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Abstract

Agrawal and Vinay showed that a poly(s) hitting set for ΣΠaΣΠb(n) circuits of size s, where

a is ω(1) and b is O(log s) , gives us a quasipolynomial hitting set for general VP circuits

[AV08]. Recently, improving the work of Agrawal and Vinay, it was showed that a poly(s)

hitting set for Σ∧a ΣΠb(n) circuits of size s, where a is ω(1) and n, b are O(log s), gives us

a quasipolynomial hitting set for general VP circuits [AFGS17]. The inputs to the ∧ gates

are polynomials whose arity and total degree is O(log s). (These polynomials are sometimes

called ‘tiny’ polynomials).

In this thesis, we will give a new 2O(n+d)-time algorithm to divide an n-variate polynomial

of total degree d by its factor. Note that this is not an algorithm to compute division with

remainder, but it finds the quotient under the promise that the divisor completely divides

the dividend. The intuition behind allowing exponential time complexity here is that we will

later apply these algorithms on ‘tiny’ polynomials, and 2O(n+d) is just poly(s) in case of

tiny polynomials. We will also describe an 2O(n+d)-time algorithm to find the GCD of two

n-variate polynomials of total degree d.

Using these algorithms, we will derandomize the whitebox PIT problem in the restricted case

of Σ2ΠΣΠb(n) circuits, where n, b are O(log s) . In other words, the problem is to check

whether
s∏
i=0

fi =
s∏
j=0

gj

are equal, where fi and gj are sparse polynomials of degree O(log s) over O(log s) variables.

Note that while we restrict the top fan-in to just 2, the fan-in of the upper Π gate does not

have any restriction. The rough idea here is to divide fi and gj by their GCD for all pairs

(fi, gj), until all the GCDs become 1.

Further, we will also derandomize the question of checking in blackbox whether the polyno-

mial defined as

C := f −
s∏
i=0

gi

is zero or not, where f and gi’s have arity and total degree O(log s) and their sparsity is

poly(s).
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Chapter 1

Notations and Preliminaries

We will denote the set of numbers {1, 2, · · · , n} as [n]. We will denote the set of

natural numbers as N, and we will define 0 to be a natural number.

We will assume the usual definitions of algebraic objects like groups, rings, fields,

vector spaces etc. A ring, unless mentioned otherwise, should be assumed to be a

commutative ring with unit element (as we will hardly use non-commutative rings in

this thesis).

Vectors will be denoted with a bar on top of the letter. Given a vector v̄ ∈ Rn, defined

as v̄ = (v1, v2, · · · , vn), ‖v̄‖ will denote the `1-norm of v̄, defined as ‖v̄‖ :=
∑

i∈[n] |vi|.
(Here |vi| is the absolute value of vi.)

A polynomial ring is a ring formed by polynomials over given set of variables, whose

coefficients come from another ring. The addition and multiplication operations in

the polynomial ring are usual polynomial addition and multiplication operations. We

will denote a polynomial ring as R[x1, x2, · · ·xn], where x1, x2, · · ·xn are the variables,

and the coefficients come from the ring R. We will assume the usual definitions of a

monomial and a polynomial.

We will often write a monomial xe11 x
e2
2 · · ·xenn as x̄ē, when the number of variables is

clear from the context. Here ē denotes the vector (e1, e2, · · · en). Given a monomial

xe11 x
e2
2 · · ·xenn , ei is called the individual degree of the monomial with respect to the

variable xi.
∑

i∈[n] ei, which is the sum of all individual degrees, is called the total

degree (or degree) of the monomial. We will denote the total degree of monomial m

as deg(m) and the individual degree with respect to the variable x1 as degx1
(m).

1



1. Notations and Preliminaries 2

One can see that the set of all monomials in variables x1, x2, · · ·xn is a countable

set. Thus, there exists a bijection from N to the set of monomials in n variables. The

bijections that also respect the monomial multiplication are called monomial orderings.

More formally, a well-ordering > on the set of monomials in R[x1, x2, · · ·xn] is called

a monomial ordering if for all monomials m, m1, m2 in R[x1, x2, · · ·xn]; m1 > m2,

implies that m1 ×m > m2 ×m. Monomial orderings are useful tools for algorithms

that deal with polynomials.

Definition 1.1 (Lex Ordering). We say that xe11 x
e2
2 · · ·xenn > x

e′1
1 x

e′2
2 · · ·x

e′n
n under the

lexicographical monomial ordering (often called the lex ordering) if for some i in [n],

e1 = e′1, e2 = e′2, · · · , ei−1 = e′i−1 and ei > e′i.

Definition 1.2 (Grlex Ordering). Given two monomials m1 and m2, we say that

m1 > m2 under the graded lexicographical monomial ordering (often called the grlex

ordering) if deg(m1) > deg(m2); or if deg(m1) = deg(m2) and m1 > m2 under the

lex ordering.

The total (or individual) degree of a polynomial is the maximum among the total (or

individual) degrees of all monomials in it. The sparsity of a polynomial is defined as the

number of monomials that have non-zero coefficient in the polynomial. The number

of monomials over n variables of total degree at most d is
(
n+d
d

)
. So, the sparsity of

an n-variate degree d polynomial is at most
(
n+d
d

)
. We will denote the coefficient of

a monomial x̄ē in a polynomial p as coeffx̄ē(p). A homogeneous polynomial of degree

d is a polynomial that consists solely of monomials that have degree d.

Definition 1.3. Given an n-variate degree-d polynomial p =
∑
cēx̄

ē; the degree ≤ t

part of p is defined as
∑
‖ē‖≤t cēx̄

ē, and denoted as deg≤t(p).

In other words, degree ≤ t part of a polynomial is the sum of terms in the polynomial

which have total degree at most t.

Definition 1.4. Given an n-variate degree-d polynomial p =
∑
cēx̄

ē; the individual

degree ≤ t part of p is defined as
∑
∀i,ei≤t cēx̄

ē, and denoted as ideg≤t(p).

In other words, degree ≤ t part of a polynomial is the sum of terms in the polynomial

which have individual degree at most t with respect to each of the variables.

GCD, or the greatest common divisor, of two elements a and b of a ring R is defined

as the element c of R, such that c divides both a and b, and every element of R that
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divides both a and b also divides c. We will denote the GCD of a, b ∈ R as (a, b), or

sometimes as gcd(a, b).

A unique factorization domain is defined as an integral domain where each non-zero

element of the domain can be written as a product of irreducible elements of the integral

domain in unique manner, upto reordering or multiplication by units. Every field is also

a unique factorization domain. GCD of two elements of a unique factorization domain

is well defined. The domain of multivariate polynomials over a field (or over any unique

factorization domain) is a unique factorization domain. Thus every pair of multivariate

polynomials have a unique GCD (upto unit multiples).



Chapter 2

Introduction

This thesis primarily concerns the Polynomial Identity Testing (PIT) problem, which is

an important problem in theoretical computer science. Given some representation of a

multivariate polynomial, the problem asks us to determine whether the polynomial is

identically zero or not. The way of representing the polynomial controls the difficulty of

the problem. If the polynomial is given as a list of monomial-coefficient pairs, the prob-

lem can be trivially solved deterministically in linear time.This method of representing

a polynomial is called the sparse representation of the polynomial. More interesting is

the case when the polynomial is given as an arithmetic circuit, or as blackbox which

takes the values of variables and outputs the evaluation of the polynomial at that

point. We will discuss these representations of polynomials before proceeding further.

2.1 Arithmetic Circuits

Definition 2.1 (Arithmetic Circuits). An arithmetic circuit over a field F, computing

a polynomial in F[x1, x2, · · · , xn] is a directed acyclic graph as follows:

The vertices of the graph are called gates. Each gate with in-degree 0 is labelled with

one of the variables x1, x2, · · · , xn or with the constant 1. Every other gate is labelled

with either × or +. The edges of the graph are called wires. The wires are labelled

with constants of the field.

Each gate of a circuit is thought to compute a polynomial- the gates with in-degree

0 are thought to compute the polynomial that is their label. The gates with the label

4



2. Introduction 5

+ (or ×) are thought to compute the polynomial that is the sum (or product) of

the polynomials, multiplied by the constant given by the label of the connecting wire,

computed by the gates that send a wire to this gate. For example, the circuit in Figure

2.1 shows an arithmetic circuit, which computes the polynomial (x+5)(x+y)+3(x+

y) + (−1)(x+ y)(y + 5), which reduces to x2 − y2 + 3x+ 3y.

+

× ×

+ + +

x 1 y

1 −1

1

3

1 1 1

1

5

1 1

5

1

Figure 2.1: A circuit computing the polynomial x2 − y2 + 3x+ 3y

The gates with out-degree zero are called the output gates, and the gates with in-

degree zero are called the input gates or leaves. The in-degree of a gate is called its

fan-in and the out-degree is called fan-out. The size of a circuit is defined to be the

number of wires in the circuit. The maximum of the total degrees of the polynomials

computed by the gates in the circuit is defined to be the degree of the circuit. Note

that the degree of the polynomials computed at the output gates can all be less than

the degree of the circuit, due to the possibility of cancellation of higher degree terms.

Without loss of generality, one can assume the circuit to be a layered directed acyclic

graph. In this case, a + gate directly connected to another + gate can be combined

together, to form a + gate of larger fan-in. Thus, we can safely assume an arithmetic

circuit to be a layered directed acyclic graph with alternating layers consisting of +

gates and × gates exclusively. The number of layers in such a circuit is equal to the

depth of the circuit.

Sometimes some variations of this model are studied instead. If a gate with fan-in

one in an arithmetic circuit is allowed to have the label ∧ and which computes the

exponentiation of the input, such a circuit is called a diagonal circuit. The ∧ gate

is just a special case of × gate, where all the input wires are connected to the same
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gate. The circuits which are directed trees are called formulas. Arithmetic circuits are

inspired from Boolean circuits, which have ∧ and ∨ gates to compute conjunction and

disjunction respectively.

Arithmetic circuits provide a more concise way to represent a polynomial. A polynomial

which can be computed by an arithmetic circuit of size s can have degree 2O(s) (for

example x2d

1 has a circuit of size 2d, by repeated squaring) or sparsity 2O(s) (for example∏
i∈[n](xi + 1) has sparsity 2n, but circuit size 3n).

Agrawal and Vinay in 2008 proved that for every arithmetic circuit of arbitrary depth,

there exists an equivalent circuit of depth 4 with a slightly larger size [AV08]. So

arithmetic circuits with constant depth are studied quite intensively, and a convention

to describe a constant depth circuit in shorthand has developed.

Definition 2.2. A ΣaΠbΣcΠd(n) circuit is an arithmetic circuit that computes an n-

variate polynomial, which has 4 alternating layers of sum and product gates, with the

output gate being a sum gate, such that the topmost layer has sum gates with fan-in

at most a, the next layer has product gates with fan-in at most b, the next layer has

sum gates with fan-in at most c, and the bottom layer has product gates with fan-in

at most d.

When there is no non-trivial restriction on fan-ins of gates in a particular level, we will

often drop the superscript. When the number of variables can also be implicit. So,

for example, a ΣΠΣΠ circuit is a general depth-4 circuit, and a ΣΠaΣΠb(n) circuit

is a general depth-4 circuit computing an n-variate polynomial, such that the bottom

layer of product gates has gates with fan-in b, and the topmost layer of product gates

has gates with fan-in a.

2.2 Algebraic Complexity Theory

Arithmetic circuits can be thought of as another model of computation, like Turing

machines. Turing machines solve decision problems, and the number of steps that a

Turing machine takes is considered the fundamental computing resource. In the case

of arithmetic circuits, the problems solved are computing a polynomial, and the fun-

damental resource is the size and depth of the circuit that computes the polynomial.
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Many important decision problems can be reduced to the computation of some poly-

nomial, and thus arithmetic circuits give rise to a new branch of complexity theory,

called algebraic complexity theory.

The central questions of complexity theory revolve around separating various classes

of problems. In the world of decision problems, this translates to proving lower bounds

to the number of steps that a Turing machine would need to solve a given problem, or

proving lower bounds on the size of Boolean circuit that computes the given problem.

Similarly, in the world of arithmetic circuits, this translates to proving lower bounds on

the size (and depth) of an arithmetic circuit computing a certain polynomial. More

progress has been made on lower bounds for arithmetic circuits than their Boolean

counterparts, and thus it is hoped that using arithmetic circuits to separate complexity

classes will prove to be more productive.

2.3 Polynomial Identity Testing

2.3.1 The Problem Definition

As discussed earlier, PIT is the problem of checking whether a given multivariate

polynomial is identically zero or not. Identically zero here means that the coefficient of

each monomial in this polynomial is zero. Note that the polynomial evaluating to zero

on all possible points does not always imply that the polynomial is identically zero (for

example the polynomial x2 +x ∈ F2[x] evaluates to zero at all points in F2). However,

this problem only appears if the polynomial is over a finite field, and if we consider

the polynomial as a polynomial over a large enough field extension of the base field,

this problem goes away. For the rest of the discussion in this thesis, we will not worry

about this problem.

There are two important versions of the problem that have seen the most of the

development on PIT. In the first version, the arithmetic circuit for the polynomial is

given to us, and we need to check whether the circuit computes a zero polynomial.

This version is called the whitebox PIT problem. Solving the whitebox PIT problem

in deterministic polynomial time means finding a deterministic algorithm, that takes

a size-s, degree-d circuit computing an n-variate polynomial and correctly outputs
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whether the circuit computes a zero polynomial or not, in time less than sαnβdγ for

some constants α, β, γ.

The second version of PIT is called the blackbox PIT problem, which is possibly

harder than the whitebox version. Here we are given a blackbox, which computes the

evaluations of an n-variate arithmetic circuit of size s, degree d at any given point in

one step. Using this blackbox, we need to determine whether the underlying arithmetic

circuit computes the zero polynomial, in time poly(s, n, d). Note that we allow the

running time to be polynomial in the parameters of the circuit, but the input to our

algorithm will be a blackbox which evaluates the circuit, alongwith some information

about the circuit like the values of s, n, d and not the actual circuit.

In a blackbox PIT algorithm, all that one is allowed to do is evaluating the blackbox

at a few (poly(s, n, d)) points. If one finds that the underlying polynomial takes a

non-zero value at some point, we can safely say that the circuit is not identically zero.

Thus, finding a set of points, such that any non-zero polynomial will take a non-zero

value at at least one of the points in the set, is the heart of the problem. We formalize

this by defining hitting sets.

Definition 2.3 (Hitting Set). We say that a set H ⊆ Fn is a hitting set for a class

of polynomials (or arithmetic circuits) C ⊆ F[x1, x2, · · · , xn], if for every non-zero

polynomial f ∈ C, ∃v ∈ H, s.t. f(v) 6= 0.

Finding a hitting set of size poly(s, n, d) for a class of circuits C immediately gives

us a deterministic polynomial time blackbox PIT algorithm for C. One can also prove

that finding a deterministic polynomial time algorithm for blackbox PIT is equivalent

to finding a hitting set of polynomial size, in polynomial amount of time.

Similar to hitting sets, the generator is another concept that captures the difficulty of

blackbox PIT.

Definition 2.4 (Generator). A polynomial map Ḡ ∈ (F[x1, x2, · · · , xs])n is called a

generator for a class of polynomials (or circuits) C ⊆ F[x1, x2, · · · , xn], if for every non-

zero polynomial f ∈ C, f(G1,G2, · · · ,Gn) ∈ F[x1, x2, · · · , xs] is a non-zero polynomial.

