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Deutsche Einleitung

Eine endliche Punktmenge X im projektiven Raum über einem Körper k
heißt Sylvester-Gallai-k-Konfiguration, wenn keine lineare Untervarietät der

Dimension k− 1 genau k Schnittpunkte mit ihr hat. Wir schreiben auch kurz

SGkC. Das Resultat [Han] von Sten Hansen aus dem Jahr 1965 besagt, dass

jede SGkC über k = R einen linearen Raum aufspannt, dessen Dimension

durch 2k− 3 beschränkt ist.

Für k = C wurde von Leroy Kelly in seiner Arbteit [Kel] gezeigt, dass eine

SG2C höchstens eine komplexe Ebene aufspannen kann. Es bleibt eine offene

Frage, ob ein Resultat für k > 2 im Sinne Hansens auch über C formuliert

werden kann. Auch über Körpern endlicher Charakteristik gibt es bisher nur

wenig zufriedenstellende Dimensionsschranken.

Abgesehen von geometrischer Neugier wären solche Schranken auch von

großem Interesse für die Komplexitätstheorie, da sie neue Ergebnisse im Bere-

ich des Polynomial Identity Testing liefern würden.

Obgleich es für die Aussage im Falle k = 2 inzwischen kürzere und ele-

mentarere Beweise gibt, etwa [EPS], interessieren wir uns für die Methoden

von Kelly’s Beweis: Mittels geometrischer Dualität konnte er sich das Ergeb-

nis [Hir, Theorem 3.1] von Hirzebruch über Geradenkonfigurationen in der

komplex-projektiven Ebene zu Nutze machen. Dieses Ergebnis entstand als

Nebenprodukt des Studiums komplexer Flächen. In [Hir] konstruierte Hirze-

bruch konstant verzweigte Überlagerungen der komplex-projektiven Ebene,

um Flächen von allgemeinem Typ mit speziellen Invarianten zu konstruieren.

In dem Buch [BHH] wird diese Konstruktion im Detail erläutert.

In dieser Arbeit verallgemeinern wir Hirzebruchs Methoden signifikant.

Wir studieren “konstant verzweigte” Überlagerungen Y → X zwischen Vari-

etäten beliebiger Dimension über einem algebraisch abgeschlossenen Grund-

körper k. Wir zeigen, dass die Singularitäten der Überlagerungsvarietät stets

durch eine einfach zu charakterisierende Sequenz von Aufblasungen aufgelöst
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Deutsche Einleitung

werden können. Es werden Formeln hergeleitet, um Selbstschnittzahl eines

kanonischen Divisors und Euler-Charakteristik von Y und X miteinander in

Verbindung zu bringen.

Zu jeder “strikten” Konfiguration von Hyperflächen konstruieren wir eine

assoziierte Überlagerung von nicht-singulären Varietäten mit frei wählbarem

Verzweigungsindex, deren Eigenschaften stark mit den kombinatorischen Da-

ten der Konfiguration zusammen hängen. Jede Konfiguration von Hyper-

ebenen im projektiven Raum wird strikt in diesem Sinne sein, und mit Hilfe

geometrischer Dualität erhalten wir daher eine Methode, um jeder endlichen

Punktmenge in Ps
k eine verzweigte Überlagerung zuzuordnen.

Wir zeigen als Anwendungsbeispiel, wie Hirzebruchs Ergebnis als Spezial-

fall dieser Methoden entsteht. Wir erinnern daran, dass die Euler Charakter-

istik und der Kanonische Divisor einer Varietät der obersten und untersten

Chern Klasse des Tangentialbündels entsprechen. Die Miyaoka-Yau Ungle-

ichung stellt eine Beziehung zwischen diesen Größen her, aus der wir das

Schlüsselargument für Kelly’s Beweis ableiten.

Abschließend zitieren wir verwandte Ungleichungen in höheren Dimen-

sionen und für den Fall positiver Charakteristik. Dies eröffnet Perspektiven

für das Studium von Sylvester-Gallai Schranken anhand der zugehörigen,

konstant verzweigten Überlagerungen.
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Introduction

History of Sylvester-Gallai Configurations

A complex cubic curve has nine points of inflection which form a rather cu-

rious configuration: The line defined by any two of them will intersect the

curve in a third inflection point. Arguably, this observation motivated James

Sylvester to ponder on similar configurations in real space. In 1893, he pub-

lished the challenge [Syl], conjecturing that any finite set of points with real

coordinates and the above property had to be colinear.

The first documented proof of this conjecture was given 1933 by Tibor

Gallai. A configuration of finitely many points in projective space, such that

there exists no line that passes through exactly two of them, is nowadays

called a Sylvester-Gallai Configuration, or SGC for short.

In 1966, Jean-Pierre Serre conjectured that a complex SGC had to be copla-

nar, i.e. confined to a complex plane. A surprising proof was given in 1986

by Leroy Kelly in his paper [Kel]. Via geometric duality, he leveraged the

seemingly unrelated result [Hir, Theorem 3.1] by Hirzebruch about line ar-

rangements in the complex projective plane. The latter arose naturally from

the study of minimal surfaces of general type. Since then, more elementary

proofs have been devised and even generalized to quaternions, see [EPS].

A whole new and different generalization was introduced by Sten Hansen

in 1965. He studied the dimension of the linear space spanned by a finite

set X ⊆ Ps
R under the condition that no linear subvariety of dimension k− 1

intersects X in k points. For k = 2, it is the original Sylvester-Gallai Theorem

that limits this dimension to 1. Motzkin had already established in his 1951’s

paper [Mot] that for k = 3, the dimension is bounded by 3. In [Han], Hansen

proves that for general k, the bound on the dimension is 2k− 3.

It is natural to ask whether the complex Sylvester-Gallai theorem can be

generalized in a similar way. Furthermore, there are quite modern applica-

tions that raise the same question. We elaborate on some of them now.
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SGCs and Polynomial Identity Testing

It is probably one of the most important problems on the verge of algebra and

computer science to check for equality of two polynomials, given by either a

black-box interface or arithmetic circuits. Since subtraction is usually an easy

operation, it is equivalent to ask whether a given polynomial is the zero poly-

nomial. Consequently, if an arithmetic circuit represents the zero polynomial,

it is called an identity.

Depth-3 Polynomial Identity Testing

Instance: Natural numbers k, d, n ∈ N. For 1 ≤ i ≤ k and 1 ≤ j ≤ d,

homogeneous linear polynomials `ij ∈ k[x1, . . . , xn]1.

Task: Decide whether ∑k
i=1 ∏d

j=1 `ij is the zero polynomial.

Remark : We need one layer of addition gates with fan-in n to construct

the `ij, then a second layer of multiplication gates with maxi-

mal fan-in d and in the third layer, a single addition gate with

fan-in k. We refer to this as a ΣΠΣ(k, d, n)-circuit.

Even in the above case of depth-3 circuits, progress has been stale. Just

recently in 2009, the influential paper [KS2] gave a solution for k = Q. But let

us start a little earlier in 2006, when a new numerical quantity began to play

a role in the study of depth-3 circuits.

The rank of a circuit roughly measures the number of free variables: If a

ΣΠΣ(k, d, n)-circuit has rank r, then there exists a linear transformation con-

verting it into a ΣΠΣ(k, d, r)-circuit which is quite easy to determine. In [DS],

Dvir and Shpilka observed that the rank of an identity is always very small

and conjectured that it is polynomial in k.

It was Karnin and Shpilka in 2008 [KS1], who showed how small rank

bounds for identities imply efficient black-box PIT algorithms. This funda-

mental result steeled the resolve to investigate rank bounds. In 2009, Kayal

and Saraf [KS2] made a significant leap forward by proving a rank bound that

was independent of d. What they had found and tapped into was the fact that

Sylvester-Gallai Configurations are confined to low dimensions. The conjec-

ture of [DS] was finally proven correct by Saxena and Seshadhri in 2010. A

rank bound of O(k2) is given in their paper [SS].

Since all of this late progress is based on Hansen’s result for real SGC’s,

it was repeatedly conjectured, by [KS2] and [SS], that it should be possible to

obtain a similar result over C. It is the goal of this thesis to give perspectives on

how to tackle the problem. We are going to revisit Kelly’s proof and generalize
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Hirzebruch’s algebraic geometry constructions to higher dimensions.

Overview and Thesis Outline

In Chapter 1, we will recall several well-known geometric preliminaries and

motivate the later chapters. We introduce the concept of geometric duality

in projective space. Anticipating the results of Chapter 3, we deduce Kelly’s

proof of the complex Sylvester-Gallai Theorem. As preparation for the chap-

ters to come, we give an in-depth treatment of the blowup construction for

algebraic varieties. Furthermore, we give a brief summary of intersection the-

ory, closing with the definition of Chern classes and their relevant properties.

The heart of the thesis lies in Chapter 2. In 1983’s paper [Hir], Hirzebruch

constructed branched coverings of the complex projective plane that were as-

sociated to line arrangements. In 1987, the book [BHH] elaborated on the

construction in greater detail, but remained limited to coverings of the com-

plex plane. The construction we give in Section 2.6 constitutes a significant

generalization of these ideas. We study the class of “constantly” branched

coverings Y → X between varieties of any dimension and calculate formu-

las to relate the Euler characteristic and canonical divisors of X and Y. We

prove a special desingularization result in Section 2.5. Using it, we are able

to associate a covering of nonsingular varieties to any suitable arrangement of

(sub)varieties which constantly branches to a degree of our choice.

This is done in the language of modern algebraic geometry and over an

arbitrary, algebraically closed field. In particular, the construction works in

positive characteristic if we add the mild assumption of tame ramification.

In particular, the theory developed in Chapter 2 provides a framework to

construct nonsingular coverings that branch along hyperplane arrangements

in projective space, whose properties reflect the combinatorial properties of

the arrangement. By geometric duality, studying hyperplane arrangements is

equivalent to studying finite sets of points – in our case, SGCs.

In Chapter 3, we show how Hirzebruch’s result about line arrangements

arises as a special case from our construction. We show that the Euler char-

acteristic and canonical divisor of a variety correspond to the top and bottom

Chern class, respectively. We use a famous inequality of Chern classes and

our formulas from Chapter 2 to deduce relations between the combinatorial

data of the arrangement. This yields the key argument that is required for

Kelly’s proof of the complex Sylvester-Gallai Theorem. We also obtain several

intermediate results about constantly branched coverings between surfaces.
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Finally, we outline possible further steps in Chapter 4. More precisely,

we cite inequalities involving Chern classes in higher dimension and positive

characteristic that appear promising for advancing Sylvester-Gallai bounds by

means of the techniques from Chapter 2.
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Chapter 1

Preliminaries

In Section 1.1, we recall some terminology from graduate courses in Algebraic

Geometry and set up notation. Then, after explaining the concept of geomet-

ric duality, we will give Kelly’s proof of the Sylvester-Gallai Theorem right

away in Section 1.2, anticipating the results of Chapter 3. This should serve

as motivation, presenting an application for the ensuing theory. Section 1.3

contains a thorough introduction to the construction of blowing up, since a

firm grasp on it is required to perform the desingularization in Section 2.5.

Finally, we give a brief summary of intersection theory in Section 1.4 in order

to introduce Chern classes and their basic properties.

1.1 Notions of Algebraic Geometry

We recall some notions of algebraic geometry. Our main references are [Har]

and [Liu]. If X is a ringed space, we denote by OX the associated sheaf of

rings and by sp(X) the underlying topological space. For a point P ∈ X, we

denote by OX,P the stalk at P. For an open subset U ⊆ X, we write OX(U)

for the ring on U. If φ : X → Y is a morphism of ringed spaces, E a sheaf

of OX-modules and F a sheaf of OY-modules, we define the push-forward

φ∗(E ) to be the sheaf on Y which satisfies φ∗(E )(V) = E (φ−1(V)) for all open

V ⊆ Y. On the other hand, we also define a sheaf φ−1(F ) on X as the one

associated to the presheaf

U 7−→ lim−→
φ(U)⊆V

F (V).

Then, the pull-back of F via φ is defined as φ∗(F ) := φ−1(F )⊗φ−1(OY)
OX .
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Chapter 1 : Preliminaries

An affine scheme is a locally ringed space X whose underlying topolog-

ical space X = Spec(A) is the set of prime ideals of a commutative ring A,

endowed with the Zariski topology. In other words, a subset of X is closed if

and only if it is the vanishing set

Z(I) := { P ∈ Spec(A) | P ⊇ I }

of an ideal I ⊆ A. For f ∈ A, we let A f = A[ f−1] denote the localization

of A by f . Then, D( f ) := Spec(A) \ Z( f ) is the open set where f does not

vanish and we additionally require that OX(D( f )) = A f . We denote by AP

the localization of A by the multiplicatively closed set A \ P for any prime

ideal P ⊂ A. It then follows that OX,P ∼= AP. If Z ⊆ X = Spec(A) is a subset,

we denote by I(Z) :=
⋂

P∈Z P the associated ideal. Hence,

I(Z(I)) =
√

I := { f ∈ A | ∃n ∈N : f n ∈ I }

is the radical of I. If M is an A-module, we denote by M∼ the (quasi-coherent)

sheaf of OX-modules associated to M.

A scheme is a locally ringed space which can be covered by affine schemes.

For a point P ∈ X, we denote by mP ⊂ OX,P the unique maximal ideal of the

local ring OX,P. The field

k(P) := OX,P
/
mP

is called the function field1 of P. If Z := P is the closure of P, we also

write k(Z) instead of k(P). For a scheme X, we denote by Xred the associated

reduced scheme. A closed point P ∈ X is a point such that its closure contains

only P itself, i.e. P = { P }.
A morphism of schemes ϕ = (ϕ, ϕ]) : Y → X consists of a topological

component ϕ : sp(Y) → sp(X) and a morphism of sheaves ϕ] : OX → ϕ∗OY.

The morphism is finite if for every affine open subset U of X, the subset

V := ϕ−1(U) is affine and ϕ]
U turns OY(V) into a finitely generated OX(U)-

module. A closed (resp. open) immersion is a morphism ι : Z → X whose

topological component is an injective map onto a closed (resp. open) subset

of X and ι]P : OX,ι(P) → OZ,P is surjective (resp. an isomorphism) at every

point P ∈ Z. For intuition in the affine case X = Spec(A), one should think of

ι] as the canonical surjection from A to the coordinate ring A/I of the closed

subvariety Z(I).

If I is a quasi-coherent sheaf of ideals on X, we denote by Z(I) the closed

subscheme associated to it. Correspondingly, if Z ⊆ X is a closed subscheme,
1Note that this is usually called a residue field. However, it coincides with the function field of

the induced reduced scheme on the closure of that point, so we don’t make that distinction.

6



Section 1.1 : Notions of Algebraic Geometry

we denote by I(Z) the associated sheaf of ideals. If Y ⊆ X is another closed

subscheme, then

Z uY := Z(I(Z) + I(Y))

is called the scheme-theoretic intersection of Z and Y. We write

Z ∩Y := (Z uY)red.

Quite generally, closed subsets Z ⊆ X of a scheme X, when interpreted as

a closed subscheme, are usually endowed with the induced reduced scheme

structure – unless otherwise stated, as in the above cases.

If S =
⊕

d≥0 Sd is a graded ring, we denote by X = Proj(S) the set of its

homogeneous prime ideals and endow it with the Zariski topology similar to

the affine case, i.e. the closed subsets are of the form

Z∗(I) := { P ∈ Proj(S) | P ⊇ I }

for a homogeneous ideal I ⊆ S. For Z ⊆ X, we denote by I∗(Z) :=
⋂

P∈Z P the

associated homogeneous ideal. If f ∈ S is a homogeneous element, the open

set where f does not vanish is D∗( f ) := Proj(S) \ Z∗( f ) and we require that

OX(D( f )) = (S f )0. This turns X = Proj(S) into a scheme with local rings

OX,P = (SP)0.

A variety is an integral, separated scheme of finite type over some al-

gebraically closed field k. Prominent examples are Spec(A) and Proj(S) for

finitely generated, integral k-algebras A and S. For two schemes X and Y

over a common base scheme S, we denote by X ×S Y their fiber product. If

X and Y are varieties over k, we write X × Y instead of X ×Spec(k) Y. A ratio-

nal map ϕ : X 99K Y between varieties is an equivalence class of morphisms

ϕU : U → Y defined on nonempty open subsets U ⊆ X such that

ϕU |U∩V = ϕV |U∩V .

If R = A[x0, . . . , xs] is the polynomial ring in s + 1 variables over a com-

mutative ring A, we denote by Ps
A := Proj(R) the projective s-space over A.

In particular, if A = k is a fixed base field, we usually write Ps instead of Ps
k.

Any closed subvariety Z ⊆ Ps has a well-defined degree deg(Z), see [Har,

I.7.6]. The closed points of Ps can be written in projective coordinates as

[a0 : . . . : as] :=
(

xiaj − xjai
∣∣ 0 ≤ i, j ≤ s

)
∈ Proj(R).

This identifies the closed points of Ps with P(ks+1). Here, P(V) denotes the

projectivization of any k-vector space V, i.e.

P(V) := (V \ { 0 })
/
k×

7



Chapter 1 : Preliminaries

where k× acts on V \ { 0 } by scalar multiplication.

A linear subvariety L ⊆ Ps is a subvariety with deg(L) = 1. It is also

called a d-flat, where d = dim(L). In particular, I∗(L) is generated in degree

one and there exists a unique subspace W ⊆ ks+1 such that the closed points

of L correspond to P(W). We write L = P(W) by abuse of notation. If

L′ = P(W ′) is another linear subvariety, we define their linear span to be

L + L′ := P(W + W ′).

Finally, we call As := As
k := Spec (k [x1, . . . , xs]) the affine s-space over k.

1.2 Sylvester-Gallai Configurations

We first give a brief introduction to the concept of geometric duality in the

projective space Ps = Ps
k over some field k. For the special case s = 2, it

yields an incidence-preserving one-to-one correspondence between lines and

points. Generalizing to arbitrary s, it is an inclusion-reversing (and hence,

incidence-preserving) one-to-one correspondence between the linear subvari-

eties of codimension d and those of dimension d− 1.

