2 matrices and Md is a 2× 1 matrix. We will modify this ABP,

such that the polynomial computed by the ABP remains the same. So, we have to get rid

of all the X layers. Let Mi :=
[
a b
c d

]
be the first 2× 2 layer of the form X.

We can assume without loss of generality that Mi−1 is a Z layer. (If not, then, Mi−1

has to be a mirror-Z layer. Then, we consider Swap1(A) as our ABP A). If i = 2,

102

then M1 is of the form [` a] without loss of generality. Then, a, b, d 6= 0. I.e. Mi /∈ Z.

That is because, if Mi were a Z layer, then, we could have multiplied Mi into Mi−1 (by

Observation 5.3.6).

Now, the ABP A can be modified so that Mi+1 ∈ Z. That is because, if Mi ∈

mirror-Z∩X, i.e. if c = 0, then, Mi+1 anyways should be a Z layer by Observation 5.3.6.

So, Mi ∈ X \ {Z ∪mirror-Z}. I.e. a, b, c, d 6= 0. The constants a and d are non-zero by

the definition of the X layer. Then, consider Swapi(A) = M1M2 · · ·Mi−1MiSM
′
i+1 · · ·M ′d.

Define M ′i = MiS =
[
b a
d c

]
, which is an X layer. Then A′ = M1M2 · · ·Mi−1M

′
iM
′
i+1 · · ·M ′d

is an ABP in the required form with M ′i+1 ∈ Z by Lemma 5.3.9. Since we will only work

with this new ABP, let us call this the ABP A. We also reuse the matrix names and the

edge weight names.

Thus, without loss of generality, the scenario is that Mi−1 ∈ Z, Mi :=
[
a b
c d

]
∈ X with

a, b, d 6= 0 and Mi+1 ∈ Z.

c1 a c2

d1 d d2

`1
c `2b

Mi−1 Mi Mi+1

We further simplify the ABP for our purpose. By applying the operations A =

Unitizei−1(A), A = Unitizei(A) and A = Unitizei+1(A), we can assume that c1 = d1 = a =

b = c2 = d2 = 1. Pre-multiplying a Z matrix or an X matrix with a diagonal matrix yields

a Z matrix or an X matrix, respectively. This operation will change the values on the other

edges. E.g. `1 now becomes `1/c1. But we reuse the names `1, `2, c, d,Mi−1,Mi,Mi+1,

d

`1
c `2

Mi−1 Mi Mi+1

Observe that c 6= d, because, otherwise, det(Mi) = 0.

But by Lemma 5.2.5, that is not possible.

Let N :=
[

1 0
−1 1

]
. Thus, N−1 = [1 0

1 1]. Let A = Mul(A, i,N).

103

d

`1
c −1 `2

Mi−1 Mi N N−1 Mi+1

N−1 is a Z layer (like Mi+1) and can be multiplied into Mi+1. Let M ′i+1 = N−1Mi+1.

Let M ′i = MiN =
[
0 1
c−d d

]
. Let A′ = M1M2 · · ·Mi−1M

′
iM
′
i+1Mi+2 · · ·Md.

d

`1 c′ `′2

Mi−1 M ′i M ′i+1

Here, c′ = c− d and `′2 = `2 + 1.

But, now, M ′i is not an AW-ABP (Lemma 5.3.3). We introduce a swap layer be-

tween M ′i and M ′i+1, Then, Swapi(A
′) = M1M2 · · ·Mi−1M

′
iSM

′′
i+1 · · ·M ′d. Note that

M ′i+2, . . . ,M
′
d are valid AW-ABP layers.

c′

`1 d `′2

Mi−1 M ′′i M ′′i+1

Observe that M ′′i = M ′iS =
[
0 1
c−d d

]
[0 1
1 0] =

[
1 0
d c−d

]
∈ Z.

Since Mi−1,M
′′
i ∈ Z, we can multiply them together.

c′

`′1 `′2

M ′i−1 M
′′
i+1

Here, `′1 = `1 + d.

We thus got rid of Mi, the first X layer in the AW-ABP by modifying the layers only

to the right of this occurrence. So, we got an AW-ABP computing the same polynomial

such that the first i layers are not of the form X. We repeat this process until we lose all

the X layers.

There are many equivalent manipulations which give us the above result.

