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Synopsis

Randomization is ubiquitous in computer science. Many computational problems have

faster algorithms when usage of random bits is allowed. It is a fundamental question

whether using randomness can drastically decrease the complexity of a problem or every

problem which has a randomized algorithm also has a deterministic one with only a small

overhead. It is widely believed that the later is true. But such a deterministic solution, or

in other words, derandomization, is known only for some specific problems, for example,

primality testing and undirected reachability. Another reason derandomization is one of

the central questions in computational complexity theory, is that it has connections with

circuit lower bounds. It is known that derandomization is equivalent to proving that some

problems are hard to solve.

Polynomial Identity Testing (PIT) is a good candidate problem to study the derandom-

ization question. The problem asks if a given multivariate polynomial is identically zero.

The input polynomial is given implicitly by an arithmetic computational model which

computes polynomials, for example, arithmetic circuits. PIT has a polynomial time ran-

domized algorithm, whereas finding even a sub-exponential time deterministic algorithm

remains an open question. Derandomizing PIT also has connections with arithmetic cir-

cuit lower bounds. The PIT problem is studied in two paradigms (i) whitebox: where one

can use the input circuit and (ii) blackbox: where one cannot see the input circuit, but

can only evaluate the polynomial at some points from the field.

In this thesis, we give new deterministic identity tests for a special input model called

ROABP and its variants. A read-once oblivious arithmetic branching program (ROABP)

is essentially an iterated matrix product, where each matrix has its entries as univariate
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polynomials in a distinct variable. We give the first quasi-polynomial time (nO(logn)),

completely blackbox test for ROABP, using a new idea called basis isolation. Earlier results

either had the assumption of small individual degree or used the order of the variables

associated with the matrices. For the case of known variable order, we give improved

results, which imply a polynomial time test for constant-width ROABP. Width of an

ROABP is the dimension of the matrices involved in the matrix product. Commutative

ROABP is another variant where we give better results. An ROABP is commutative if

the underlying matrices are commutative.

Another interesting question in the context of derandomization is the perfect matching

problem. The problem asks if, in a given graph, there exists a pairing of adjacent ver-

tices such that each vertex is paired with exactly one vertex. It has randomized parallel

algorithms, but no such deterministic algorithms are known. One of the randomized algo-

rithms goes via a reduction to PIT and uses the celebrated Isolation Lemma of Mulmuley,

Vazirani and Vazirani. The Isolation Lemma states that assigning random weights to the

edges of a graph ensures that it has a unique minimum weight perfect matching, with a

good probability. We derandomize this lemma for K3,3-free or K5-free bipartite graphs,

i.e., we give a deterministic log-space construction of such a weight assignment for these

graphs. Such a construction was previously known for planar bipartite graphs, of which

K3,3-free or K5-free bipartite graphs are natural generalizations. Our result implies that

the perfect matching problem for K3,3-free or K5-free bipartite graphs is in SPL. It also

gives an alternate proof for an already known result – reachability for K3,3-free or K5-free

graphs is in UL. Our results are actually for a general class of graphs defined via the

clique-sum operation, which subsumes K3,3-free or K5-free graphs.
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Chapter 1

Introduction

Randomness has a wide spread application in computer science. Not only use of ran-

domness can give faster algorithms, it is also essential for the security of cryptosystems,

distributed computing etc. However, random numbers are hard to generate. Thus arises

the question: how essential are random numbers? One of the central questions in com-

putational complexity theory is that of derandomization. The question asks whether all

problems with efficient randomized algorithms also have efficient deterministic algorithms,

i.e., without using randomness. In terms of complexity classes, whether P = BPP. The

answer is widely believed to be affirmative but little progress has been made towards prov-

ing that. This question is also intimately related to circuit lower bounds (see, for example,

[AB09]).

The polynomial identity testing (PIT) problem acts as a good test case to study this

question. The problem is to determine whether a given polynomial identity holds uni-

formly, or equivalently, whether a given polynomial is uniformly zero. For example, the

following is a polynomial identity which holds uniformly.

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2 (1.1)

PIT has a polynomial time randomized algorithm [DL78, Zip79, Sch80] but there is no

efficient deterministic algorithm known for it. The randomized algorithm is not only

efficient but also very simple to describe. Given a polynomial P (x1, x2, . . . , xn), evaluate

1
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it over a random point in Fn. If the polynomial is zero then it always evaluates to zero

but if it is nonzero then with a good probability, it evaluates to a nonzero value. Another

motivation to study PIT comes from the fact that it has connections to arithmetic circuit

lower bounds, i.e., the VP vs VNP question [KI03, Agr05]. PIT also has applications in

other areas of complexity theory, for example, primality testing and perfect matching.

In fact, the famous deterministic primality test by Agrawal, Kayal and Saxena [AKS02]

involved derandomizing a special case of PIT. See the surveys by Saxena [Sax09, Sax14]

and Shpilka & Yehudayoff [SY10] for more applications.

The perfect matching problem also reduces to PIT [Tut47], which gives a randomized

NC (parallel) algorithm for perfect matching [Lov79]. Derandomizing this algorithm re-

mains a challenging open question. In this thesis, we derandomize the PIT problem for

some special input models and also derandomize the parallel algorithm for matching for

some special graphs. The former involves algebraic techniques, while the latter involves

graph theoretic techniques.

1.1 Polynomial Identity Testing

1.1.1 Arithmetic Circuits

The complexity of the PIT question depends crucially on the way the input polynomial is

given. For example, if the polynomial is given as a set of monomials and corresponding

coefficients, then we can easily check whether the polynomial is nonzero by checking the

coefficient for each given monomial. The question becomes non-trivial when the polyno-

mial is given implicitly, for example, by an arithmetic circuit. An arithmetic circuit is

a natural computational model for polynomials. Arithmetic circuits are the arithmetic

analogues of Boolean circuits and are defined over a field F. They are directed acyclic

graphs, where every internal node is a “+” or “×” gate and the leaves are input gates

which take a constant from the field F or a variable from the set x = {x1, x2, . . . , xn}.