We begin by recalling a well-known fact of linear algebra from the theory

of bilinear forms:

Fact/Definition 1.1 (Geometric Dual). Let U be a k-vector space of finite dimen-

sion with a nondegenerate, symmetric, bilinear form

〈−,−〉 : U ×U −→ k.

If V ⊂ U is a subspace, its geometric dual is

V⊥ := { u ∈ U | ∀v ∈ V : 〈u, v〉 = 0 } .

Then, if W is another subspace of U,

(a). dim(W⊥) = dim(U)− dim(W).

(b). If W ⊆ V, then W⊥ ⊇ V⊥.

(c). W⊥⊥ = W.

(d). (W + V)⊥ = W⊥ ∩V⊥.

Proof. Part (a) is well-known linear algebra, see [MH, 3.1]. Since W ⊆ W⊥⊥,

part (c) follows because

dim(W⊥⊥) = dim(U)− dim(W⊥) = dim(W).

8



Section 1.2 : Sylvester-Gallai Configurations

For part (b), assume that W ⊆ V and u ∈ V⊥. In other words, 〈u, v〉 = 0 for

all v ∈ V. In particular, 〈u, w〉 = 0 for all w ∈W ⊆ V, so u ∈W⊥. Part (d) can

also be verified by elementary means:

(V + W)⊥ = { u ∈ U | ∀x ∈ V + W : 〈x, u〉 = 0 }

= { u ∈ U | ∀v ∈ V, w ∈W : 〈v + w, u〉 = 0 }

= { u ∈ U | ∀v ∈ V, w ∈W : 〈v, u〉 = 0, 〈w, u〉 = 0 }

= V⊥ ∩W⊥.

Definition 1.2. We equip ks+1 with the bilinear form corresponding to the identity

matrix. It is symmetric and nondegenerate. For a linear subvariety L = P(W), we

call L⊥ := P(W⊥) the geometric dual of L.

Proposition 1.3. Let L and M be linear subvarieties of Ps. Then,

(a). dim(L⊥) = s− dim(L)− 1 = codim(L)− 1.

(b). If L ⊆ M, then L⊥ ⊇ M⊥.

(c). L⊥⊥ = L.

(d). (L + M)⊥ = L⊥ ∩M⊥.

Proof. Let L = P(W), then part (a) is the easy calculation

dim(L⊥) = dim(W⊥)− 1 = s− (dim(W)− 1)− 1 = codim(L)− 1

and the rest follows from parts (b) to (d) of Fact 1.1.

Example 1.4. Assume that P, Q ∈ P2 are two points in the plane. The above means

that the lines P⊥ and Q⊥ intersect in the point dual to P + Q. Let us make the

example more specific. Choose

P = [−1 : 0 : 1] Q = [−1 : −1 : 1]

= Z∗(x + z, y) = Z∗(x + z, y + z).

Then, P + Q = Z∗(x + z) and hence, R := (P + Q)⊥ = [1 : 0 : 1]. Furthermore,

P = L

(
1 0 1

0 1 0

)
Q = L

(
1 0 1

0 1 1

)
.

Hence, P⊥ = Z∗(x − z) and Q⊥ = Z∗(x + y − z). In Figure 1.1, we look at the

affine patch D∗(z) ∼= A2.

9



Chapter 1 : Preliminaries

A2

Q⊥=

Z(x+y−1)

P⊥=Z(x−1)

RP

Q

0

R⊥=P+Q

Figure 1.1: A sketch of Example 1.4.

Definition 1.5. If X = { L1, . . . , Lm } is a set containing a finite number of linear

subvarieties Li ⊆ Ps, we denote by 〈X〉 := L1 + · · · + Lm, the linear span of all

elements in X. Clearly,

dim 〈X〉 ≤ (m− 1) +
m

∑
i=1

dim(Li).

If the linear varieties intersect in a single point L1 ∩ · · · ∩ Lm = { P }, we say that X

is a pencil. Furthermore, we set X⊥ :=
{

L⊥1 , . . . , L⊥m
}

.

We follow [SS, Definition 3] and introduce the notion of SGk-closedness.

Definition 1.6. Let X ⊆ Ps be a finite set of points. We denote by

t⊥k (d, X) :=

∣∣∣∣∣
{

F ⊆ Ps subvariety

∣∣∣∣∣ dim(F) = d, deg(F) = 1,

〈X ∩ F〉 = F, |X ∩ F| = k.

}∣∣∣∣∣
the number of d-flats that intersect X in k points and are spanned by these points.

Such a d-flat is said to be elementary with respect to X if d = k− 1.

We say that X is SGk-closed if it has no elementary (k − 1)-flat. In this case,

we also say that X is a Sylvester-Gallai-k-Configuration, which we abbreviate as

SGkC. This is equivalent to saying t⊥k (k− 1, X) = 0. We also define the number

SGk(k, m) := max

{
dim 〈X〉

∣∣∣∣∣ s ∈N, X ⊂ Ps
k, |X| ≤ m,

t⊥k (k− 1, X) = 0.

}
+ 1.

It is one plus the maximum dimension of a linear k-variety, spanned by an SGkC of

cardinality at most m. Note that this is the dimension of the affine cone over 〈X〉.

10
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Example 1.7. Let f := x3
0 + x3

1 + x3
2 − x0x1x2 ∈ C[x0, x1, x2]. It defines a curve

Z∗( f ) ⊆ P2
C, and its inflection points are

[0 : 1 : −1], [0 : 1 : −ζ], [0 : 1 : −ζ2],

[−1 : 0 : 1], [−ζ : 0 : 1], [−ζ2 : 0 : 1],

[1 : −1 : 0], [1 : −ζ : 0], [1 : −ζ2 : 0],

where ζ := exp(2π ı̂/3 ) is a root of unity. This can be checked easily by evaluating

the determinant of the Hessian

det
(

∂ij f
)2

i,j=0
= det


6x0 −x2 −x1

−x2 6x1 −x0

−x1 −x0 6x2

 = 214x0x1x2 − 6x3
0 − 6x3

1 − 6x3
2

at these points. To see that these points form an SG2C, simply check that any three

vectors in C3 with the above coordinates are linearly dependent. In fact, the nine

inflection points of any plane cubic are an SG2C, see [Har, Exercise IV.2.3 (g)].

Definition 1.8. Dual to Definition 1.6, if X is a set of hyperplanes in Ps, we can

count the number of subspaces of codimension d where exactly k of these hyperplanes

intersect. We denote this number by

tk(d, X) :=

∣∣∣∣∣∣∣∣
 F ⊆ Ps subvariety

∣∣∣∣∣∣∣∣
codim(F) = d,

|{H ∈ X | F ⊆ H }| = k

F =
⋂

H∈X,
F⊆H

H


∣∣∣∣∣∣∣∣ .

In other words, tk(d, X) = t⊥k (d− 1, X⊥) by geometric duality. In particular, recall

Proposition 1.3.(b).

In [SS, Theorem 4], the connection is made between Sylvester-Gallai Con-

figurations and the rank of a depth-3 circuit. We are interested in bounding

the value SGk(k, m) for k = C and arbitrary k. While there is no such result

known to the present date, we conjecture that

∀m ∈N : SGk(C, m) ≤ 3(k− 1).

This is equivalent to saying that for all SGkCs X that consist of m points, there

exists a subspace of dimension less or equal to 3(k− 1)− 1 which completely

contains X. In other words, ∃d ≤ 3(k− 1) : t⊥m(d− 1, X) > 0. An arrangement

H of m hyperplanes is the dual of an SGkC iff tk(k, H) = t⊥k (k− 1, H⊥) = 0.

In summary:

11
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Conjecture 1.9. SGk(C, m) ≤ 3(k − 1) for all m ∈ N. Equivalently, if H is an

arrangement of m hyperplanes in Ps
C, then:

tk(k, H) = 0 =⇒ ∃d ≤ 3(k− 1) : tm(d, H) > 0 (1.1)

For k ≥ 3, the issue is still an open question. For k = 2, we revisit the orig-

inal proof of Conjecture 1.9 by Kelly, which will require a whole chapter of

machinery from algebraic geometry. The proof uses Theorem 3.21 by Hirze-

bruch about line arrangements in the complex projective plane. Anticipating

this result, we get the following:

Proposition 1.10. If X ⊆ P2
C is a nonlinear SG2C, then t⊥3 (1, X) 6= 0. In other

words, there is a line containing exactly three points of X.

Proof. Let X = { P0, . . . , P` }. We consider the arrangement of lines X⊥. Write

tr := tr(2, X⊥) = t⊥r (1, X). Since X is nonlinear, t`+1 = 0. Since X is an SG2C,

we can also conclude t2 = 0. A line L containing P1, . . . , P` must contain a

point Pi ∈ P0 + P1 with i > 2 and thus, P0 ∈ P0 + P1 = P1 + Pi = L implies

t` = 0. Now, Theorem 3.21 yields t3 6= 0.

The second key to proving Conjecture 1.9 for k = 2 is the upcoming Propo-

sition 1.14, which is based on [Kel, Lemma 2]. We give a more detailed proof,

also for the sake of being self-contained.

Definition 1.11. We will call ϕ : Ps → Ps a linear change of coordinates if ϕ] is

a degree-preserving automorphism of k [x0, . . . , xs].

Fact 1.12. If ϕ : Ps → Ps is a linear change of coordinates and F ⊆ Ps a d-flat, then

ϕ(F) is again a d-flat.

Proof. We first note that ϕ is a linear change of coordinates if and only if

ψ := ϕ−1 is one. If F = Z(h1, . . . , hs−d) is a d-flat, then we have

ϕ(F) = ψ−1(F) = Z(ψ](h1), . . . , ψ](hs−d)),

since P ∈ ψ−1(F) if and only if ψ(P) ∈ F, which is the case if and only if

∀i : 0 = hi(ψ(P)) = ψ](hi)(P).

Since ψ] preserves degrees and linear independence, ϕ(F) is a d-flat.

Remark 1.12.1. In particular, t⊥k (d, X) = t⊥k (d, ϕ(X)) for all k > 1. Hence, the

property of being an SGkC is invariant under linear changes of coordinates.

12
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Fact 1.13. If (G,+) is a group and H ⊆ G a finite subset which is closed under the

group law, then H is a subgroup.

Proof. We need to show that each a ∈ H has an inverse in H. Since H is finite,

there exists an n ∈N with n · a = 0, so −a = (n− 1) · a.

Proposition 1.14 (Kelly’s Trick). Assume that L = { L0, L1, L2 } is a pencil of

lines Li ⊂ P2
k with dim(L0 + L1 + L2) = 2. Let X ⊆ L0 ∪ L1 ∪ L2 be a finite set of

points contained within the pencil. If X is a nonlinear SG2C, then p := char(k) > 0

and 3p ≤ |X|.

Proof. We use k[x, y, z] as projective coordinates in P2 = P2
k. Assume that X

is an SG2C. We can write Li = Z(hi) for certain linear polynomials hi. We

are going to apply a series of linear changes of coordinates until we arrive

at an SG2C which has the structure of an additive subgroup of k. This is

only possible if k has nonzero characteristic. For ease of notation, we set

Xj := X ∩ Lj. Let P ∈ X be the point where all three lines intersect, i.e.

L0 ∩ L1 ∩ L2 = {P}.
Let X0 =

{
A1, . . . , Aq

}
with q > 0. Since X is nonlinear, we may assume

there is a B ∈ X1 \ X0. The line Ai + B contains a third point Ci ∈ X, but since

Ai + Ci = Ai + B, it can neither be contained in L0 nor L1. Thus, Ai 7→ Ci

defines a bijection between X0 and X2. By symmetry, we conclude that |Xj|
does not depend on j. We denote by Bi and Ci the points of X1 and X2,

respectively.

Since L0 ∩ L1 = { P }, the forms h0 and h1 are linearly independent – thus,

there exists a linear change of variables that ensures h0 = y and h1 = z− y.

This immediately yields P = [1 : 0 : 0]. If we write

h2 = αx + βy + γz,

then h2(P) = 0 implies α = 0. Because L2 6= L0, we conclude γ 6= 0 and may

assume h2 = βy− z. Because L2 6= L1, we also know that β 6= 1. For reasons

that will become apparent later, we now assume h0 = (β− 1)y, which changes

nothing about L0.

Let Ai = [ai : 0 : 1], Bi = [bi : 1 : 1] and gi = αix + βiy + γiz such that

Ai + B1 = Z(gi). Then, αi 6= 0 since otherwise, gi(Ai) = 0 would imply

γi = 0 and consequently, gi(B1) = 0 would mean βi = 0 as well. We therefore

assume

gi = x + βiy + γiz

13
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from now on. The linear forms g1, h0, h2 are linearly independent and thus,

ϕ :=


g1 7−→ x

βy− y = h0 7−→ y

βy− z = h2 7−→ z

 : k[x, y, z] −→ k[x, y, z]

defines a linear change of variables. Since ϕ(h1) = y− z, we henceforth as-

sume

h0 = y, h1 = y− z, h2 = z and g1 = x. (1.2)

Note that we have maintained P = [1 : 0 : 0] and we changed h1 only by a

sign, so we can still write Ai = [ai : 0 : 1] as well as Bi = [bi : 1 : 1]. We note at

this point that P /∈ X since Ai 6= Bj for all i and j.

Now since g1 = x, we have a1 = b1 = 0. Without loss of generality, assume

Bi = (C1 + Ai) ∩ L2. This implies C1 = (A1 + B1) ∩ L2 = [0 : 1 : 0] and

consequently, bi = ai for all i. Then,

gi(ai : 0 : 1) = 0 ⇒ γi = −ai = −bi.

gi(0 : 1 : 1) = 0 ⇒ βi = ai = bi. (1.3)

We now claim that
{

a1, . . . , aq
}

defines a finite, additive subgroup of k. By

Fact 1.13, we only have to verify that it is closed under addition:

(a). The line B1 + Ai intersects L2 in Cτ(i).

(b). The line Cτ(i) + Bj intersects L0 in Aσ(i,j).

(c). We claim that ai + aj = aσ(i,j).

Since B1 + Ai = Z(x+ βiy+γiz) and L2 = Z(z), we know Cτ(i) = [−βi : 1 : 0].

Let now Cτ(i) + Bj = Z( f ) with f = ux + vy + wz. We may assume u = 1

since for u = 0, f (Cτ(i)) = 0 implies v = 0 and then, f (Bj) would mean w = 0.

Otherwise, v = βi and thus, w = −(bj + βi). Then, aσ(i,j) − bj − βi = 0 proves

our claim by (1.3).

Let p := char(k). Then, |X0| ≥ p. This will also be true for the other two

lines and P /∈ X, so |X| ≥ 3p.

We remark at this point that the observation |X| ≥ 3p is not required in

the complex case. We have included it here for Section 4.2, when we give

perspectives on finite characteristic. We only need another brief lemma before

we can give Kelly’s proof.
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Lemma 1.15. Let X ⊆ Ps be SGk-closed, P ∈ X any point and H a hyperplane with

P /∈ H. Denote by π : Ps \ {P} → H the linear projection from P onto H. Then,

X′ := π(X \ {P}) is SGk-closed inside H ∼= Ps−1.

Proof. Assume that the points Q1, . . . , Qk ∈ X′ span a (k − 1)-flat F′ ⊂ H.

Let Pi ∈ π−1(Qi) be preimages of these points and F := P1 + · · ·+ Pk. Since

π(F) = F′, we know that dim(F) ≥ k− 1 and since F is spanned by k points,

dim(F) = k − 1. Since dim(F) = dim(F′), we know P /∈ F. Hence, there

is a point P0 ∈ X ∩ F which is distinct from the Pi and from P. Its image

Q0 := π(P0) is then contained in F′ ∩ X′. We have to show that Q0 is distinct

from the other Qi. Hence, assume Q0 = Qi for some i > 0. Then, the points

P0, Pi, Q0 and P lie on the same line. Since P0 6= Pi, this would imply the

contradiction P ∈ P0 + Pi ⊆ F.

Theorem 1.16. SG2(C, m) ≤ 3 for all m ∈N.

Proof. Let X ⊆ Ps
C be an SG2C and assume that dim 〈X〉 > 2. Let P ∈ X be

any point and denote by π : Ps
C \ {P} → Ps−1

C
the projection from P. By the

above Lemma 1.15, we know that

Y := π(X \ {P})

is an SG2C. By our assumption on X, we know dim 〈Y〉 ≥ 2 and by induction

on s, we may further assume that dim 〈Y〉 ≤ 2. By Proposition 1.10, there is a

line L ⊆ Ps−1
C

such that |L ∩Y| = 3. We now consider the intersection

X′ := π−1(L) ∩ X

of X with π−1(L) ∼= P2
C. We are left to show that it is a nonlinear SG2C

contained in the union of three concurrent lines. This will yield the desired

contradiction by Kelly’s Trick (Proposition 1.14). Let L ∩Y = { P0, P1, P2 } and

Li := π−1(Pi). If we were to assume that there is a

Q ∈ X′ \ (L0 ∪ L1 ∪ L2),

the projection π(Q) would be contained in

π(π−1(L) ∩ X) = L ∩Y,

but distinct from the Pi, which is impossible.

Thus, X′ is contained in L0 ∪ L1 ∪ L2. There can furthermore be no line

L′ ⊂ π−1(L) with |L′ ∩ X′| = 2 since L′ ∩ X′ = L′ ∩ X and X is SG2-closed.

Thus, X′ is also SG2-closed.
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1.3 Blowing Up

The technique of “blowing up” certain parts of a variety (or scheme, if you

prefer) is an essential tool in birational geometry. In fact, any birational equiv-

alence can be understood as a blowup, see [Har, Theorem II.7.17]. We will re-

quire this tool for resolving singularities in Section 2.5. We define the notion

of blowing up a variety X along an OX-sheaf of ideals I . For more general

introductions, see [Har, II.7] or [Liu, 8.1]. We start with the affine case:

Definition 1.17. Let A be a ring and I ⊆ A an ideal. We then let I0 := A and

define a graded A-algebra

A[IT] :=
⊕
d≥0

IdTd =

{
n

∑
d=0

adTd

∣∣∣∣∣ n ∈N,

∀d : ad ∈ Id

}
⊆ A[T],

where T is an indeterminate. We call A[IT] the blow-up algebra of A in I. If

X = Spec(A) is an affine scheme, we call

BlI(X) := Proj(A[IT])

the blow-up of X along I, together with the morphism β : BlI(X)→ X induced by

the inclusion A ↪→ A[IT]. We refer to Z(I) as the center of the blow-up.