104

Properties of a triangular ABP

Thus, every polynomial computed by an invertible ABP is computable by a triangular

ABP. The diagonal edge weights are of the form ` = `[1] + `[0], where `[1] is a linear form

and `[0] is a field constant.

Definition 5.3.12 (L). Let L be the multi-set of all the linear forms appearing as weights

in the ABP.

Thus, |L| = d is the degree of the polynomial computed by the triangular ABP.

Lemma 5.3.13 (Polynomial computed by a width-2, invertible ABP). The polynomial A

computed by an invertible ABP is of the form

A =
∑
S⊆L

cS
∏
l∈S

l,

and the degree δ homogeneous part of the polynomial A, A[δ] is also of a similar form

A[δ] =
∑

S⊆L,|S|=δ

cS
∏
l∈S

l,

where, cS ∈ F is a constant.

Thus the polynomials A and A[δ] ∈ F[L].

From the triangular representation of the invertible ABP, it is easy to see that the

coefficient corresponding to the highest degree homogeneous form, cL = 1. Thus,

Lemma 5.3.14. The highest degree homogeneous part of the polynomial computed by an

invertible ABP factorizes into linear forms.

Thus, any polynomial whose highest degree part does not factorize completely cannot

be computed by an invertible width-2 ABP. In particular, x1x2+x3x4 cannot be computed

by such a model.

5.4 Sum of Two Triangular ABPs

Now, let us turn our attention to the question that this chapter attempts to answer. The

question is can a sum of two invertible ABPs compute x1x2 + x3x4 + x5x6?

105

5.4.1 Dimension of the linear forms

We first show that the set of linear forms appearing in the two ABPs has full rank.

Lemma 5.4.1 (Lower bound on the dimension of the linear forms). Let p = x1x2+x3x4+

x5x6 be a polynomial computed as the sum A+B of two triangular width-2 ABPs, A and

B. Let LA be the multi-set of all the linear forms appearing as the diagonal weights in

the triangular ABP A. Let LB be the multi-set of all the linear forms appearing as the

diagonal weights in the triangular ABP B. Then, dim {LA + LB} = 6.

Proof. It is easy to see that the dimension of the set of all first order partial derivatives

of the polynomial p = x1x2 + x3x4 + x5x6 is 6.

dim
(
∂(=1)(p)

)
= 6. (5.1)

Let L = LA+LB be the disjoint union of the two sets of linear forms, LA and LB. We now

prove that for any degree 2 polynomial p computed as the sum of two triangular width-2

ABPs, dim
(
∂(=1)(p)

)
≤ dimL. Since p is the sum of two triangular ABPs, whose degree

2 homogeneous parts are given by Lemma 5.3.13,

p[2] =
∑

l1,l2∈L
c{l1,l2}l1l2,

where c{l1,l2}s are field constants. Thus, the partial derivative with respect to a variable

is some linear combination of the linear forms in L. Hence, the dimension of the set of all

order 1 partial derivatives is upper bounded by the dimension of the set L.

dim
(
∂(=1)(p)

)
≤ dimL. (5.2)

Thus, from Equations (5.2) and (5.1), if the polynomial p is computed as a sum of

triangular ABPs, then the dimension of its linear forms should be ≥ 6. But, there are

only 6 variables. Hence, the dimension of L is 6.

106

5.4.2 Comparison of linear forms in the two ABPs

Let the polynomials computed by the two ABPs be p and q respectively. Then, it can

happen that their highest degree homogeneous parts completely factorize into linear poly-

nomials. However, when added together, we get x1x2 + x3x4 + x5x6; the degree ≥ 3

homogeneous parts of the polynomials p and q cancel each other.

If there exist two triangular ABPs A and B such that A+B = x1x2+x3x4+x5x6, then,

there also exist two triangular ABPs A′ and B′ such that A′ −B′ = x1x2 + x3x4 + x5x6.

Henceforth, we will consider the problem of the existence of ABPs A and B such that

A−B = x1x2 + x3x4 + x5x6.

Let us look at a few easy properties of this model. Let A and B be two width-2,

triangular ABPs.