Every edge has a label from the underlying field F. The computation is done in the natural

way: Each edge takes the polynomial computed at its tail and gives it to the head after



3

+

x y 2

−1

××

Figure 1.1: A circuit computing the polynomial x2 − 2xy (default edge label is 1).

multiplying with the edge label. Each + node computes the sum of all polynomials coming

from all its incoming edges. Similarly, each × node computes the product of all polyno-

mials coming from all its incoming edges. The polynomial computed at the output gate

is said to be the polynomial computed by the circuit. Clearly, the output gate computes

a polynomial in F[x]. We can restate the PIT problem as follows: Given an arithmetic

circuit C, decide whether the polynomial computed by C is zero, in time polynomial in

the circuit size and the degree of the polynomial. Note that given a circuit, computing

the polynomial explicitly is not possible in polynomial time, as it can have exponentially

many monomials. However, given the circuit, it is easy to compute an evaluation of the

polynomial by substituting the variables with constants.

The PIT problem is studied in two paradigms: whitebox and blackbox. Whitebox

tests are ones which can use the structure of the given circuit. On the other hand a

blackbox test cannot see the circuit, it can just evaluate the polynomial at some points

from the field (or an extension field). In both the cases, circuit size is the input size.

Observe that if the blackbox algorithm finds a point where the polynomial evaluates

to a nonzero value, then it can stop and output that the polynomial is nonzero. So,

in the blackbox paradigm, essentially one needs to produce a set of points such that if

the polynomial is nonzero, it must evaluate to a nonzero value at one of the points in

the set. This set is called a hitting-set. The terms blackbox test and hitting-set are

used interchangeably in this thesis. Clearly, finding a hitting-set is harder than finding

a whitebox test. Hitting-sets have stronger connections with arithmetic circuit lower

bounds. In particular, Heintz and Schnorr [HS80] and later Agrawal [Agr05] showed that

polynomial-time constructible hitting-sets for arithmetic circuits imply exponential size
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lower bounds for arithmetic circuits. Some results in other direction are also known, i.e.,

lower bounds imply derandomization of PIT [DSY09]. This connection between PIT and

lower bounds suggests that derandomizing PIT is a hard problem, and indeed, it has been

done only for very restricted classes of input models.

For the purpose of PIT one can assume, without loss of generality, that the given

arithmetic circuit has alternating layers of + and × gates. There is an easy reduction for

this with only polynomial blow up in the circuit size. Moreover, one can assume that the

output gate is a + gate. This is because if it was a × gate, testing non-zeroness of the

output polynomial reduces to testing non-zeroness of the factor polynomials. The first

non-trivial deterministic test found was a polynomial time blackbox test for polynomials

computed by depth-2 (ΣΠ) circuits [BOT88, KS01]. Observe that a ΣΠ circuit is a sum of

monomials, hence, there is an easy whitebox test: check the coefficient of each monomial.

Next step would be solve PIT for depth-3 (ΣΠΣ) circuits. However, even a sub-exponential

time whitebox test is not known for them till now. In a recent surprising result [GKKS13],

it was shown that PIT for depth-3 circuits is almost as hard as that for general circuits.

Earlier, such a result was known for depth-4 circuits [AV08, Koi12, Tav13]. Gupta, Kayal,

Kamath and Saptharishi [GKKS13] showed that polynomial time blackbox PIT for depth-

3 circuits would imply quasi-polynomial (2(logn)
O(1)

) time blackbox PIT for general circuits

with polynomially bounded degree. Hence, depth-3 circuits have become a stepping stone

for understanding general circuits.

Recently, a sub-exponential time (nÕ(n2/3)) hitting-set was given for depth-3 multilinear

circuits by de Oliveira, Shpilka and Volk [dOSV15] 1. A polynomial is said to be multilinear

if the degree of every variable in every term is at most 1. A circuit is a multilinear circuit

if the polynomial computed at every gate is multilinear. Since there are exponential lower

bounds known for depth-3 multilinear circuits [RY09], a polynomial time PIT for them

seems within reach.

There are some other special cases of depth-3 circuits, for which an efficient PIT is

known. These are (i) depth-3 circuits with constant top fan-in, i.e., indegree of the output

1They also give hitting-sets for depth-4 multilinear circuits and regular formulas
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(+) gate, (ii) diagonal depth-3 circuits, and (iii) depth-3 set-multilinear circuits.

After a long chain of work [DS07, KS07, KS09, KS11, SS11, SS12, SS13], a poly(n)dk-

time blackbox test was given for depth-3 circuits with top fan-in k and degree d.

A diagonal depth-3 circuit, defined by Saxena [Sax08], is of the form
∑k

i=1(ai0 +∑n
j=1 aijxj)

di . In other words, it is a depth-3 circuit with the multiplication gates be-

ing power gates. Saxena [Sax08] reduced diagonal circuits to a sum of products of uni-

variate polynomials using the duality trick, which had a whitebox PIT due to Raz and

Shpilka [RS05]. Later, blackbox tests were also obtained for diagonal circuits [FS13b,

ASS13, FS13a, FSS14]. The best blackbox test for diagonal circuits has time complexity

nO(log log k), which was given by Forbes, Saptharishi and Shpilka [FSS14].

Depth-3 set-multilinear circuits also have a polynomial time whitebox PIT due to Raz

and Shpilka [RS05]. Consider a depth-3 multilinear circuit
∑k

i=1

∏
j `ij , where `ij is a

linear polynomial for each i, j. Since every product gate here computes a multilinear

polynomial, the linear polynomials {`ij}j must be in disjoint sets of variables for each i.

Thus, each product gate naturally induces a partition of the variables, where each color

(i.e., part) of the partition contains the variables present in one of the linear polynomials.

The circuit is called a depth-3 set-multilinear circuit, if the partitions induced by all the

product gates are the same. Forbes and Shpilka [FS12] gave a nO(log k)-time blackbox PIT

for set-multilinear circuits, when the partition induced by the product gates is known.

Later, Agrawal, Saha and Saxena [ASS13] gave a complete blackbox PIT with the same

time complexity.

All the three models described above are incomparable with each other. This the-

sis presents new results on PIT for read-once oblivious arithmetic branching programs

(ROABP), a model which subsumes both depth-3 diagonal circuits and set-multilinear

circuits. In the following section, we define ROABP and discuss previous results on it.