We want to give more geometric intuition to this purely algebraic defini-

tion. First, we need to recall one basic notion: If ϕ : X → Y is a morphism of

varieties, then

X ϕ

$$

idX

""

idX ×ϕ

""

X×Y //

��

Y

��

X // Spec(k)

idX ×ϕ is a closed immersion whose image Γ(ϕ) := im(idX ×ϕ) we call the

graph of ϕ. Its closed points are just equal to

Γ(ϕ)(k) = { (x, ϕ(x)) | x ∈ X } ⊆ X×Y.

We can now easily extend this definition to rational maps:

Definition 1.18. If ϕ : X 99K Y is a rational map defined on the open subset U ⊆ X,

we denote by Γ(ϕ) ⊆ X×Y the closure of the graph of the regular map ϕU : U → Y

and call it the graph of ϕ.
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Proposition 1.19. Let X = Spec(A) be an affine variety and I ⊆ A a nonzero

ideal. Let Y := Z(I) and pick generators I = ( f0, . . . , fr). We define a rational map

ϕ : X 99K Pr on the closed points of U := X \Y by

ϕ(P) := [ f0(P) : . . . : fr(P)].

In other words, ϕ is induced by the line bundle I∼. Then, BlI(X) ∼= Γ(ϕ) is a

quasi-projective variety and β corresponds to Γ(ϕ) ↪→ X × Pr � X under this

identification.

Proof. There is a surjection of graded k-algebras

π : A[y0, . . . , yr] −→ A[IT]

yi 7−→ fiT,

corresponding to a closed embedding ι : BlI(X) ↪→ X×Pr. Since obviously(
fiyj − f jyi

∣∣ 0 ≤ i, j ≤ r
)
⊆ ker(π),

we can see that BlI(X) ⊆ Γ(ϕ). Since dim(A[IT]) > dim(A), we also know

dim(BlI(X)) = dim(Proj(A[IT])) = dim(A[IT])− 1 ≥ dim(A)

= dim(X) = dim(Γ(ϕ)),

implying dim(BlI(X)) = dim(Γ(ϕ)). The result follows because both varieties

are irreducible and closed.

Corollary 1.20. With notation as in Proposition 1.19, let V := β−1(U). Then,

β|V : V ∼−→ U = X \Y

is an isomorphism of varieties. Thus, β is a birational equivalence and in particular,

dim(BlI(X)) = dim(X). �

Proposition/Definition 1.21. Let β : BlI(X) → X be the blow-up of an affine

variety X = Spec(A) along some ideal I. The homogeneous ideal

I · A[IT] =
⊕

d≥0
Id+1Td

is called the exceptional ideal of the blow-up. Any localization of it by an element

in degree one is a principal ideal and the associated Cartier divisor E is called the

exceptional divisor. Let Y be the center of β, then E is supported on β−1(Y).

Proof. Let f ∈ I. In (A[IT] f T)0, we have (gT
/

f T) · f = g for every g ∈ I,

so (I f T)0 = ( f ) is principal. For any homogeneous prime ideal P ⊂ A[IT],

the inclusion I ⊆ A ∩ P holds if and only if I · A[IT] ⊆ P. In other words,

β(P) ∈ Y if and only if P ∈ E. This means β−1(Y) = E.
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Notation 1.22. If I(Y) = I for a closed subscheme Y ⊆ X, we write BlY(X) instead

of BlI(X) and call it the blow-up of X along Y. We sometimes also write Bl(X, Y)

instead of BlY(X).

We now generalize to arbitrary schemes. In the following, Proj denotes the

relative proj-construction, as explained very comprehensively in [Liu, Chapter

8.1, Lemma 8.1.8] and also in [Har, II.7].

Definition 1.23. Let X be a Noetherian scheme and I an OX-sheaf of ideals. We

define the sheaf of graded algebras

OX [IT] :=
⊕
d≥0

IdTd ⊆ OX [T]

where I0 := OX . The blow-up of X along I is then defined as

BlI (X) := Proj(OX [IT]).

The closed subscheme Z(I) is called the center of the blow-up. As in Notation 1.22,

we set BlY(X) := BlI(Y)(X) for closed subschemes Y ↪→ X.

Consider now a closed subvariety Z of X passing through the center Y of

a blow-up. Its preimage will contain the exceptional divisor, but it will have

a second component Z̃, which is the same as Z, outside of Y. It is called

the strict transform of Z. To properly define and study it, we first ponder on

some less elementary properties of the blow-up such as functoriality and its

universal property.

Definition 1.24. If ϕ : Y → X is a morphism of schemes and I is an OX-sheaf of

ideals, consider the exact sequence 0 → I ↪→ OX . Since the pull-back is in general

not left-exact, the map α : ϕ∗(I) → ϕ∗(OX) ∼= OY might not be a monomorphism.

We call ϕ?(I) := im(α) the inverse image ideal sheaf of I under ϕ.

Fact 1.25. In terms of Definition 1.24, ϕ?(I) ∼= ϕ−1(I) · OY.

Proof. Let U = Spec(A) ⊆ X and V = Spec(B) ⊆ ϕ−1(U). With I := I(V),

ϕ∗(I)(V)

αV

��

B⊗A I

��

ϕ∗(OY)(V) B

so αV(b⊗ t) = bt and im(αV) = IB = (ϕ−1(I) · OY)(V). This induces local

isomorphisms im(α)|V ∼= (ϕ−1(I) · OY)|V of OV-modules which agree on

stalks and therefore glue.
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Fact 1.26. Let I be an invertible sheaf of ideals on a k-variety X. Then, the blow-up

β : BlI (X)→ X is an isomorphism.

Proof. We may harmlessly assume that X = Spec(A) is affine and I corre-

sponds to a principal ideal ( f ) ⊆ A. Hence,

BlI(X) = Proj(A[ f T]) ∼= Proj(A[T]) ∼= Spec(A) = X.

Theorem 1.27 (Functoriality of the Blow-Up). Let ϕ : X → X′ be a morphism

of k-varieties and J ′ ⊆ OX′ an ideal sheaf such that the inverse image J := ϕ?(J ′)
is invertible. Then,

BlJ (X)

∃!ϕ̄
��

β
// X

ϕ

��

BlJ ′(X′)

	

β′
// X′

(1.4)

This construction is functorial and preserves closed embeddings.

Remark. This is [Har, Corollary II.7.15] for varieties, but we give a proof here

that uses our characterization from Proposition 1.19 rather than the universal

property described in [Har, Proposition II.7.14]. Instead, we will use functori-

ality to deduce the universal property next.

Proof. Since the blow-up is local and in view of the asserted uniqueness of

ϕ̄, we may assume that X = Spec(A) and X′ = Spec(A′) are both affine

varieties. Let I′ := J ′(X′) = ( f ′0, . . . , f ′r), so I := J (X) = ( f0, . . . , fr) for

fi := ϕ]( f ′i ). Since we assumed J to be an invertible sheaf, I 6= (0). The

induced morphisms ψ : X 99K Pr and ψ′ : X′ 99K Pr satisfy ψ = ψ′ ◦ ϕ since

fi = f ′i ◦ ϕ as regular maps. We write U := X \ Z(I) and U′ := X′ \ Z(I′),

then there is a unique morphism

V := Γ(ψU) // //

ϕ̄V

��

U

ϕ|U
��

V′ := Γ(ψ′U′) // // U′

which maps ϕ̄V(P, ψ(P)) := (ϕ(P), ψ(P)) = (ϕ(P), ψ′(ϕ(P))). Furthermore,

there certainly exist graded maps of A′-algebras ϕ̄] that make the diagram

A[IT] A/oo

A′[I′T′]

ϕ̄]

OO

A′/oo

ϕ]

OO
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commute: For instance, take the map defined by T′ 7→ T. The induced mor-

phisms ϕ̄ : BlI(X) → BlI′(X′) satisfy ϕ̄|V = ϕ̄V , so they all agree on a dense

open subset of BlI(X) and must therefore be equal.

The morphism ϕ is a closed immersion if and only if ϕ] is surjective. In

this case, ϕ̄] is also surjective and ϕ̄ a closed immersion.

Corollary 1.28 (Universal Property Of Blowing Up). Let ϕ : Y → X be a mor-

phism of varieties and I a coherent sheaf of ideals on X. Let β : X̃ := BlI (X) → X.

If ϕ?(I) is an invertible sheaf on Y, then

Y

ϕ
%%

∃!ϕ̄
// X̃

	
β

��

X

there exists a unique ϕ̄ : Y → X̃ with β ◦ ϕ̄ = ϕ.

Proof. Since J := ϕ?(I) is invertible, the blow-up α : Ỹ := BlJ (Y) → Y is an

isomorphism by Fact 1.26. Hence, we are done by Theorem 1.27.

Definition 1.29. Assume that ı : Z ↪→ X is a closed immersion of k-varieties and

β : BlI (X) → X a blow-up of X. Then, we set Ĩ := ı?(I) and define the strict

transform of Z to be βᵀ(Z) := im(ı̃), where ı̃ is the induced morphism

BlĨ (Z) =: Z̃ γ //

O

ı̃
��

Z
O

ı

��

BlI (X) =: X̃ β // X

	

(1.5)

Proposition 1.30. With notation as in Definition 1.29, let J := I(Z). Then, the

ideal corresponding to Z̃ = βᵀ(Z) is equal to

⊕
d≥0

(Id ∩ J ) · Td (1.6)

Proof. First note that for closed embeddings ı : Z ↪→ X, the pull-back is an

exact functor, so ı∗(I) = ı?(I) is just the pullback of I . Since we are dealing

with quasi-coherent sheaves, we may assume that X = Spec(A) is affine and

the closed immersion ı of Z = Spec( A/J ) into X is given by the surjection of

rings ı] : A� A/J . Then by definition,

Z̃ = Proj
(⊕

d≥0

(
Id · A/J

)
· Td

)
.
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The induced closed immersion ı̃ : Z̃ ↪→ X̃ corresponds to a surjection of

graded rings

ı̃] :
⊕

d≥0
Id · Td �

⊕
d≥0

(
Id · A/J

)
· Td

whose kernel is clearly equal to (1.6)

Proposition 1.31. With notation as in Definition 1.29 and Y := Z(I),

βᵀ(Z) = β−1(Z \Y).

Proof. Let E := β−1(Y) and Ẽ := α−1(Y ∩ Z) = E ∩ Z̃. Since horizontal mor-

phisms in (1.5) become isomorphisms when restricting to the open subset

U := X \Y, we know ı̃(Z̃) \ E = β−1(Z \Y). Since ı̃(Ẽ) ⊆ E,

ı̃(Z̃) \ E = ı̃(Z̃) \ ı̃(Ẽ) = ı̃(Z̃ \ Ẽ) = ı̃
(

Z̃ \ Ẽ
)
= ı̃(Z̃).

Corollary 1.32. We consider closed subvarieties Z1, . . . , Zr ⊆ X of a variety X un-

der the blowing-up β : BlI (X)→ X. Let Y := Z(I).

(a). βᵀ(
dr

i=1 Zi) =
dr

i=1 βᵀ(Zi).

(b). If Y ⊇
dr

i=1 Zi, then
dr

i=1 βᵀ(Zi) = ∅.

(c). βᵀ(
⋃r

i=1 Zi) =
⋃r

i=1 βᵀ(Zi).

(d). If Zi is irreducible, then so is βᵀ(Zi).

Proof. Parts (a) and (b) are the result of Proposition 1.30, since

⊕
d≥0

((
r

∑
i=1
Ji

)
∩ Id

)
Td =

r

∑
i=1

(⊕
d≥0

(
Ji ∩ Id

)
Td

)
and the strict transform of Y is clearly empty.

Parts (c) and (d) follow directly from Proposition 1.31 since

β−1
(⋃r

i=1
Zi \Y

)
=
⋃r

i=1
β−1(Zi \Y).

and if Zi is irreducible, then Zi \Y is an irreducible, closed subset of the open

set U := X \Y. Hence, β−1(Zi \Y) is also irreducible.

A self-contained proof of the following well-known result would require

more commutative algebra than the scope of our introduction permits.

Theorem 1.33. Let X be a nonsingular k-variety and Y ⊆ X a nonsingular, closed

subvariety. Then, both BlY(X) and the exceptional divisor of this blow-up are non-

singular k-varieties.

Metaproof. See [Har, Theorem II.8.24].
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1.4 Intersection Theory and Chern Classes

An intersection theory should make it possible to calculate intersections of

subvarieties, counted with “multiplicities”. We can only give a very brief

overview of the basic terminology for this rather vast area of study. For a de-

tailed introduction, see [Ful1]. At the time of writing, the author would also

recommend the excellent lecture notes [Gat, Chapters 9 and 10]. For brevity,

however, we follow the axiomatic approach of [Har, Appendix A] and assume

k to be an algebraically closed field.

Definition 1.34. Let X be an s-dimensional variety over k. Let Zk(X) be the free

abelian group generated by all subvarieties Y ⊆ X of codimension k and define the

graded group Z(X) :=
⊕s

k=0 Zk(X). An element of Z(X) is called a cycle. A cycle

is positive if each of its coefficients is a positive integer number.

To be able to count intersections with multiplicities, we need to be able to

“move” varieties around without changing the result of their intersection. The

correct notion for this is rational equivalence.

Definition 1.35. If M is an A-module, we denote by lenA(M) the length of M over

A. It is the supremum of all lengths r of chains 0 ( M1 ( M2 ( · · · ( Mr = M of

submodules Mi ⊆ M. We write len(A) to denote the length of A as an A-module.

Definition 1.36. Let X be an s-dimensional k-variety. If Y ⊆ X is a closed subvari-

ety and f ∈ k(Y), we set

div( f ) := ∑
codimY(Z)=1

ordZ( f ) · Z.

Recall that the order of an element f ∈ OY,Z is defined to be

ordZ( f ) := lenOY,Z

(
OY,Z

/
( f )
)
.

We then extend this definition to the function field k(Y) = Frac(OY,Z) by requiring

that ord( f
/

g ) = ord( f )− ord(g).

A cycle which is of the form div( f ) is called rational. The free abelian subgroup of

Zk(X), generated by all rational cycles, is denoted Ratk(X). For W, V ∈ Zk(X), we

write W ∼ V if W−V ∈ Ratk(X). We say that V and W are rationally equivalent

in this case. The Chow ring of X is the graded ring A(X) =
⊕s

k=0 Ak(X) where

Ak(X) is the factor group

Ak(X) := Zk(X)
/

Ratk(X) .

The elements of A(X) are called cycle classes. A cycle class is positive if it can be

represented by a positive cycle. We write [Y] for the equivalence class of Y.
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A cycle class can now be “moved” along rational cycles. Note that this is a

generalization of the linear equivalence between the divisors Div(X) = Z1(X).

Hence, A1(X) = Pic(X). One then proceeds to construct an intersection

product

Ak(X)× Aj(X) −→ Ak+j(X) (1.7)

[Y], [Z] 7−→ [Y] · [Z]

for each variety X. Unfortunately, it would be outside the scope of this thesis

to explain the construction in detail.

Definition 1.37. Let ϕ : X → X′ be a morphism of varieties and Y ⊆ X a closed

subvariety. If dim(ϕ(Y)) < dim(Y), we set ϕ∗([Y]) := 0. Otherwise, k(Y) is a

finite extension field of k(Y′), where Y′ = ϕ(Y). We then set

ϕ∗([Y]) := [k(Y) : k(Y′)] · [Y′].

On the other hand, if Y′ ⊆ X′ is any closed subvariety, denote by Γ(ϕ) ⊆ X × X′

the graph of ϕ and set

ϕ∗([Y′]) := p∗
(
[Γ(ϕ)] · [q−1(Y′)]).

Here, p and q are the projections from X× X′ to X and X′, respectively.

One can then show that (1.7) has the following properties:

A1. The pairing (1.7) turns A(X) into a commutative, graded, unitary ring

for every variety X.

A2. For ϕ : X → X′, the pull-back ϕ∗ : A(X′) → A(X) is a morphism of

graded rings. Also, ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗ for ψ : X′ → X′′.

A3. For a proper ϕ : X → X′, the push-forward f∗ : A(X) → A(X′) is a

morphism of graded groups. Also, ψ∗ ◦ ϕ∗ = (ψ ◦ ϕ)∗ if ψ : X′ → X′′.

A4. For [Y] ∈ A(X) and [Y′] ∈ A(X′), ϕ∗([Y] · ϕ∗([Y′])) = ϕ∗([Y]) ·Y′.

A5. For [Y], [Z] ∈ A(X), [Y] · [Z] = δ∗([Y× Z]), where δ : X → X × X is the

diagonal morphism.

A6. Let Y and Z be subvarieties of X and let Y ∩ Z = W1 ∪ · · · ∪Wr be

the irreducible components of their intersection. Assume that Z and Y

intersect properly, i.e. codimX(Wi) = codimX(Y) + codimX(Z) for all i.

Then, there exist intersection multiplicities µj ∈ Z such that

[Y] · [Z] = ∑r
j=1 µj · [Wj].
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The number µj can be calculated as follows: Let R := OX,Wj be the local

ring at Wj and let I and J denote the ideals of R that correspond to Y

and Z, respectively. Then,

µj = ∑
k∈N

(−1)k · lenR

(
TorR

k (R/I , R/J )
)

.

where TorR
k (−, M) denotes the k-th left derived functor of the tensor

product functor (−)⊗R M.

A7. If Y is a subvariety of X and Z is an effective Cartier divisor meeting Y

propertly, then [Y] · [Z] is the cycle class associated to the cartier divisor

Y ∩ Z on Y, which is defined by restricting the local equation of Z to Y.

In particular, that the transversal intersection of nonsingular subvarieties

have multiplicity one.