If A−B = x1x2 + x3x4 + x5x6, and deg(A) ≥ 3, then we can see that

A[δ] = B[δ], for all δ ≥ 3. (5.3)

Let LA be the multi-set of the linear forms occurring in the ABP A and LB be the

multi-set of the linear forms occurring in the ABP B. Then, the multi-sets LA and LB of

the linear forms occurring in the ABP A and in the ABP B have to be the same.

Lemma 5.4.2. If two triangular ABPs A and B are such that A−B = x1x2+x3x4+x5x6

and d ≥ 3, then there exists another triangular ABP B′ such that A−B′ = x1x2 +x3x4 +

x5x6 and LA = LB′.

Proof. Let the linear forms in the ABPs A and B appear in the order (l1, l2, . . . , ld) and

(l′1, l
′
2, . . . , l

′
d) respectively. I.e. LA is the multi-set {l1, l2, . . . , ld} and LB is the multi-set

{l′1, l′2, . . . , l′d}. By Equation 5.3, the highest degree homogeneous parts of the ABPs A and

B cancel, A[d] = B[d]. But, A[d] =
∏
i∈[d] li and B[d] =

∏
i∈[d] l

′
i. Thus,

∏
i∈[d] li =

∏
i∈[d] l

′
i.

Since F[x] is a unique factorization domain, there exists a permutation π on [d] such that

for every i, l′i = cilπ(i), where ci ∈ F \ {0} and
∏
i∈[d] ci = 1.

We apply the operations B = Mul(B, i,Ni), for appropriate Nis, in the order i = 1 to

(d− 1) to get that LA = LB′ .

107

We will rename the ABP B′ from the above Lemma as B and use it henceforth.

Using that dim {LA + LB} = 6 (Lemma 5.4.1) and if deg(A) ≥ 3 or deg(B) ≥ 3, then

deg(A) = deg(B) = d and LA = LB (Lemma 5.4.2), we can say that |LA| = |LB| = d ≥ 6.

5.4.3 Restricting the ABP

Now, let k be the rank of the set of the linear forms, L. Define y = {y1, y2, . . . , yk}. Then,

by Lemma 5.2.3, F[L] is isomorphic to F[y]. There are at least k! such isomorphisms from

F[L] to F[y].

Definition 5.4.3 (ψB). Let B = (lj1 , lj2 , . . . , ljk) be an ordered basis2 of the set of linear

forms, L. Then, let ψB : F[L] −→ F[y] be the ring isomorphism defined by ψB : lji 7−→ yi

and ψB : a 7−→ a.

Definition 5.4.4 (A|S , Restriction of ABP A to a subspace of linear forms). Let A =

M1M2 · · ·Md be a triangular ABP. Let S ⊆ L be a subset of the linear forms occurring in

the ABP A. Then, for each layer M , we perform the following operation. Let l(M) be the

linear form occurring in the layer M . If l(M) ∈ span {S}, then define M |S = M . Else,

the layer M |S is obtained from the layer M by replacing its linear form l(M) with 1 and

the other constants in the layer M (the (1, 1)th entry, the (2, 2)th entry and the constant

part from the linear polynomial, `) with 0.

Then, A|S is obtained by replacing each Mi with Mi|S.

This operation on the triangular ABP A is like taking a partial derivative of the circuit

with respect to L \ span {S}. It does not preserve the computed polynomial.

A picture is worth a thousand words. We elaborate the definition with the following

example.

ABP A:
7 9 11

8 10

x
1 +

1

x
1 +
x
2 +

3

x
2 +
x
3 +

5x 2
+

2

x 3
+

4

x 4
+

6

2A basis with some order defined on it, denoted by round brace.

108

Then,

ABP A|{x2,x3}:

10

x
2 +
x
3 +

5x 2
+

2

x 3
+

4

The following is the main lemma of this chapter. We show that if A − B = x1x2 +

x3x4 + x5x6, then, the two polynomials, under various restrictions, are equal.

Lemma 5.4.5. Let S ⊆ L be a subset of the linear forms appearing in the ABPs A and

B. If |L \ span{S}| ≥ 3 and A−B = x1x2 + x3x4 + x5x6, then A|S = B|S.

Proof. Let p = A|S and q = B|S . We will show that p[i] = q[i] for all i. Fix any i.

Since the higher degree parts of the two polynomials computed by the two ABPs

cancel, A[δ] = B[δ] for all δ ≥ 3.

We choose δ = i+ |L \ span{S}|.