A generator reduces the n-variate blackbox PIT problem to an s-variate blackbox PIT

problem. Naturally, it makes sense to only consider generators where s is quite small

compared to n (Often log n or constant). There is a strong connection between a

hitting set and a generator, with either of them implying the other.
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2.3.2 Motivation

The PIT is an interesting natural problem in computer science. It is one of the few

problems that are not known to be NP-complete, and that are not known to be in P.

Further, it has a randomized algorithm which puts it in coRP, and thus if the widely

believed conjecture P=BPP is true, PIT should also have a deterministic polynomial

time algorithm. It is arguably the most popular problem in coRP that is not known to

be in P.

Apart from this, a major motivating factor behind the study of PIT is its intricate

connection with complexity theory – Derandomizing PIT has more implications than

merely bringing another problem from coRP to P. There has been a long line of work

exploring the connections between PIT and arithmetic circuit lower bounds.

In 2004, Kabanets and Impagliazzo showed that a non-deterministic sub-exponential

time algorithm for PIT will mean that either the complexity class NEXP is not contained

in P/Poly, or that VNP6=VP [KI03]. Note that the PIT problem is in coRP, which

means that it is in coNP and it has an exponential time deterministic algorithm. VP

and VNP are considered to be the arithmetic analogues of P and NP, and the result

gives an explicit example of a problem that will be in VNP but not in VP, if VNP is

indeed not contained in VP. P/Poly can be thought of as a class of problems that have

polynomial sized Boolean circuits. Since a circuit has fixed number of inputs, a different

circuit for each input size is required. But P/Poly does not enforce any relationship

between the circuits for each input size, and this allows very difficult problems to be

in P/Poly. If we put the additional restriction that the circuits must be computable

by an algorithm that takes the input size as an input, this class reduces to P. The

lack of restriction on relationship between circuits for different input sizes is called

non-uniformity. It is another powerful computational resource, like non-determinism

or randomness.

In 2005, Agrawal showed that if a generator Ḡ exists for a class of n-variate, degree-d

and size-s circuits C and that each Gi has degree polynomial in n and is computable

in time polynomial in n; then there exists a polynomial that is not in C which is com-

putable in polynomial time [Agr05]. His proof looks at the annihilating polynomial of

G1,G2, · · · , which cannot be in C. Since this result requires generators, we need black-

box PIT algorithm to apply this result. Note that the previous result by Kabanets and
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Impagliazzo can work with even whitebox PIT algorithm (or even a non-deterministic

sub-exponential time algorithm).

Recently, the results of Kabanets and Impagliazzo [KI03] were greatly strengthened,

in proving that a PIT algorithm that solves the blackbox PIT problem for the special

case of Σ∧aΣΠb(n) circuits in time poly(2n+b, µ(a)) for any µ, implies that either E*
#P/Poly or some polynomials in VNP need 2Ω(n) circuits[AFGS17]. They also show

that such a PIT algorithm will also give us a quasipolynomial time algorithm for the

blackbox PIT of general VP circuits.

2.4 Derandomizing the PIT Problem

As we mentioned earlier, there exists a randomized algorithm to solve the blackbox

PIT proble. First we will discuss that alogrithm here in in this section.

There has been a lot of work done to derandomize the PIT problem, especially in

the last decade. The problem of PIT for general circuits has been reduced to many

restricted classes of circuits, and the problem for many other restricted classes of

circuits has been solved. We will discuss the most relevant of the results for this thesis

in this section.

As we know that a univariate polynomial of degree d over a field F has at most d

roots, the univariate blackbox PIT can be solved by checking whether the polynomial

evaluates to zero at more than d distinct points in F. If the field size is less than d,

one can work with a sufficiently large field extension of F. This idea is generalized to

multivariate polynomials in the following section.

2.4.1 The Randomized Algorithm

The bound on number of roots of a univariate polynomial (as discussed above) does

not directly generalize to multivariate polynomial. However, DeMillo and Lipton in

1978 gave a probabilistic result generalizing this property [DL78], and Schwartz and

Zippel gave a slightly improved version subsequently [Zip79, Sch80].
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Lemma 2.5 (Schwartz-Zippel Lemma [DL78, Zip79, Sch80]). Let f be a non-zero

polynomial in F[x1, x2, · · · , xn] of degree d. Let S ⊆ F. Then for a point c̄ drawn

from Sn uniformly at random, Pr[f(c1, c2, · · · , cn) = 0] ≤ d
|S| .

We will not prove this lemma here. Lemma 2.5 immediately gives us a randomized

algorithm for PIT – we pick a set S ⊆ F of size at least 2d, pick a point c̄ from Sn

uniformly at random, test whether f is zero at c̄ and declare f to be zero if f(c̄) is

zero and declare f to be non-zero otherwise.

The algorithm always gives the correct answer if the polynomial is zero, and gives the

correct answer with probability at least 1/2 if the polynomial is non-zero. This puts the

PIT problem in coRP. Note that this algorithm solves even the blackbox PIT problem.

Similar to univariate PIT algorithm, problems arise if the degree of the polynomial is

larger than the field size, and these problems can be circumvented by looking at a

sufficiently large field extension of F.

From Lemma 2.5, we can also get a deterministic blackbox PIT for n-variate and

polynomials with degree at most d, that runs in time (d + 1)n. So, if the number of

variables n is a constant, this algorithm solves the blackbox PIT in polynomial time.

The following theorem states this explicitly:

Theorem 2.6. The blackbox PIT problem for polynomials in F[x1, x2, · · · , xn] with

degree at most d has a deterministic algorithm that runs in time (d+ 1)n.

Proof. Suppose S ⊆ F of size at least d+1. Then, by Lemma 2.5, for a point c̄ ∈ Sn,

Pr[f(c1, c2, · · · , cn) = 0] ≤ d
d+1

< 1. So, there must exist a point ᾱ ∈ Sn such that

f(ᾱ) 6= 0, for any polynomial f of degree at most d. So by evaluating f on all points

of Sn, and checking if all of them evaluate to zero, one can check whether f = 0.

It has also been proven that for the set of n-variate polynomials that are computable

by an arithmetic circuit of size s and degree d, there always exists a hitting set of size

at most poly(s, n, d). The proof is not constructive though, and thus we cannot use

this result for an algorithm for PIT of such polynomials. Note that for the complexity

theoretic purposes, all we need is the proof that a polynomial time deterministic PIT

algorithm exists, for example in the case of result by Agrawal [Agr05]. Unfortunately,

the existence of a hitting set of small size does not directly translate into the existence

of a PIT algorithm, as for a PIT algorithm to exists, we need to know that a hitting
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set that is also computable in polynomial time. This proof of existence of hitting sets

goes via a counting argument, by counting the number of small non-zero circuits of

small degree, and then estimating the probability that a random set S ⊆ F of size x

will be such that all points p ∈ Sn will be roots for some polynomial computed by such

circuits. This method can also be extended for infinite fields. We will not prove this

here, but an interested reader can refer to the survey on arithmetic circuit complexity

by Shpilka and Yehudayoff [SY10].

2.4.2 Structural Results for Arithmetic circuits

Much work has been done on proving various structural results for arithmetic circuits,

i.e., given an arithmetic circuit computing a polynomial f , proving the existence of

(or constructing) an equivalent arithmetic circuit with some additional property which

computes the same polynomial f . Usually applying a structural result increases the

size of the resulting circuit. We will just state the structural results here relevant for

this thesis without proof, but an interested reader can refer to the survey [SY10] by

Shpilka and Yehudayoff for a comprehensive analysis of these results.

If the proof for a structural result is constructive, and the increase in the size of the

resulting circuit is reasonable, a whitebox PIT algorithm can first convert the input

circuit into a circuit with the additional property as a preprocessing step, allowing

us to focus only on finding a whitebox PIT algorithm for circuits promised to have

this additional property. Further, even if the proof is not constructive, a blackbox

PIT algorithm can just assume that the circuit hidden under the blackbox has this

additional property, allowing us to focus on finding a blackbox PIT algorithm for

polynomials computable by circuits with this additional property.

We will discuss the technique of homogenization first, which is derived from the work

in [Str73]. We now state in the following theorem the version of this technique as

given in the survey of Shpilka and Yehudayoff [SY10]:

Theorem 2.7 (Homogenization [Str73]). Given an arithmetic circuit C of size s,

computing a polynomial f , one can construct an arithmetic circuit C ′ of size d2s,

in time poly(d, s), such that C ′ has d outputs, with ith output giving the degree-i

homogeneous part of f , and such that each gate of C ′ computes a homogeneous

polynomial.
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The proof of this theorem goes by induction on the gates, by showing that the homo-

geneous parts of a gate can be computed using the homogeneous parts of its inputs.

Using this result, one can reduce the PIT problem for general polynomials to the PIT

problem for homogeneous polynomials.

Many structural results for arithmetic circuits concern themselves with constructing a

circuit with smaller depth. Such results are often called circuit depth reduction results.

We will take a look at two of the depth reduction results here.

Theorem 2.8 (log d-Depth Reduction [VSBR83]). For every arithmetic circuit C of

size s computing a homogeneous n-variate polynomial f of degree d, there exists

another arithmetic circuit C ′ of size bounded by poly(s, n, log d), computing the poly-

nomial f , such that C ′ has alternating layers of sum and product gates, and the

number of layers is at most O(log d).

The proof of this theorem also gives us a randomized polynomial time (in s, n, d) algo-

rithm to construct C ′ from C. So this result, in conjunction with the homogenization

result (Theorem 2.7) helps us in reducing the blackbox PIT problem for general circuits

to the blackbox PIT problem for circuits with depth log d, where d is the degree of the

underlying polynomial.

Agrawal and Vinay in 2008 gave a depth reduction result that reduces the depth of a

circuit to 4 [AV08]. Although this makes the size of the resulting circuit exponential,

it still gives us a size bound for constant depth circuits that is better than the trivial

size bound. A trivial size bound can be obtained by considering that a ΣPi circuit

that computes an n-variate degree-d polynomial can have size as large as
(
n+d
d

)
. It is

also not very hard to see that a ΣΠΣΠ circuit of size
(
s+d
d

)
, equivalent to a circuit

of size s computing an n-variate degree-d polynomial can also be constructed. The

following theorem, however, gives a much better size bound:

Theorem 2.9 (Reduction to Depth 4 [AV08, Koi12, Tav15]). Suppose an arithmetic

circuit C of size s computes an n-variate polynomial f of degree d. Then, for every

t ∈ [d], there exists an arithmetic circuit C ′ with depth 4 and size sO(t+d/t) computing

the polynomial f . Further, each gate of C ′ computes a homogeneous polynomial, and

C ′ has the form ΣsO(d/t)
ΠO(d/t)ΣΠt.

Using this theorem, they also proved that a poly(s) hitting set for a ΣΠaΣΠb(n) circuit,

where a is ω(1) and b is O(log s), gives us a quasipolynomial time hitting set for
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general arithmetic circuits. Since this result, most of the work towards derandomizing

PIT has concerned itself with derandomizing PIT for the special case of constant depth

circuits. In 2013, Gupta, Kamath, Kayal and Saptharishi gave a depth reduction result

that reduces the depth of a circuit to 3, for polynomials over fields of characteristic

zero [GKKS13]. Improving the result of Agrawal and Vinay, recently Sumanta and

others proved that a poly(s) hitting set for a ΣΠaΣΠb(n) circuit, where a is ω(1) and

n, b are O(log s), gives us a quasipolynomial time hitting set for general arithmetic

circuits [AFGS17].

2.4.3 The Sparse PIT Algorithm

Now we will discuss arguably the most important of the deterministic PIT algorithms

in this section. This algorithm was also one of the first deterministic algorithms for

PIT. This algorithm solves the blackbox PIT problem for a n variate polynomial with

degree d and sparsity s, in time poly(s, n, d). Note that for a general n-variate degree-

d polynomial has sparsity
(
n+d
d

)
in the worst case, so this algorithm does not solve

the blackbox PIT problem in polynomial time. However, it does solve the problem

in time poly(z, n, d) when the input circuit is promised to be a ΣΠ circuit of size z.

Various versions of this algorithms have been published at various times, for example

[KS01, BHLV09].

This algorithm employs a set S = {φ1, φ2, · · ·φk} of homomorphisms where for all

i ∈ [k], φi : F[x1, x2, · · ·xn] → F[y], is a homomorphism that maps all n-variate

polynomials to univariate polynomials. The size of S is only poly(s, n, d). Further, the

set S is constructed in such a way that for each set T of size s consisting of n-variate

degree-d monomials, there exists some φi ∈ S, such that at least one monomial of T

gets mapped to a different (non-zero) univariate than all the univariate images of other

monomials of T . This effectively means that, there exists a φi ∈ S for each non-zero

polynomial p ∈ F[x1, x2, · · · , xn] of sparsity at most s, such that φi(p) 6= 0. So our

algorithm will declare p to be zero if φi(p) = 0 for all i, and non-zero otherwise.

The Kronecker map provides the inspiration for this set of maps. The Kronecker map

ψd : F[x1, x2, · · · , xn] → F[y] is defined for a given d as ψd(f(x1, x2, · · · , xn)) =

f(yd
0
, yd

1
, · · · , ydn−1

). So, under this map, a monomial xe11 x
e2
2 · · ·xenn will be mapped

to ye1d
0+e2d1+···+endn−1

. Thus, the images under Kronecker map of all monomials of

individual degree less than d will be different, and thus for a non-zero polynomial p,
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the image ψd(p) will also be non-zero. Unfortunately, the degree of the image of a

monomial of degree at most d can be as high as dn, which is too large. (After applying

this map, we intend to check whether the univariate polynomial obtained is zero or

not, by evaluating it at d′ distinct points where d′ is the degree of the univariate.)

So as a workaround, the Kronecker map was slightly modified, by taking the exponent

of y modulo a prime p. Now the problem with this approach is that the exponent of

two distinct monomials in the polynomial can sometimes be equal modulo p, for some

primes p. However, any number n has at most log2 n factors, so we try to limit the

number of such ‘bad’ primes. The number of such ‘bad’ primes comes out to be small,

so if we try out many different primes, one of them must work for a given polynomial.

We formalize this idea in the following theorem.

Lemma 2.10 ([KS01]). Suppose m1,m2 ∈ F[x1, x2, · · · , xn] are two distinct mono-

mials such that individual degree of both m1 and m2 is less than d in all the variables.

For each i ∈ Z, the homomorphism φi : F[x1, x2, · · · , xn] → F[y] is defined as

φi(f(x1, x2, · · · , xn)) = f(yw1 , yw2 , · · · , ywn), where pi is the ith prime number, and

where wj ≡ dj−1 (mod pi), 0 ≤ wj < pi for all j ∈ [n]. Then φi(m1) can be equal

to φi(m2) for no more than n log d values of i.

Proof. Suppose m1 = xγ1

1 x
γ2

2 · · ·xγnn and m2 = xδ11 x
δ2
2 · · ·xδnn . First observe that the

image of a monomial under the map φi is a monomial in y, for any i. Suppose φi(m1) =

yα, φi(m2) = yβ. Then, α = γ1w1 + γ2w2 + · · ·+ γnwn. So, by the definition of wj,

α ≡ γ1d
0 + γ2d

1 + · · ·+ γnd
n−1 (mod pi). Similarly, β ≡ δ1d

0 + δ2d
1 + · · ·+ δnd

n−1

(mod pi). So if α = β, pi must divide (γ1− δ1)d0 + (γ2− δ2)d1 + · · ·+ (γn− δn)dn−1.