In fact, properties A1 to A7 uniquely characterize the intersection product,

see [Har, Theorem A.1.1]. There are two more properties of the intersection

product that can be deduced from the above:

A8. For any affine space As, the projection p : X ×As → X induces an

isomorphism p∗ : A(X) ∼−→ A(X×As).

A9. If Y is a nonsingular, closed subvariety of X and U = X \ Y its comple-

ment, there is an exact sequence

A(Y) o
∗
// A(X)

ı∗
// // A(U) // 0

where  : Y ↪→ X and ı : U ↪→ X are the inclusion morphisms.

Example 1.38. A(Ps) ∼= Z[h]
/(

hs+1) , where h in degree 1 is the class of a hyper-

plane. We prove this by induction on s. For s = 0, the statement is obvious. Other-

wise, pick two hyperplanes H and H′ that meet transversally, so h = [H] = [H′] and

g := [H ∩ H′]. Set U := Ps \ H ∼= As in property A9 and note that H ∼= Ps−1.

Then, by induction and property A8, we have a sequence

Z[g]
/
(gs)

∗
// A(Ps)

ı∗
// // A(As) ∼= Z // 0

For certain generic, transversal hyperplanes Hi,

gk−1 = [(H ∩ H1) ∩ (H ∩ H2) ∩ · · · ∩ (H ∩ Hk−1)]

= [H1 ∩ · · · ∩ Hk−1 ∩ H] = hk,

so ∗(gk−1) = hk is a generator in degree k > 0. This also shows that ∗ is injective.
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Cycle classes in degree zero can now be understood as closed points,

counted with multiplicity. We use the notation of [Ful1] for counting them:

Definition 1.39. Let X be a variety and α ∈ A(X) a cycle class whose degree-zero

part can be written as α0 = ∑N
i=1 ni[Pi] for certain points Pi ∈ X. Then, we define

the degree of α as ∫
X

α := ∑N
i=1 ni.

Hence, if πX : X → Spec(k) is the structure morphism,∫
X

α = πX∗(α),

where we implicitly use the canonical isomorphism A(Spec(k)) ∼= Z. Hence, for any

proper ψ : X → X′, we have∫
X′

ψ∗(α) = πX′∗(ψ∗(α)) = (πX′ ◦ ψ)∗(α) = πX∗(α) =
∫

X
α.

To define Chern classes, we now need a generalization of Example 1.38,

which we will state without proof. Recall that the symmetric algebra of a

sheaf E of OX-modules is the sheaf Sym(E ) associated to the presheaf

U 7−→
⊕
d≥0

E (U)⊗d

/
( f ⊗ g− g⊗ f | f , g ∈ E (U) ) ,

see also [Har, Exercise II.5.16].

Lemma 1.40. Let E be a locally free sheaf of rank r on a variety X over k. Let

π : P(E ) = Proj(Sym(E )) −→ X

be the associated projective space bundle and let h ∈ A1(P(E )) be the class of the

divisor corresponding to OP(E )(1). Then, A(P(E )) is a free A(X)-module via π∗,

generated by hk for 0 ≤ k ≤ r− 1.

Definition 1.41. Let E be a locally free sheaf of rank r on a nonsingular, quasi-

projective variety X over k. Using the notation and statement of Lemma 1.40, we can

write

−hr =
r

∑
k=1

(−1)k · π∗(ck) · hr−k

We then define the k-th Chern class of E to be ck(E ) := ck ∈ Ak(X). We also

set c0(E ) := c0 := 1, so ∑r
k=0(−1)k · π∗(ck) · hr−k = 0. The total Chern class

is the sum c(E ) := ∑r
k=0 ck(E ) and for a formal variable T, we define the Chern

polynomial

cT(E ) :=
r

∑
k=0

ck(E ) · Tk.
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While this definition is very formal, it can be shown that the Chern classes

of a variety are subject to several useful properties:

C1. If E is a line bundle corresponding to a divisor class [D] ∈ A1(X), then

cT(E ) = 1 + [D] · T. Indeed, in this case, P(E ) = X and OP(E )(1) = E ,

so h = [D] in Lemma 1.40. Hence, by definition, c0(E ) · [D]− c1(E ) = 0.

C2. If ϕ : X′ → X is a morphism and E is a locally free sheaf on X, then

ck(ϕ∗E ) = ϕ∗(ck(E )) for each k.

C3. If 0 → E ′ ↪→ E � E ′′ → 0 is an exact sequence of locally free sheaves

on X, then cT(E ) = cT(E
′) · cT(E

′′).

Again, one can show that these already uniquely define a theory of Chern

classes, which assigns to each locally free sheaf E on some variety X an ele-

ment ck(E ) ∈ Ak(X) and satisfies properties C1 to C3. For the proof of this,

one requires the following

Theorem 1.42 (Splitting Principle). Let E ′ be a locally free sheaf on a variety X′.

Then, there exists a morphism ϕ : X → X′ such that ϕ∗ : A(X′) ↪→ A(X) is

injective and E := ϕ∗(E ′) splits, i.e. has a filtration

E = E0 ⊇ E1 ⊇ · · · ⊇ Er = 0

whose successive quotients Lk := Ek
/
Ek−1 are invertible sheaves.

Then, one deduces the following property C4 from property C3. The

uniqueness is then a result of property C1.

C4. If E splits and the filtration has the invertible sheaves L1, . . . , Lr as quo-

tients, then cT(E ) = ∏r
k=1 cT(Lk).

C5. Let us write

cT(E ) =
r

∏
i=1

(1 + aiT) cT(F ) =
s

∏
j=1

(1 + bjT)

for two locally free sheaves E and F on X, where the ak and bk are just

formal symbols. Then,

cT(E
∨) = ∏r

i=1(1− aiT),

cT

(∧p
E
)
= ∏λ⊂{ 1,...,r }

|λ|=p

(
1 + ∑

i∈λ

aiT

)
,

cT(E ⊗F ) = ∏i,j(1 + (ai + bj)T).
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Remark 1.43. Note that the expressions in property C5 make sense: When multiplied

out, the coefficients of each power of T are symmetric functions in the ai and bj. By a

well-known theorem on symmetric functions, they can be expressed as polynomials in

the elementary symmetric funtions of the ai and the bj which are none other than the

Chern classes of E and F .

In the context of the Hirzebruch-Riemann-Roch theorem, the formal calcu-

lus of Chern classes is extended by the notions of exponential Chern character

and Todd class:

Definition 1.44. Let E be a locally free sheaf of rank r on a variety X over k and

write cT(E ) = ∏r
i=1(1 + aiT) with formal variables ai. The exponential Chern

character is defined to be

ch(E ) :=
r

∑
i=1

exp(ai)

where we formally set exp(a) := ∑∞
k=0

ak

k! . Furthermore, the Todd class of E is the

formal expression

td(E ) :=
r

∏
i=1

ai
1− exp(−ai)

.

We recall the following

Definition 1.45. If E is a sheaf of OX-modules, then

χ(X, E ) := ∑
k∈Z

(−1)k · rank
(
Hk(X, E )

)
is the Euler characteristic of E .

Now, we have all the vocabulary at hand to quote the famous result which

was proved by Hirzebruch over C and later generalized to any algebraically

closed field k by Borel and Serre.

Theorem 1.46 (The Hirzebruch-Riemann-Roch Theorem). For any locally free

sheaf E on a nonsingular projective variety X,

χ(X, E ) =
∫

X
ch(E ) · td(TX).

Metaproof. See [Har, Theorem A.4.1] for just the statement and further refer-

ences. There is a sketch of proof in [Gat, Theorem 10.4.5]. For a full proof, see

[Ful1, Corollary 15.2.1].
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Chapter 2

Constantly Branched

Coverings

In this chapter, we study a class of coverings π : Y → X of varieties, which we

will call constantly branched along an arrangement H of hypersurfaces in X. In

[BHH], Hirzebruch had introduced this notion for complex surfaces, and we

now generalize it significantly. In the nonsingular case, we derive formulas

relating two important numerical invariants of these varieties, namely the Eu-

ler characteristic (over k = C) and the self-intersection number of a canonical

divisor. These relations will depend mainly on combinatorial data of H.

In Section 2.5, we prove that any such covering can be desingularized by

a simple sequence of blow-ups and in Section 2.6, we construct constantly

branched coverings associated to a certain class of arrangements. In particular,

arrangement of hyperplanes in projective space will belong to this class. In the

case of surfaces, these results and constructions specialize to what Hirzebruch

already described in [BHH].

2.1 Ramified and Unramified Morphisms

In this section, we recall several definitions and results from the study of

morphisms π : Y → X of finite type. This family of morphisms is the algebraic

equivalent of branched coverings. If Y and X are varieties, π corresponds to an

algebraic extension of fields k(X) ↪→ k(Y). The degree of this extension is also

called the degree of π, denoted by deg(π). It is equal to the cardinality of the

generic fibers of π. The closed set where the fibers are of smaller cardinality

is the ramification locus of the covering. We now make this notion formal.
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Definition 2.1. Let X and Y be Noetherian schemes and let π : Y → X be a mor-

phism of finite type. Let Q ∈ Y be any point and set P := π(Q). We say that π

is unramified at Q if π]
Q : OX,P → OY,Q satisfies mP · OY,Q = mQ. Otherwise,

we say that π is ramified at Q. We denote by Rπ ⊆ Y the set of points where π is

ramified and call it the ramification locus of π. The set Bπ := π(Rπ) is called the

branch locus of π. The morphism π is called unramified if it is nowhere ramified.

Example 2.1.1. A good example for intuition is the projection of a parabola to the

ordinate, as sketched in Figure 2.1.

A2

Z(4(y+1)−9x2)P

Z(y)

Z(x)

π

Figure 2.1: Projecting from a parabola

It is an example for a morphism of degree two. P is the only ramification (branch-

ing) point on the parabola (ordinate).

We quote the famous result of Oscar Zariski from 1958 which assures that

Bπ and Rπ can be understood as effective divisors:

Theorem 2.2 (Purity of the Branch Locus). If π : Y → X is a morphism of finite

type between varieties, Rπ and Bπ are pure1 of codimension one.

Metaproof. By [Zar, Proposition 2], the set Rπ is closed and pure of codimen-

sion one. Since a finite morphism maps points of codimension one to points

of codimension one, the same holds for Bπ .

Definition 2.3. Let π : Y → X be a morphism of finite type between varieties over a

field k. Let Q ∈ Y be a closed point and set P := π(Q). Let

YP := Y×X Spec(k(P))
1Being pure means that all irreducible components have the same dimension.
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be the scheme-theoretic fiber of P under π. It is well-known that sp(YP) is homeo-

morphic to π−1(P), see [Har, Exercise II.3.10]. We define

eπ(Q) := len
(
OYP ,Q

)
and call it the ramification index of π at Q. If Z = Q is the closure of Q, we also

write eπ(Z) := eπ(Q). If char(k) divides eπ(Q), we say that the ramification is

wild, otherwise it is tame.

The following Proposition 2.4 explains the connection between ramifica-

tion index and the notion of π being ramified:

Proposition 2.4. With notation as in Definition 2.3, OY,Q
/
(mP · OY,Q) ∼= OYP ,Q.

Proof. We may assume that X = Spec(A) and hence, Y = π−1(X) = Spec(B)

is also affine. By definition, OYP ,Q = (B⊗A k(P))Q. Furthermore,

(B⊗A k(P))Q = (B⊗A (AP/mP))Q
∼−→ BQ

/
(mP · BQ)

b⊗ (a mod mP)

h
7−→ a · b

h
mod (mP · BQ)

is an isomorphism: For injectivity, ab ∈ mPBQ implies ab = a′b′ with a′ ∈ mP

and b′ ∈ BQ, but then b⊗ (a mod mP) = b′ ⊗ (a′ mod mP) = 0.

Corollary 2.5. Let π : Y → X be a morphism of finite type between integral schemes.

Let Q ∈ Y and P := π(Q). Then, eπ(Q) = 1 if and only if π is unramified at Q.

Proof. Note that eπ(Q) = 1 if and only if OYP ,Q is a field, i.e. if and only if it

is equal to k(Q). By Proposition 2.4, this is equivalent to

OY,Q
/
(mP · OY,Q) = OYP ,Q = k(Q) = OY,Q

/
mQ .

The following corollary connects our definition of the ramification index

with the one given in [Har, IV.2]:

Corollary 2.6. Let π : Y → X be a finite, dominant morphism of regular integral

schemes. Let Q ∈ Y be a point of codimension one and P := π(Q). Let f be

a uniformizing parameter at P, i.e. mP = ( f ). Let vQ : k(Y) → Z denote the

valuation corresponding to OY,Q. Then, eπ(Q) = vQ(π
]
Q( f )).

Proof. By [Eis, Proposition 11.1], since Y is regular, vQ can be evaluated on

OY,Q as follows: If g is a uniformizing parameter at Q, i.e. mQ = (g), then any

element α ∈ OY,Q can be written as α = ugv for some unit u and v = vQ(α).

Let e := vQ(π
]
Q( f )), then Proposition 2.4 yields

OYP ,Q = OY,Q

/(
π]

Q( f )
)
= OY,Q

/
(ge) ,

which is easily seen to have length e over itself.
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Remark 2.6.1. By Theorem 2.2 and Corollary 2.5, there is a finite number of points

Q of codimension one where π is ramified, and these are the points with eπ(Q) > 1.

Definition 2.7. Let π : Y → X be a morphism of finite type between k-varieties and

Q ∈ Y a closed point. Let P := π(Q), then we call

fπ(Q) := [k(Q) : k(P)]

the inertia degree of π at Q. This is the degree of the restricted morphism Q→ P.

A very important tool in the analysis of branched coverings will be the

following formula:

Theorem 2.8 (Degree Formula). Let π : Y → X be a finite, dominant morphism

of integral regular schemes. Then, for any closed point P ∈ X,

deg(π) = ∑
π(Q)=P

eπ(Q) · fπ(Q)

Metaproof. This is [GW, Formula (12.6.2), Page 329]. Note that π is flat because

X and Y are regular, see [Liu, Remark 4.3.11].

As one application, we can show that an unramified morphism has con-

stant fiber cardinality:

Corollary 2.9. Let π : Y → X be an unramified, finite and surjective morphism of

nonsingular k-varieties over an algebraically closed field k. Then,∣∣∣π−1(P)
∣∣∣ = deg(π)

for each closed point P ∈ X.

Proof. Since π is unramified, Corollary 2.5 and Theorem 2.8 imply

deg(π) = ∑
π(Q)=P

[k(Q) : k(P)] = ∑
π(Q)=P

1 =
∣∣∣π−1(P)

∣∣∣ .

Note that k(Q) ∼= k(P) ∼= k since k is algebraically closed.

2.2 Constantly Branched Coverings

We will now restrict to a special class of finite morphisms. These constantly

branched coverings will be the objects of our study for the rest of the chapter.

Their branch locus is required to be a so-called strict arrangement. For our

later applications, it might serve intuition well to picture arrangements of

hyperplanes in general position, which are always strict in the following sense:
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Definition 2.10. An effective divisor H inside a nonsingular variety X will be called

an arrangement if H = H0 + . . . + H` such that the Hi are prime and for any

λ ⊂ { 0, . . . , ` }, the scheme-theoretic intersection

Hλ :=
l

i∈λ

Hi

is a nonsingular subvariety of X. We say that H is a strict arrangement if, in

addition, the Hi intersect transversally – or, equivalently, H has normal crossings.

See also [Liu, Definition 9.1.6]. For any point P ∈ X, closed or not, we define

λH(P) := { i ∈ { 0, . . . , ` } | P ∈ Hi } and rH(P) := |λH(P)| .

We write λ(P) and r(P) if there is no ambiguity concerning H. We also say that P

is an r-point of H when we mean r := r(P).

Example 2.10.1. As mentioned in the introduction, our main example is the case

where the Hi = Z∗(hi) ⊂ Ps are hyperplanes. In other words, the hi are linear

homogeneous polynomials in s + 1 variables. The scheme-theoretic intersection Hλ

corresponds to the ideal ( hi | i ∈ λ ), which is radical. Hence, Hλ is a linear subva-

riety and as such, also nonsingular. If s = 2, H is a set of projective lines and an

r-point of H is a (closed) point in the projective plane where r lines intersect.

The arrangements we are interested in will be the geometric duals of SGCs.

Inevitably, we will have more than d points lie inside a linear subvariety of

dimension d− 1. In the dual setting, we will have more than d hyperplanes

intersect in a variety of codimension d. These parts of the arrangement will

be exactly the parts that we have to blow up in Section 2.5 to regularize the

covering.

Definition 2.11. Let H be an arrangement inside a nonsingular k-variety X. An

intersection Hλ 6= ∅ is redundant if codimX(Hλ) < |λ|. In this case, we also call λ

redundant. A point P ∈ X will be called H-redundant if λH(P) is redundant. Note

that by definition, the set of H-redundant points is a closed subvariety of codimension

two, which we denote by Rd(H) and refer to as the redundant part of H.

Example 2.11.1. In the situation of Example 2.10.1 with s = 2, the redundant in-

tersections are those points in the plane where more than two lines meet.

Fact 2.12. Let H be an arrangement inside a nonsingular variety X. An intersection

Hλ is redundant if and only if there exists an i ∈ λ such that Hλ = Hλ\{i}. There

are d := codimX(Hλ) components of H which intersect transversally at the generic

point P of Hλ.
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Proof. The implication “⇐” is obvious, so assume that Hλ is redundant. For

ease of notation, let us assume that λ = { 1, . . . , r } and X = Spec(A) is affine.

By localizing further, we may assume that the I(Hi) = (hi) are principal ideals.

By definition of Hλ as a scheme-theoretic intersection, mP = (h1, . . . , hr). Let

h̄i be the image of hi under mP � mP
/
m2

P . Since X is nonsingular, we may

assume that
{

h̄1, . . . , h̄d
}

is a k(P)-basis for mP
/
m2

P . By Nakayama’s Lemma

[Eis, Corollary 4.8], this implies mP = (h1, . . . , hd).

Remark 2.12.1. Note that the redundant part is, in general, not pure of codimension

two – it might happen that no three of the h̄i are linearly dependent, but any four of

them are.