Recall that for a polynomial f(y) ∈ F[y], when the set of variables, y = z1 tz2, is the

disjoint union of z1 and z2, then, f(z2,m) is the partial coefficient of the monomial m with

respect to the variables z2 in the polynomial f . We will show that there exists a basis B,

a subset z2 of the new variables y under ψB and a monomial m in z2 such that:

ψB
−1
((
ψB
(
A[δ]

))
(z2,m)

)
= c · p[i] (5.4)

and

ψB
−1
((
ψB
(
B[δ]

))
(z2,m)

)
= c · q[i], (5.5)

where c is a non-zero constant. Since A[δ] = B[δ], and ψ−1B and ψB are isomorphisms, from

the above equations, we get that p[i] = q[i].

Let B1 be an ordered basis of S. And B2 be a basis of L\ span{S}. Then, B = (B1,B2)

is an ordered basis of L.

Define z1 = {ψB(l)}l∈B1 and z2 = {ψB(l)}l∈B2 . Thus, y is the disjoint union of z1 and

109

z2. Now,

A[δ] =

p[i] · ∏
l∈L\span{S}

l

+ Terms with smaller degree in L \ span{S}.

We will apply ψB on both sides. Then,

ψB
(
A[δ]

)
=

ψB (p[i]) · ∏
l∈L\span{S}

ψB (l)

+ Terms with smaller degree in z2.

Here, ψB
(
p[i]
)
∈ F[z1]. If l ∈ L \ span{S}, then ψB(l)(mod z1) is a non-zero linear

form over z2.

Now, we have to pick the monomial m ∈ F[z2] such that its coefficient in ψB
(
A[δ]

)
is

a constant multiple of p[i]. For that, we can pick any monomial with non-zero coefficient

from
∏
l∈L\span{S} ψB (l). Then,

(
ψB
(
A[δ]

))
(z2,m)

= coeffm

(∏
l∈L\span{S} ψB (l)

)
·ψB

(
p[i]
)
.

Similarly,
(
ψB
(
B[δ]

))
(z2,m)

= coeffm

(∏
l∈L\span{S} ψB (l)

)
· ψB

(
q[i]
)
.

By setting c = coeffm

(∏
l∈L\span{S} ψB (l)

)
, we get Equations 5.4 and 5.5.

5.4.4 3-wise independent linear forms

We will now see an application of the above Lemma.

Let the multi-set of linear forms occurring in each ABP be LA = LB = L = {li}di=1.

Let the multi-set of linear polynomials occurring on the ABPs A and B be

{l1 + c1, l2 + c2, . . . , ld + cd} and {l1 + c′1, l2 + c′2, . . . , ld + c′d} respectively. We will next

show that, under some conditions, ci = c′i for all 1 ≤ i ≤ d.

Definition 5.4.6 (3-wise independent linear forms). A multi-set of linear forms L is

3-independent if every subset S ⊆ L of size 3 is linearly independent.

Thus, for all subsets S = {li, lj , lk} ⊆ L of size 3, cili + cjlj + cklk = 0 implies

ci = cj = ck = 0.

Lemma 5.4.7. If A − B = x1x2 + x3x4 + x5x6, and if the linear forms in L are 3-

independent, then, ci = c′i for all 1 ≤ i ≤ d.

Proof. Since L is 3-independent, it is also 2-independent and hence, each linear form occurs

only once in each ABP. Let the set Si = {li}. Then, A|Si = li + ci and B|Si = li + c′i. By

110

Lemma 5.4.1, |L \ span{Si}| = 5 ≥ 3. By Lemma 5.4.5, A|Si = B|Si . Hence, ci = c′i.

The above Lemma holds even when the linear forms in L are not 2-independent. The

proof goes through Lemma 5.4.5 again, but we will not be proving it here.

Until now, we know that the linear polynomials occurring on the diagonal edges of

ABPs A and B are the same. But they can occur in different sequences in the two ABPs.

We will now show that under some conditions, if A− B = x1x2 + x3x4 + x5x6, then, the

two polynomials are the same, a contradiction.

Lemma 5.4.8. If A − B = x1x2 + x3x4 + x5x6, then, the polynomials computed by the

two ABPs A and B are the same.