1.1.2 Arithmetic Branching Programs

An arithmetic branching program (ABP) is another interesting model for computing poly-

nomials. It consists of a directed acyclic graph with a source and a sink. The edges of the
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graph have polynomials as their weights. Conventionally, the edge weights are taken to be

‘simple’ polynomials to restrict the power of the ABP. The weight of a path is defined to

be the product of the weights of the edges present in the path. The polynomial computed

by the ABP is the sum of the weights of all the paths from the source to the sink. It is

well known that for an ABP, the underlying graph can be converted to a layered graph

such that all paths from the source to the sink have exactly one edge in each layer. Then

the polynomial computed by the ABP can be written as a matrix product, where each ma-

trix corresponds to a layer. The entries in the matrices are weights of the corresponding

edges. The maximum number of vertices in a layer, or, equivalently, the dimension of the

corresponding matrices, is called the width of the ABP.

It is known that ABPs have the same expressive power as that of projections of sym-

bolic determinant, i.e., determinant of a matrix with its entries being ‘simple’ polynomials

[Ber84, Tod91, MV97]. Ben-Or and Cleve [BOC92] have shown that a polynomial com-

puted by a formula can also be computed by a width-3 ABP of size polynomial in the

formula size. A formula is a circuit with every node (except the input gates) having outde-

gree at most 1. Moreover, Saha, Saptharishi and Saxena [SSS09] reduce PIT for depth-3

circuits to PIT for width-2 ABP. Thus, ABP is a strong model for computing polynomials.

The following chain of reductions shows the power of ABP and its constant-width version

relative to other arithmetic computation models (see [BOC92] and [Nis91, Lemma 1]).

Constant-depth arithmetic circuits ≤p constant-width ABP

=p formulas ≤p ABP ≤p arithmetic circuits

As mentioned earlier, some of the results in this thesis are for a special class of ABP

called read-once oblivious arithmetic branching programs (ROABP). An ABP is a read-

once oblivious ABP (ROABP) if the weights in its n layers are univariate polynomials in

n distinct variables, i.e., the i-th layer has weights from F[xπ(i)], where π is a permutation

on the set {1, 2, . . . , n}. In terms of matrix product, an ROABP can be written as C(x) =

UT(
∏n
i=1Di)T , where U, T ∈ Fw×1 and Di ∈ Fw×w[xπ(i)] is a matrix with entries as

polynomials in variable xπ(i) for each i. When we know this permutation π, we call it an
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ROABP with known variable order (it is significant only in the blackbox setting).

Raz and Shpilka [RS05] gave a poly(n,w, d)-time whitebox algorithm for n-variate

polynomials computed by a width-w ROABP with individual degree bound d. Forbes and

Shpilka [FS13b] gave a (nwd)O(logn)-time blackbox algorithm for the same, when the vari-

able order is known. Subsequently, Forbes, Saptharishi and Shpilka [FSS14] gave a black-

box test for the case of unknown variable order, but with time complexity nO(d logw logn).

Note the exponential dependence on the individual degree. Their time complexity be-

comes quasi-polynomial in case of multilinear polynomials, i.e., d = 1 (in fact, even when

d = poly(log n)).

Another model for which we present a hitting-set is Commutative ROABP, which is a

special case of ROABP. A commutative ROABP is an ROABP where the corresponding

matrix product is commutative. For example, when the matrices are diagonal matrices,

which corresponds to the circuit model sum-of-products-of-univariate-polynomials. All

the PIT results for ROABP (even with known order) also hold for commutative ROABP.

Forbes, Sapthatrishi and Shpilka [FSS14] gave an improved hitting-set for commutative

ROABP with time complexity dO(logw)(nw)O(log logw).

In another work, Jansen, Qiao and Sarma [JQS10b] gave a quasi-polynomial time

blackbox test for a sum of constantly many multilinear “ROABP”. Their definition of

“ROABP” is more stringent. They assume that every variable appears at most once in

the ABP. Later, this result was generalized to “read-r OABP” [JQS10a], where a variable

can occur in at most one layer, and on at most r edges. Our definition of ROABP seems

much more powerful than both of these.

ROABPs also subsume read-once formulas [Nis91]. A read-once formula is a formula

where every variable occurs at most once. A non-trivial read-once formula always computes

a nonzero polynomial, as there cannot be any cancellations. Thus, the whitebox test

becomes trivial. However, a polynomial time hitting-set is not known for them. The best

known time complexity is nO(logn) [SV09].
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1.1.3 Our results on PIT

This thesis gives new hitting-sets for the following classes of circuits/branching programs.

• (ndw)O(logn)-time hitting-set for ROABP.

• poly(n, d)-time hitting-set for constant width ROABP, with known variable order

(only for zero or large characteristic fields).

• (ndw)O(log logw)-time hitting-set for commutative ROABP.

We elaborate these results further. The first result improves upon the ROABP result

of [FSS14] and matches the time complexity for the unknown-order case with the known-

order case (given by [FS13b]). Unlike the result of [FSS14], our result does not have an

exponential dependence on the individual degree. Hence, our result can be seen as the

first completely blackbox, quasi-polynomial time PIT for ROABP. Formally, we have the

following theorem.

Theorem (Theorem 3.7). Let C(x) be an n-variate polynomial computed by a width-w

ROABP (unknown order) with the degree of each variable bounded by d. Then there is a

poly(n,w, d)logn-time hitting-set for C.

Remark. Our algorithm also works when the layers have their weights as general sparse

polynomials (still over disjoint sets of variables) instead of univariate polynomials (see the

detailed version in Section 3.2).

Our result also implies an (nk)O(logn)-time hitting-set for set-multilinear circuits, but

the hitting-set of Agrawal, Saha and Saxena [ASS13] is still better with the time complexity

nO(log k).

We also apply the same technique to diagonal circuits to get a hitting-set of size

(ndk)O(log d), where k is the top fan-in. This is incomparable with the (ndk)log log k-size

hitting-set of Forbes, Saptharishi and Shpilka [FSS14].

Our next result further improves the hitting-set size for known-order ROABP. However,

it works only for zero or large characteristic fields.
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Theorem (Theorem 5.6). Let C(x) ∈ F[x] be an n-variate, individual degree d polynomial

computed by a width-w ROABP in the variable order (x1, x2, . . . , xn). Then there is a

dnO(logw)-time hitting-set for C, when char(F) = 0 or char(F) > ndwlogn−1.