Corollary 2.13. Let H be an arrangement inside a nonsingular variety X. Then H is

strict if and only if it has no redundant intersections. In this case, r(P) ≤ codimX(P)

for each P ∈ X. �

Remark 2.13.1. Note that in the situation of Example 2.10.1, the transversality con-

dition is obvious: Any two distinct hyperplanes intersect transversally.

Notation 2.14. We denote by tr(d, H) the number of r-points P of codimension d

such that Hλ(P) = P, i.e. P is the generic point of the intersection of all components

it is contained in. Note that this notation is in agreement with Definition 1.8 for the

case where H is an arrangement of hyperplanes.

We can now define what a constantly branched covering is. Recall that for

a field K containing all n-th roots of unity, a Kummer extension is an algebraic

extension of the form

K [ n
√

x1, . . . , n
√

x`] .

Our reference is [Bos, 4.9]. One usually assumes that char(K) does not divide

n. In this case, the extension is automatically Galois.

Notation 2.15. Let A be a domain and K := Frac(A). For any nonzero x ∈ A, we

understand n
√

x as a set. More precisely, n
√

x =
{

y ∈ K
∣∣ yn = x

}
.

Definition 2.16. A finite surjective morphism π : Y → X of k-varieties will be

called a covering if Bπ is an arrangement (this terminology is not standard). A

covering is called regular if its branch locus is a strict arrangement.

A covering is called n-fold locally Kummer if char(k) does not divide n ∈ N

and for any closed point Q ∈ Y, P := π(Q), there exist x1, . . . , x` ∈ OX,P such that

OY,Q = OX,P [y1, . . . , y`]
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for certain yi ∈ n
√

xi. Checking this property at generic points, we see that k(Y) is a

Kummer extension of k(X), therefore locally Kummer coverings are Galois.

An (n-fold) constantly branched covering is defined to be an n-fold locally

Kummer covering over a smooth base X such that in the above scenario, we also

assume that x1, . . . , xr define the components of Bπ near P and xi ∈ mP if and only

if i ≤ r. In other words, I(Bπ)P = (x1 · · · xr).

Notation 2.16.1. We will write CBC instead of “constantly branched covering”.

Whenever the term is used, we will also implicitly assume that the base field k is

algebraically closed.

Remark 2.16.2. If π is a CBC then in particular, each component of the branch

locus has ramification index n. To see this, just choose a closed 1-point of Bπ . By

assumption, the ramification is always tame.

One important property of CBCs is the fact that we understand the singu-

larities of Y very well:

Proposition 2.17. If π : Y → X is a CBC with branch locus H, the closed singular

points of Y are the closed points of π−1(Rd(H)). Hence,

Sing(Y) = π−1(Rd(H)).

Proof. Let P be a closed r-point and Q ∈ π−1(P). Let ξ1, . . . , ξ` ∈ OX,P such

that OY,Q = OX,P [ψ1, . . . , ψ`] with ψi ∈ n
√

ξi. Let U = Spec(A) be an affine

neighborhood of P and V := π−1(U) = Spec(B). Since B is a finitely gen-

erated A-algebra, we can assume B = A [ψ1, . . . , ψ`] by possibly localizing

further. Also, we may assume that ξi ∈ A× if and only if i > r.

Since X is a k-variety, A = k [x1, . . . , xd]
/

I is a finitely generated k-algebra,

and we pick generators I = (g1, . . . , gt) of the ideal I. We denote by hi ∈
k [x1, . . . , xd] a representative of ξi ∈ A. Let fi := hi − yn

i , then

B = A [ψ1, . . . , ψ`] = k [x1, . . . , xd, y1, . . . , y`]
/
(g1, . . . , gt, f1, . . . , f`) .

Note that ∂yi f j = −δijnyn−1
i and ∂yi gj = 0. By the Jacobian criterion, Y is

nonsingular in Q if and only if the matrix

JY :=



∂x1 g1 · · · ∂xd g1 0 · · · 0
...

. . .
...

...
...

∂x1 gt · · · ∂xd gt 0 · · · 0

∂x1 h1 · · · ∂xd h1 −nyn−1
1 0

...
. . .

...
. . .

∂x1 h` · · · ∂xd h` 0 −nyn−1
`


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has rank `+ d− s at Q, where s := dim(Y). Note that

yi(Q) = 0 ⇐⇒ 0 = yn
i (Q) = ξi(Q) = ξi(P) ⇐⇒ i ≤ r.

We set bi := −n · yn−1
i (Q) and note that bi is nonzero if and only if i > r since

char(k) does not divide n. Thus,

JY(Q) =



(∂x1 g1)(Q) · · · (∂xd g1)(Q) 0 · · · 0 0 · · · 0
...

...
...

...
...

...

(∂x1 gt)(Q) · · · (∂xd gt)(Q) 0 · · · 0 0 · · · 0

(∂x1 h1)(Q) · · · (∂xd h1)(Q) 0 · · · 0 0 · · · 0
...

...
...

...
...

...

(∂x1 hr)(Q) · · · (∂xd hr)(Q) 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 br+1 0
...

...
...

...
. . .

0 · · · 0 0 · · · 0 0 b`



.

Note that the upper left (t + r)× d – submatrix of JY(Q) is the Jacobian JZ of

Z := Z(ξ1, . . . , ξr) ⊆ X, evaluated at P. In other words, Z is the intersection of

the components of H passing through P. Since that intersection is nonsingular,

P /∈ Rd(H)⇔ dim(Z) = s− r

⇔ rank(JZ(P)) = d− (s− r) = r + d− s

⇔ rank(JY(Q)) = `+ d− s.

⇔ Q /∈ Sing(Y)

Corollary 2.18. If π : Y → X is a regular CBC, then Y is nonsingular. �

For better intuition, we give a basic example of a CBC over the affine

plane, resulting from the adjunction of roots of linear forms. Ultimately, this

is exactly the setting that we want to study.

Example 2.19. Let A := k [x, y] and A′ := A [z1, z2, z3]. Set

h1 := x h2 := y h3 := x + 2

and define B := A′
/(

zn
i − hi

)
. We set X := A2 = Spec(A) and Y := Spec(B).

Then, the integral extension A → B induces a finite morphism π : Y → X. Let

P := (x, y) ⊂ A be the origin of A2. We note that the points Q ∈ Y with π(Q) = P

are exactly the maximal ideals Qα = (z1, z2, z3 − α) where α ∈ n
√

2. In fact,⋂
ζn=2

Qζ = (z1, z2) =: Q =
√

PB = I(π−1(P)).
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In some neighborhood of Qα, the elements z3 − ζ for any other α 6= ζ ∈ n
√

2 become

units and since

∏
ζn=2

(z3 − ζ) = h3 − 2 = h1 = zn
1 =⇒ z3 − α =

zn−1
1

∏ζ 6=α(z3 − ζ)
· z1,

this means that mQα
= (z1, z2) is indeed generated by two elements which are n-th

roots of x and y, respectively. Similarly, we observe that over P′ := (x + 2, y), the

points are locally generated by z2 and z3.

A2

Z(x−y)

PP′ Z(y)

Z(x)Z(x+2)

Figure 2.2: The branching locus of π in Example 2.19.

If we add the equation h4 := x − y, as well as a z4 with zn
4 = h4, the hi do not

longer define a strict arrangement: P is a redundant intersection. In fact, we then

have Q = (z1, z2, z4) and we will show later and in more generality that Q is not

generated by any two of them (see Lemma 2.45 and Corollary 2.47). Similarly, all

points Qα are now singular, because mQα
can not be generated by two elements.

For the time being, we will only study the case of regular CBCs:

Fact 2.20. Let π : Y → X be an n-fold regular CBC. For any closed r-point P of Bπ

and any Q ∈ π−1(P), there exists a local coordinate systems x1, . . . , xd ∈ OX,P and

y1, . . . , yd ∈ OY,Q such that

(a). I(Bπ)P = (x1 · · · xr) and I(Rπ)Q = (y1 · · · yr).

(b). xi = yn
i for 1 ≤ i ≤ r and xi = yi otherwise.

We will write RCBC instead of “regular CBC”.
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Proof. We can find a coordinate system with the desired properties around P

as Corollary 2.13 guarantees Bπ to cross normally. Let ξ1, . . . , ξ` ∈ OX,P be

such that

OY,Q = OX,P [ψ1, . . . , ψ`]

with ψn
i = ξi. We may assume that ξi = xi for 1 ≤ i ≤ r. For i > r, we know

that ξi is a unit. Consequently ψi is also invertible for i > r. Replacing OX,P

by OX,P [ψr+1, . . . , ψ`], we may therefore assume that

OY,Q = OX,P [y1, . . . , yr]

where yn
i = xi. Consequently,

mQ = mP · OY,Q + (y1, . . . , yr) = (y1, . . . , yr, xr+1, . . . , xd) .

2.3 Analytification and Euler Characteristic

When we talk about the Euler characteristic of a variety X, it would be fatal

to think of the Euler characteristic of the topological space sp(X) that un-

derlies the scheme structure: By [Ram, Theorem 4.14], the singular cohomol-

ogy groups Hq(X, Q) with coefficients in Q agree with the sheaf cohomology

groups Hq(X, QX), where QX denotes the constant sheaf U 7→ Q on X. Since

QX is flasque, [Har, Proposition III.2.5] yields

Hq(X, Q) =

{
0 ; q > 0

Q ; q = 0

By the universal coefficient theorems in homology and cohomology given in

[Hat, Theorems 3A.3 and 3.2], we conclude

χ(sp(X)) = rank(H0(X, Z)) = dim(H0(X, Q)) = 1.

Hence, in this section, we assume k = C and consider the Euler characteristic

of the associated complex manifold: Our reference is mainly the very com-

prehensible [Wer], but for its basic properties one might also refer to [Har,

Appendix B]. The analytification functor (−)an associates to any complex,

smooth, projective variety X the complex manifold Xan consisting of its closed

points. We then simply write χ(X) := χ(Xan).

Proposition 2.21. If π : Y → X is an n-fold RCBC of degree N with branch locus

H := Bπ , we define

H(r) := X \
⋃
|λ|6=r

Hλ = { P ∈ X | rH(P) = r }
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Then, for any component Z of H(r) and any component W of π−1(Z), the morphism

π|W : W → Z is unramified of degree N
/

nr .

Proof. Let W1 ∪ · · · ∪Wr = Rπ be the irreducible components of its ramifica-

tion locus. Then,

πi := π|Wi : Wi −→ π(Wi)

is an n-fold RCBC with Rπi =
⋃

j 6=i(Wj ∩Wi) by the local description in

Fact 2.20. By induction on r, this yields our claim.

Proposition 2.22. If π : Y → X is an unramified surjective morphism of degree N

between smooth complex varieties, then πan is an N-fold covering map. In particular,

χ(Y) = N · χ(X).

Proof. This follows from [Wer, Corollary 6.11] and Corollary 2.9.

Proposition 2.23. Let X be a complex, smooth variety and Y ⊆ X a closed subvari-

ety. Let U := X \Y, then χ(X) = χ(Y) + χ(U).

Metaproof. Solve the exercise on page 95 in [Ful2]. Alternatively, look up the

solution on page 141. Intuitively, the reason for this result is that Y is a neigh-

borhood retract of X in the classical topology – application of Mayer-Vietoris

then yields the desired result.

We obtain the following important result, which will be our main tool for

calculating the Euler characteristic of CBCs:

Corollary 2.24. Let π : Y → X be an n-fold RCBC of complex algebraic varieties

with branch locus H. Let N := deg(π), then

χ(Y) = ∑
r∈N

N · χ(H(r))
nr

Proof. This follows directly from Propositions 2.21 to 2.23.

2.4 Canonical Divisors

The canonical divisor of a complex variety is the determinant bundle of holo-

morphic n-forms. More generally, it is the dualizing object for Serre duality

and consequently, an important object of study. Its inverse can also be un-

derstood as the first Chern class (c.f. Proposition 3.17), so it is of particular

interest for us.

We study the behavior of canonical divisors under constantly branched

coverings. Let us recall some definitions from [Har, II.8]:
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Definition 2.25. Let X be a smooth variety of dimension n and let δ : X → X × X

be the diagonal2 morphism. Let ∆ := δ(X) be the diagonal and I the ideal sheaf of ∆

in X× X. Then, the sheaf of relative differentials of X is defined to be

ΩX := δ∗(I
/
I2 ).

Its dual

TX := Ω∨X = HomOX (ΩX ,OX)

is called the tangent sheaf of X and the canonical sheaf of X is defined to be its

maximal exterior power

ωX :=
∧n

ΩX .

Note that ωX is an invertible sheaf on X. A canonical divisor on X is any Cartier

divisor KX which corresponds to ωX .

For a CBC π : Y → X, we are going to express KY in terms of the pull-backs

of KX and the branching locus Bπ . Later on, KX will be a well-known quantity

since we work over X = Ps and likewise, we will have a good combinatorial

understanding of the arrangement Bπ , which will consist only of hyperplanes.

Theorem 2.26 (Ramification Formula). Let π : Y → X be a dominant morphism

of finite type between nonsingular varieties that ramifies tamely. Denote by KX and

KY canonical divisors on X and Y, respectively. Then,

KY ∼ π∗(KX) + ∑
codimY(Z)=1

(eπ(Z)− 1) · Z.

Metaproof. Although the treatment in [Har] is for curves only, every state-

ment up to [Har, Proposition IV.2.3] in that section is applicable to the case of

nonsingular varieties and points of codimension one. Also recall that Corol-

lary 2.6 identifies the ramification index in the reference with the one from

Definition 2.3.

Corollary 2.27. If π : Y → X is an n-fold RCBC,

KY ∼ π∗(KX) +
n−1

n · π
∗(Bπ).

Proof. Since eπ ≡ n on components ofRπ and otherwise eπ ≡ 1, Theorem 2.26

yields

KY ∼ π∗(KX) + ∑
codimY(Z)=1

(eπ(Z)− 1) · Z = π∗(KX) + (n− 1) · Rπ .

Also, π∗(Bπ) = n · Rπ by the local description in Fact 2.20.
2The diagonal morphism is δ := idX × idX , so it satisfies δ(x) = (x, x) on closed points.
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Proposition 2.28. Let π : Y → X be a finite surjective morphism of nonsingular

varieties. Then, the composite

A(X)
π∗
// A(Y)

π∗
// A(X)

is multiplication by N := deg(π). In particular, for all α ∈ A0(X),∫
Y

π∗(α) = deg(π) ·
∫

X
α.

Proof. The first statement is [Ful1, Example 1.7.4] and also follows from The-

orem 2.8. Note that for any point P ∈ X \ Bπ , we have
∣∣π−1(P)

∣∣ = N by

Corollary 2.9. Therefore,
∫

Y π∗[P] = N. Hence, for any ∑i niPi ∈ Zdim(X)(X)

which maps to α, we have to “move” the points Pi out of the branch locus

of π. More precisely, we have to show that for any P ∈ Bπ , the cycle [P] is

rationally equivalent to some [P′] with P′ /∈ Bπ .

To do so, we can just choose a general (nonsingular) curve C ⊂ X which

is not a component of Bπ and which passes through P. Let P′ ∈ C \ Bπ . We

choose uniformizing variables f ∈ OC,P and f ′ ∈ OC,P′ . Then, the function

φ := f
/

f ′ ∈ k(C)

satisfies div(φ) = [P]− [P′] as desired.

Putting it all together now yields a formula for the self-intersection number

of a canonical divisor on Y.

Corollary 2.29. Let π : Y → X be an n-fold RCBC and s := dim(Y). Then,∫
Y
[KY]

s = deg(π) ·
∫

X

(
[KX ] +

n−1
n · [Bπ ]

)s

Proof. Follows from Corollary 2.27 and Proposition 2.28.

2.5 Singular Case and Regularization

In our effort to prove Sylvester-Gallai bounds, we will construct constantly

branched coverings π : Y → Ps, branched along an arrangement H of hyper-

planes which is dual to an SGk-closed set of points. By definition of such a

set, H will always have redundant intersections. Hence, the covering will not

be regular. The best result we can hope for is a way to transform such a cov-

ering into a regular one, resolving the singularities of Y. We prove that this is

always possible by blowing up redundant intersections and their preimages.

This is a generalization of the methods described in [BHH, Chapter 1.2] to

arbitrary dimension and (algebraically closed) base field.
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The key observation is that we do not have to blow up in π?(I(Hλ)), but

may actually blow up in the ideal sheaf of π−1(Hλ):

Lemma 2.30. Let X = Spec(A), Y = Spec(B) and ϕ : Y → X a finite morphism.

Assume that I = (x1, . . . , xr) ⊆ A and J = (y1, . . . , yr) ⊆ B are ideals satisfying

yn
i = xi for some n ∈N and all i. Then,

BlJ(Y)

α
��

∃!ϕ̄
// BlI(X)

β

��

Y
ϕ

// X

	

Proof. By Corollary 1.28, we have to verify that under ϕ ◦ α (corresponding to

the inclusion A ↪→ B[JT]), the ideal I′ := I · B[JT] is invertible. In (B[JT]yiT)0,

we can write
xjTn

(yiT)n · xi =
xjTn

xiTn · xi = xj,

so (I′yiT
)0 = (xi) is principal for each i, proving that I′ is locally principal.

The purpose of following two lemmata is to verify that (y1, . . . , yr) is, in

fact, the ideal sheaf of π−1(Hλ).

Lemma 2.31. Let A be a domain and let I = (x1, . . . , x`) ⊆ A be a radical ideal.

Let n ∈ N and set B := A [T1, . . . , T`]
/(

Tn
i − xi

)
. We let yi ∈ B denote an image

of Ti under the canonical projection. Then, J := (y1, . . . , y`) =
√

IB.

Proof. Clearly, IB ⊆ J ⊆
√

IB. If J is radical, we are done. Let f ∈ B be any

element that satisfies f m ∈ J for some m ∈N. We can write it as a polynomial

expression

f = ∑
ν=(ν1,...,ν`)

αν · yν1
1 · · · y

ν`
k with αν ∈ A.