Proof. By Lemma 5.4.7, the multi-set (or, in this case, set) of linear polynomials occurring

in the ABPs A and B are equal. Let that set be {l1 + c1, l2 + c2, . . . ld + cd}. Without loss

of generality, let A = M1M2 · · ·Md, with the linear form li occurring in the matrix Mi.

Let B = N1N2 · · ·Nd, with the linear form lπ(i) occurring in the matrix Ni, where π is

a permutation on the set [d].

ABP A:
a12

l1 + c1 l2 + c2

a23

a34

l3 + c3 l4 + c4

ABP B:
bπ(1)π(2)

lπ(1) + cπ(1)
lπ(2) + cπ(2)

bπ(2)π(3)

bπ(3)π(4)

lπ(3) + cπ(3)

lπ(4) + cπ(4)

Let aij be the weight between the linear forms li and lj in ABP A. If li and lj are not

neighbors in ABP A, then aij = 0. E.g. if j 6= i+ 1, then aij = 0. Similarly, let bij be the

weight between li and lj in ABP B. We will show that aij = bij for all i, j. Since every

linear form li occurs only once in an ABP, this will prove the Lemma.

Consider the set Si = {li, li+1} for 1 ≤ i ≤ d− 1. Then, A|Si = (li + ci)(li+1 + ci+1) +

111

ai,i+1. This is because of the 3-wise independence. Similarly, B|Si = (li+ci)(li+1 +ci+1)+

bi,i+1. By Lemma 5.4.1, |L \ span{Si}| = 4 ≥ 3. By Lemma 5.4.5, A|Si = B|Si . Hence,

ai,i+1 = bi,i+1.

5.5 Discussion

We have studied the sum of two triangular ABPs. We have not been able to prove an

impossibility result for this model yet. But we have made partial progress in this direction.

It seems Lemma 5.4.5 is particularly strong. For example, it can be used to show that

If there exists a point on the two ABPs such that the span of the linear forms to its left

is disjoint from the span of the linear forms to its right, and both spans have dimension 3,

then, the two ABPs compute the same polynomial.

The part on which some light needs to be shed is the ‘order of the linear forms in the

two ABPs’.

Question: If the degree ≥ 3 parts of the two triangular ABPs cancel, is it that the

linear forms in the two ABPs occur in the same order?

For 3-wise independent linear forms, this is true (Lemma 5.4.8). Whereas, the answer

to the above question is ‘No’ when the span of the linear forms has dimension 2. we have

an example of two different ABPs that compute the same polynomial when the span of

the linear forms has dimension 2.

Eventually, we would like to see a proof of the following conjecture:

Conjecture 5.5.1. A sum of c width-2 ABPs cannot compute x1x2+x3x4+ · · ·+xc′−1xc′,

where c′ = 2(c+ 1).

Chapter 6

Conclusion

There has been a lot of progress in recent years in the field of arithmetic circuits. We will

discuss here a few important open questions related to our thesis.

Connection between lower bounds and PIT

It has been observed that the models which have lower bounds also have PIT and vice

versa. For example, ROABPs have lower bounds and PIT, both based on the relation

between the width of the ROABP and the partial evaluation dimension. Can we formalize

this connection for other circuit families within the family of ABPs?

Polynomial time PIT for ROABP

The next big aim is to get a polynomial time hitting set for ROABP. If not polynomial

time, then, what about nO(log logn) time hitting set? Polynomial time hitting set for

read-k ABPs, special ROABPs like set-multilinear circuits, diagonal circuits, commutative

ROABPs - all of these are open questions.

The ROABP model is fairly well-understood now, because of its characterization in

terms of partial evaluation dimension and a polynomial time algorithm should be available

to us within the next few years.

113

114

Connection between PIT for ROABPs and pseudo-random generators for

boolean branching programs

Would better PIT algorithms for ROABPs give better pseudo-random generators for read-

once oblivious boolean branching programs (ROBPs), and vice versa? The progress in the

world of read-once oblivious boolean branching programs is being matched by the world

of read-once oblivious arithmetic branching programs, e.g. invertible ROABPs, sum of

ROABPs and equality of ROBPs, width-2 ROABPs. Can we formalize this connection?

Bibliography

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via
Chinese remaindering. J. ACM, 50(4):429–443, July 2003.