Without loss of generality, we can assume that (γ1− δ1)d0 + (γ2− δ2)d1 + · · ·+ (γn−
δn)dn−1 ≥ 0. Now, γi < d and δi < d for all i, as m1 and m2 have individual degree

at most d in all the variables. So, (γ1−δ1)d0 +(γ2−δ2)d1 + · · ·+(γn−δn)dn−1 < dn.

Now, a positive integer less than dn can have no more than log dn = n log d many

distinct prime factors. So, φi(m1) can be equal to φi(m2) for no more than n log d

values of i.

The above theorem bounds the number of φi’s that we need to try out to ensure that

the images of two different monomials remain different under at least one of the φi’s.

So, for a polynomial p of sparsity s that contains a monomial m, the number of φi’s

that we need to try out, to ensure that the image of m is different from all other

monomials appearing in p, is at most s× n log d. Further, if i is such that the image



2. Introduction 16

of m under φi is different from the images of all other monomials appearing in p, then

one can see that φi(p) cannot be zero for this i – the image of m under this map is a

non-zero polynomial, and no monomial in φi(p −m) can cancel φi(m).This gives us

the following theorem:

Theorem 2.11 ([SY10]). Suppose p is a polynomial in F[x1, x2, · · · , xn] of sparsity

at most s such that degxi(p) < d for all i ∈ [n]. For each i ∈ Z, we define the

homomorphism φi as in Lemma 2.10. Then, if p = 0, then φi(p) = 0 for all i ∈ Z,

and if p 6= 0 then φi(p) = 0 for no more than sn log d values of i.

Proof. Since each φi is a homomorphism, φi(0) = 0 for all i. For the converse, using

Lemma 2.10, and by the argument above, one can see that φi(p) cannot be zero for

more than sn log d values of i.

To use this theorem for a blackbox PIT algorithm, one can simply pick the first

sn log d+ 1 φi’s, and check if the image of the given blackbox under each of them is

zero. The degree of the image of a polynomial p having individual degree less than d

in each variable under the map φi is at most d× (w1 + w2 + · · ·+ wn), which is less

than d×pi. So to check if φi(p) = 0, we need to evaluate φi(p) at d×pi many points

of the field. For this to be considered efficient, we need a upper bound on the value

of pi. Now, the prime number theorem tells us that the nth prime number is less than

n log n+ n log log n. One can easily generate the list of first k prime numbers in time

polynomial in k.

So, to summarize, the sparse PIT algorithm for a polynomial f first generates a list

of m prime numbers, where m = sn log d + 1; then constructs φ1, φ2, · · · , φm and

evaluates each φi(f) at dm logm + dm log logm many points; and if all of these

evaluations are zero, then outputs f = 0, and outputs f 6= 0 otherwise.

This technique of solving PIT via homomorphism(s) that satisfy some special property

has provided an inspiration for many other results that derandomize some special

case of PIT. Our algorithms for derandomizing PIT for certain kinds of polynomials

too, follow the same method, but we require the homomorphisms to satisfy different

properties.
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An important implication of Lemma 2.10 is the existence of a homomorphism that

keeps the images of any two monomials of given degree separate. Such a homomor-

phism will prove to be useful for the algorithms that we give in later chapters. So we

will formally state this in the following theorem.

Theorem 2.12. For all d, there exists a homomorphism φd : F[x1, x2, · · · , xn]→ F[y]

such that φd(m1) 6= φd(m2), φd(m1) 6= 0 and φd(m2) 6= 0, for any two distinct non-

zero monomials m1,m2 ∈ F[x1, x2, · · · , xn] which have degree at most d. Further, φd

can be constructed in time polynomial in
(
n+d
d

)
.

Proof. Let s be the number of monomials that have individual degree less than d in

each of the variables. Then, s =
(
n+d
d

)
. Now, the number of monomial pairs (m1,m2)

such that m1,m2 have degree at most d is
(
s
2

)
< s2. Now, Lemma 2.10 tells us that

for any such pair of distinct non-zero monomials, there can be at most n log d values

of i ∈ Z where φi(m1 −m2) = 0, where φi’s are defined as in Lemma 2.10. So, if we

look at first s2×n log d values of i, at least one of the corresponding φi’s will be such

that φi(m1) 6= φi(m2) for any two distinct non-zero monomials m1,m2 with degree

less than d. This will give us the desired homomorphism.

Constructing first s2n log d homomorphisms will take no more than poly(s, n, d) time.

Checking, for each of the
(
s
2

)
pairs of monomials, and for each of the homomorphisms

under consideration, whether the image of the monomials in the pair is different under

the homomorphism also takes no more than poly(s, n, d) time. Thus the homomor-

phism is constructible in time in
(
n+d
d

)
.

The above theorem does not explicitly describe the map φd, but gives an algorithm

that can be run to construct φd. However, we know that, by the construction in

Lemma 2.10, that φd is is defined as φi(f(x1, x2, · · · , xn)) = f(yw1 , yw2 , · · · , ywn),

where p is some prime number, and where wj ≡ dj−1 (mod p), 0 ≤ wj < p for all

j ∈ [n]. One can also bound the value of p using prime number theorem. As the

proof above requires s2n log d many primes, where s is
(
n+d
d

)
, the maximum value of

p can be k log k + k log log k, where k = s2n log d. Asymptotically, p is of the order

of 2O(n+d).

Since all the monomials of degree at most d are mapped to distinct monomials under

φd, by arguments similar to those in the proof of Theorem 2.11, we can say that

φd(f) 6= 0 for all non-zero polynomials f of degree at most d. So this gives us a single
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homomorphism that preserves the non-zeroness of all polynomials of degree at most

d, although the construction of this homomorphism takes time exponential in n and

d.

2.5 Our Work

So far, we have seen the problem of polynomial identity testing, its applications, some

algorithms that solve it for some special cases, and some methods that may help us in

making progress towards solving it completely. In this section, we will briefly summarize

the contributions of this thesis.

In this thesis, we give a deterministic algorithm that solves the whitebox PIT problem

for arithmetic circuits of the form Σ2ΠΣΠb(n) and size s in time poly(s) · 2O(n+b)

(Algorithm 4). Further, we give a deterministic algorithm that solves the blackbox

PIT problem for polynomials of the form f −
∏k

i=1 gi where f , gi are polynomials in n

variables with degree less than d, in time poly(k) · 2O(n+b) (Algorithm 3). This second

model is essentially a special case of the first model, where one of the two product

gates in the second layer has fan-in one. The sparsity of a polynomial computed

by a circuit of the form Σ2ΠΣΠb(n) and size s can be as large as
(
n+b
b

)s
, which is

approximately 2s(n+b). The sparsity of a polynomial of the form f −
∏k

i=1 gi can be

as large as
(
n+d
d

)k
, which is approximately 2k(n+b). So these PIT algorithms perform

better than a näıve application sparse PIT algorithm.

More importantly, in light of the recent result [AFGS17] of Sumanta and others, we

hope that the techniques used in these algorithms will help us in understanding the

depth-4 model and in discovering an algorithm for blackbox PIT of general depth-4

circuits (without the top fan-in restriction) that runs in time poly(s) · 2O(n+b). Note

that our algorithm only requires time polynomial in the number of the upper Π gates,

while the result by Sumanta and others allows for an algorithm that runs in time

proportional to t(a) where t is any bounded function and a is the said number of

product gates.

Also, this thesis gives an algorithm to test the divisibility of a polynomial by another

polynomial, and an algorithm to compute the GCD of two polynomials. These algo-

rithms both run in time 2O(n+d). These algorithms are used in our PIT algorithms.
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The blackbox algorithm works by applying a homomorphism on the polynomial ring in

n varaibles that maps an n variate polynomial to a bivariate polynomial. We discuss

the properties that a useful homomorphism must satisfy in Chapter 3. It is shown that

a homomorphism that preserves non-zeroness and indivisibility of a pair of polynomials

will be useful for Algorithm 3.

The properties that Chapter 3 suggests are proven for a homomorphism that we will

describe in Chapter 4, by means of an algorithm that tests divisibility of a polynomial

by another polynomial. The homomorphism that we describe preserves each step of

this algorithm, and thus preserves indivisibility of two polynomials. All this is explained

in greater details in Chapter 4.

The divisibility testing algorithm can be slightly modified to give us a GCD algorithm

(Algorithm 2). That algorithm is described in Chapter 5. This algorithm is used in the

whitebox PIT algorithm that we will present in Chapter 6.

Chapter 6 finally states the two PIT algorithms, using all the things proven in earlier

chapters.



Chapter 3

Homomorphisms And PIT

3.1 Homomorphisms for Blackbox PIT

Like numerous other PIT algorithms, we try to find a homomorphism from F[x1, x2, · · · , xn]

to polynomials in fewer variables, which preserves some algebraic property of the poly-

nomials, and such that this property distinguishes the zero polynomial from other

polynomials in some way. In the case of polynomials of the form f −
∏k

i=1 gi, the

properties that we look at are the indivisibility and non-zeroness preservation – that is,

we identify a homomorphism ψ from F[x1, x2, · · · , xn] to F[x1, x2], such that for any

f, g ∈ F[x1, x2, · · · , xn] of degree at most d, if f - g then ψ(f) - ψ(g) in F[x1, x2] and

if f 6= 0 then ψ(f) 6= 0. In this chapter, we will explain why such a homomorphism

will be of any use for the blackbox PIT of polynomials of the form mentioned above.

Suppose we are given a blackbox computing a polynomial p ∈ F[x1, x2, · · · , xn] which

is promised to be equal to f − g1g2 · · · gk where f, g1, g2, · · · , gk are polynomials in

F[x1, x2, · · · , xn] of degree at most d. We are to test whether p = 0 or not, in blackbox,

and in time poly(s)·2(n+d) where s is the size of the arithmetic circuit hidden inside the

blackbox, computing p. First, we claim that we can safely assume that g1, g2, · · · , gk
are irreducible polynomials. In other words, a blackbox PIT algorithm that runs in time

poly(k) · 2(n+d) and tests polynomials of the form f − g1g2 · · · gk where g1, g2, · · · , gk
are irreducibles; yields an algorithm that solves blackbox PIT for the same model but

without the irreducibility condition.

20
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Lemma 3.1. Suppose there exists a blackbox PIT algorithm A for polynomials of the

form f−g1g2 · · · gk, where g1, g2, · · · , gk ∈ F[x1, x2, · · · , xn] are irreducible polynomi-

als of degree at most d, and f is a polynomial of F[x1, x2, · · · , xn] of degree d. Further,

suppose that the algorithm A runs in time at most αkβ2γ(n+d) for constants α, β, γ.

Then, there exists an algorithm A′ that solves blackbox PIT for polynomials of the

form f − g1g2 · · · gk, where f, g1, g2, · · · , gk ∈ F[x1, x2, · · · , xn] are some polynomials

of degree at most d. Further, the algorithm A′ runs in time at most α(kd)β2γ(n+d).

Proof. Suppose we are given a polynomial p such that p = f − g1g2 · · · gn for some

f, g1, g2, · · · , gk ∈ F[x1, x2, · · · , xn] of degree at most d. Then, look at the irreducible

factorization of each gi. Suppose gi = gi1gi2 · · · gini
for all i ∈ [k], such that gij are

irreducible polynomials of degree at least 1 for all i, j. Now, since degree of gi at

at most d, and gij is non-costant for all j ∈ [ni], ni can be at most d. So, p can

be written as f −
∏
gij, where gij are all irreducible polynomials, and there are at

most kd of them. Thus the algorithm A can do blackbox PIT of p in time at most

α(kd)β2γ(n+d).

Note here that the algorithm A′ is essentially the same as the algorithm A, but with

different parameters. The algorithm does not actually factorize the polynomials. This

kind of technique is frequently used in blackbox algorithms, and can be sometimes a bit

confusing at first glance. Further, note that α(kd)β2γ(n+d) is indeed poly(k) · 2O(n+d).

Now we prove that a non-zeroness and indivisibility preserving map, as mentioned

above, will give us PIT for polynomials of the form f−g1g2 · · · gk, where g1, g2, · · · , gk ∈
F[x1, x2, · · · , xn] are irreducible polynomials of degree at most d, and f is a polynomial

of F[x1, x2, · · · , xn] of degree d.

Lemma 3.2. Suppose there exists a homomorphism ψ from F[x1, x2, · · · , xn] to

F[x1, x2] such that for any f, g ∈ F[x1, x2, · · · , xn] both of degree at most d, if

f - g then ψ(f) - ψ(g), and such that for any h ∈ F[x1, x2, · · · , xn] of degree at most

d, if h 6= 0 then ψ(h) 6= 0. Suppose a polynomial p is such that p = f − g1g2 · · · gk,

where g1, g2, · · · , gk ∈ F[x1, x2, · · · , xn] are irreducible polynomials of degree at most

d, and f is some polynomial of F[x1, x2, · · · , xn] of degree at most d. Then ψ(p) = 0

if and only if p = 0.

Proof. We will prove this by induction on k. For the base case, suppose p = f − g1.

Then, p has degree at most d, and non-zeroness preserving property of ψ means
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that if p 6= 0 then ψ(p) 6= 0. If p = 0 then ψ(p) must be zero anyway, as ψ is a

homomorphism. This completes the base case.

Now assume that the lemma is true for k < l. We need to prove that it will also be

true for k = l. Suppose p = f − g1g2 · · · gl. Again, if p is zero, then ψ(p) is zero,

because ψ is a homomorphism. So suppose p 6= 0. Since ψ is a homomorphism,

ψ(p) = ψ(f)− ψ(g1)ψ(g2) · · ·ψ(gl). If gl - f , by the indivisibility preserving property

of ψ, ψ(gl) - ψ(f). So, ψ(f) cannot be equal to ψ(gl)× ψ(g1)ψ(g2) · · ·ψ(gl−1), and

thus ψ(p) 6= 0.

On the other hand, if gl | f , suppose f ′ = f/gl. Then, p = gl(f
′ − g1g2 · · · gl−1).

Now since p is non-zero, both of these factors must be non-zero. After applying ψ we

get ψ(p) = ψ(gl) × ψ(f ′ − g1g2 · · · gl−1). ψ(gl) cannot be zero by the non-zeroness

preserving property of ψ. ψ(f ′− g1g2 · · · gl−1) is non-zero by induction hypothesis (as

f ′ is also a polynomial with degree at most d). Thus ψ(p) 6= 0.

Note that this proves that ψ(p) is non-zero if and only if p is zero, and thus reduces

the n-variate PIT problem (of the restricted model) to bivariate PIT problem. In

the previous chapter, we have seen ways to solve PIT problem for constant variate

polynomials. To combine the two, one must have explicit homomorphism ψ. Merely

proving the existence of such a ψ will not suffice. In fact, we believe that proving the

existence of such a ψ will not be very difficult. Further, the ψ that we find must be

computable in time less than poly(k) · 2O(n+d).

Combining Lemmas 3.1 and 3.2, we get the following theorem, which will prove to be

the main building block of our blackbox PIT algorithm for the model being discussed.