Clearly, we only have to show α0 = α(0,...,0) ∈ J. Because any term in f m other

than αm
0 is of the form byi for some b ∈ B, we know αm

0 ∈ J ∩ A = I. Since I is

a radical ideal of A, α0 ∈ I = J ∩ A.

Fact 2.32. Let R = (R,m) be a regular local ring. Then, it is equivalent for R to be

of dimension zero, to be reduced and being a field.

Proof. Regular local rings of dimension zero and fields are the same. If R is

reduced, then (0) =
√
(0) =

⋂
P∈Spec(R) P = m, so R is a field.
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Lemma 2.33. Let A be a commutative ring, I ⊆ A a radical (resp. maximal) ideal

and x ∈ A an element which is not contained in any prime that is minimal over I. Set

B := A[T]
/
(Tn − x) for some n ∈N∩ A×. Then, IB is radical (resp. maximal).

Proof. Let π : A[T] � B be the canonical projection and y := π(T). We want

to show that

B/IB = (A/I) [T]
/
(Tn − x)

is reduced (resp. a field). Replacing A by A/I , we may assume I = (0),

A is reduced (resp. a field) and x is not contained in any minimal prime of

A. In the case where I was maximal, it is obvious that A[y], as an integral

extension, is a field. Otherwise, we need to show that B = A[y] is reduced.

By [Liu, Exercise 2.8.2], this is equivalent to

(R0) If Q is a minimal prime ideal of B, then the localization BQ is a field.

Here, we also use Fact 2.32.

(S1) For any other prime ideal Q of B, depth(BQ) > 0.

Let Q ∈ Spec(B). For (R0), assume that Q is minimal. Then, we know that

x /∈ P := Q ∩ A. Thus, x ∈ A×P and consequently, y ∈ B×Q . Since AP is a field

whose characteristic does not divide n, we can see that BQ = AP[y] is also a

field.

To verify property (S1), we can assume dim(BQ) > 0. Since B is an integral

extension of A, we have dim(AP) = dim(BQ) > 0. Since A is reduced, it

satisfies (S1), so there exists an element a ∈ AP which is not a unit and not a

zero-divisor. Now, B is flat as an A-module because it is free. Thus, BQ is flat

over AP and hence, a is not a zero-divisor in BQ. This finishes the proof.

Corollary 2.34. Let π : Y → X be an n-fold CBC with branch locus H and P

the generic point of a component P of Rd(H). There exists an affine neighborhood

U = Spec(A) of P = (x1, . . . , xr) ⊂ A such that, with V := π−1(U) = Spec(B),

we have I
(
π−1(P)) = (y1, . . . , yr) for certain yi ∈ n

√
xi. �

Theorem 2.35 (Regularization). Let π : Y → X be an n-fold CBC. Then, there

exists a commutative diagram

Ỹ

π̃

��

Ym
βm
//

πm

��

Ym−1
βm−1

//

πm−1

��

· · ·
β2
//

...

Y1
β1
//

π1

��

Y0

π0

��

Y

π

��

X̃ Xm αm
// Xm−1 αm−1

// · · ·
α2
// X1 α1

// X0 X

(2.1)

such that the following properties hold:
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(a). Each πi is an n-fold CBC with branch locus Bπi = α−1
i
(
Bπi−1

)
.

(b). Each αi+1 is the blow-up of Xi along a redundant intersection Pi of Bπi and

βi+1 is the blow-up along π−1
i (Pi).

We set β := β1 ◦ · · · ◦ βm and α := α1 ◦ · · · ◦ αm.

(c). The branching locus of π̃ is a strict arrangement.

(d). The morphism β is a resolution of singularities, i.e. Ỹ is a nonsingular variety

and β is an isomorphism outside the singular locus of Y.

Consequently, π̃ is an n-fold RCBC. We call π̃ a regularization of π.

Proof. Let H := Bπ and P ∈ X be the generic point of a component of Rd(H).

Since blowing up is local around P, we may assume that X = Spec(A) and

Spec(B) = Y are affine. Furthermore, we can assume that x1, . . . , xr ∈ A define

the components of H near P. The ideal Q :=
√

PB is the ideal of the preimage

of P under π. Since P = (x1, . . . , xr), we can assume Q = (y1, . . . , yr) with

yn
i = xi. Let Ỹ and X̃ be the blow-ups of Y and X along Q and P, respectively.

By Lemma 2.30, we obtain a unique induced map π̃ : Ỹ → X̃, corresponding

to the following commutative diagram of graded k-algebras:

B o
β]

// B[QT]

A

	
�

π]

OO

o

α]
// A[PT]
�

π̃]

OO

Here, X̃ = Proj(A[PT]) and Ỹ = Proj(B[QT]). By assumption, P defines a

nonsingular, closed subvariety of X and therefore, X̃ is nonsingular by Theo-

rem 1.33.

Since π̃] is an integral extension of rings, π̃ is a finite morphism. We

claim that its branch locus is H̃ := α−1(H). If we let Hi := Z(hi) denote the

components of H, then H̃ = H̃0 + · · · + H̃r where H̃i = αᵀ(Hi) is the strict

transform of Hi for i > 0 and H̃0 = EP is the exceptional divisor. We now

show that any component of

EQ = π̃−1(EP)

has ramification index n under π̃. Let Q̃ be the homogeneous ideal defining

such a component. Since Q̃ is not irrelevant, there must be an index i such

that yiT /∈ Q̃. Localizing in yiT, we can conclude that

f T
yiT
· yi = f
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Section 2.5 : Singular Case and Regularization

for all f ∈ Q = Q̃0. In other words, yi is a uniformizer at Q̃. Since xi = yn
i is a

uniformizer at H̃0, it follows that eπ̃(Q̃) = n.

To show that H̃ is an arrangement, pick any multiindex λ. By Corol-

lary 1.32.(a), the intersection

H̃λ = αᵀ(Hλ) = Bl(Hλ, P)

is smooth because it is the blow-up of a nonsingular variety along another

nonsingular, closed subvariety, see Theorem 1.33. Its intersection with H̃0 is

also smooth because it is the corresponding exceptional divisor.

To see that π̃ is a CBC, let Q̃ ∈ EQ be a closed point, P̃ := π̃(Q̃), Q′ := β(Q̃)

and P′ := π(Q′) = α(P̃). Assume that P̃ is a t-point of H̃. We want to show

that

OỸ,Q̃ = OX̃,P̃ [ỹ1, . . . , ỹ`]

for certain ỹn
i = x̃i ∈ OX̃,P̃ and x̃i ∈ mP̃ if and only if it defines a component

of H̃. Consider

A
O

��

B
O

��

OX,P′
O

��

o // OY,Q′
O

��

OX,P′ [ψ1, . . . , ψ`]
O

��

OX̃,P̃
O

��

o // OỸ,Q̃
O

��

k(X) o // k(Y) k(X)[ψ1, . . . , ψ`]

Frac(A) Frac(B)

where ψi are n-th roots of ξ1, . . . , ξ` ∈ OX,P′ . By Definition 2.16, we may

assume that ξi ∈ mP′ ⇔ ξi = xi ⇔ i ≤ r. Clearly,

OX̃,P̃ [ψ1, . . . , ψ`] ⊆ OỸ,Q̃ ⊆ Frac
(
OX̃,P̃ [ψ1, . . . , ψ`]

)
.

Replacing OX̃,P̃ by OX̃,P̃ [ψr+1, . . . , ψ`] = OX̃,P̃(ψr+1, . . . , ψ`), we may hence-

forth assume that ` = r, ξi = xi and ψi = yi for all i. Note that

OỸ,Q̃ = OY,Q′
[

a
b

∣∣∣ ∃d : a, b ∈ Qd, bTd /∈ Q̃
]

(2.2)

as a subring of k(Y) = Frac(B). Let us assume that xiT ∈ P̃ if and only if

i < t. Then, x̃t := xt defines H̃0 = EP and the x̃i := xi/xt for i < t define the

remaining t− 1 components of H̃ passing through P̃. Note that for i > t, the

x̃i := xi/xt are units. We know that yiT ∈ Q̃ if and only if i < t. We define

ỹi :=

{
yi
/

yt ; i 6= t

yi ; i = t
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Chapter 2 : Constantly Branched Coverings

and claim that

OỸ,Q̃ = OX̃,P̃ [ỹ1, . . . , ỹr] =: R. (2.3)

Note that ỹn
i = xi/xt for i > t is a unit and defines no component of H̃.

Hence, once we have verified (2.3), we know that π̃ is a CBC. The inclusion

“⊇” is obvious. To see “⊆”, let f = g
/

h ∈ OỸ,Q̃ with g, h ∈ B. By (2.2), we

can assume that g, h ∈ Q, so w.l.o.g. g = yi. In fact, we may assume g = yt

since
yt

h
· ỹi =

yt

h
· yi

yt
=

yi
h

.

Write h = ∑r
i=1 hiyi and observe f−1 = ht + ∑i 6=t hi ỹi ∈ R. Since f is integral

over OX̃,P̃, there exist ν ∈N and certain ai ∈ OX̃,P̃ ⊆ R such that

f ν = a0 · f ν−1 + · · ·+ aν−2 · f + aν−1

Multiplication by f 1−ν yields

f =
ν−1

∑
i=0

ai f−i ∈ R.

Hence, we have verified that π̃ is a CBC.

By Corollary 1.32.(a), we note that Rd(H̃) has less components than Rd(H).

We can therefore repeat this process and eventually arrive at a situation as in

(2.1), with parts (a) to (c) satisfied. Part (d) follows from Proposition 2.17.

2.6 Global Kummer Coverings

Given a natural number n ∈ N not divisible by char(k) and an arrangement

H inside a smooth variety X whose components have empty intersection, we

will construct an n-fold CBC Y → X whose branch locus is H.

Definition 2.36. Let S := k[x0, . . . , xs] be the polynomial ring in s + 1 variables

and define ϕ]
n : S→ S by xi 7→ xn

i for all i. This morphism of graded rings induces a

morphism of projective varieties θn : Ps → Ps, which can be understood as the map

[a0 : . . . : as] 7→ [an
0 : . . . : an

s ]. Although we will not consider this situation, for

n = char(k), the morphism θn is the Frobenius morphism.

Notation 2.37. Let X be a scheme. We write O`+1
X =

⊕`
i=0OXei. Whenever we

consider an epimorphism h : O`+1
X � L without further explanation, we mean that

L is a globally generated line bundle and that the implicitly defined global sections

hi := hX(ei · 1)
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Section 2.6 : Global Kummer Coverings

generate it, i.e. LP is generated by the stalks hi,P at every point P ∈ X. If X is a

variety, denote by φh : X → P` the corresponding morphism from X to projective

space.

Definition 2.38. Let X be a k-variety and h : O`+1
X � L . For any n ≥ 2, we define

the scheme X [ n√h ] to be the fiber product

X [ n√h ]
α
//

π

��

P`

θn

��

X
φh

// P`

×

together with the two canonical projection morphisms π and α.

Proposition 2.39. Let X be a k-variety and h : O`+1
X � L . Let Iij be the homo-

geneous ideal sheaf of OX [T0, . . . , T`] which is locally generated by Tn
i hj − Tn

j hi.

Here, we understand hi as an element of OX(U) under some local trivialization

L |U ∼= OU . Then, we write

S := OX [T0, . . . , T`]
/

∑ij Iij

and set Y := Proj(S). Then, X [ n√h ] ∼= Y and the canonical morphisms π and α are

induced by OX ↪→ S and k[T0, . . . , T`] ↪→ S , respectively.

Remark. Note that the construction is independent on the local isomorphism

L |U ∼= OU that is chosen: The elements hi are defined up to (collective)

multiplication by some α ∈ OX(U)× and α · Iij(U) = Iij(U).

Proof. By the local nature of the fiber product, we may harmlessly assume

that X = Spec(A) is affine and L ∼= OU . Without loss of generality, we may

assume h0 = 1 under this isomorphism since the hi generate. The morphism

φh is induced by

R := k[T0, . . . , T`] −→ A

Ti 7−→ hi

Let xi := Ti/T0 , and note that

im(φh) ⊆ D∗(T0) = k[x1, . . . , x`] =: B.

By our assumption h0 = 1, the corestriction U → D∗(T0) is induced by the

map f : B → A which sends xi to hi. Let g : B → B be the map g(xi) = xn
i .
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Chapter 2 : Constantly Branched Coverings

Then, U × D∗(T0) = Spec(S) where

S := A⊗B B Boo

A

OO

B

g

OO

foooo

To show Y ∼= X [ n√h ], we have to prove S ∼= A[x1, . . . , x`]
/

I , where I denotes

the ideal
(

xn
i − hi

∣∣ 1 ≤ i ≤ `
)
. We choose S this way and check the universal

property of the tensor product. Consider

S̃

S
t
^^

Bf̄oo

f̃
pp

A

ḡ

OO

g̃

NN

B

g

OO

foooo

where f̄ (xi) := hi and ḡ is canonical. Clearly, f̄ ◦ g = ḡ ◦ f . If g̃ ◦ f = f̃ ◦ g, we

define a morphism t : S → S̃ of A-algebras by t(xi) := f̃ (xi). It is easy to see

that this is well-defined and uniqueness with respect to commutativity is also

clear.

Notation 2.40. If f ∈ L (X) is a global section of a line bundle, we denote by Z( f )

the closed subscheme of X which is associated to the divisor of zeros of f .

Definition 2.41. Let X be a variety over the field k. An `-building in X is a globally

generated line bundle h : O`+1
X � L such that each Hi := Z(hi) is irreducible and

H = H0 + · · ·+ H` is an arrangement. We write Z(h) := H.

Remark 2.41.1. Note that for all i > 0, the divisor Hi − H0 is principal, i.e. we can

write Hi − H0 = div(xi) for certain xi ∈ k(X) =: K. Assume that char(k) does

not divide n and consider the field

L := K [ n
√

x1, . . . , n
√

x`] ,

which is a Kummer extension of K. If we denote by Pi the generic point of Hi, we

also have valuations vi : K → Z∪ {∞} corresponding to the discrete valuation rings

OX,Pi , satisfying vi(xj) = δij (the Kronecker delta3).

If we set Y := X [ n√h ], the morphism π : Y → X will turn out to be an n-fold

CBC, which we refer to as the global Kummer covering associated to h.

3This means δii = 1 and δij = 0 for i 6= j.
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Section 2.6 : Global Kummer Coverings

Example 2.41.2. Consider the case where X ⊆ Ps is a projective variety with coor-

dinate ring S. Let L = OX(1). A set of linear forms

h = { h0, . . . , h` } ⊂ L (X) = S1

then defines `+ 1 hyperplanes Hi = Z∗(hi) forming an `-building. For s = 1, this

is a set of points and for s = 2, it is a set of projective lines.

Note that H0 ∩ . . . ∩ H` = ∅ if and only if h is a set of generators. This is equiv-

alent to requiring that the geometric dual
{

H∗0 , . . . , H∗`
}

is not completely contained

in any hyperplane.

Remark 2.41.3. If h is an `-building and P ∈ X any point, then there exists some

index j such that under L (X) → LP
∼−→ OX,P � k, the image of hj is nonzero. In

other words, hj(P) 6= 0. Indeed, this is what it means for L to be globally generated

by the hi.

Scenario 2.42. Let X be a nonsingular k-variety, n ∈ N not divisible by char(k)
and h : O`+1

X � L an `-building. Let

π : Y := X [ n√h ] −→ X.

We write Hi := Z(hi) and H := H0 + · · · + H`. We set K := k(X) and after

Corollary 2.46, also L := k(Y).

Proposition 2.43. In Scenario 2.42, let U = Spec(A) ⊆ X be an open subset where

L is trivial and hv ∈ A× for some v. With xi := hi
/

hv , we then have

π−1(U) ∼= Spec (A [y0, . . . , y`]) for yi ∈ n
√

xi

In particular, by Remark 2.41.3, π is a finite morphism.

Proof. We may assume that hv = 1 ∈ A since everything is independent of the

choice of the local isomorphism L (U) ∼= OX(U). Without loss of generality,

we assume v = 0. We are then considering the ring R = A[z0, . . . , z`] where

zn
i hj = hizn

j for all i and j. If P ∈ Proj(R), then there exists some i such that

zi /∈ P. Since zn
i = hizn

0 , we know z0 /∈ P. Thus, D∗(z0) = Proj(R) = π−1(U)

and

Spec (A [y0, . . . , y`]) = Spec
(

A
[

z0
z0

, . . . , z`
z0

])
= Spec ((Rz0)0) ∼= D∗(z0).

Corollary 2.44. In Scenario 2.42, OY,Q = OX,P [y0, . . . , y`] for a point Q ∈ Y and

P := π(Q). Furthermore, yi ∈ mQ if and only if hi ∈ mP. The morphism π is an

n-fold CBC.
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Chapter 2 : Constantly Branched Coverings

Proof. Assume hv ∈ O×X,P. Since hi = hvyn
i and mQ is prime, we can immedi-

ately see yi ∈ mQ ⇔ hi ∈ mQ ∩OX,P = mP.

Lemma 2.45. Let K be a field containing all n-th roots of unity. Assume that there

are x1, . . . , x` ∈ K and valuations vi : K → Z ∪ {∞} with vi(xj) = δij. Then,

L := K [y1, . . . , y`] is a field for any yi ∈ n
√

xi and the Galois group of L over K is

isomorphic to Z`
n = (Z

/
(n))`. Consequently, L has degree n` over K.

Proof. We use the notation K×n = { xn | x ∈ K× }. Let C be the subgroup of

K× generated by the xi and K×n. The valuations vi can be understood as a

map ϕ : C → Z` and the composition

C
ϕ−→ Zn � Z`

n

clearly has kernel K×n. Thus, we can conclude C
/

K×n ∼= Z`
n and apply

the well-known result [Bos, Kapitel 4.9, Satz 1 und Lemma 2] from Kummer

theory.

Corollary 2.46. If h is an `-building inside a variety X, then X [ n√h ] is a variety.