[AFS+16] Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka,
and Ben Lee Volk. Identity testing and lower bounds for read-k oblivious alge-
braic branching programs. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 30:1–30:25, 2016.

[AGKS13] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-
sets for low-distance multilinear depth-3. Electronic Colloquium on Computa-
tional Complexity (ECCC), 20:174, 2013.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-
sets for ROABP and sum of set-multilinear circuits. SIAM J. Comput.,
44(3):669–697, 2015.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In
FSTTCS, volume 3821 of Lecture Notes in Computer Science, pages 92–105,
2005.

[AKS02] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals
of Mathematics, 2:781–793, 2002.

[AL86] L M Adleman and H W Lenstra. Finding irreducible polynomials over finite
fields. In Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, STOC ’86, pages 350–355, New York, NY, USA, 1986. ACM.

[Alo99] Noga Alon. Combinatorial nullstellensatz. Combinatorics, Probability and
Computing, 8(1-2):7–29, January 1999.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial
hitting-set for set-depth-formulas. In STOC, pages 321–330, 2013.

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.
Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas
& depth-3 transcendence degree-k circuits. In STOC, pages 599–614, 2012.

[AvMV11] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Derandomizing
polynomial identity testing for multilinear constant-read formulae. In Proceed-
ings of the 26th Annual IEEE Conference on Computational Complexity, CCC
2011, San Jose, California, June 8-10, 2011, pages 273–282, 2011.

115

116

[AW11] Eric Allender and Fengming Wang. On the power of algebraic branching pro-
grams of width two. In ICALP, Lecture Notes in Computer Science, pages
736–747, 2011.

[BDVY13] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudoran-
domness for width-2 branching programs. Theory of Computing, 9:283–293,
2013.

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a
constant number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, pages 301–309, New
York, NY, USA, 1988. ACM.

[CK97] Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational
numbers. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 200–209,
1997.

[De11] Anindya De. Pseudorandomness for permutation and regular branching pro-
grams. In IEEE Conference on Computational Complexity, pages 221–231,
2011.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193 – 195, 1978.

[dOSV15] Rafael Mendes de Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential
size hitting sets for bounded depth multilinear formulas. In 30th Conference on
Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon,
USA, pages 304–322, 2015.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and
polynomial identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–
1434, 2007.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness trade-
offs for bounded depth arithmetic circuits. SIAM J. Comput., 39(4):1279–1293,
2009. (Extended abstract appeared in STOC ’08).

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank
recovery and compressed sensing. In STOC, pages 163–172, 2012.

[FS13a] Michael A. Forbes and Amir Shpilka. Explicit noether normalization for si-
multaneous conjugation via polynomial identity testing. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques
- 16th International Workshop, APPROX 2013, and 17th International Work-
shop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings,
pages 527–542, 2013.

117

[FS13b] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing
of non-commutative and read-once oblivious algebraic branching programs. In
FOCS, pages 243–252, 2013.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets
for multilinear read-once algebraic branching programs, in any order. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31
- June 03, 2014, pages 867–875, 2014.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.
Arithmetic circuits: A chasm at depth three. In 54th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 578–587, 2013.

[GKS16] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-
width, and commutative, read-once oblivious abps. In 31st Conference on
Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
pages 29:1–29:16, 2016.

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deter-
ministic identity testing for sum of read-once oblivious arithmetic branching
programs. In 30th Conference on Computational Complexity, CCC 2015, June
17-19, 2015, Portland, Oregon, USA, pages 323–346, 2015. To appear in Com-
putational Complexity (JCC).

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy
to compute (extended abstract). In Proceedings of the 12th Annual ACM
Symposium on Theory of Computing (STOC 1980), page 262272, 1980.

[JQS10] Maurice J. Jansen, Youming Qiao, and Jayalal Sarma. Deterministic identity
testing of read-once algebraic branching programs. Electronic Colloquium on
Computational Complexity (ECCC), 17:84, 2010.

[Kay09] Neeraj Kayal. The complexity of the annihilating polynomial. In Conference
on Computational Complexity (CCC). IEEE, 2009.

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial iden-
tity tests means proving circuit lower bounds. STOC, pages 355–364, 2003.