Note that for constant width ROABPs, this gives the first polynomial time hitting-set

(known-order). Our next result is for commutative ROABPs, which improves upon the

previously best known hitting-set of size dO(logw)(nw)O(log logw) [FSS14].

Theorem (Theorem 5.15). There is an (ndw)O(log logw)-time hitting-set for n-variate com-

mutative ROABPs with width w and individual degree d.

1.1.4 Comparison with Boolean Pseudorandomness

Another motivation to study ROABPs comes from their Boolean analogues, called read-

once ordered branching programs (ROBP). ROBPs have been studied extensively, with

regard to the RL versus L question (randomized log-space versus log-space). The problem

of finding hitting-sets for ROABP can be seen as an analogue of finding pseudorandom

generators (PRG) for ROBP. A pseudorandom generator for a Boolean circuit C is an

algorithm which can produce a probability distribution (with a small sample space) such

that for the circuit C, the distribution is indistinguishable from the uniform random

distribution. Constructing a pseudorandom generator (PRG) for ROBP with O(log n)

seed length would imply RL = L. However, the best known pseudorandom generator

(PRG) is of seed length O(log2 n) (nO(logn) size sample space), when variable order is

known [Nis90, INW94, RR99]. This is the best result even for constant width ROBP. On

the other hand, in the unknown-order case, the best known seed length is of size n1/2+o(1)

[IMZ12].

There are a number of cases where pseudorandomness constructions for ROABP and

ROBP, i.e., hitting-sets and PRGs, are quite similar in terms of complexity.

• ROABP with known variable order have nO(logn)-time hitting-set [FS13b], while

known-order ROBP have O(log2 n)-seed PRG [Nis90, INW94].
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• constant-width invertible ROABP have poly(n)-time hitting-sets [AGKS15], while

constant-width permutation ROBP have O(log n)-seed PRG [KNP11, De11, Ste12].

• width-2 ROABP have poly(n)-time hitting-sets [AGKS15], while width-2 ROBP have

O(log n)-seed PRG [BDVY13].

Here, we are not counting our result for known-order ROABP (Theorem 5.6), as it does

not work over all fields. However, the hitting-set complexity it gives is better than the

Boolean setting result. Even in the unknown-order case, our results for the arithmetic

setting are better. One can ask whether we can get similar results in the Boolean setting.

That is, for the known-order case, O(log n)-seed PRG for constant width ROBP and for

the unknown-order case, O(log2 n) seed PRG for ROBP.

1.2 Zero testing for an XOR of ROBPs

After ROABPs, the next natural question would be PIT for a sum of two ROABPs. In

[GKST15], we gave a polynomial time whitebox algorithm to test if a sum of two ROABPs

(possibly in different variable orders) is zero. The idea was inspired by a similar known

result in the Boolean setting, i.e., testing whether an XOR of two ROBPs is the zero

function. It has a polynomial time algorithm due to Savický and Wegener [SW97].

In [GKST15], we also solve PIT for sum of constantly many ROABPs. Using the same

approach, we can test the zeroness of an XOR of constantly many ROBPs. The PIT

results on sum of ROABPs can be found in Korwar’s thesis [Kor15]. In this thesis, we

present the results in the Boolean setting.

Theorem (Theorem 4.8). Given c ROBPs, possibly in different variable orders, with

n variables and width w, computing the functions f1, f2, . . . , fc, one can decide in time

poly(nc, w2c) whether f1 ⊕ f2 ⊕ · · · ⊕ fc = 0.
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Figure 1.2: A graph with a perfect matching (represented by the bold edges)

1.3 Perfect Matching

The perfect matching problem is one of the most extensively studied problems in combi-

natorics, algorithms and complexity. In complexity theory, the problem plays a crucial

role in the study of parallelization and derandomization. In a graph G(V,E), a matching

is a set of disjoint edges and a matching is called perfect if it covers all the vertices of the

graph (Figure 1.2). Edmonds [Edm65] gave the first polynomial time algorithm for finding

a perfect matching in a graph. Since then, there have been improvements in its sequential

complexity [MV80]. However, there is no known NC (efficient parallel) algorithm for it.

It is widely believed that the problem should be in NC as it has randomized NC (RNC)

algorithms. A deterministic NC algorithm is known only for some special classes of graphs,

for example planar graphs, regular bipartite graphs (see [KR98] for a detailed exposition

on parallel complexity of matching).

There are various versions of the matching problem. Here, we are interested in the

following two:

– Decision-PM: Decide if there exists a perfect matching in the given graph.

– Search-PM: Construct a perfect matching in the given graph, if it exists.

A randomized NC algorithm for Decision-PM was given by Lovász [Lov79]. Using

the notion of Tutte Matrix [Tut47], Lovász [Lov79] reduced Decision-PM to PIT. For

simplicity, we present the reduction only for bipartite graphs. A graph G(V,E) is called

bipartite if there exist two partitions of the vertex set V , say V1 and V2, such that any

edge in the graph connects a vertex from V1 to a vertex from V2. For a bipartite graph to

have a perfect matching, it must be that |V1| = |V2|. Let us say V1 = {u1, u2, . . . , un} and
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V2 = {v1, v2, . . . , vn}. Consider the following n×n matrix B whose rows and columns are

indexed by the vertices in the sets V1 and V2, respectively.

B(i, j) =


xij if (ui, vj) ∈ E,

0 otherwise.

Here xijs are all distinct variables. Tutte [Tut47] showed that det(B), as a polynomial,

is nonzero if and only if G has a perfect matching. The proof is simple. Any perfect

matching M in G is permutation on the set [n], i.e., there exists a permutation π : [n]→ [n]

such that M = {(ui, vπ(i))}i. As determinant is a signed sum over all permutations, i.e.,

det(B) =
∑
π∈Sn

sgn(π)

n∏
i=1

B(i, π(i)),

det(B) has exactly as many distinct monomials as the number of perfect matchings in G.

To check if det(B) is nonzero, apply the randomized PIT, i.e., substitute random values

for the variables {xij}i,j . Note that determinant of matrix (over F) can be computed

efficiently. In fact, it can be computed in NC [Ber84, MV97]. Thus, we get an RNC

algorithm for Decision-PM.