Theorem 3.3. Suppose there exists a homomorphism ψ from F[x1, x2, · · · , xn] to

F[x1, x2] such that for any f, g ∈ F[x1, x2, · · · , xn] both of degree at most d, if f - g
then ψ(f) - ψ(g), and such that for any h ∈ F[x1, x2, · · · , xn] of degree at most d,

if h 6= 0 then ψ(h) 6= 0. Suppose a polynomial p is such that p = f − g1g2 · · · gk,

where f, g1, g2, · · · , gk ∈ F[x1, x2, · · · , xn] are some polynomials of F[x1, x2, · · · , xn]

of degree at most d. Then ψ(p) = 0 if and only if p = 0.

In the next chapter, we will define a homomorphism ψ, and prove that it has the

aforementioned properties. Here, however, we will now prove that the blackbox PIT

of polynomials computable by arithmetic circuits of the form Σ2ΠΣΠb(n) can also

be done by coming up with a homomorphism with some algebraic property. Unlike
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the previous model, we failed to come up with a homomorphism that satisfies the

property required by this model, and thus we could not manage to solve this problem

in blackbox. But the following lemmas are still interesting as they give some insights for

anyone attempting to solve blackbox PIT for this model. We will present an algorithm

to solve the whitebox PIT for this model later in this thesis.

The properties required of a homomorphism that will help in devising an algorithm

for blackbox PIT of circuits of the form Σ2ΠΣΠb(n) will be coprimeness preservation

and non-zeroness preservation, or alternatively, squarefreeness preservation and non-

zeroness preservation.

A polynomial computed by a circuit of the form Σ2ΠΣΠb(n) has the form
∏

i∈[k] fi−∏
j∈[k′] gj where fi, gj are polynomials in F [x1, x2, · · · , xn] of total degree at most b.

Similar to the case of previous model, we can prove that a PIT algorithm for such

polynomials where the polynomial fi is assumed to be an irreducible for all i yields us

a PIT algorithm without the irreducibility restriction.

Lemma 3.4. Suppose there exists a blackbox PIT algorithm A for polynomials of

the form f1f2 · · · fm − g1g2 · · · gk, where g1, g2, · · · , gk ∈ F[x1, x2, · · · , xn] are some

polynomials of degree at most d, and f1, f2, · · · fm ∈ F[x1, x2, · · · , xn] are irreducible

polynomials of degree at most d. Further, suppose that the algorithm A runs in time

at most αkβmγ2δ(n+d) for constants α, β, γ, δ. Then, there exists an algorithm A′ that

solves blackbox PIT for polynomials of the form f1f2 · · · fm− g1g2 · · · gk, where for all

i, j, fi, gj ∈ F[x1, x2, · · · , xn] are some polynomials of degree at most d. Further, the

algorithm A′ runs in time at most αkβ(md)γ2δ(n+d).

We will not prove this as the proof is very similar to the proof of Lemma 3.1. Note

that assuming all fi’s to be irreducible increases the time complexity by a factor of

dγ, which is small as compared to 2δ(n+d), and thus we can safely assume fi’s to

be irreducible polynomials. Further, note that αkβ(md)γ2δ(n+d) is asymptotically less

than αsβ+γdγ2δ(n+d) where s is the size of the circuit, and thus can be considered to

be poly(s) · 2O(n+d), as s > m and s > k due to the structure of the circuit.

We now formally state and prove that an explicit non-zeroness and coprimeness pre-

serving homomorphism yields a blackbox PIT algorithm for Σ2ΠΣΠb(n) circuits.

Lemma 3.5. Suppose there exists a homomorphism ψ from F[x1, x2, · · · , xn] to

F[x1, x2, · · ·xc] such that for any f, g ∈ F[x1, x2, · · · , xn] both of degree at most d, if
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gcd(f, g) = 1 then gcd(ψ(f), ψ(g)) = 1, and such that for any h ∈ F[x1, x2, · · · , xn]

of degree at most d, if h 6= 0 then ψ(h) 6= 0. Suppose a polynomial p is such that p =

f1f2 · · · fm − g1g2 · · · gk, where f1, f2, · · · , fm ∈ F[x1, x2, · · · , xn] are non-constant

irreducible polynomials of degree at most d, and g1, g2, · · · gk ∈ F[x1, x2, · · · , xn] have

degree at most d. Then ψ(p) = 0 if and only if p = 0.

Proof. If p = 0, then as ψ is a homomorphism, ψ(p) = 0. So now let us assume that

p 6= 0. We will prove that ψ(p) 6= 0 by induction on m.

For the base case, we will assume m = 1.

If ∃i ∈ [k] s.t. f1 | gi, we can write p = f1 × (1 − g′1g
′
2 · · · g′k), where g′i = gi/f1

and g′j = gj,∀j 6= i. Thus ψ(p) = ψ(f1) × (1 − ψ(g′1)ψ(g′2) · · ·ψ(g′k)). (Note that

ψ(1) = 1 as ψ is a homomorphism). By the non-zeroness preserving property of ψ,

we know that ψ(f1) 6= 0, so all we need to prove is that ψ(g′1)ψ(g′2) · · ·ψ(g′k)) 6= 1.

Now if g′1g
′
2 · · · g′k is a constant, then p has degree at most d, and thus ψ(p) 6= 0 by

the non-zeroness preserving property of ψ. If it is not a constant, there exists some g′j

of degree at least 1. We claim that ψ(g′j) cannot be a constant. To see this, assume

that ψ(g′j) = c where c is a constant. Then, ψ(g′j − c) must be 0, which contradicts

the non-zeroness preserving property of ψ. Now since ψ(g′j) has degree at least 1,

ψ(g′1)ψ(g′2) · · ·ψ(g′k)) also has degree at least 1, and thus cannot be equal to 1.

If, on the other hand, f1 - gi for all i ∈ [k], then it means that gcd(f1, gi) = 1

for all i, as f1 is an irreducible. Thus gcd(ψ(f1), ψ(gi)) = 1 for all i, and thus

gcd(ψ(f1), ψ(g1)ψ(g2) · · ·ψ(gk)) = 1. Thus ψ(f1) 6= ψ(g1)ψ(g2) · · ·ψ(gk), and thus

ψ(p) 6= 0. This completes the base case.

Now let us assume the lemma to be true for m < l. We need to prove it for m = l.

Again, if fl | gj for some j, then we can write p as fl × (f1f2 · · · fl−1 − g′1g′2 · · · g′k),

where g′j = gj/fl and g′i = gi, ∀j 6= i. Now ψ(fl) 6= 0 by non-zeroness preserving

property of ψ, and ψ(f1f2 · · · fl−1 − g′1g′2 · · · g′k) 6= 0 by induction hypothesis. Thus

ψ(p) 6= 0.

If fl - gi for all i, then gcd(fl, gi) = 1 for all i. Thus gcd(ψ(fl), ψ(gi)) = 1 for all

i. Thus gcd(ψ(fl), ψ(g1)ψ(g2) · · ·ψ(gk)) = 1. So ψ(fl) - ψ(g1)ψ(g2) · · ·ψ(gk) as fl is

not a constant and thus ψ(fl) is not a constant. Since ψ(fl) divides ψ(f1)ψ(f2) · · ·ψ(fm),

ψ(f1)ψ(f2) · · ·ψ(fm) 6= ψ(g1)ψ(g2) · · ·ψ(gk) and thus ψ(p) 6= 0.
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Again, note that for this result to yield a blackbox PIT algorithm, we need an explicit

ψ, and the running time of the algorithm must include time spent in computing ψ.

Lemmas 3.4 and 3.5 combine to give us a blackbox PIT algorithm for Σ2ΠΣΠb(n)

circuits, provided such an explicit ψ exists. This model of Σ2ΠΣΠb(n) circuits is a

generalization of earlier model of polynomials of the form f −
∏
gi, and similarly,

the condition of coprimeness preservation is indeed a generalization of indivisibility

preservation, as one would expect.

Lemma 3.6. Suppose there exists a homomorphism ψ from F[x1, x2, · · · , xn] to

F[x1, x2, · · ·xc] such that for any f, g ∈ F[x1, x2, · · · , xn] both of degree at most d, if

gcd(f, g) = 1 then gcd(ψ(f), ψ(g)) = 1, and such that for any h ∈ F[x1, x2, · · · , xn]

of degree at most d, if h 6= 0 then ψ(h) 6= 0. Then for all f, g ∈ F[x1, x2, · · · , xn], if

f - g then ψ(f) - ψ(g).

Proof. Suppose ∃f, g such that f - g but ψ(f) | ψ(g). Let h = gcd(f, g) and

f ′ = f/h, g′ = g/h. Now gcd(f ′, g′) = 1. Thus gcd(ψ(f ′), ψ(g′)) = 1. ψ(f) =

ψ(f ′)ψ(h) and ψ(g) = ψ(g′)ψ(h). Suppose α is the highest power of ψ(f ′) that

divides ψ(h). That is, ψ(f ′)α | ψ(h) but ψ(f ′)α+1 - ψ(h). Then ψ(f ′)α+1 | ψ(f) but

ψ(f ′)α+1 - ψ(g) as gcd(ψ(f ′), ψ(g′)) = 1. So ψ(f) cannot divide ψ(g).

The resultant is an important algebraic tool when dealing with coprimeness of polyno-

mials. The resultant of two polynomials is zero if and only if they are not coprime. So,

if a homomorphism is to preserve the coprimeness of any two coprime polynomials, it

should essentially preserve the non-zeroness of their resultant. This gives us another

way of looking at this problem. However, the resultant of the polynomials f and g,

considering them as f, g ∈ F(x1, x2, · · ·xn−1)[xn], has degree at most 2d2. Using a

homomorphism that is based on the sparse PIT map, and that preserves all polynomi-

als of degree 2d2 will require time of the order
(
n+d2

n

)
, which is not acceptable. (The

recent result [AFGS17] by Sumanta and others dictates what is acceptable – a factor

of 2O(n+d) is acceptable but anything more than that is not.)

A polynomial f is called a squarefree polynomial if for all polynomials p of degree at

least 1, p2 - f . If f and g are coprime, fg is squarefree, and if f and g are not

coprime then fg is not squarefree. A well known fact about squarefree polynomials

(over characteristic zero fields) helps us in relating squarefreeness and coprimeness in

the other direction.
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Fact 3.7. If f ∈ R[x] is a squarefree univariate polynomial over a zero-characteristic

ring R, then gcd(f, f ′) = 1 where f ′ denotes the derivative of f .

So now if f, g are coprime polynomials in F[x1, x2, · · ·xn], then considering fg as

a univariate polynomial in F(x1, x2, · · ·xn−1)[xn], and assuming F, we can say that

gcd(fg, (fg)′) = 1 if and only if fg is squarefree. So, in conclusion, in the case of

zero-characteristic fields, a squarefreeness preserving homomorphism for polynomials

with degree at most 2d is also a coprimeness preserving homomorphism for polynomials

with degree at most d; and a coprimeness preserving homomorphism for polynomials

with degree at most d also preserves the squarefreeness of polynomials with degree at

most d. This gives us the following lemma:

Theorem 3.8. Suppose F is a characteristic zero field. Suppose there exists a

homomorphism ψ from F[x1, x2, · · · , xn] to F[x1, x2, · · ·xc] such that for any f ∈
F[x1, x2, · · · , xn] of degree at most 2d, if f is squarefree then ψ(f) is squarefree, and

such that for any h ∈ F[x1, x2, · · · , xn] of degree at most d, if h 6= 0 then ψ(h) 6= 0.

Suppose a polynomial p ∈ F[x1, x2, · · · , xn] is computed by an arithmetic circuit of

the form Σ2ΠΣΠb(n). Then ψ(p) = 0 if and only if p = 0.

3.2 Finding “Good” Homomorphisms

Now that we have identified the properties that a homomorphism must have, if it

is to be useful for blackbox PIT of the models under consideration, the next task

is to find a homomorphism that preserves these properties. A good candidate to

begin with is the homomorphism used in blackbox PIT for sparse polynomials, which

reduces an n-variate polynomial to a univariate polynomial. This map already preserves

the non-zeroness of polynomials of degree d, if we define a sparse polynomial as a

polynomial having sparsity at most
(
n+d
d

)
, which is the maximum sparsity an n-variate

polynomial of degree d can have. Unfortunately, this homomorphism does not exhibit

the indivisibility preserving property, let alone the coprimeness preserving property.

So, we will slightly modify this map to come up with a map that preserves indivisibility.

We could not prove or disprove that it preserves coprimeness. Proving that it indeed

preserves coprimeness will yield us a blackbox PIT for arithmetic circuit of the form

Σ2ΠΣΠb(n). The actual description of this homomorphism is given in Section 4.2.
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The way we will prove that this homomorphism preserves indivisibility is that we will

devise a deterministic algorithm to test divisibility of n-variate degree d polynomials,

and then we will show that the homomorphism (say, ψ), in some sense, ‘preserves’

each step of the algorithm, thus implying that the output of the algorithm will not

change if the inputs f, g to the algorithm are replaced by ψ(f), ψ(g). This gives us a

brief and vague outline of the proof that the homomorphism preserves indivisibility. We

will be able to formally prove this in the next chapter after we describe the divisibility

testing algorithm and the homomorphism. The divisibility testing algorithm can be

further modified to get an algorithm to compute GCD of two polynomials. We discuss

the two algorithms in the next few chapters.



Chapter 4

The Divisibility Testing Algorithm

In this chapter, we will describe our division algorithm. From the discussion in the

previous chapter, it is clear that we need some homomorphism that will preserve each

step of this algorithm. Further, the running time of the algorithm is not especially

important for us, as we will not be using this algorithm as a subroutine of our PIT

algorithm. Still, we will give an algorithm to check for divisibility of n-variate degree

d polynomials in time poly
((
n+d
d

))
. We need this algorithm to be deterministic, and

not necessarily blackbox. We assume the polynomials are given to us in fully expanded

form, that is, as a list of monomial-coefficient pairs. Given an arithmetic circuit of

size s for an n-variate degree d polynomial, it takes poly
(
s ·
(
n+d
d

))
time to compute

the polynomial in its expanded form. So, even if we are given (whitebox) arithmetic

circuits for the polynomials, we can run our algorithm on them by first computing their

expanded form, and this will only incur extra cost of the order poly
((
n+d
d

))
(assuming s

to be small enough – which is not an unreasonable assumption), so the running time of

our algorithm will still be poly
((
n+d
d

))
. Our algorithm is a divisibility testing algorithm

that outputs whether the divisor divides the dividend, but it can also be modified to

output the division when the divisor divides the dividend. This algorithm can also be

converted into a blackbox divisibility testing algorithm.

The problem of general divisibility testing is as hard as the problem of general PIT.

Forbes, in his work in 2015, [For15] gives a demonstration of the reduction of PIT to

the divisibility testing problem: t | f if and only if f = 0, where t is a new variable that

does not appear in f . Conversely, the work by Kopparty, Saraf and Shpilka showed

28
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that one can solve the blackbox multivariate factoring problem, and thus blackbox

divisibility testing problem, given access to a blackbox PIT algorithm [KSS14].

In 1990, work by Kaltofen and Trager gave a poly(n, d)-time blackbox randomized

polynomial factoring algorithm for n-variate degree d polynomials over certain fields

[KT90]. Polynomial factorization algorithm factors a polynomial into irreducible poly-

nomials, so to use a polynomial factoring algorithm for divisibility testing, one needs

to check whether the multiset of the factors of the first polynomial is fully contained

in the multiset of the factors of the second polynomial. Checking this will essentially

require whitebox PIT (for the difference between a factor of first polynomial and a fac-

tor of the second polynomial), if the inputs and output of the algorithm are arithmetic

circuits. The sparse PIT algorithm solves the PIT problem in time 2O(n+d), so this may

not be a big issue if one is only interested in divisibility testing in time 2O(n+d). On

the other hand, if we allow the input to the algorithm to be polynomials in expanded

form, then the input itself may take size of the order
(
n+d
d

)
, and thus this algorithm

will be no better than our algorithm. Further, the algorithm by Kaltofen and Trager is

a randomized algorithm that consumes Ω(d2) random bits, as it crucially applies the

randomized PIT algorithm on the resultant of the input polynomial and its derivative.