Proof. Let Q ∈ Y and P := π(Q). Then, K := Frac(OX,P) = k(X). By Re-

mark 2.41.1 and Lemma 2.45, the field L := K [y1, . . . , y`] is a Galois extension

of K. Since OY,Q = OX,P [y1, . . . , y`] is a subring of L, it must be an integral

domain.

Corollary 2.47. In Scenario 2.42, L is a Galois extension of K. It has degree n` and

Galois group Z`
n. �

X( n√h )

γ

  

β̃ //

π̃

��

X [ n√h ]

π

��

	

X̃ β //

	

X

Figure 2.3: Kummer Covering

Definition 2.48. Let X be a nonsingular k-variety and h an `-building in X. With

notation as in Theorem 2.35, we let π̃ : X( n√h ) → X̃ denote the regularization of

π : X [ n√h ]→ X. We obtain an induced map γ : X( n√h )→ X. See also Figure 2.3.
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Line Arrangements

In this section, we apply the results from Chapter 2 to a particular scenario.

This is largely based on the paper [Hir] and the book [BHH] where Hirzebruch

also develops the theory of Chapter 2 in the special case of surfaces.

Ultimately, we will prove the key argument used in Proposition 1.10, com-

pleting the proof of Theorem 1.16.

Scenario 3.1. We are working over the field k = C. Let n ≥ 2, X := P2 and

consider an arrangement H = H0 + · · ·+ H` of projective lines, i.e. Hi = Z(hi)

for certain linear, homogeneous polynomials hi ∈ C [x0, x1, x2]1. Assume that the Hi

have empty intersection, hence we may understand h : O`+1
X � OX(1) as a way

to globally generate the twisting sheaf. We simply write tr instead of tr(2, H), the

number of points in the plane where r of the lines intersect. We define

m := (`+ 1) f0 := ∑
r≥2

tr f1 := ∑
r≥2

r · tr (3.1)

We set Y := X [ n√h ] and Ỹ := X( n√h ) → X̃. We will denote morphisms as in

Figure 2.3. Note that β is the blow-up of X in all r-points for r > 2 and β̃ the

blow-up of Y in the points that lie above those. Let

N := ∑
r≥3

tr = f0 − t2

be the number of the redundant points P1, . . . , PN ∈ X. Let ri := rH(Pi). We also

denote the branch locus if π̃ by H̃ := H̃0 + · · ·+ H̃`+N , where

H̃i =

{
βᵀ(Hi) ; i ≤ `

β−1(Pi−`) ; i > `

We define t̃r := tr(2, H̃). By Theorem 2.35, we know that t̃r = 0 for all r > 2. We

also write ci := ci(TỸ) for the i-th Chern class of the tangent sheaf of Ỹ.
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The contents of Sections 3.1 and 3.2 are straightforward calculations. Sec-

tion 3.3 assembles these pieces to prove Theorem 3.21.

3.1 Euler Characteristic

We will calculate the Euler characteristic of the complex surface Ỹ. This num-

ber is also the degree of the top Chern class c2, as we will see later in Theo-

rem 3.18.

Fact 3.2. The Euler characteristic of complex projective space is χ(Pn
C) = n + 1.

Proof. The fact that Pn
C = E0 ∪ · · · ∪ E2n has a cellular decomposition with

dim(Ed) = d is well known, see [Hat, Example 0.6] for instance. Then, [Hat,

Theorem 2.44] immediately implies our claim.

Lemma 3.3. In Scenario 3.1, for any P ∈ X, the exceptional divisor EP = β−1(P)
is isomorphic to the projective line P1.

Proof. We may choose an affine neighborhood U = Spec(k[x, y]) of P where it

is the origin, i.e. the maximal ideal

P = (x, y) ⊂ k[x, y].

Then, we know that EP = β−1(P) corresponds to the homogeneous ideal⊕
d≥0 Pd+1Td inside the blow-up algebra k[x, y][PT]. Since⊕

d≥0

Pd
/

Pd+1 =
⊕
d≥0

k[x, y]d,

the homogeneous coordinate ring of EP is k[x, y], hence EP ∼= P1.

Lemma 3.4. In Scenario 3.1, t̃2 = f1 − t2.

Proof. Note that the strict transform H̃i of any line Hi passing through an r-

point P will intersect with EP = β−1(P). Hence, EP intersects with H̃i if and

only if i ∈ λ(P). Thus,

t̃2 = t2 +
N

∑
i=1
|λ(Pi)| = t2 +

N

∑
i=1

r(Pi) = 1 · t2 + ∑
r≥3

r · tr = f1 − t2.

Lemma 3.5. If H = H0 + · · ·+ H` is any arrangement inside a (nonsingular) sur-

face X, then with tr := tr(2, H),

χ(H) =
`

∑
i=0

χ(Hi)− ∑
r≥2

(r− 1) · tr.
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Proof. Let Zi ⊂ Hi be the (finite) set of points where Hi intersects with some

other part of the arrangement. Let Z :=
⋃`

i=0 Zi and Z′ :=
⋃̇`

i=0Zi. Clearly,

|Z| = ∑
r≥2

tr
∣∣Z′∣∣ = ∑

r≥2
rtr (3.2)

since in the disjoint union Z′, each point P ∈ Z is counted exactly r(P) times.

Hence by Proposition 2.23,

χ(H) =
`

∑
i=0

χ(Hi \ Zi) + ∑
P∈Z

χ(P) =
`

∑
i=0

χ(Hi)− χ(Z′) + χ(Z)

yields the desired result by substituting (3.2).

Proposition 3.6. In Scenario 3.1, the Euler characteristic of Ỹ can be calculated as

n2−` · χ(Ỹ) = n2 · (3− 2m + f1 − f0) + 2n · (m− f1 + f0) + ( f1 − t2).

Proof. The morphism π̃ : Ỹ → X̃ is an RCBC by Theorem 2.35 and of degree

n` by Corollary 2.47. Hence by Corollary 2.24,

n2−` · χ
(
Ỹ
)
= n2 · χ

(
X̃ \ H̃

)
+ n · χ

(
H̃ \ Rd

(
H̃
))

+ χ
(
Rd
(

H̃
))

.

We analyze the coefficients on the right hand side. With the isomorphisms

Hi
∼= P1 and X̃ \ H̃ ∼= X \ H, Lemma 3.5 yields

χ
(
X̃ \ H̃

)
= χ(X)− χ(H)

= χ(P2)−m · χ(P1) + f1 − f0

= 3− 2m + f1 − f0.

Since H̃ is strict and by Lemma 3.4, the constant term is easily calculated as

χ(Rd(H̃)) = t̃2 = f1 − t2.

We now turn to the linear coefficient. We know t̃r = 0 for r > 2. Furthermore,

for all 0 ≤ i ≤ ` + N, we have H̃i
∼= P1 by Lemma 3.3. Thus, Lemma 3.5

implies

χ(H̃ \ Rd(H̃)) = χ(H̃)− χ(Rd(H̃))

= ((m + N) · χ(P1)− t̃2)− t̃2

= 2(m + N − t̃2)

= 2(m + f0 − f1).
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3.2 The Canonical Divisor

We now calculate the self-intersection number of a canonical divisor on Ỹ.

This number is the degree of the square c2
1(Ỹ) of the first Chern class, as we

will see in Proposition 3.17.

Notation 3.7. Let X be a surface and H a divisor. In order to deobfuscate the nota-

tion, we will write H to refer to the class [H] ∈ A1(X).

Furthermore, for any α ∈ A0(X), we will simply write α instead of
∫

X α. For

example, the term H2 now means
∫

X [H]2.

Theorem 3.8 (Adjunction Formula). If C is a nonsingular curve of genus g on a

surface X, then

2g− 2 = C(C + KX).

Proof. This is precisely [Har, Proposition V.1.5].

Fact 3.9. If C is a nonsingular, complex curve of genus g, then χ(C) = 2− 2g.

Proof. C has a cellular decomposition with 2g cells in dimension one and one

cell in each of the dimensions zero and two, as explained in [Hat, Cell Com-

plexes, Chapter 0]. Thus, we are done by [Hat, Theorem 2.44].

Proposition 3.10. Let π : Y → X be an n-fold RCBC of complex surfaces with

branch locus H. Denote by H̄ the disjoint union of its components. Then,

n2

deg π · K
2
Y = n2 · (K2

X + KX H + T)− 2n · T + (T − KX H). (3.3)

where T := 2 · t2(2, H)− χ(H̄).

Proof. Let H = H0 ∪ · · · ∪ H` be the irreducible components. By Theorem 3.8

and Fact 3.9,

−χ(Hi) = H2
i + HiKX

for each i. Also, 2 · t2(2, H) = ∑`
i=0 ∑j 6=i Hi Hj. We conclude

T = 2 · t2(2, H)−
`

∑
i=0

χ(Hi) =
`

∑
i=0

(
∑j 6=i Hi Hj + H2

i + HiKX

)
= H2 + KX H.

By Corollary 2.29,

1
deg π · K

2
Y =

(
KX + n−1

n · H
)2

= K2
X + 2n−2

n · KX H + n2+1−2n
n2 · H2.

Substituting H2 by T − KX H, we obtain

n2

deg π · K
2
Y = n2 · K2

X + 2(n2 − n) · KX H + (n2 + 1− 2n) · (T − KX H).
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Lemma 3.11. In Scenario 3.1, the following equations hold:

(a). KX̃ = β∗(KX) + ∑N
i=1 H̃i+`

(b). H̃ = β∗(H)−∑N
i=1(ri − 1)H̃i+`

Metaproof. These are [Har, Propositions V.3.3 and V.3.6].

Lemma 3.12. In Scenario 3.1,

H̃i H̃j =

{
Hi Hj ; i, j ≤ `

−δij ; otherwise

Metaproof. This is the content of [Har, Proposition V.3.2].

Proposition 3.13. In Scenario 3.1, we have

n2−` · K2
Ỹ = n2(9 + 3 f1 − 4 f0 − 5m) + 4n(m− f1 + f0) + ( f1 − f0 + t2 + m)

Proof. By Lemmata 3.11 and 3.12 and Proposition 2.28,

K2
X̃ = K2

X − N and KX̃ H̃ = KX H + ∑r≥3(r− 1)tr

= K2
X − f0 + t2 = KX H + f1 − f0 − t2.

We can choose the canonical divisor of X = P2 as KX = −3L for any line

L ⊂ X = P2. For instance, we may choose L = Hi for all i. This is well-

known, see [Har, Examples II.8.20.3, V.1.4.2 and V.1.4.4] for instance. Thus,

K2
X = 9 and KX H = −3m. We conclude

K2
X̃ = 9− f0 + t2 and KX̃ H̃ = f1 − f0 − t2 − 3m.

Substituting for these values in Proposition 3.10, we remark that

T = 2t̃2 − 2(N + `+ 1) = 2( f1 − t2 − N −m)

= 2( f1 − t2 − f0 + t2 −m) = 2( f1 − f0 −m)

and calculate

n2−` · K2
Ỹ = n2((9− f0 + t2) + ( f1 − f0 − t2 − 3m) + T)

− 2nT + (T − f1 + f0 + t2 + 3m)

= n2(9− 2 f0 + f1 − 3m + 2( f1 − f0 −m))

− 4n( f1 − f0 −m)

+ (2( f1 − f0 −m)− f1 + f0 + t2 + 3m)

= n2(9 + 3 f1 − 4 f0 − 5m)

+ 4n(m− f1 + f0) + ( f1 − f0 + t2 + m)
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3.3 The Miyaoka-Yau Inequality

The Miyaoka-Yau inequality relates the Chern numbers of complex surfaces.

It was proved independently by Shing-Tung Yau and Yoichi Miyaoka in 1977.

We quote the latter result [Miy1, Theorem 4]:

Theorem 3.14 (The Miyaoka-Yau Inequality). Let X be a nonsingular, complex,

projective surface of general type. Let ci := ci(TX) be the corresponding i-th Chern

class. Then,

c2
1 ≤ 3 · c2 (3.4)

where Notation 3.7 applies.

Van de Ven (1966) and Fedor Bogomolov (1978) proved weaker versions

with the constant 3 replaced by 8 and 4, respectively. Hirzebruch showed

that Theorem 3.14 is best possible, by finding infinitely many examples where

equality holds. Hirzebruch constructed these examples as Kummer coverings

of the projective plane. Theorem 3.21, a byproduct of these efforts, was used

by Kelly to prove the complex Sylvester-Gallai Theorem. To get there, we will

need a corollary of Theorem 3.14.

Definition 3.15. Let X be a projective variety. Then,

R(X) :=
⊕
d≥0

H0
(

X, ω⊗d
X

)
is called the canonical ring of X. The Kodaira dimension of X is defined to be the

transcendence degree of R over k, i.e.

kod(X) := tr. degk(R(X))− 1.

Sometimes, the notation kod(X) = −∞ is used for the cases where our definition

yields kod(X) = −1.

Corollary 3.16. If X is a nonsingular, complex, projective surface with an effective

canonical divisor KX and K2
X > 0, then it satisfies (3.4).

Proof. If a projective variety X has an effective canonical divisor, then ωX has a

global section. This follows from [Har, Proposition II.7.7], for instance. Hence,

kod(X) ≥ 0 and by the Enriques-Kodaira classification of complex surfaces

[BHPvdV, Chapter VI, Theorem 1.1], the condition K2
X > 0 means that X is of

general type. Hence, we can apply Theorem 3.14.

Let us now verify that Euler characteristic and self-intersection number of

a canonical divisor correspond to c2 and c2
1, respectively.
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Proposition 3.17. Let X be a smooth, projective variety. Then, c1(TX) = −[KX ].

Proof. Set s := dim(X). Let us write cT(ΩX) = ∏s
i=1(1 + aiT) for formal

variables ai. By property C5, cT(ωX) = cT(
∧s ΩX) = 1 + (a1 + · · · + as)T.

Together with property C1, this means [KX ] = c1(ωX) = c1(ΩX). Again using

property C5, we calculate c1(TX) = c1(Ω∨X) = −c1(ΩX) = −[KX ].

Theorem 3.18 (Gauss-Bonnet-Formula). Let X be a nonsingular, complex, pro-

jective variety of dimension s. Then,∫
X

cs(TX) = χ(Xan).

Metaproof. Read the discussion following [Huy, Corollary 5.1.4].

Proof. We give an alternative proof requiring slightly less complex geometry.

Write Ωp
X :=

∧p ΩX for the p-th exterior power of ΩX . We will use the Borel-

Serre-Identity, given in [Ful1, Example 3.2.5]:

s

∑
p=0

(−1)p · ch
(

Ωp
X

)
· td(TX) = cs(TX). (3.5)

Note that s is the rank of ΩX and Ω∨X = TX by definition. As a second tool, we

require the Hirzebruch-Riemann-Roch Theorem (Theorem 1.46) to conclude∫
X

ch
(

Ωp
X

)
· td(TX) = χ

(
X, Ωp

X

)
. (3.6)

Finally, we require the Hodge Decomposition Theorem, which we quote

from [Huy, Corollaries 2.6.21 and 3.2.12] as

Hr(Xan, C) =
⊕

p+q=r
Hq
(

X, Ωp
X

)
. (3.7)

Putting it all together, we obtain

∫
X

cs(TX) =
s

∑
p=0

(−1)p ·
∫

X
ch
(

Ωp
X

)
· td(TX) by (3.5)

=
s

∑
p=0

(−1)p · χ
(

X, Ωp
X

)
by (3.6)

= ∑
p,q
(−1)p+q · rank

(
Hq
(

X, Ωp
X

))
=

s

∑
r=0

(−1)r · Hr(Xan, C) by (3.7)

= χ(Xan).
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We are now ready to begin proving Theorem 3.21, which will complete the

proof of Theorem 1.16.

Lemma 3.19. In Scenario 3.1, the polynomial

F(T) := T2 · ( f0 −m) + 2T · (2m− f1) + 4( f1 − t2 −m) (3.8)

satisfies F(n + 1) = n2−` · (3c2 − c2
1).

Proof. Using Propositions 3.6 and 3.13,

n2−` · (3c2 − c2
1) = n2 · (9− 6m + 3 f1 − 3 f0 − 9− 3 f1 + 4 f0 + 5m)

+ 2n · (3m− 3 f1 + 3 f0 − 2m + 2 f1 − 2 f0)

+ (3 f1 − 3t2 − f1 + f0 − t2 −m)

= n2 · ( f0 −m) + 2n · (m + f0 − f1)

+ (2 f1 − 4t2 + f0 −m),

and substituting T − 1 for n yields

= (T − 1)2( f0 −m) + 2(T − 1)(m + f0 − f1)

+ (2 f1 − 4t2 + f0 −m)

= T2( f0 −m) + 2T(m + f0 − f1 − f0 + m)

+ (2 f1 − 4t2 + f0 −m) + ( f0 −m)− 2(m + f0 − f1),

which is precisely (3.8).

Lemma 3.20. In Scenario 3.1, m(m−1)
2 = ∑m

r=2
r(r−1)

2 · tr.

Proof. This follows because any two projective lines intersect in precisely one

point and we have (m
2 ) =

m(m−1)
2 choices for such a pair. Equivalently, we may

count all pairs of lines that intersect in an r-point, for each r.

Theorem 3.21. Let {H0, . . . , H` } be a set of projective lines in the complex projec-

tive plane P2
C and H = H0 + · · ·+ H` the corresponding divisor. Set tr := tr(2, H).

If t2 = t` = t`+1 = 0, then t3 > 0.