Subsequently, Search-PM was also shown to be in RNC [KUW86, MVV87]. The

solution of Mulmuley, Vazirani and Vazirani [MVV87] was also based on PIT. Again for

simplicity, we present their technique only for bipartite graphs. In the matrix B, they

replace each variable xij with 2wij , where {wij}i,j are the weights assigned to the edges of

the graph. It is easy to see that, after this replacement

det(B) =
∑
π∈Sn

∀i (ui,vπ(i))∈E

sgn(π) · 2
∑
i wiπ(i) .

The quantity
∑

iwiπ(i) is said to be the weight w(M) of the matching M corresponding

to the permutation π.

Now, the authors [MVV87] apply the powerful idea of the Isolation Lemma. The Iso-

lation Lemma states that if the weights {wij}i,j are chosen randomly (from a polynomially

bounded range), then with a good probability, a perfect matching is isolated, i.e., the min-
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imum weight perfect matching is unique. This means that the term 2w(M) corresponding

to the minimum weight perfect matching will not cancel with any other term in det(B).

Moreover, one can find the set of edges in the minimum weight perfect matching M as

follows: delete an edge e and recompute det(B), if the term 2w(M) does not survive, then

e ∈M . The procedure can be done for each edge in parallel.

Note that a perfect matching can be easily isolated by using exponentially large weights.

But for an efficient computation of the determinant, it is necessary that the weights are

polynomially bounded.

Derandomizing the isolation lemma, i.e., a deterministic NC construction of an isolating

weight assignment, would put Search-PM in NC. It remains a challenging open question.

A general version of the Isolation Lemma has also been studied, where one has to ensure

a unique minimum weight set in a (non-explicitly) given family of sets (or multi-sets).

Here again, weight of a set S is
∑

e∈S w(e). Derandomizing this general version would

derandomize PIT. To elaborate, consider the set of monomials of a given polynomial as

the given family of sets (viewing monomial as a multi-set of variables). If one can assign

weights {wi}i to the variables {xi}i such that a monomial is isolated, then clearly, the

replacement xi = twi will keep the polynomial nonzero.

Using this connection with PIT, Arvind and Mukhopadhyay [AM08] have shown

that derandomizing a version of the Isolation Lemma would imply circuit size lower

bounds. While Reinhardt and Allender [RA00] have shown that derandomizing the Isola-

tion Lemma for some specific families of paths in a graph would imply NL = UL.

1.3.1 Our results on Matching

We first present an approach for constructing an isolating weight assignment for bipartite

graphs. For now, we do not have any weight construction which gives unique minimum

weight perfect matching. So, the idea is to instead construct a weight assignment for

a given graph G such that the number of minimum weight perfect matchings in G is

significantly smaller than the total number of perfect matchings in G. Then work with

the new graph G′ generated from the union of all minimum weight perfect matchings. Our
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hope is that if the number of minimum weight perfect matchings is significantly reduced,

then the new graph G′ is also substantially smaller than G (in terms of number of edges).

Observe that it is very much possible that in the graph G′, other perfect matchings also

appear which are not of the minimum weight. Indeed, there are examples of graphs, where

G′ remains same as G, even though not all perfect matchings in G are of minimum weight.

It turns out that such examples are always non-bipartite graphs. In the bipartite case, we

show that any perfect matching in G′ is a minimum weight perfect matching of G. This

implies that G′ has to be smaller than G.

Theorem (Theorem 6.10). Let G(V,E) be a bipartite graph with a weight function w : E →

R on its edges. Let E′ be the union of all minimum weight perfect matchings in G accord-

ing to w. Then every perfect matching in the graph G′ = (V,E′) has the same weight –

the minimum weight of any perfect matching in G.

However, it remains an open question to construct a weight assignment which ensures

that G′ is significantly smaller than G, i.e., it has only a fraction of edges from G. If this

can be done then one can repeat the same operation O(log n) times to reach a graph with

just one perfect matching.

Next, we move on to special classes of graphs for which a perfect matching can be

isolated. The Isolation Lemma has been derandomized for the following special classes

of graphs: planar bipartite graphs [DKR10, TV12], constant genus2 bipartite graphs

[DKTV12], strongly chordal graphs [DK98], graphs with small number of perfect match-

ings [GK87, AHT07] and graphs with small number of nice cycles [Hoa10]. A graph is

planar if it can be drawn on a plane without any edge crossings.

It is well known that a graph is planar if and only if it is both K3,3-free and K5-free

[Wag37]. For a graph H, G is called an H-free graph if H is not a minor of G i.e., H

cannot be formed from G by deleting edges and vertices and contracting edges. K3,3 is

the complete bipartite graph with (3, 3) nodes and K5 is the complete graph with 5 nodes.

K3,3 and K5 are, in a sense, the smallest non-planar graphs. Wagner [Wag37] showed

that any non-planar graph will have a K3,3 or a K5 as a minor. A natural generalization

2a planar graph has genus zero.
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of planar graphs would be K3,3-free graphs or K5-free graphs. Note that a K3,3-free

graph can contain a K5 as a minor or vice versa. We make a further step towards the

derandomization of the Isolation Lemma by derandomizing it for two graph classes: K3,3-

free bipartite graphs and K5-free bipartite graphs. Note that these graphs are not captured

by the classes of graphs mentioned above. In particular, a K3,3-free or K5-free graph can

have arbitrarily high genus, exponentially many perfect matchings, or exponentially many

nice cycles.

Theorem (Theorem 7.1). Given a K3,3-free or K5-free bipartite graph, an isolating weight

assignment (polynomially bounded) for it can be constructed in log-space.

Another motivation to study these graphs came from the fact that Count-PM (count-

ing the number of perfect matchings) is in NC2 for K3,3-free graphs [Vaz89] and in TC2

(⊆ NC3) forK5-free graphs [STW14]. These were the best known results for Decision-PM

too. The counting results, together with the known NC-reduction from Search-PM to

Count-PM (for bipartite graphs) [KMV08], implied an NC algorithm for Search-PM.