Derandomizing it in the näıve way will make its complexity 2Ω(d2), which is even worse

than our algorithm which tests divisibility in time 2O(n+d). For the purpose of PIT, we

cannot afford an algorithm taking time more than 2O(n+d). The algorithm by Kaltofen

and Trager also works for only certain base fields, and it cannot be used for the fields

in which univariate polynomial factoring does not have a deterministic polynomial time

algorithm. For example for finite fields of characteristic p, we only have a randomized

algorithm that takes O(log p) bits to compute univariate polynomial factoring. The

näıve derandomization of this algorithm will make the time complexity O(p), which is

considered to be exponential, as representing p only takes log p bits in the input. We

note here that our algorithm does not depend on the characteristic of the field.

Another problem with using the algorithm by Kaltofen and Trager, or any other divisi-

bility testing algorithm for that matter, for our PIT applications is that we also need a

homomorphism such that the steps of a divisibility testing algorithm are preserved after

applying the homomorphism to apply Theorem 3.3, and we have no reason to believe

that there exists such a homomorphism for the algorithm by Kaltofen and Trager.

Michael Forbes, in his paper in 2015, discusses the problem of blackbox divisibility

testing of polynomials and its connections with PIT [For15]. He gives a deterministic
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polynomial time algorithm for a special case of the problem, when the divisor is a

quadratic polynomial, and the dividend is a sparse polynomial. Our algorithm discusses

a more general version of the problem, but it has a higher time complexity.

A lot of work has been done on factoring supersparse polynomials in one or two

variables. A supersparse polynomial has degree exponential in the size of input, but

has small sparsity. In 1977, Plaisted showed that the problem of computing GCD,

factoring or divisibility testing of univariate supersparse polynomials, in general, is

NP-hard [Pla77]. Kaltofen and Koiran, in 2005, gave an algorithm to find all the

linear or quadratic factors of a supersparse bivariate polynomial [KK05]. This was

later generalized by Grenet to all the constant-degree factors in 2014 [Gre14], and for

multivariates in 2016 [Gre16].

4.1 The Divisibility Testing Algorithm

Our algorithm for divisibility testing is inspired by the techniques used in the theory of

resultant, which reduce an algebraic problem concerning polynomials to a problem of

linear algebra. We will now describe a rough sketch of the algorithm, before formally

describing and proving it. We will first construct an algorithm for divisibility testing

where the input polynomials have a a non-zero constant term (that is, the polynomials

do not evaluate to zero at the point (0, 0, · · · 0)). Such an algorithm can then be

extended to general polynomials by applying a random shift to the variables, where

each variable xi is replaced by xi + ti. We divide the polynomial modulo a monomial

ideal first, and then see the conditions on the result which will imply divisibility in the

original ring. If the polynomials given to us are degree d polynomials in F[x1, x2, · · · xn],

we consider the monomial ideal generated by all the monomials of the polynomial ring

of degree d + 1 here. We will prove that every polynomial which has a non-zero

constant term is invertible modulo this ideal, and thus completely divides every other

polynomial modulo this ideal. We will then prove that the division modulo this ideal

that we obtain is the actual division if the divisor completely divides the dividend in

the polynomial ring. We can then check divisibility by multiplying (in the polynomial

ring) the divisor with the result of division modulo the ideal and checking if it is equal

to the dividend.
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We now formally state the problem of divisibility testing here. Suppose f, g are poly-

nomials of F[x1, x2, · · ·xn] with degree at most d. Then we need a deterministic

algorithm which will check whether f | g when the polynomials f, g are given in fully

expanded form as input to the algorithm.

The following lemma states that we can safely assume the divisor to have non-zero

constant term:

Lemma 4.1. Suppose there exists a deterministic algorithm A, which takes as input

two polynomials f, g ∈ F[x1, x2, · · · , xn] both of degree at most d, with the promise

that f(0̄) 6= 0, and correctly checks whether f | g or not, in time at most α ·
(
n+d
d

)β
for

some constants α, β. Then there exists an algorithm A′, which takes as input any two

polynomials f, g ∈ F[x1, x2, · · · , xn] both of degree at most d, and correctly checks

whether f | g or not, in time at most α ·
(
n+d
d

)β
.

Proof. The sparse PIT algorithm discussed in Section 2.4.3 tells us that for any poly-

nomial p ∈ F[x1, x2, · · · , xn] of degree d and sparsity m, there exists a hitting set

H ⊆ Fn such that |H| is O(m2n2 logm). Also, m ≤
(
n+d
d

)
. Thus, given a polynomial

f , we have a set H such that there exists a point t̄ ∈ H such that f(t̄) 6= 0.

Now suppose we are given a polynomial f ∈ F[x1, x2, · · · , xn] of degree d and sparsity

m, which evaluates to 0 at 0̄. We claim that we can obtain a polynomial which has

a constant term, or in other words, which is not zero at 0̄, from f , by shifting f by a

point t̄ such that f(t̄) 6= 0. That is, we apply the isomorphisms φj, as defined below,

on polynomials of F[x1, x2, · · · , xn] to get polynomials of F[y1, y2, · · · , yn]:

φi(p) :=


p

yj + tij

φi(p1) · φj(p2)

φi(p1) + φj(p2)

if p ∈ F
if p = xj for some j ∈ [n],

if p = p1 · p2 for some p1, p2 ∈ F[x1, x2, · · · , xn]

if p = p1 + p2 for some p1, p2 ∈ F[x1, x2, · · · , xn]

where t̄i ∈ H, which is the hitting set of f . We will not prove that φ is indeed a ring

isomorphism, but we do not believe it to be too difficult. We will now prove that there

exists a φj as defined above, such that (φj(f))(0̄) 6= 0.

Since H is a hitting set for f , there exists some i, such that for t̄i ∈ H f(t̄i) 6= 0. Now

look at the corresponding isomorphism φi. By definition of φi, (φi(f))(0̄) = f(t̄i) 6= 0.

Thus, φi(f) is not zero at 0̄, or, in other words, it has non-zero constant term.
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Now we will describe the algorithm A′, which is essentially the same as the algorithm

A, but with some additional preprocessing. In the beginning, we check if f has non-

zero constant term. If not, then we construct the hitting set H = {t̄1, t̄2, · · · , t̄k}
(say) for f , using the sparse PIT algorithm. Then we pick a point t̄i ∈ H such that

f(ti) 6= 0, and construct a homomorphism φi using t̄i, as defined above. The argument

above tells us that (φi(f)) 6= 0, and since φi is an isomorphism, we also know that

φi(f) | φi(g) if and only if f | g. So we now apply the algorithm A on φi(f), φi(g),

and return the output of A as our output.

The extra preprocessing step has three steps – constructing H, using it to find appro-

priate shifts and actually shifting f and g. The first step takes time O(
(
n+d
n

)
· n log d)

time, by the analysis of the sparse PIT algorithm. The second step takes |H| time. In

the third step, we need to compute φi(f) and φi(g) in the fully expanded form. Each

coefficient of φi(f) can be computed in time poly
(
n+d
d

)
, and thus the third step takes

time poly
(
n+d
d

)
. So, all the preprocessing can be done in time at most poly

(
n+d
d

)
, and

thus A′ runs in time at most poly(
(
n+d
d

)
).

This lemma tells us that we can safely assume the divisor (or even both the poly-

nomials) to have non-zero constant term. Now, we define the monomial ideal Id of

F[x1, x2, · · · , xn] as the ideal generated by all the monomials of degree d+ 1.

Id := 〈x̄ē :
∑
i∈[n]

ei = d+ 1〉

Now we will claim that every polynomial f ∈ F[x1, x2, · · · , xn] which has non-zero

constant term, and which has degree at most d is uniquely invertible modulo Id.

Theorem 4.2. Suppose f is a polynomial of F[x1, x2, · · · , xn] with degree at most

d, such that f(0̄) 6= 0. Suppose the ideal Id of F[x1, x2, · · · , xn] is defined as Id =

〈x̄ē :
∑

i∈[n] ei = d + 1〉. Then there exists a unique g ∈ F[x1, x2, · · · , xn] such that

degree of g is at most d and fg ≡ 1 (mod Id). Further, g(0̄) 6= 0.

Proof. There are multiple approaches to prove this, each with its own merits. Later in

this thesis, we will see another more structured, although slightly more complicated,

way of proving this theorem.

The cleanest way to prove this is via formal power series. We can consider f to be a

formal power series over n variables. A formal power series over n variable is invertible
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(in the domain of formal power series) if it has a non-zero constant term. So, f is

invertible in the domain of formal power series. Let g be the inverse of f in this

domain. Now, we define the polynomial g′ as the degree ≤ d part of g. Suppose g′′ is

the degree greater than d part of g. Then, g′′ · f is a power series which has zero as

the coefficient of all monomials of degree at most d. But g · f is the power series 1.

Thus, g′ · f must be 1 modulo Id.

However, since we have not formally defined the formal power series, we will prove this

only using elementary algebra here, by induction on the degree of f . This proof may

seem a bit tedious, but it has the advantage of being constructive, as we will actually

construct the inverse od f recursively.

Base Case: When the degree of f is zero, f ∈ F, and thus there exists a g ∈ F such

that fg = 1, and thus fg ≡ 1 (mod I0). Degree of this g is also 0, and g 6= 0,

so g(0̄) 6= 0. This completes the base case.

Induction Step: Now suppose the theorem is true for all values of d less than some l.

We will now prove that it then must be true for d = l. Suppose f is a polynomial

of degree l. Suppose f = fd + f<d, where f<d has degree strictly less than d,

and fd is a homogeneous polynomial of degree d. By induction hypothesis, there

exists a g of degree less than d such that f<d · g ≡ 1 (mod Id−1). Now, we

define the polynomial h as h := f · g = fd · g + f<d · g. We split h into three

parts: h>d, which has no monomial of degree less than d (or in other words,

h>d ∈ Id); hd, which is a homogeneous polynomial of degree d; and h<d, which

is a polynomial of degree at most d− 1.

Now recall that h = fd · g + f<d · g. In fd · g there exists no monomial of

degree less than d, as fd is a homogeneous polynomial of degree d. The only

monomial of degree less than d in f<d · g is 1, by the definition of g. So,

h<d = 1. So, f · g ≡ 1 +hd (mod Id) where hd is a homogeneous polynomial of

degree d. Now, by assumption, f<d has a non-zero constant term, say c. Then,

hdf = hdfd + hdf<d ≡ 0 + chd (mod Id). These two congruences give us a

way to construct the inverse of f modulo Id. We define g′ := g − c−1hd. Then,

fg′ = fg − c−1fhd ≡ 1 + hd − hd ≡ 1 (mod Id).

So, g′ is the inverse of f modulo Id. Also note that degree of g′ is at most d, as

degree of g is less than d, and −c−1hd is a homogeneous polynomial of degree

d. Further, g′ has a non-zero constant term, as g has a non-zero constant term.
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We will prove the uniqueness of inverse by contradiction. Suppose there exist two

distinct polynomials g1 and g2 in F[x1, x2, · · · , xn], both of degree at most d, such

that fg1 ≡ fg2 ≡ 1 (mod Id) Then, f(g1 − g2) ∈ Id. Since g1 − g2 is a non-zero

polynomial of degree at most d, there exists a d′ ∈ [d] such that d′ is the smallest

degree among the degrees of monomials that are present in g1 − g2. Let gd′ be the

degree-d′ homogeneous part of g1 − g2, and let g>d′ be the degree greater than d′

part of g1 − g2. Further, c be the constant term of f , and f ′ be the degree ≥ 1 part

of f . Since f(g1 − g2) ≡ 0 (mod Id), (c + f ′)(gd′ + g>d′) ≡ 0 (mod Id). Thus,

cgd′ + cg>d′ + f ′gd′ + f ′g>d′ ≡ 0 (mod Id). However, cgd′ is a non-zero homogeneous

polynomial of degree d′ for some d′ ≤ d, and none of the other three summands

can have a monomial of degree less than d′ + 1. Thus cgd′ + cg>d′ + f ′gd′ + f ′g>d′

cannot be zero modulo Id, which is a contradiction. This proves the uniqueness of the

inverse.

Note that the proof of Theorem 4.2 is constructive, and we get a recursive way to

construct the inverse. The existence of a unique inverse for each polynomial with

non-zero constant term implies that any polynomial can be completely divided by a

polynomial with non-zero constant term, modulo Id. Further, by arguments similar

as above, we can say that the division is unique, modulo Id. Now, if f divides g in

the polynomial ring, then there exists a polynomial h such that g = fh. This identity

will also hold modulo Id, that is, g ≡ fh (mod Id). Now, the uniqueness of division

modulo Id implies that the recursive algorithm that Theorem 4.2 must output this

same h.

The output of the recursive algorithm is a polynomial of degree at most d. So, if we

multiply the output of the recursive algorithm with the divisor, we will get a polynomial

of degree at most 2d. This polynomial must be equal to the dividend if the divisor

divides the dividend in the polynomial ring. Moreover, if the divisor does not divide

the dividend, this polynomial cannot be equal to the dividend. Thus to checking the

divisibility of dividend with divisor is equivalent to checking whether this polynomial is

equal to the dividend or not. If the polynomials that we are dealing with are provided to

us in expanded form, this checking can be done in time O(
(
n+2d
d

)
), and even otherwise,

the sparse PIT algorithm can do it in time poly
(
n+2d
d

)
. This provides us a rough sketch

of the divisibility testing algorithm. We now formalize this in the following theorem:

Theorem 4.3. Suppose f, g ∈ F[x1, x2, · · ·xn] are polynomials of degree at most

d, such that f(0̄) 6= 0. Let the degree of f be df and the degree of g be dg. The
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monomial ideal Id of F[x1, x2, · · ·xn] is defined as Id = 〈x̄ē :
∑

i∈[n] ei = d+1〉. Then,

there exists a unique polynomial h such that fh ≡ g (mod Id) and such that degree

of h is at most d. Further, fh = g if and only if f divides g in F[x1, x2, · · ·xn]. Also,

degree of h is dg − df if f divides g in F[x1, x2, · · ·xn], and it is more than d − df
otherwise.

Proof. Theorem 4.2 tells us that there exists a unique polynomial p, of degree at most

d, such that fp ≡ 1 (mod Id). Now, to prove the existence of h, we just multiply p

by g, modulo Id. Suppose h is a polynomial of degree at most d, such that pg ≡ h

(mod Id). Then, fh ≡ fpg ≡ g (mod Id).

Now we prove the uniqueness of h. Suppose there exists a polynomial h′ such that

fh′ ≡ g (mod Id). Then, f(h − h′) ≡ 0 (mod Id). But since f has a non-zero

constant term, to cancel that term out, h− h′ must be zero modulo Id, by argument

similar to that in the proof of Theorem 4.2.