[KMSV13] Zohar Shay Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich.
Deterministic identity testing of depth-4 multilinear circuits with bounded top
fan-in. SIAM J. Comput., 42(6):2114–2131, 2013.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom gen-
erators for group products: extended abstract. In STOC, pages 263–272, 2011.

[KNS16] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once
oblivious algebraic branching programs (roabps) and multilinear depth three
circuits. In 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, pages 46:1–46:15, 2016.

118

[Kro82] Leopold Kronecker. Grundzuge einer arithmetischen Theorie der algebraischen
Grossen. Berlin, G. Reimer, 1882.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing
of multivariate polynomials. In STOC, pages 216–223, 2001.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 cir-
cuits. Computational Complexity, 16(2):115–138, 2007.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for
depth 3 circuits. In FOCS, pages 198–207, 2009.

[KS11] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing
of generalized depth-3 arithmetic circuits with bounded top fan-in. Combina-
torica, 31(3):333–364, 2011.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LMS15] Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds
for non-commutative skew circuits. Electronic Colloquium on Computational
Complexity (ECCC), 22:22, 2015.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT,
pages 565–574, 1979.

[LV98] Daniel Lewin and Salil P. Vadhan. Checking polynomial identities over any
field: Towards a derandomization? In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-
26, 1998, pages 438–447, 1998.

[Mit13] Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD
thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2013.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as
easy as matrix inversion. Combinatorica, 7:105–113, 1987.

[Nis91a] Noam Nisan. Lower bounds for non-commutative computation (extended ab-
stract). In Proceedings of the 23rd ACM Symposium on Theory of Computing,
ACM Press, pages 410–418, 1991.

[Nis91b] Noam Nisan. Lower bounds for non-commutative computation (extended ab-
stract). In Proceedings of the 23rd ACM Symposium on Theory of Computing,
ACM Press, pages 410–418, 1991.

[NW96] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via
partial derivatives. In Computational Complexity, volume 6(3), pages 217–
234, 1996.

[Raz05] Ran Raz. Lower bounds on algebraic circuits. 2005 Barbados Workshop on
Computational Complexity, 2005.

119

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In Proceedings of the Thirty-First Annual ACM Sympo-
sium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages
159–168, 1999.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant
depth multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[Sap16] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit com-
plexity. https://github.com/dasarpmar/lowerbounds-survey, 2016.

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP,
volume 5125 of Lecture Notes in Computer Science, pages 60–71. Springer,
2008.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS,
99:49–79, 2009.

[Sax14] Nitin Saxena. Progress on polynomial identity testing- II. In Perspectives in
Computational Complexity, volume 26 of Progress in Computer Science and
Applied Logic, pages 131–146. Springer International Publishing, 2014.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, October 1992.

[SS11] Nitin Saxena and Comandur Seshadhri. An almost optimal rank bound for
depth-3 identities. SIAM J. Comput., 40(1):200–224, 2011.

[SS12] Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded
top-fanin depth-3 circuits: The field doesn’t matter. SIAM J. Comput.,
41(5):1285–1298, 2012.

[SS13] Nitin Saxena and Comandur Seshadhri. From Sylvester-Gallai configurations
to rank bounds: Improved blackbox identity test for depth-3 circuits. J. ACM,
60(5):33, 2013.

[SSS09] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth
2 circuits over algebras. In FSTTCS, pages 371–382, 2009.

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3
identity testing, sparse factorization and duality. Computational Complexity,
22(1):39–69, 2013.

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs
without the group theory. Electronic Colloquium on Computational Complexity
(ECCC), 19:83, 2012.

120

[SV11] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4
multilinear circuits. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 421–430,
2011.

[SW97] Petr Savický and Ingo Wegener. Efficient algorithms for the transformation be-
tween different types of binary decision diagrams. Acta Informatica, 34(4):245–
256, 1997.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical Computer
Science, 5(3-4):207–388, 2010.

[Tut47] William T. Tutte. The Factorization of Linear Graphs. Journal of the London
Mathematical Society, s1-22(2):107–111, 1947.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
of the International Symposiumon on Symbolic and Algebraic Computation,
EUROSAM ’79, pages 216–226, London, UK, UK, 1979. Springer-Verlag.