Thus, a natural question was to find a direct algorithm for Search-PM via isolation,

which we do here. One limitation of the earlier approach is that Count-PM is #P-

hard for general bipartite graphs. Thus, there is no hope of generalizing this approach to

work for all graphs. While the isolation approach can potentially lead to a solution for

general/bipartite graphs.

Theorem 7.1 puts Decision-PM and Search-PM for K3,3-free or K5-free bipartite

graphs in the classes SPL and FLSPL, respectively, which are subsets of NC2 (see Chapter 7

for details).

The crucial property of these graphs, which we use, is that their 4-connected compo-

nents are either planar or constant sized. This property has been used to reduce various

other problems on K3,3-free or K5-free graphs to their planar version, e.g. graph isomor-

phism [DNTW09], reachability [TW14]. However, their techniques do not work directly

for the matching problem. There has been an extensive study on more general minor-free

graphs by Robertson and Seymour. In a long series of works, they gave similar decom-

position properties for these graphs [RS03]. Our approach for matching can possibly be
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generalized to H-free graphs for a larger/general graph H.

1.4 Organization of the Thesis

In Chapter 2, we give an introduction to PIT and various arithmetic models. In Chapter 3,

we introduce the technique of basis isolation and apply it to get new hitting-sets for

ROABPs and diagonal circuits. In chapter 4, we give an algorithm to decide if an XOR

of constantly many ROBPs computes the zero function. In Chapter 5, we give improved

hitting-sets for two special cases of ROABPs, namely ROABPs with known variable order

and commutative ROABP.

Next two chapters deal with the matching problem. In Chapter 6, we describe a well-

known randomized parallel algorithm for matching and present some preliminary ideas

towards derandomizing it. In Chapter 7, we do this derandomization for K3,3-free or

K5-free bipartite graphs.



Chapter 2

Polynomial Identity Testing and

Various Arithmetic Models

In this chapter, we give the basic definitions and notations used in this thesis. We give

an introduction to polynomial identity testing and describe various arithmetic models and

relations between them.

2.1 Definitions and Notations

In the context of time complexity, quasi-polynomial time means 2O((logn)c)-time for some

fixed c, where n is the input size.

Throughout this thesis, N denotes the set of all non-negative integers, i.e., {0, 1, 2, . . . }.

[n] denotes the set {1, 2, . . . , n}. [[d]] denotes the set {0, 1, . . . , d}. x will denote a set of

variables, usually the set {x1, x2, . . . , xn}. For a set of n variables x and for an exponent

a = (a1, a2, . . . , an) ∈ Nn, xa will denote the monomial
∏n
i=1 x

ai
i . The support of a

monomial xa, denoted by Supp(a), is the set of variables appearing in that monomial,

i.e., {xi | i ∈ [n], ai > 0}. The support size of a monomial is the cardinality of its support,

denoted by supp(a). For a polynomial P (x), the coefficient of a monomial xa in P (x) is

denoted by coefP (xa). In particular, coefP (1) denotes the constant term of the polynomial

P .

17
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For a monomial xa,
∑

i ai is said to be its degree and ai is said to be its degree

in variable xi for each i. Similarly for a polynomial P , its degree (or degree in xi) is

the maximum degree (or maximum degree in xi) of any monomial in P with a nonzero

coefficient. Formally,

deg(P ) = max

{
n∑
i=1

ai | coefP (xa) 6= 0, a ∈ Nn
}
.

degxi(P ) = max {ai | coefP (xa) 6= 0, a ∈ Nn} .

We define the individual degree of P to be indv-deg(P ) = max{degxi(P ) | i ∈ [n]}.

To better understand some circuit models, we often use polynomials over an algebra

A, i.e., polynomials whose coefficients come from A. An algebra is a vector space V ,

equipped with a vector product, i.e., a binary operation from V × V to V . The product

is associative and distributive with the + operation of the vector space. For two elements

v1, v2 in algebra A, v1v2 denotes this vector product. The dimension of an algebra is the

dimension of the underlying vector space. When this vector product is simply a coordinate-

wise product, then the resulting algebra is called the Hadamard algebra. Hk denotes the

k-dimensional Hadamard algebra.

Apart from this we will also consider the matrix algebra. Matrix algebra is just the

vector space of matrices equipped with the matrix product. Fm×n represents the set of all

m× n matrices over the field F. Note that the algebra of w × w matrices, has dimension

w2. Let Ak be any k-dimensional algebra over the field F. For any two elements A =

(a1, a2, . . . , ak) ∈ Ak and B = (b1, b2, . . . , bk) ∈ Ak (having a natural basis representation

in mind), their dot product is defined as A · B =
∑k

i=1 aibi. To be clear, the definition

also holds for the matrix algebra.

We often view a vector/matrix with polynomial entries, as a polynomial with vec-

tor/matrix coefficients. For example,

D(x, y) =

1 + x y − xy

x+ y 1 + xy

 =

1 0

0 1

 1 +

1 0

1 0

x+

0 1

1 0

 y +

0 −1

0 1

xy.
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The coefD operator will give a matrix for any monomial, for example, coefD(y) =

0 1

1 0

.

For a polynomial D(x) ∈ A[x] over an algebra, its coefficient space is the space spanned

by its coefficients.

For a matrix R, R(i, j) denotes its entry in the i-th row and j-th column. R(i, ·)

and R(·, i) denote the i-th row and the i-th column of R, respectively.

2.2 Polynomial Identity Testing

It is a well-known fact that a degree-d univariate polynomial over a field, can have at

most d roots. Thus, there is a simple test for the non-zeroness of the polynomial: evaluate

the polynomial at d + 1 distinct points. A generalization of this fact to multivariate

polynomials gives the following lemma, which forms the basis of an efficient randomized

PIT.

Lemma 2.1 ([DL78, Sch80]). Let f(x) ∈ F[x] be a degree d, n-variate polynomial over a

field F. Let S ⊆ F be a set of size > d. Then

Pr[f(r1, r2, . . . , rn) 6= 0] ≥ 1− d

|S|
,

where ri is chosen uniformly randomly from S for each i, independently.