Now suppose f | g. Then there exists a polynomial p, of degree dg − df , such that

fp = g. Then, fp ≡ g (mod Id). But, by uniqueness of h as discuss above, we have

p ≡ h (mod Id). Since both h and p have degree less than d, p must be equal to h,

and so fh = g, and degree of h is dg − df .

f On the other hand, if f - g, then there cannot exist a polynomial p such that fp = g.

Thus, fh 6= g. Also, if degree of h is not more than d− df , then degree of fh is not

more than d. But since fh ≡ g (mod Id), and since g has degree less than d, the

nature of Id dictates that fh = g, which contradicts our assumption that f - g. Thus

degree of h must be at least d− df .

In the discussion so far, we check the divisibility with the help of the ideal Id as

defined in the previous theorems. However, the Theorems 4.2 and 4.3 can be slightly

generalized by generalizing the ideal Id. The proofs of the Theorems 4.2 and 4.3 will

work well with any the monomial ideal, such that it contains all but finitely many

monomials of the ring. An example of an such an ideal, other than Id as defined

previously, is the ideal 〈xidi : i ∈ [n]〉, for some di’s.

One can prove this generalized version of Theorem 4.3 by considering the polynomials

as formal power series, but we will just state it without proof.

Theorem 4.4. Let I be a monomial ideal of R[x1, x2, · · · xn] such that the number

of monomials of R[x1, x2, · · ·xn] that do not appear in I is finite. Suppose f, g ∈
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R[x1, x2, · · ·xn] are polynomials such that none of them contain any monomial that

is present in I, and f is such that f(0̄) is a unit in R. Then, there exists a unique

polynomial h such that fh ≡ g (mod I) and such that h does not have any monomial

of I. Further, fh = g if and only if f divides g in R[x1, x2, · · ·xn].

The discussion so far gives us an for divisibility testing of polynomials, given below as

Algorithm 1. Now we determine the running time of this algorithm. First, we assume

Algorithm 1: The Divisibility Testing Algorithm

Input : n, d ∈ N, two polynomials f, g ∈ F[x1, x2, · · · , xn] of degree at most d, such that
f 6= 0

Output: 1 if f | g, 0 otherwise.
1 Find a point t̄ such that f(t̄) 6= 0, using the sparse PIT algorithm.
2 Shift f and g by t̄ to get polynomials f ′, g′ respectively.
3 Let c be the constant term of f ′. Then define h0 as c−1. Define i = 0.
4 while i < d do
5 Compute f ′ · hi. Define pi as the degree-(i+ 1) part of f ′ · hi.
6 Define hi+1 as hi − c−1pi.

7 Define h as the degree ≤ d part of hd · g.
8 if f · h = g then
9 return 1

10 else
11 return 0

that the inputs given to us are in the expanded form, and not arithmetic circuits. Then

the first two steps take time polynomial in
(
n+d
d

)
, by Lemma 4.1. Now, ith iteration

of the while loop will involve basic operations on polynomials of at most i + 1, and

thus they take time polynomial in
(
n+i
i

)
, and thus polynomial in

(
n+d
d

)
. Computing

h also involves multiplication of two polynomials with degree at most d, and we need

not compute terms of degree higher than d in the multiplication, so this also takes

time polynomial in
(
n+d
d

)
. In the end, we check if f · h = g. This requires PIT of

an n-variate polynomial of degree 2d, and the sparse PIT algorithm can solve this in

time polynomial in
(
n+2d
n

)
, which again can be written as a polynomial in

(
n+d
d

)
. Thus

Algorithm 1 runs in time O(
(
n+d
d

)c
), for some constant c.

Now if the inputs are given to us in circuit form, steps 2 can be done in time

poly(s, n, d). Further, the while loop can be run in time poly(n, d), when we in-

terpret computing hi as constructing the circuit for hi. As we have seen in Section

2.4.2, given a circuit for a polynomial, we can compute its degree k homogeneous part

in time poly(s, n, d)-time. However, the preprocessing step and the final step in which

we check if f · h = g need PIT, and these steps prevent us from claiming that the
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algorithm can run in time poly(s, n, d). So even if the inputs are given as arithmetic

circuits, Algorithm 1 requires poly
(
n+d
d

)
time in the worst case.

Although the discussion in this section and the above algorithm only admits polynomials

over fields as inputs, all we really need is that the divisor input should have a constant

term that is invertible in the base ring, as Theorem 4.4 suggests. For polynomials over

fields, this has a nice workaround in that we can shift a polynomial which does not have

a non-zero constant term, to get a polynomial which has a non-zero constant term.

But if the polynomial provided to us already has invertible constant term in the base

ring, then we can still run the same algorithm to test the divisibility for polynomials

over rings Note that in such a case, we skip the preprocessing steps in that case (first

two steps) and assume f ′ = f from the third step onwards.

4.2 Divisibility Testing and PIT

In Section 4.1 we described our divisibility testing algorithm. Our main motivation

towards testing divisibility, however, was to facilitate a PIT algorithm for polynomials

of the form f −
∏
gi. Lemma 3.2 tells us that, to solve PIT for polynomials of the

above form, we need a homomorphism ψ such that ψ(f) | ψ(g) only if f | g. As

discussed earlier, we will prove that a homomorphism that we will define now satisfies

this property, and we will do so by showing that each step of the divisibility testing

algorithm is ‘preserved’ by this homomorphism.

Theorem 2.12 tells us that for every d ∈ N, there exists a homomorphism φd :

F[x1, x2, · · · , xn]→ F[y], such that all the monomials of F[x1, x2, · · · , xn] with degree

at most d are mapped to different monomials of F[y] under φd. We know that φd is

such that for all i ∈ [n], φ(xi) = ywi , where wi ≡ di (mod pd) and wi < pd for some

prime number pd. The exact value of pd depends on d, and can only be obtained by

running an algorithm, that runs in time poly
(
n+d
d

)
. (See the proof of Theorem 2.12

for more details).

We will use a slight modification of φ2d as our indivisibility preserving homomorphism.

First, we introduce a new variable t, and by mapping xi to xit, map each polynomial

of F[x1, x2, · · · , xn] to a polynomial of F[x1, x2, · · · , xn, t]. This map is sometimes

called a ‘degree-counter’, as degree of a polynomial in the domain is equal to the

individual degree in t of the image of the polynomial. Then we apply the map φ2d
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on these polynomials, to get our indivisibility preserving map. Note that φ2d will not

touch t at all, as it is a map from F[x1, x2, · · · , xn] to F[y].

Formally, the homomorphism ψd : F[x1, x2, · · · , xn] → F[y, t] is such that for all

polynomials f ∈ F[x1, x2, · · · , xn], ψ(f) is defined to be f(yw1t, yw2t, · · · , ywnt),

where w1, w2, · · ·wn are defined as in the map φ2d. Although the definition of ψd

depends on the value of d, we will drop the subscript d, and call the map ψ henceforth,

with the understanding that we mean ψd when we say ψ. Usually, the value of d will

be equal to the bound on the degree of polynomials under consideration.

We now give a rough sketch of the proof of the fact that ψ preserves indivisibility, that

is, ψ(f) | ψ(g) if and only if f | g, for all polynomials f, g of degree at most d.

For any polynomial f ∈ F[x1, x2, · · · , xn] of degree d, and where fi is defined as the

degree-i part of f for all i ∈ [d], we have ψ(f) = ψ(f0) + ψ(f1) + · · ·+ ψ(fd). Now,

since fi is a homogeneous polynomial of degree i, by the definition of ψ, one can see

that ψ(fi) is of the form ti · ρ(y) for some univariate polynomial ρ. Using this, we

will prove that the degreet = i part of ψ(f) is equal to ψ(fi), where fi is the (total)

degree-i part of f .

Now we will compare two runs of the divisibility testing algorithm – one with f and

g as the inputs, and one with ψ(f) and ψ(g) as the inputs, treating ψ(f), ψ(g) as

univariates in the variable t, over the ring F[y]. The polynomials hi’s, used in Algorithm

1, will now be univariates in t, over the ring F[y] in the second run of the algorithm. We

will prove that the polynomial hi in the second run is exactly the polynomial obtained

by applying the map ψ on the corresponding polynomial hi of the first run, and the

polynomial h obtained by the algorithm in the second run is the same as the polynomial

obtained by applying ψ on the corresponding polynomial h in the first run. From this,

we will be able to conclude that the output of the divisibility algorithm when the input

is ψ(f), ψ(g) is same as its output when the input is f, g, and thus we can say that ψ

preserves indivisibility.

Now we show that if f is a polynomial with non-zero constant term in F[x1, x2, · · · , xn],

then ψ(f), when considered to be a univariate in the variable t, has an invertible (in

F[y]) constant term. In other words, this mean that ψ(f), evaluated at t = 0 gives us

an element of F, instead of some polynomial of non-zero degree in F[y].

Lemma 4.5. Suppose f ∈ F[x1, x2, · · · , xn]. We will consider ψ(f) as a univariate

polynomial in R[t], where R = F[y]. Then, ψ(0) = f(0̄).
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Proof. This is not hard to see, from the definition of ψ.

Corollary 4.6. If f ∈ F[x1, x2, · · · , xn] has a non-zero constant term, then ψ(f) ∈
R[t] has a constant term invertible in R, where R = F[y].

The above corollary helps us in establishing that the divisibility testing algorithm,

given as Algorithm 1, can indeed be run of ψ(f), ψ(g), considering them as univariate

polynomials over F[y], for any f, g where f(0̄) 6= 0. Note that the algorithm can be

run over polynomials over integral domain, as long as the divisor input has a constant

term invertible in the integral domain, by skipping the preprocessing steps.

Now we will prove that the degreet = i part of ψ(f) is equal to ψ(fi), where fi is the

(total) degree-i part of f .

Lemma 4.7. Suppose we have a polynomial f ∈ F[x1, x2, · · · , xn] of degree at most

d, such that f = f0 + f1 + · · · + fd, and for all i, fi is a homogeneous polynomial

of degree i. Then, considering ψ(f) as a univariate in R[t], where R = [y], we have

coeffti(ψ(f)) · ti = ψ(fi) for all i.

Proof. The image of any homogeneous polynomial under ψ is a monomial in R[t],

whose degree is equal to the degree of the homogeneous polynomial, by the construc-

tion of ψ. Thus for all i, ψ(fi) = ti ·ρi(y) for some univariate polynomial ρi as each fi

is a homogeneous polynomial of degree i. Now, ψ(f) =
∑

i∈[d] ψ(fi) =
∑

i∈[d] ρi(y)ti.

So coeffti(ψ(f)) · ti = ρi(y)ti = ψ(fi).

The ρi(y)’s mentioned in the proof above are actually the polynomials φ2d(fi). Further,

the discussion in Theorem 2.12 tells us that if p is a polynomial of degree at most d,

then φd(p) = 0 if and only if p = 0. From this, we can conclude that, for a polynomial

p, the degree (in t) of ψ(p) is not more than the (total) degree of p, and the two are

equal if p has degree at most 2d. The above lemma also tells us that if p≤k is the

degree ≤ k part of a polynomial p, then the degree ≤ k part of ψ(p) (when considered

as a univariate in R[t], where R = F[y]) is ψ(p≤k).

Now we prove the main theorem of this section, which says that the ψ as defined

above preserves the indivisibility of two polynomials, when both of them have degree

at most d.

Theorem 4.8. Suppose we have two polynomials f, g ∈ F[x1, x2, · · · , xn], both of

degree at most d and such that f(0̄) 6= 0. Then ψ(f) | ψ(g) if and only if f | g.
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Proof. If f | g, then there must exist an h such that fh = g. The definition of a

homomorphism implies that ψ(g) = ψ(fh) = ψ(f)ψ(h), and thus ψ(f) | ψ(g). So

all we need to do is to prove that the converse is also true, that is, to prove that if

ψ(f) | ψ(g) then f | g. We will do this by running the divisibility testing algorithm on

f, g in the first run, and then on ψ(f), ψ(g), considering them as univariates in R[t]

in the second run, and then comparing the two runs.

First, we establish the fact that the divisibility testing algorithm can be run on ψ(f),

ψ(g), when them as univariates in t. From Corollary 4.6, we know that the constant

term in ψ(f) is invertible in F[y], as f(0̄) 6= 0. So we can apply the divisibility testing

algorithm on ψ(f), ψ(g) by skipping the preprocessing steps.

Now suppose the polynomials obtained in the while loops of the two runs of the

algorithm on inputs f, g, and on inputs ψ(f), ψ(g) (the polynomials described by hi’s

in Algorithm 1) are l1, l2, · · · , ld and l′1, l
′
2, · · · , l′d, respectively. Further, assume that

the polynomial denoted by h in the algorithm is equal to l in the first run, and l′ in

the second run.

Note that li ∈ F[x1, x2, · · · , xn] and l′i ∈ (F[y])[t] for all i ∈ d. Also note that the

while loop indeed runs for exactly d steps in both the runs – the while loop runs for

as many steps as the degree of the divisor input, and the degree of ψ(f) is equal to

the degree of f , as discussed earlier.

Now we will prove that ψ(li) = l′i for all i ∈ [d]. We will do so by induction on

i. For the base case, note that l0 = l′0 is a constant of F, defined by the inverse

of the non-zero constant part of f , and thus ψ(l0) = l′0. Now suppose ψ(li) = l′i

for all i < j for some j. We need to show that ψ(lj) = l′j. Now, lj is defined as

lj−1 − l−1
0 p, where p is the degree-j part of f · lj−1, and similarly l′j = l′j−1 − l−1

0 p′,

where p′ is the degree-j part of ψ(f) · l′j−1. Now note that l′j−1 = ψ(lj−1), and

thus ψ(f) · l′j−1 = ψ(f · lj−1), and thus by Lemma 4.7, ψ(p) = p′. Now as ψ is a

homomorphism, l′j = l′j−1 − l−1
0 p′ = ψ(lj−1) − l−1

0 ψ(p) = ψ(lj). By induction, we

conclude that ψ(ld) = l′d.

Now, the algorithm computes the polynomial h = hd × g, where × denotes multipli-

cation modulo the ideal Id. In our case, the ideal Id is simply the ideal 〈td+1〉. Now l

is the degree ≤ d part of ld · f , and l′ is the degree ≤ d part of ψ(f) · l′d = ψ(ld · f).

So, again by Lemma 4.7, we have l′ = ψ(l).
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Finally, the algorithm concludes that f | g if hf = g. So, the algorithm, in the

first run, say that f | g if g = lf , and in the second run, say that ψ(f) | ψ(g) if

ψ(g) = ψ(l)ψ(f). Since we need to prove that ψ(f) | ψ(g) implies f | g, we need to

prove that ψ(g − fl) = 0 implies that g − fl = 0. Now note that the φd preserves

the non-zeroness of polynomials of degree at most d. Also note that, by the definition

of ψ, for any polynomial p, ψ(p)(1) = φ2d(p). So, ψ(g − fl)(1) = φ2d(g − fl), and

thus if ψ(g − fl) = 0, then φ2d(g − fl) = 0, and thus g − fl = 0. This implies that

the output of the two runs of the algorithm must be the same, and thus ψ preserves

indivisibility.

In the Chapter 6, we will finally link all the pieces together, and describe the algorithm

for the blackbox PIT problem when the input is promised to be of the form f −
∏
gi,

for polynomials f, gi. The main idea for the algorithm will be to reduce the n-varite

polynomial to a bivariate polynomial using the map ψ described here, and then use

Theorem 2.6 to do PIT of the bivariate thus obtained.