Index

3-wise independent linear forms, 109
Db−1a, 80
L, 104
X layer, 99
Z layer, 99
F-algebra, 45
Mul, 97
Swapi(A), 100, 101
dependk(A), 50
`-Block-concentration, 82
`-concentration, 12
lc(·), 72
mirror-Z layer, 99
spank(A), 51
n-tuple, 74
VP Vs VNP, 4

arithmetic branching program (ABP), 6, 24,
47

Arithmetic circuits, 3
AW-ABP, 99

Blackbox PIT for sum of ROABPs, 59
block-support, 79
block-support size, 79
boolean branching programs, 8

characterizing set of dependencies, 51
Coefficient space, 29
coefficient space of a polynomial, 45
colors of a partition, 36

depth-3 set-multilinear circuit, 9

Evaluation Dimension, 28

generator, 22
grey-box PIT, 7

hitting set, 20
Hitting set for sparse polynomials, 21

impossibility results, 92
individual degree, 44

Lagrange interpolation, 22
layer of an ABP, 91
length of an ABP, 24, 47
lower bounds, 95

matrix polynomials, 45
Matrix product representation of an ABP,

25
multilinear, 36
multilinear circuit, 9

oblivious binary decision diagram (OBDD),
12

partial derivative polynomials, 45
partial derivatives, 95
permutation associated with an ROABP, 28
polynomial computed by an ABP, 24, 47
polynomial identity testing (PIT), 1
Polynomials as vectors, 18
prefix, 80

Read-once oblivious arithmetic branching pro-
grams (ROABPs), 25

Restriction of an ABP to a subspace of lin-
ear forms, 107

roots of a polynomial, 2

Schwartz-Zippel Lemma, 18
set-multilinear circuit, 36
shifting, 33
sparsity of a polynomial, 45
substring, 80
support of a monomial, 79
support size of a monomial, 44

transfer matrix, 69
triangular ABP, 100

121

122

variable partition, 25

width of an ABP, 24, 47

	List of Publications
	Introduction
	Polynomial identity testing (PIT)
	Arithmetic branching programs (ABP)
	Read-once Oblivious ABP (ROABP)
	Contribution of this thesis
	Sum of ROABPs (Chapter 3)
	Sparse-Invertible-Factor ROABP (Chapter 4)
	Sum of two width-2 ABPs (Chapter 5)

	Related models and Techniques
	Notation
	A randomized algorithm for PIT
	Basics and some common techniques
	Hitting sets
	Kronecker substitution
	Generator
	Lagrange interpolation

	Arithmetic branching programs (ABPs)
	Read-once oblivious ABPs (ROABPs)
	Evaluation Dimension
	Whitebox PIT RS05
	Basis Isolating Weight Assignment
	Shifting and concentration

	Depth-3 circuits
	Multilinear depth-3 circuits
	Set-multilinear depth-3 circuits
	Low-distance multilinear depth-3 circuits

	Deterministic PIT for Sum of ROABPs
	Introduction
	Preliminaries
	Notation
	Equivalence of evaluation dimension and partial coefficient dimension
	Arithmetic branching programs
	Read-once oblivious arithmetic branching programs

	Whitebox Identity Testing
	Equivalence of two ROABPs
	Sum of constantly many ROABPs

	Blackbox Identity Testing
	Sum of ROABPs
	Concentration in matrix polynomials

	Low Support Concentration in ROABPs
	Discussion

	Sparse, Invertible Constant-Width ROABP
	Introduction
	Preliminaries
	Notations and definitions
	Proof Idea

	-block-concentration when Di, 0s are invertible
	Achieving invertibility and low-support concentration through shifting
	Concentration in D(bold0mu mumu xxxxxx)
	From Concentration to Hitting Set

	Width-2 Read Once ABP
	Discussion

	Towards Impossibility Results for the Sum of Two Width-2 Invertible ABPs
	Introduction
	Result and Proof Outline
	Overview of the Chapter

	Preliminaries
	Lower bounds using partial derivatives
	Annihilating polynomials
	Isomorphism between F[l1, l2, …, lk] and F[y1, y2, …, yk]
	Operations on an ABP

	Width-2 ABP
	Canonical form of a width-2 invertible ABP: Triangular ABP

	Sum of Two Triangular ABPs
	Dimension of the linear forms
	Comparison of linear forms in the two ABPs
	Restricting the ABP
	3-wise independent linear forms

	Discussion

	Conclusion
	Index