This version of the lemma is by Schwartz [Sch80], while DeMillo and Lipton gave a

slightly weaker probability bound of 1− nd/|S|. Choosing the set S to be of size 2d, one

gets the success probability of 1/2. Note that for this randomized test to work, we need

the field size to be large enough. In case of finite fields, one can go to an appropriately

large extension. For a blackbox PIT, it is essential that we allow evaluation points to be

from a field extension. For example, let us consider the polynomial f(x) = x2 − x over

F2 (the field of size 2). Clearly, f(0) = f(1) = 0. To get a point where f(x) evaluates to

a nonzero value, one must go to an extension of F2. Usually, a polynomial size extension

suffices for blackbox PIT.

There is another version of Lemma 2.1, given by Zippel [Zip79]. It gives a better prob-
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ability bound, when an upper bound is known on the individual degree of the polynomial,

instead of the degree.

Lemma 2.2 ([Zip79]). Let f(x) ∈ F[x] be an n-variate polynomial over a field F with

indv-deg(f) = d. Let S ⊆ F be a set of size > d. Then

Pr[f(r1, r2, . . . , rn) 6= 0] ≥
(

1− d

|S|

)n
,

where ri is chosen uniformly randomly from S for each i, independently.

Note that the randomized PIT works for any polynomial, with even exponentially high

degree. In this case, the set S will have to be of exponential size, but a random element

from S would need just O(n) random bits. For a deterministic PIT, we always assume

the degree to be small. In other words, a PIT is said to be efficient if its time complexity

is polynomial in the circuit size and the degree.

As mentioned earlier, a deterministic blackbox PIT is equivalent to constructing a

hitting-set.

Hitting-set: A set of points H ∈ Fn is called a hitting-set for a class C of n-variate

polynomials if for any nonzero polynomial P in C, there exists a point in H where P

evaluates to a nonzero value.

An f(n)-time hitting-set would mean that the hitting-set can be generated in time

f(n) for input size n. From Lemma 2.2, it follows that any set Sn, with |S| > d, is a

hitting-set for n-variate polynomials with individual degree d.

2.3 Sparse Polynomials

The polynomials computed by depth-2 (ΣΠ) circuits are also called sparse polynomials, as

their number of monomials is bounded by the circuit size. A polynomial is called s-sparse if

there are at most s monomials in it with nonzero coefficients. As mentioned earlier, there

are polynomial time blackbox tests for sparse polynomials (see, for example, [BOT88,

KS01]). A usual technique for PIT is to come with a univariate monomial map which
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preserves non-zeroness, i.e., constructing a weight function w: x → N such that when xi

is replaced with tw(xi) for each i ∈ [n], the polynomial remains nonzero. Afterwards a

hitting-set for univariate polynomials can be applied, i.e., substituting (degree +1) many

values for t. We present one such construction for sparse polynomials.

The function w can be naturally extended to the set of all monomials as follows:

w(
∏n
i=1 x

γi
i ) =

∑n
i=1 γiw(xi), for any (γi)i ∈ Nn. Note that if each variable xi is replaced

with tw(xi) then any monomial m just becomes tw(m). We say w separates a pair of mono-

mials (m,m′), if w(m) 6= w(m′). There is a folklore trick which separates any given set of

a small number of monomials. Clearly, separating all monomials of a sparse polynomial

will give us a blackbox PIT. We present this trick in the following lemma. Later, it will

also be used for designing hitting-sets for ROABPs (end of proof of Theorem 3.7).

Lemma 2.3 (Efficient Kronecker map [Kro82, AB03]). Let M be the set of all monomials

in n variables x = {x1, x2, . . . , xn} with maximum individual degree d. For any value s,

there is a polynomial-time constructible set of N := ns log(d+ 1) weight functions from x

to [2N logN ], such that for any set A ⊆ M2 of s pairs of monomials, at least one of the

weight functions w separates all the pairs in A; i.e., for all (m,m′) ∈ A, w(m) 6= w(m′).

Proof. Since we want to separate the n-variate monomials with maximum individual de-

gree d, we use the näıve Kronecker map W : xi 7→ (d+1)i−1, for all i ∈ [n]. It can be easily

seen that W will give distinct weights to any two monomials (with maximum individual

degree d). But, the weights given by W are exponentially high.

So, we take the weight function W modulo p for many small primes p. Each prime p

leads to a different weight function. That is our set of candidate weight functions. We

need to bound the number N of primes which ensures that at least one of the weight

functions separates all the monomial pairs in A. We choose the smallest N primes, say P

is the set. By the effective version of the Prime Number Theorem, the highest value in

the set P is less than 2N logN .

To bound the number N of primes: We want a p ∈ P such that for all (m,m′) ∈
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A, W (m)−W (m′) 6≡ 0 (mod p). Which means,

∃p ∈ P, p -
∏

(m,m′)∈A

(
W (m)−W (m′)

)
.

In other words, ∏
p∈P

p -
∏

(m,m′)∈A

(
W (m)−W (m′)

)
.

This can be ensured by setting
∏
p∈P p >

∏
(m,m′)∈A (W (m)−W (m′)). There are s such

monomial pairs and each W (m) < (d+1)n. Also,
∏
p∈P p > 2N . Hence, N = ns log(d+1)

suffices.

2.4 Depth-3 Circuits

Now, we define two special classes of depth-3 circuits, which will be discussed in this thesis

and for which an efficient blackbox PIT is known.

2.4.1 Diagonal Circuits

A diagonal circuit is of the form

k∑
i=1

(ai0 + ai1x1 + ai2x2 + · · ·+ ainxn)di ,

where aij ∈ F for each i, j. As discussed before, Saxena [Sax08] showed that any poly-

nomial computed by a diagonal circuit can also be computed by a sum of products of

univariate polynomials, i.e.,

t∑
i=1

fi1(x1)fi2(x2) · · · fin(xn).

with only a polynomial blow-up in the size. The proof of Saxena works only for zero or

large enough characteristic fields. Here, we present a proof by Shpilka (given in [Gup15]),

which works over all characteristic fields.

Lemma 2.4 (Duality trick [Sax08]). A polynomial f =
(
a0 +

∑n
j=1 ajxj

)d
can be written
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as
t∑
i=1

fi1(x1)fi2(x2) · · · fin(xn),

where t = O(nd2) and fij is a univariate polynomial for each i, j.