Chapter 5

The GCD Algorithm

In this chapter, we will describe a deterministic algorithm for computing the GCD of

two multivariate polynomials. This algorithm runs time poly(
(
n+d
d

)
), when the input

polynomials are n-variate polynomials of degree at most d, given in their fully expanded

form. The algorithm is a slight modification of the divisibility testing algorithm.

Most of the important algorithms to compute the GCD of two multivariate polynomials,

like the EZ-GCD algorithm by Moses and Yun [MY73], have running time dependent

on the sparsity of the polynomials, and the sparsity of an n-variate degree d polynomial

could be as large as
(
n+d
d

)
, which is exponential. In that sense, the algorithm that we

give in this chapter, which works in time poly(
(
n+d
d

)
), does not perform worse than

other algorithms for GCD of two polynomials. The main aim for working towards this

algorithm was to solve the PIT problem in the special case of ΣΠaΣΠb(n) circuits,

and this algorithm can be thought of as a byproduct of our work on PIT. The goal was

to demonstrate a homomorphism that will preserve each step of the algorithm, and

thus preserve the coprimeness of two polynomials, but we could not come up with a

homomorphism that does this. Nevertheless, this algorithm still helps us to solve the

whitebox PIT problem in the special case of ΣΠaΣΠb(n) circuits.

Tateki Sasaki and Masayuki Suzuki gave three new GCD algorithms, that are fast for

some special types of polynomials [SS92]. Zippel in 1979 gave a randomized algo-

rithm (also sometimes called the sparse modular algorithm) for GCD that runs in time

polynomial in sparsity [Zip79]. Brown and Traub in 1971 gave an algorithm for GCD

that requires time exponential in the number of variables [Bro71]. As mentioned in

42
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the previous chapter, Kaltofen and Trager gave a poly(n, d) time randomized algo-

rithm to factorize an n-variate degree d polynomial [KT90]. Näıve derandomization

of this algorithm will result in 2poly(n,d) time gcd algorithm, which requires access to a

subroutine that solves PIT of polynomials in 2poly(n,d) time. The subroutine for PIT is

not a problem, as even the sparse PIT algorithm can solve the blackbox PIT problem

in as much time. However, this algorithm only works for base fields where univariate

factorization can be done, and, for example, require time exponential in p for poly-

nomials over a field of characteristic p. Further, our algorithm computes the GCD in

time poly(
(
n+d
d

)
), which can be described as 2O(n+d), which is better than 2poly(n,d).

(As discussed in the previous chapter, the poly(n, d) for their algorithm is Ω(d2)). We

note here that Kaltofen’s factoring algorithm works even for blackboxes of polynomials,

unlike our GCD algorithm.

As mentioned in the previous chapter, Plaisted in 1977 showed that the problem of

computing the GCD of two univariate supersparse polynomials is NP-hard, when we

consider the input size as s log d, where s is the sparsity and d is the degree of the

polynomials [Pla77].

5.1 Background

GCD, or the greatest common divisor, of two elements a and b of a ring R is defined

as the element c of R, such that c divides both a and b, and every element of R that

divides both a and b also divides c.

A unique factorization domain is defined as an integral domain where each non-zero

element of the domain can be written as a product of irreducible elements of the

integral domain in unique manner, upto reordering or multiplication by units. Every

field is also a unique factorization domain. Naturally, GCD of two elements of a unique

factorization is well defined. The domain of multivariate polynomials over a field (or

over any unique factorization domain) is a unique factorization domain. Thus every

pair of multivariate polynomials have a unique GCD (upto unit multiples).

To compute the GCD of integers, we have the famous Euclid’s algorithm, which re-

peatedly divides the larger integer by the smaller integer and replaces the larger integer

by the remainder. The algorithm works well for all unique factorization domains where

division with remainder is possible, such as univariate polynomials over a field. The
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unique factorization domains where division with remainder is possible are thus called

Euclidean domains. Unfortunately, multivariate polynomials over a field (or a ring) do

not form a Euclidean domain, and thus Euclid’s algorithm cannot be applied here for

computing the GCD.

We now assume that f, g ∈ F[x1, x2, · · · , xn] are two polynomials of degree df , dg

respectively, and that h = gcd(f, g) has degree dh. Clearly, 0 ≤ dh ≤ dg and 0 ≤
dh ≤ df . In the 18th century, Bézout showed that if f, g are elements of a Euclidean

domain, then there exist a, b in the same Euclidean domain such that fa + gb = h

[Béz79]. This is not true for all unit factorization domains however, and in particular,

this is not true for multivariate polynomials.

However, the ring of univariate polynomials is a Euclidean domain. So, the Bézout’s

identity is true for f, g, when we consider them as polynomials in F(x2, x3, · · · , xn)[x1],

where F(x2, x3, · · · , xn) is the field of fractions of F[x2, x3, · · · , xn]. Thus, there exist

a, b ∈ F(x2, x3, · · · , xn) such that fa+gb = h. This further gives rise to concepts like

resultants, which can be used to test coprimeness of two polynomials which, though

not directly relevant for our discussion on our GCD algorithm, are useful for our PIT

applications. Unfortunately, the degree of the resultant of two degree-d multivariates

is 2d2, so applying the sparse PIT algorithm on the resultant to check coprimeness will

only test coprimeness testing algorithm that runs in time 2O(d2).

The following theorem establishes a connection between GCD and LCM of two poly-

nomials. This is a well-established fact in number theory, and has a simple proof. We

will not prove it here.

Theorem 5.1. Suppose f, g ∈ F[x1, x2, · · · , xn]. Let h be the GCD of f, g, and let

l = fg
h

. Then if l′ is such that f | l′, g | l′, then l | l′.

Our GCD algorithm find GCD by finding the LCM of two polynomials first, so this

theorem is quite useful to us in our analysis of the GCD algorithm in the following

section.

5.2 The GCD Algorithm

We will give a rough sketch of the algorithm in this section. We compute the GCD

of two polynomials via computing their LCM first. Suppose the input polynomials
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f, g ∈ F[x1, x2, · · · , xn] have degrees df , dg respectively, and the polynomial l is such

that f | l, g | l and if some l′ ∈ F[x1, x2, · · · , xn] is such that f | l′, g | l′, then l | l′.
We will assume, without loss of generality, that df ≤ dg. Suppose the degree of l is

dl. Theorem 5.1 tells us that gcd(f, g) = fg
l

. We also know that dg ≤ dl ≤ df + dg.

In the ith step of this algorithm, we will assume dl to be dg + i− 1, and then we will

try to find a polynomial of this degree that is divisible by both f and g. If we succeed,

we claim that this polynomial is the LCM of f, g. If we fail, we increment the value

to be tried for dl.

To check if there exists a polynomial of given degree such that both f and g divide it,

we assume the coefficients of the polynomial to be some variables. Then we apply the

divisibility testing algorithm on this polynomial and f , and then on this polynomial and

g. An important fact to note here is that we require the dividend polynomial in the

very last steps of the divisibility testing algorithm. Using this fact, we will show that

the two runs of the divisibility testing algorithm will give us a homogeneous system of

linear equations. This homogeneous system of equations has twice as many equations

as variables, and thus may or may not have a non-trivial solution. We find one non-

trivial solution of this system, if it exists, and this will give us the desired LCM. The

number of variables in the system of equation generated in the ith step is
(
n+dg+i−1

n

)
,

and i ≤ df , so we will be able find a solution in time 2O(n+d).

We will, however, give a proof that is a little more formal than what we argued above.

We first define a few terms that we will use in the rest of the discussion in this section.

We define the set Pd as the set of all polynomials of F[x1, x2, · · · , xn] of degree at

most d. Similarly, we define the set Md as the set of all monomials of F[x1, x2, · · · , xn]

that have degree at most d. We define Na,b as the number
(
a+b
b

)
. So the number of

monomials in Md is Nn,d.

We will first observe that Pd is a vector space over F, with the usual polynomial

addition and scalar multiplication as the vector operations. This vector space has

dimension Nn,d, and the set Md serves as its basis. Thus there exists an isomorphism,

say ψ, between the vector space Pd and FNn,d . We will then prove that the set of

all polynomials of Pd that are divisible by a given polynomial f of degree df , forms a

subspace of Pd. This will imply that there exists a system of linear equations over F,

such that its solutions correspond to the polynomials with degree at most d that are

divisible by f . We will describe a way to construct this system of linear equations, and

show that it has Nn,d variables and Nn,d−df equations. Similarly another polynomial
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g of degree dg will give us another system of linear equations, whose solution set

corresponds to all the polynomials of degree at most d that are divisible by g. The

intersection of these two subspaces will be the set of polynomials that are divisible

by the LCM of f, g. This intersection corresponds to the points in FNn,d that satisfy

both the system of linear equations, or in other words, another system of equations

which contains equations from both the systems of linear equations, corresponding to

f and g respectively. Solving this combined system of linear equations corresponding

to the LCM for a non-trivial solution will give us a multiple of the LCM. If the LCM

has degree more than d, the system cannot have a non-trivial solution. So we take

d = dg in the beginning; obtain the system of linear equations corresponding to the

LCM; solve it, if possible, for a non-trivial solution; and if no non-trivial solution is

found, increment the value of d and repeat the process. This completes the informal

overview of the algorithm, and now we will formally show the algorithm.

Lemma 5.2. Pd is a vector space over F, with the usual polynomial addition and mul-

tiplication (by a constant) as the vector operations. This vector space has dimension

Nn,d, and the set of all monomials of degree at most d serves as its basis.

Proof. One can easily verify that all the axioms for vector spaces are satisfied by the

operations for Pd. Now, suppose the monomials of Md are not linearly independent.

Then, there must exist c1, c2, · · · , cmn,d
∈ F, not all zero, such that

∑
cimi = 0,

where mi ∈Md is the ith monomial of degree at most d (Once can always order them

in some way, or one can just use the graded lexicographical monomial ordering). This

can only happen if all ci’s are zero, so we have a contradiction. So the set of all the

monomials of degree at most d is indeed a linearly independent set. Now look at some

polynomial p in Pd. Since p ∈ Pd, we know that the degree of p cannot be more than

d, and then it can always be expressed as a linear combination of some monomials of

degree at most d.

Corollary 5.3. The vector space FNn,d is isomorphic to Pd. Suppose the monomials

in Md are m1,m2, · · ·mNn,d. For a vector v̄ ∈ FNn,d , we denote the ith component of

v̄ by (v̄)i. Suppose the map ψ : Pd → FNn,d is defined componentwise as (ψ(p))i =

coeffmi
(p). Then ψ is an isomorphism.

Proof. If a finite dimensional vector space V over a field F has dimension d, then

it is isomorphic to the vector space F d. If {b1, b2, · · · , bd} is a basis of V , and

{v1, v2, · · · vd} is a basis of F d, then the map that maps c1b1 + c2b2 + · · · + cnbn
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to c1v1 + c2v2 + · · · + cnvn for any c1, c2, · · · , cn ∈ F is an isomorphism from V to

F d. Thus this corollary follows.

Now we show that for a polynomials p of degree dp, the set of polynomials in Pd that

are divisible by p form a subspace of Pd.

Lemma 5.4. Suppose p ∈ F[x1, x2, · · · , xn] is a non-zero polynomial of degree dp.

Then the set of all polynomials in Pd that are divisible by p forms a subspace of Pd.

When d ≥ dp, the set B = {m · p : m ∈Md−dp} is the basis of this subspace.

Proof. For any p1, p2 ∈ Pd such that p | p1, p | p2, and for all constants α, β ∈ F,

p | (αp1 +βp2), so the set of all polynomials in Pd that are divisible by p indeed forms

a subspace of Pd. The set B is obtained by multiplying each monomial of degree at

most d− dp with the polynomial p. If a polynomial f is such that p | f , then degree

of f
p

can be at most d − dp and thus, B spans the set of all polynomials in Pd that

are divisible by p. Now, suppose there exist c1, c2, · · · ck where k = Nn,d−dp such that

c1m1p + c2m2p + · · · + ckmkp = 0. So p(c1m1 + c2m2 · · · ckmk) = 0. Since p is

non-zero, this means that c1, c2, · · · , ck must all be zero. This shows that B is also

linearly independent. Thus B is a basis for this subspace.

We will denote the subspace of Pd consisting of all the polynomials that are divisible

by a polynomial p, as Sp. From the theorem above, we get the following corollary,

using standard facts about vector spaces and isomorphisms.

Corollary 5.5. One can construct a homogeneous system of linear equations, with

Nn,d variables and Nn,d−dp equations, such that its solution space in Fn,d is exactly the

image of the subspace given in Lemma 5.4 above, under the isomorphism ψ, as defined

in Corollary 5.3 above. Constructing this homogeneous system of linear equations takes

poly(Nn,d) time.

From this, we can construct a divisibility testing algorithm, as testing subspace mem-

bership given the basis for the subspace can be done in time polynomial in the size

of the basis. In fact, Algorithm 1 that we provided in the previous chapter is just a

variation of this method. Given a non-zero polynomial f of degree df , and a poly-

nomial g of degree d, we construct a Nn,d−df × Nn,d matrix A such that Ax = 0 is

a homogeneous system of linear equations, and such that if Av̄ = 0 then ψ−1(v̄) is
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divisible by f . We can then check if ψ(g) satisfies this system of linear equations. If

it does, then we say that f | g, and f - g otherwise.

Corollary 5.5 also tells us that for any f, g ∈ Pd, we have a homogeneous system

of linear equations, such that its solution set is the image under ψ of the set of

polynomials divisible by both f and g. This system of linear equations has a non-

trivial solution if and only if there exists a non-zero polynomial in Pd which is divisible

by both f, g. Further, if we know that there does not exist a non-zero polynomial

in Pd−1, divisible by both f and g, then this non-trivial solution must correspond to

the LCM of f and g. This gives us a way to compute the LCM, and thus also the

GCD of two multivariate polynomials. The following algorithm computes the GCD of

two multivariate polynomials this way. The discussion so far has made sure that the

algorithm must return an output, and the output it returns must indeed be the GCD

of the input polynomials.

We now observe a few things about the algorithm. First, note that while GCDs

and LCMs are not unique, they are unique upto unit multiplication. This algorithm

computes some GCD of the input polynomials. If one wishes to compute a standardized

form of the GCD, the algorithm can be easily modified slightly, to divide the output

polynomial by an appropriate constant in F. Now we observe that the algorithm works

well when the inputs are promised to be non-zero, as Lemma 5.4 requires non-zeroness

of the input polynomial. But one can remove this restriction from the algorithm if

one wishes, by checking if either of the input polynomials are zero, using the sparse

PIT algorithm. If one of the inputs is zero, the problem of finding the GCD becomes

trivial. Running the sparse PIT algorithm 2O(n+dg) time, so adding this step will still

keep the time complexity of the GCD algorithm 2O(n+dg).

We will analyse the algorithm now, and argue that it terminates in time 2O(n+d). Steps

4,5 and 6 require time poly(Nn,d−df × Nn,d), which is less than 2O(n+d). Step 7 and

8 are matrix operations that take time polynomial in the size of the matrix, so they

can also be run in time 2O(n+d). Polynomial division in step 10 can be done using

the divisibility testing algorithm that we described in the previous chapter, and that

also takes time at most 2O(n+d). Doing steps 2 to 7 in a loop will increase the time

complexity by a factor of df , but the total time required will still remain 2O(n+d).
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Algorithm 2: The GCD Algorithm

Input : n, d ∈ N, two non-zero polynomials f, g ∈ F[x1, x2, · · · , xn] of degrees df , dg
respectively, such that df ≤ dg.