Proof. We are in Scenario 3.1. First note that we may assume ` ≥ 4 for obvious

reasons (otherwise, none of the lines can intersect by assumption). For ` = 4,

Lemma 3.20 yields 10 = 3 · t3, so we may even assume ` ≥ 5. Let

H′ := H0 + · · ·+ H5
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and set t′r := tr(2, H′). By possibly re-ordering the Hi, we may assume t′r = 0

for r > 3. Indeed, if such a choice was impossible, then all but two lines of H

would have to intersect in a common point, quickly yielding the contradiction

t2 6= 0. Since −H′ = 2KX , we can describe a bicanonical divisor on X̃ as

2KX̃ = β∗(2KX) + 2E = −β∗(H′) + 2E (3.9)

where E = ∑N
j=1 H̃j+` is the exceptional divisor of the blow-up β. Let

β∗(H′) =
5

∑
i=0

H̃j +
N

∑
j=1

vj H̃j+` (3.10)

where 0 ≤ vj ≤ 3 by our earlier assumption. Combining (3.9) and (3.10), we

may write the bicanonical divisor on X̃ as

2KX̃ = −
5

∑
i=0

H̃j +
N

∑
j=1

(2− vj)H̃j+`

By Corollary 2.27, we conclude that

2nKỸ = π̃∗
(
2nKX̃ + 2(n− 1)H̃

)
= π̃∗

(
5

∑
i=0
−nH̃i +

`

∑
i=0

(2n− 2)H̃i +
N

∑
j=1

(
n(2− vj) + 2(n− 1)

)
H̃j+`

)

= π̃∗
(

5

∑
i=0

(n− 2)H̃i +
`

∑
i=6

(2n− 2)H̃i +
N

∑
j=1

((4− vj)n− 2)H̃j+`

)
=: π̃∗(D)

must be effective for n ≥ 2. Unless t3 > 0, we may assume

m(m− 1)
2

=
m

∑
r=2

r(r− 1)
2

· tr ≥
`+1

∑
r=2

6tr = 6N. (3.11)

by Lemma 3.20. Note that ∑N
j=1 vi = (6

2) = 15. For n ≥ 2, Lemma 3.12 then

yields

D2 =

(
5

∑
i=0

(n− 2)H̃i +
`

∑
i=6

(2n− 2)H̃i +
N

∑
j=1

((4− vj)n− 2)H̃j+`

)2

= 36(n− 2)2 + 12(m− 6)(n− 2)(2n− 2) + (2n− 2)2(m− 6)2

− (4n− 2)N + 15

≥ 36(n− 2)2 + 12(m− 6)(n− 2)(2n− 2) + (2n− 2)2(m− 6)2

− (4n− 2) · m(m− 1)
12

+ 15

=: δ(n, m)
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For n ≥ 3 or m ≥ 8, it is easy to see that δ(n, m) > 0 and thus, K2
Ỹ > 0

in this case. See also Figure 3.1. Also see Figure 3.2 for a visual graph of δ.

6 7 8 9 10 11 12
1

2

3

4

m

n

δ(n, m) ≤ 0
δ(n, m) > 0

Figure 3.1: In blue: The area where δ(n, m) > 0.

By Corollary 3.16, Ỹ satisfies the Miyaoka-Yau inequality for n = 3 and the

polynomial F(T) from Lemma 3.19 yields

0 ≤ F(4) = 16( f0 −m) + 8(2m− f1) + 4( f1 − t2 −m)

= 16 f0 − 8 f1 + 4 f1 − 4t2 − 4m

= 16 f0 − 4 f1 − 4m

= 4 · ∑
r≥2

(4− r)tr − 4m.

As an immediate result, t3 ≥ m + ∑r≥4(4− r)tr > 0.
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6 7 8 9 10 11 12

2

3

4
0

200

m

n

δ(n, m)

Figure 3.2: Visualization of δ.
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Chapter 4

Perspectives

Since the ultimate goal is a resolution of Conjecture 1.9, we naturally wonder

about the case k > 2. In Section 4.1, we give some pointers on how to tackle it

by means of CBCs. One might also wonder how these results carry on to the

world of positive characteristic, so we discuss possible prospects in Section 4.2.

4.1 Approaches to the case k > 2

There had been no motivation for Hirzebruch to study CBCs in higher di-

mensions because his motivation was classification of surfaces. Consequently,

Kelly only had results in dimension two at his disposal. His proof therefore

required a clever geometric trick, namely Proposition 1.14. Now, if we want

to prove Conjecture 1.9 for k > 2, we will most likely have to leave the com-

fortable Scenario 3.1 and move to

Scenario 4.1. Let X := Ps
C and h : O`+1

X � OX(1) an `-building of hyperplanes.

For n ≥ 2, we set Y := X [ n√h ] and Ỹ := X( n√h ) → X̃. Write Hi := Z(hi) and

H := H0 + · · ·+ H`.

Again, we want to study numerical invariants of the variety Ỹ, express

them by means of the combinatorial data of H and use relations between

these invariants to infer Conjecture 1.9.

Fortunately, the Miyaoka-Yau Inequality (Theorem 3.14) is just the tip of

an iceberg of inequalities involving Chern classes of complex manifolds. In

his paper [Yau] from 1977, Yau proved not only Theorem 3.14 but also the

following:
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Theorem 4.2 (Yau Inequality). Let X be a complex, projective, nonsingular variety

of dimension s. Let ci := ci(TX) be its i-th Chern class. If ωX is ample, then

(−1)s · cs
1 ≤ (−1)s · 2(s + 1)

s
· c2 · cs−2

1 .

Later in 1987, Miyaoka followed up on [Miy1] with the paper [Miy2] and

proved the following result:

Theorem 4.3 (Miyaoka Inequality). Let X be a complex, projective, nonsingular

variety of dimension s. Let ci := ci(TX) be its i-th Chern class. If ωX is ample, then

c2
1 · Ds−2 ≤ 3 · c2 · Ds−2.

for any numerically effective divisor D on X.

We note that both of them yield Theorem 3.14 in the case s = 2. In [CL], it

is conjectured that these two inequalities are connected by a series of further

inequalities. Our goal, naturally, is to apply these inequalities in Scenario 4.1.

However, it is unclear why, or under what conditions, the canonical bundle of

Ỹ is ample.

In general, the question of whether a variety has ample canonical bundle

is fairly nontrivial. However, there is hope for our case: A few years after

Hirzebruch had studied CBCs in the two-dimensional case, his student Bruce

Hunt investigated them closely in dimension three. In section 2.3 of his PhD

thesis [Hun], he verifies that for s = 3 and under certain conditions on the

arrangement, the canonical bundle of Ỹ is ample. If this result generalizes to

arbitrary s, one could apply Theorems 4.2 and 4.3 to obtain relations between

the combinatorial data of the arrangement H. If these relations verify the

condition (1.1) or a similar constraint, this would be a major breakthrough.

4.2 Prospects in Positive Characteristic

In the case p := char(k) > 0, a bound on SGk(k, m) can no longer be inde-

pendent on m. For instance, if k = Fp is the field with p elements, then Ps
k is

an SGk-closed set itself, for any s and k. Saxena and Seshadhri gave a general

bound in [SS], which states that

SGk(k, m) ≤ 9k · log(m) (4.1)

for any field k. However, there is no dependence on the characteristic p. For

large enough p, we expect a bound that is closer to those in characteristic 0.

We propose the following
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Conjecture 4.4. Let k be a field of positive characteristic p > 0. Then,

SGk(k, m) = O(k · logp(m))

In order to approach this conjecture, we must first note that the Miyaoka-

Yau Inequality (Theorem 3.14) fails to hold in general over fields of positive

characteristic, as shown in [Eas]. However, similar relations in positive char-

acteristic are also well-known, since 1991. We quote a theorem from [Mor]:

Theorem 4.5 (Moriwaki’s Inequality). Assume that p = char(k) > 0. Let X be

an s-dimensional nonsingular projective variety with an ample divisor D. Let E be

a locally free sheaf of rank r on X which is p-semistable with respect to D. Assume

s ≥ 2. Then, (
r− 1

)
·
(

c1(E )2 · Ds−2
)
≤ 2r ·

(
c2(E ) · Ds−2

)
(4.2)

provided that r ≤ 3 or s = 2.

While this inequality does not depend on p, [SB] provides a result for

surfaces that does:

Theorem 4.6. Let X be a surface over a field k of characteristic p > 0. Assume that

ΩX is KX-stable. Then,

c2
1(E )− 4c2(E ) ≤ K2

X

/
4p2

for every locally free sheaf E on X. In particular,

c2
1 ≤

16p2

4p2 − 1
· c2, (4.3)

where ci := ci(TX) denotes the i-th Chern class.

We note that Theorem 4.5 for surfaces is just the Miyaoka-Yau Inequality

(Theorem 3.14) with 4 instead of 3 as a constant. Furthermore, the results of

Chapter 2 work over any algebraically closed field k and the condition that

p = char(k) may not divide n is neglible, because we are mainly interested in

large values of p and small values of n. Finally, we note that the Gauss-Bonnet-

Formula (Theorem 3.18) can be translated to positive characteristic – one then

needs to define the Euler characteristic via `-adic or étale cohomology and

the proof has to be adjusted. Results like Proposition 2.22 and Corollary 2.24

also carry over to this case, as long as we are dealing with projective varieties.

For k = 2, we could therefore attempt to generalize Kelly’s proof to fields

of finite characteristic. In this case, Kelly’s Trick (Proposition 1.14) suggests

the following conjecture, which would be further evidence for the validity of

Conjecture 4.4.
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Conjecture 4.7. Let k be a field of characteristic p > 0. Assume that X ⊆ Ps
k is an

SG2C with |X| < 3p. Then, X is contained in a projective plane.

The major problem is that the constant 4 of Theorem 4.5 is simply too

large. Let us assume that µ ∈ Q is such that

c2
1 ≤ µ · c2 (4.4)

holds for the variety Ỹ, now constructed over a field of finite characteristic, but

otherwise exactly as in Scenario 3.1. In particular, t2 = 0. Since the formulas

from Propositions 3.6 and 3.13 remain valid, we can caluclate

n2−` · (µc2 − c2
1) = n2µ(3− 2m + f1 − f0)

+ n2(−9− 3 f1 + 4 f0 + 5m)

+ 2nµ(m− f1 + f0) + 2n(−2m + f1 − f0)

+ µ f1 + (− f1 + f0 −m)

= n2(3µ− 9 + f1(µ− 3) + f0(4− µ) + (5− 2µ)m)

+ 2n(m(µ− 2) + f1(2− µ) + f0(µ− 2))

+ f1(µ− 1) + f0 −m

= f1 · (n2µ− 3n2 + 4n− 2nµ + µ− 1)

+ f0 · (4n2 − n2µ + 2nµ− 4n + 1)

+ m · (5n2 − 2n2µ + 2nµ− 4n− 1)

+ 3n2µ− 9n2.

Since we can assume m ≥ 6 and µ ≥ 3, the sum of the last two lines can

easiely be seen to be negative. Thus,

0 < f1 · (n2µ− 3n2 + 4n− 2nµ + µ− 1) + f0 · (4n2 − n2µ + 2nµ− 4n + 1)

= ∑
r≥2

((n2µ− 3n2 + 4n− 2nµ + µ− 1)︸ ︷︷ ︸
a

· r + (4n2 − n2µ + 2nµ− 4n + 1)︸ ︷︷ ︸
b

) · tr

If we want to deduce t3 > ∑r≥4−(ar + b)tr ≥ 0 by arguing that ra + b ≥ 0 for

r ≥ 4, we require 3a + b ≥ 0 and 4a + b ≤ 0. This translates to

(2n2 − 4n + 3) · µ ≥ 5n2 − 8n + 2

(3n2 − 6n + 4) · µ ≤ 8n2 − 12n + 3 (4.5)

Now, since (n − 3)2 ≥ 0, we get (8n2 − 12n + 3) ≤ 3 · (3n2 − 6n + 4) with

equality if and only if n = 3, so we know that µ ≤ 3 follows from (4.5) and

we can achieve equality only in the case n = 3 (see also Figure 4.1). Thus,
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5 10 15 20
1

2

3

4

5

3 n

µ
5n2−8n+2
2n2−4n+3 ≤ µ ≤ 8n2−12n+3

3n2−6n+4

Figure 4.1: Visualization of (4.5).

the constant µ = 3 and the choice of n = 3 in Theorem 3.21 are the only

parameters that permit this proof strategy.

We already know that µ = 3 does not hold in general for surfaces in finite

characteristic. Thus, our question is:

Question 4.8. Let k be a field of finite characteristic p and Y = P2
k(

n√h ) for an

`-building h. Does Y satisfy the Miyaoka-Yau Inequality under the condition that

t2(2, H) = 0 for H = Z(h)?

If we could positively answer Question 4.8, then we could also prove Con-

jecture 4.7 by only slightly modifying Kelly’s proof.
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List of Symbols

d
scheme-theoretic intersection (page 7).

99K rational map between varieties (page 7).

∅ the empty set.

n
√

x set of n-th roots of x (page 34).

As affine s-space over the field k (page 8).

A(X) Chow ring A(X) =
⊕

k Ak(X) of X (page 22).

Ak(X) group of k-cycle classes on X (page 22).

A f localization of the commutative ring A by f ∈ A (page 6).

A [IT] blow-up algebra of A in I (page 16).

AP localization of the commutative ring A by the multiplicatively

closed set A \ P (page 6).

Bl blow-up construction (page 16, 18).

Bπ branch locus of a morphism (page 30).

βᵀ(Z) strict transform of Z under the blow-up map β (page 20).

χ(X) topological Euler characteristic of a complex variety (page 38).

C the field of complex numbers.

ch(E ) exponential Chern character of E (page 27).

td(E ) Todd class of E (page 27).

char(k) characteristic of k.

ck(E ) the k-th Chern class of E (page 25).

codimX(Z) codimension of Z in X, i.e. dim(X)− dim(Z).

cT(E ) the Chern polynomial of E (page 25).

δij the Kronecker delta (page 48).
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List of Symbols

D( f ) open subset of an affine variety where the function f does not

vanish (page 6).

deg(π) degree of a finite morphism (page 29).

deg(Z) degree of a projective variety (page 7).

div( f ) rational cycle of zeros and poles of f (page 22).

D∗( f ) open subset of a projective variety where the homogeneous

element f does not vanish (page 7).

E ∨ dual of a sheaf of O-modules, i.e. E ∨ = HomO(E ,O).

ei the i-th formal generator of a direct sum (page 46).

eπ ramification index (page 31).

ϕ] sheaf component of a morphism of schemes (page 6).

ϕ?(I) inverse image ideal sheaf of I under ϕ (page 18).

φh morphism to projective space, associated to a globally gener-

ated line bundle h (page 47).

Fp the field with p elements (page 64).

fπ inertia degree (page 32).

Frac(R) Field of fractions of a domain R.

Γ(ϕ) graph of a rational map ϕ (page 16).

Hλ scheme-theoretic intersection of the irreducible components of

an arrangement, indexed by λ (page 33).

HomO(E , F ) the hom-sheaf of two O-modules E and F (page 40).

Hq(X, E ) q-th sheaf cohomology group of the sheaf E (page 38).

Hq(X, R) q-th singular cohomology group with coefficients in a commu-

tative ring R (page 38).

Hq(X, R) q-th singular homology group with coefficients in a commu-

tative ring R (page 38).

H(r) the set of r-points of an arrangement H (page 39).∫
X α degree of a rational equivalence class α ∈ A(X) (page 25).
√

I radical of the ideal I (page 6).

im(ϕ) image of the morphism ϕ.

ker(ϕ) kernel of the morphism ϕ.

I∗(Z) homogeneous ideal corresponding to the closed subset Z of a

projective scheme (page 7).
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List of Symbols

I(Z) ideal sheaf corresponding to a closed subscheme Z (page 7).

I(Z) ideal corresponding to a closed subset Z (page 6).

k a field (usually algebraically closed) (page 7).

k(X) function field of the variety X (page 6).

K×n subgroup of K× of all n-th powers (page 50).

KX canonical divisor on X (page 40).

kod(X) Kodaira dimension of a projective variety X (page 56).

L usually a line bundle.

λ usually a multiindex λ ⊂ { 0, . . . , ` } (page 33).

L + L′ linear span of two linear varieties (page 8).

L⊥ geometric dual of a linear projective variety (page 9).

lenA(M) length of the A-module M (page 22).

[L : K] degree of a field extension K ⊆ L.

λH(P), λ(P) indices of the components of an arrangement H meeting at

the point P (page 33).

mP maximal ideal of the local ring at P (page 6).

M∼ quasi-coherent sheaf associated to a module M (page 6).

N the natural numbers.

OX,P local ring at P (page 6).

ΩX sheaf of relative differentials of X (page 40).

ωX canonical sheaf of X (page 40).

Ps projective s-space over the field k (page 7).

Proj(S) set of homogeneous prime ideals of a graded ring S, equipped

with the standard scheme structure (page 7).

Proj relative proj-construction (page 18).

Q the field of rational numbers.

R the field of real numbers.

R× the group of units of a commutative ring R.

rank rank of a matrix, or the rank of a free module over some ring.

Rd(H) the redundant part of an arrangement H (page 33).

Rπ ramification locus of a morphism (page 30).
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rH(P), r(P) number of components of an arrangement H meeting at the

point P (page 33).

SGk(k, m) dimension of the cone over a maximal SGkC of cardinality at

most m (page 10).

Sing(X) singular points of a scheme X (page 35).

Spec(A) set of prime ideals of A, equipped with the standard scheme

structure (page 6).

sp(X) topological space of a scheme X (page 5).

TX tangent sheaf of X (page 40).

θn n-th power morphism on projective space (page 46).

t⊥k (d, X) number of d-flats that intersect X in k points and are spanned

by these points (page 10).

tr(d, H) number of generic r-points in codimension d (page 11, 34).

tr. degk(R) transcendence degree of an integral k-algebra R, i.e. the tran-

scendence degree of Frac(R) over k (page 56).

Xan analytification of a complex variety X (page 38).

X [ n√h ] the n-fold global Kummer covering of X associated to a glob-

ally generated line bundle (page 47).

X( n√h ) regularized n-fold global Kummer covering of X associated to

a globally generated line bundle (page 50).

Xred associated reduced scheme (page 6).

χ(X, E ) Euler characteristic of a sheaf E (page 27).

X×Y fiber product of varieties (page 7).

X×S Y fiber product of S-schemes (page 7).

Z the ring of integers.

Zn the ring Z
/
(n) for some n ∈ Z.

Z(I) vanishing set of an ideal I (page 6).

Z( f ) closed subscheme associated to the divisor of zeros of a global

section f of a line bundle (page 48).

Z∗(I) closed subset of a projective scheme defined by the homoge-

neous ideal I (page 7).

Z(I) closed subscheme defined by the quasi-coherent ideal sheaf I
(page 7).
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