Output: The GCD of f, g.
1 for i = 0 to df do
2 Define d := i+ dg.
3 Define the isomorphism ψ : Pd → FNn,d componentwise as (ψ(p))i = coeffmi(p), where

mi is the ith monomial of Md.
4 Construct a Nn,d−df ×Nn,d matrix Af , such that Af · v̄ = 0 if and only if v̄ = ψ(p) for

some polynomial p ∈ Pd divisible by f .
5 Similarly construct a matrix Ag corresponding to the polynomial g.
6 Using Af and Ag, construct a 2Nn,d−df ×Nn,d matrix Afg, consisting of rows in Af

and the rows in Ag.
7 if Afg has a non-trivial solution then
8 Compute a non-zero v̄ such that Afg · v̄ = 0.
9 Find a polynomial p ∈ Pd such that ψ(p) = v̄.

10 return fg
p .

5.3 The GCD Algorithm And PIT

Our initial intention towards finding a new GCD algorithm was to prove that the

homomorphism ψ given in the previous chapter preserves the GCD of two polynomials.

We intended to do this by proving that this ψ preserves each step of our GCD algorithm.

Unfortunately, we could not prove that ψ preserves each step of this algorithm.

Nevertheless, we still get a whitebox PIT algorithm for the model of ΣΠaΣΠb(n)

circuits, that runs in time 2O(n+d) time. We will formally describe the algorithm in the

next chapter. This algorithm uses both the GCD algorithm and the divisibility testing

algorithm as subroutines, and uses the fact that the divisibility algorithm can output

the division if the divisor divides the dividend.
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The PIT Algorithms

In the previous sections, we described our GCD and divisibility testing algorithms.

In Theorem 4.8, we demonstrated, using our divisibility testing algorithm, that the

map ψ as defined in Section 4.2 preserves indivisibility. We know that this ψ preserves

non-zeroness as well. Lemma 3.2 tells us that if a homomorphism ψ preserves the non-

zeroness and indivisibility of polynomials of degree at most d, then for all polynomials

f, g1, g2, · · · gk of degree at most d, we have ψ(f−
∏
gi) = 0 if and only if f−

∏
gi = 0.

This gives us a way to solve the blakbox PIT problem on polynomials promised to be

of this form. We find the appropriate map ψ, given the value of d and n, and then

construct a blackbox that computes ψ(C) where C is the input blackbox. We then

do PIT for ψ(C), using the method provided by Theorem 2.6 for PIT of constant

variate polynomials. As we know that ψ(C) = 0 if and only if C = 0, we can give

the correct output using the output of the constant-variate PIT algorithm. Algorithm

3 given below describes this algorithm more succinctly.

Now we briefly discuss the time complexity of the algorithm. The first step requires

time polynomial in
(
n+d
d

)
, as Theorem 2.12 suggests. Constructing a blackbox for f ′

using a blackbox for f requires time poly(logwmax, n) time, and as the discussion in

Theorem 2.12 suggests, wmax is of the order 2O(n+d). Step 3 and 4 require time of the

order O((dwmax + 1)2), which will again be of the order 2O(n+d). So the PIT problem

can be solved in time at most 2O(n+d).

An interesting thing to note here is that the time complexity does not involve the size

of the circuit at all. So, the value of k does not have an effect on the efficiency of the

50
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Algorithm 3: The Blackbox PIT Algorithm for Polynomials of the Form f −
∏
gi

Input : n, d ∈ N, a blackbox computing a polynomial C, such that there exist
g0, g1, · · · gk ∈ F[x1, x2, · · · , xn],all of degree at most d, with C = g0 −

∏
i∈[k] gi.

Output: 0 if C = 0, 1 if C 6= 0.
1 Obtain the values for w1, w2, · · ·wn, such that w̄ · ē 6= 0 for all ē ∈ Nn with

∑
i∈[n] ei ≤ d,

using the method provided by Theorem 2.12
2 Define C ′ ∈ F[y, t] as C(yw1t, yw2t, · · · , ywnt).
3 Pick an arbitrary set S ⊆ F of size at least dwmax + 1, where wmax is such that wmax ≥ wi

for all i ∈ [n]. Evaluate C ′ at all points of S2.
4 if ∃α, β ∈ S such that C ′(α, β) 6= 0 then
5 return 1.
6 else
7 return 0.

algorithm. Of course, if the polynomials gi’s are to be all non-constant, the value of

k cannot be more than d anyway.

Unfortunately, we could not prove that the same ψ also preserves coprimeness or

squarefreeness of polynomials of degree at most d, using the GCD algorithm or oth-

erwise. Thus we could not put to use Theorems 3.5 and 3.8, to get a blackbox PIT

algorithm for ΣΠaΣΠb(n) circuits. However, the GCD algorithm will still give us a

whitebox PIT algorithm for this model, running in time 2O(n+d) time. We now describe

a rough sketch of the algorithm here.

Suppose C = f1f2 · · · fm−g1g2 · · · gk is the polynomial computed by the given circuit,

with f1, f2, · · · fm and g1, g2, gk being polynomials of degree at most d. The problem

can be restated as checking whether one product of polynomials is equal to another

product of polynomials, or in other words, checking whether f1f2 · · · fm = g1g2 · · · gk
for fi’s and gj’s as defined above. We will solve this version of the problem. To do

so, we compute the GCD of f1, g1 in the first step, divide both f1, gj by the GCD,

and replace them in the circuit by the result of the division. If f1 becomes 1 after

the division, we remove it, and start again with f2 as our new f1. If g1 becomes 1,

we simply remove it. If neither is zero, we then proceed to the next g, computing

the GCD of f1 and g2 and repeating the whole process. If we reach gk, and after the

division of f1 by gcd(f1, gk), f1 still does not become zero, it means that f1 has some

power of an irreducible as a factor that does not divide
∏
gi. If so, C cannot be equal

to zero. If, on the other hand, after such divisions, the problem reduces to checking

whether
∏

1 =
∏

1, we conclude that C = 0, as we divided both the LHS and the

RHS by the same polynomial in each step, and thus if they are equal at the end, they

must be equal to begin with. If we run out of polynomials with non-zero degree in the
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LHS, and the RHS has some polynomial with non-zero degree, or a different constant

than the LHS, then we again conclude that the polynomial was non-zero to begin with.

Algorithm 4 given below describes this algorithm more succinctly.

The key observation that helps us in this whitebox algorithm is that the divisibility algo-

rithm can actually compute the division of two polynomials, with the same complexity,

if the divisor indeed divides the dividend.

Algorithm 4: The Whitebox PIT Algorithm for polynomials computed by a ΣΠaΣΠb(n)
arithmetic circuit

Input : n, d ∈ N, an arithmetic circuit of the form Σ2ΠaΣΠb(n) of size s computing a
polynomial C ∈ F[x1, x2, · · · , xn].

Output: 0 if C = 0, 1 if C 6= 0.
1 Suppose C =

∏
i∈[m] fi −

∏
j∈[k] gj , with fi’s and gj ’s having a ΣΠ circuit of size at most

s.
2 for i = 0 to m do
3 for j = 0 to k do
4 Compute h := gcd(fi, gj), using the GCD algorithm.

5 Compute f := fi
h , g :=

gj
h , using the divisibility testing algorithm.

6 Replace fi with f and gj with g.

7 if deg(fi) 6= 0 then
8 return 1.

9 for i = 0 to k do
10 if deg(gi) 6= 0 then
11 return 1.

12 if
∏
i∈[m] fi =

∏
j∈[k] gj then

13 return 0.
14 else
15 return 1.

Now we look at the time complexity of the algorithm. In the first step, we obtain

m + k depth-2 arithmetic circuits from the input circuit, that compute fi’s and gj’s.

This takes time poly(s). The steps 4 and 5 take only 2O(n+d) time, by the complexity

analysis of the GCD and division algorithms. In step 6, we construct two ΣΠ circuits

of size at most Nn,d, computing f and g respectively, and then replace the circuits

for fi and gj obtained in step 1 by the circuits for f and g. The division algorithm

provides us f and g in the expanded form, so constructing ΣΠ circuits for f, g again

takes only 2O(n+d) time. Checking whether the degree of a ΣΠ circuit of size a is zero

requires only poly(a) time as all one has to do is to check if any of the Π gates has a

variable as an input. Since each of the circuits for fi’s and gj’s has size at most
(
n+d
d

)
,

steps 7 and 10 also take only 2O(n+d) time. By the time we reach 12, we have ensured

that all fi’s and all gj’s have degree 0. So step 12 involves multiplication of at most s
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constants of F, so this cannot take more than poly(s) time. So the algorithm indeed

runs in time poly(s, 2n+d) time.



Chapter 7

Conclusion and Future Work

The PIT problem remains one of the most elusive problems in theoretical computer

science, despite a lot of progress made over the last two decades. We hope that our

work in this thesis, and the ideas that we used here, will be of help to further our

understanding of the PIT problem. We mostly deal with some special cases of top

fan-in 2 and depth-4 circuits in this thesis, and the recent progress in depth reduction

(See [AFGS17]) does not allow any restriction on top fan-in, so our result cannot be

directly used in conjunction with their result. One can, however, attempt to generalize

our results to top fan-in s and depth-4 circuits.

One can also attempt to reduce the time complexity of our PIT algorithms from

exponential in n + d to polynomial in n + d. If this is achieved, one can successfully

solve the whitebox PIT problem for general Σ2ΠΣΠ circuits, or the blackbox divisibility

testing problem for general polynomials in polynomial time. Either of these results

should be considered major breakthroughs in this field.

The proverbial lowest hanging fruit according to us, however, seems to be the construc-

tion of a blackbox PIT algorithm for the model of Σ2ΠaΣΠb(n) circuits, for which we

have given a whitebox algorithm in this thesis. We have demonstrated, in Theorems

3.8 and 3.6, that a homomorphism that preserves non-zeroness and either coprimeness

or squarefreeness will give us the blackbox PIT for this model. We could not prove

that the ψ that we worked with preserves coprimeness or squarefreeness. We believe

that with some more work, and perhaps a slight modification to ψ, one might be able

to come up with such a homomorphism.

54
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An interesting direction in which one can work to prove that ψ preserves coprimeness,

is the concept of resultant. For pair of two polynomials f, g ∈ F[x1, x2, · · · , xn] of

degree at most d, their resultant is a polynomial res(f, g) of degree 2d2, such that

res(f, g) = 0 if and only if gcd(f, g) = 1. The resultant is defined for univariate

polynomials of degree d over any unit factorization domain, as a determinant of a

2d × 2d matrix (called Sylvester matrix) whose entries are the coefficients of the

polynomials. So, there are actually n different resultants for f, g ∈ F[x1, x2, · · · , xn],

each of which is a degree-2d2 and (n − 1)-variate polynomial. Unfortunately, the

sparsity of such a polynomial can be as high as
(
n−1+2d2

2d2

)
, which is more than 2O(n+d),

so the näıve application of the sparse PIT algorithm will not help us either. The

Sylvester matrix of f, g will contain as entries n-variate polynomials of degree d. So

if one manages to find a non-zeroness preserving homomorphism φ that also preserves

the linear independence of a set of vectors, whose entries are polynomials, then we

can prove that this homomorphism must preserve the rank of the Sylvester matrix,

effectively preserving the coprimeness of two polynomials.

Our approach to proving that ψ preserves a particular property by constructing an

algorithm seems rather indirect. However, this approach has an added advantage that

it provides us at least a whitebox algorithm for the problem. One can try some more

direct approaches for this problem though.

Theorem 3.8 tells us that a squarefreeness and non-zeroness preserving homomorphism

yields us a blackbox PIT algorithm for the model of Σ2ΠaΣΠb(n) circuits. This gives us

an interesting direction to work on, as we now need to work with only one polynomial,

instead of two, as in the case of coprimeness preservation.

An important observation in the direction of coprimeness preservation is that one can-

not hope to prove that ψ will map every irreducible polynomial in F[x1, x2, · · · , xn] to

an irreducible polynomial in F[y, t]. In fact, finding examples of irreducible polynomi-

als that get map to reducible polynomials under ψ is not too hard. Yet we expect ψ

to preserve coprimeness. In other words, we need to prove that the set of factors of

images under ψ of two distinct irreducibles is disjoint.
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[BHLV09] Markus Bläser, Moritz Hardt, Richard J Lipton, and Nisheeth K Vishnoi.

Deterministically testing sparse polynomial identities of unbounded degree.

Information Processing Letters, 109(3):187–192, 2009.

[Bro71] W Steven Brown. On euclid’s algorithm and the computation of polynomial

greatest common divisors. Journal of the ACM (JACM), 18(4):478–504,

1971.

[DL78] Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic

program testing. Information Processing Letters, 7(4):193–195, 1978.

[For15] Michael A Forbes. Deterministic divisibility testing via shifted partial deriva-

tives. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual

Symposium on, pages 451–465. IEEE, 2015.

56



bibliography 57

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.

Arithmetic circuits: A chasm at depth three. In Foundations of Computer

Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 578–587.

IEEE, 2013.

[Gre14] Bruno Grenet. Computing low-degree factors of lacunary polynomials: a

Newton-Puiseux approach. In Proceedings of the 39th International Sym-

posium on Symbolic and Algebraic Computation, pages 224–231. ACM,

2014.

[Gre16] Bruno Grenet. Bounded-degree factors of lacunary multivariate polynomi-

als. Journal of Symbolic Computation, 75:171–192, 2016.

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial

identity tests means proving circuit lower bounds. In Proceedings of the

thirty-fifth annual ACM symposium on Theory of computing, pages 355–

364. ACM, 2003.

[KK05] Erich Kaltofen and Pascal Koiran. On the complexity of factoring bivariate

supersparse (lacunary) polynomials. In Proceedings of the 2005 interna-

tional symposium on Symbolic and algebraic computation, pages 208–215.

ACM, 2005.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider.

Theoretical Computer Science, 448:56–65, 2012.

[KS01] Adam R Klivans and Daniel Spielman. Randomness efficient identity testing

of multivariate polynomials. In Proceedings of the thirty-third annual ACM

symposium on Theory of computing, pages 216–223. ACM, 2001.

[KSS14] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of poly-

nomial identity testing and deterministic multivariate polynomial factoriza-

tion. In Computational Complexity (CCC), 2014 IEEE 29th Conference on,

pages 169–180. IEEE, 2014.

[KT90] Erich Kaltofen and Barry M Trager. Computing with polynomials given by-

black boxes for their evaluations: Greatest common divisors, factorization,

separation of numerators and denominators. Journal of Symbolic Compu-

tation, 9(3):301–320, 1990.



bibliography 58

[MY73] Joel Moses and David YY Yun. The ez gcd algorithm. In Proceedings of

the ACM annual conference, pages 159–166. ACM, 1973.

[Pla77] David A Plaisted. New np-hard and np-complete polynomial and integer

divisibility problems. In Foundations of Computer Science, 1977., 18th

Annual Symposium on, pages 241–253. IEEE, 1977.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polyno-

mial identities. Journal of the ACM (JACM), 27(4):701–717, 1980.

[SS92] Tateaki Sasaki and Masayuki Suzuki. Three new algorithms for multivariate

polynomial gcd. Journal of symbolic computation, 13(4):395–411, 1992.

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und

angewandte Mathematik, 264:184–202, 1973.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of re-

cent results and open questions. Foundations and Trends R© in Theoretical

Computer Science, 5(3–4):207–388, 2010.
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