Proof. Consider the polynomial P = (y + a0)(y + a1x1) · · · (y + anxn)− yn+1. Viewing P

as a polynomial in y, its degree is n and coefP (yn) = a0 +
∑n

j=1 ajxj . It is easy to see

that in the polynomial P d, the coefficient of ydn is (a0 +
∑n

j=1 ajxj)
d.

To extract this coefficient one can use polynomial interpolation. It is well known that

for a univariate polynomial, any of its coefficients can be written as a linear combination of

its evaluations. In particular, for the polynomial P d (with degree nd), there exist constants

{αi}nd+1
i=1 and {βi}nd+1

i=1 such that

coefP d(y
nd) =

nd+1∑
i=1

αiP
d(βi).

For any i ∈ [nd + 1], P d(βi) =
(
(βi + a0)(βi + a1x1) · · · (βi + anxn)− βn+1

i

)d
can be ex-

panded as

d∑
r=0

(
d

r

)
(−1)d−rβ

(n+1)(d−r)
i · (βi + a0)

r(βi + a1x1)
r · · · (βi + anxn)r.

After this expansion, we get the desired form with t = (d+ 1)(nd+ 1).

Applying the same trick to a sum of powers of linear polynomials, i.e., diagonal circuits,

we get the desired reduction. Later, we will argue that a sum of products of univariate

polynomials can also be computed by an ROABP, in fact by a commutative ROABP.

2.4.2 Set-multilinear Circuits

A set-multilinear circuit is of the form

C(x) =

k∑
i=1

q∏
j=1

`ij(xj),

where x1,x2, . . . ,xq are disjoint sets of variables and `ij(xj) is a linear polynomial in the

variables xj for each i, j. Let xj = {xj1, xj2, . . . , xjn} and `ij(xj) = aij0 + aij1xj1 + · · ·+
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aijnxjn. Define vectors vjn ∈ Fk as vjn = (a1jn, a2jn, . . . akjn). Then one can view the

polynomial f(x) as a dot product (1, 1, . . . , 1) ·D(x), where

D(x) =

q∏
j=1

(vj0 + vj1xj1 + · · ·+ vjnxjn).

Here D(x) is a polynomial over the k-dimensional Hadamard algebra Hk. The blackbox

test of Agrawal, Saha and Saxena [ASS13] use this view of set-multilinear circuits to give

a hitting-set. As we will see later, for PIT, it is enough to find the space spanned by the

coefficients of D(x).

We can say that the polynomial D(x) is computed by a ΠΣ circuit over the Hadamard

algebra Hk, i.e., the edge labels in the circuit are from Hk. Moreover, a variable is input

to only one of the + gates. A natural generalization would be to consider a similar ΠΣ

circuit over the matrix algebra. The resulting model will be ROABP, as we will see in the

next section. In fact, we give a hitting-set for something called, a sparse-factor ROABP,

which corresponds to a ΠΣΠ circuit over the matrix algebra.

2.5 Arithmetic Branching Programs

−1

x2

u t

x1 + x2 5

x2

x1 + 2x4 x1

Figure 2.1: An ABP computing the polynomial (x1+2x4)x2x1−(x1+2x4)x2+5x2(x1+x2).

An arithmetic branching program (ABP) is a directed acyclic graph, with a source

vertex u and a sink vertex t, and the edges have polynomials as their weights (Figure 2.1).

The polynomials on the edges are ‘simple’, for example, linear or univariate. For an edge

e, let us denote its weight by W (e). For a path p from u to t, its weight W (p) is defined to

be the product of weights of all the edges in it, i.e.,
∏
e∈pW (e). Consider the polynomial

C(x) =
∑

p∈paths(u,t)W (p) which is the sum of the weights of all the paths from u to t.

This polynomial C(x) is said to be computed by the ABP.
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One can make this directed acyclic graph layered by introducing new vertices and

edges with weight 1. Thus, one can redefine an ABP as a directed graph with q+ 1 layers

of vertices {V0, V1, . . . , Vq} and a start node u and an end node t such that the edges are

only going from u to V0, Vi−1 to Vi for any i ∈ [q], Vq to t. Edges have weights from F[x]

and as a convention, the edges going from u and coming to t have weights from the field

F. The polynomial computed by the ABP is defined in the same way. The ABP is said to

have width w if |Vi| ≤ w for all i ∈ [[d]]. Without loss of generality we can assume |Vi| = w

for each i ∈ [[d]].

It is well-known that sum over all paths in a layered graph can be represented by an

iterated matrix multiplication. To see this, let the set of nodes in Vi be {vi,j | j ∈ [w]}. It

is easy to see that the polynomial computed by the ABP is the same as UT(
∏q
i=1Di)T ,

where U, T ∈ Fw×1 and Di is a w × w matrix for 1 ≤ i ≤ q such that

U(`) = W (u, v0,`) for 1 ≤ ` ≤ w

Di(k, `) = W (vi−1,k, vi,`) for 1 ≤ `, k ≤ w and 1 ≤ i ≤ q

T (k) = W (vd,k, t) for 1 ≤ k ≤ w

2.5.1 Read-once Oblivious ABP

An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in different

layers are univariate polynomials in distinct variables. Formally, the entries in Di come

from F[xπ(i)] for all i ∈ [q], where π is a permutation on the set [q]. Here q is same as n,

the number of variables.

The order (xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROABP. The

variable order of an ROABP is a crucial information. It is possible that a polynomial can be

computed by small ROABP in some variable order, but requires exponential size ROABP

in another variable order. For example, the polynomial (x1 + y1)(x2 + y2) · · · (xn + yn)

has a width-2 ROABP in the variable order (x1, y1, x2, y2, . . . , xn, yn) (see Figure 2.2).

On the other hand, any ROABP computing the same polynomial, in the variable order

(x1, . . . , xn, y1, . . . , yn), must have width at least 2n (see [Nis91, GKST15] for lower bound
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techniques).

x1

y1

x2

y2

xn

yn

. . .

1 1 1

1 1 1

Figure 2.2: An ROABP computing the polynomial (x1 + y1)(x2 + y2) · · · (xn + yn).

Viewing Di(xπ(i)) ∈ Fw×w[xπ(i)] as a polynomial over the matrix algebra, we can write

the polynomial computed by an ROABP as

C(x) = UTD1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n))T.

An equivalent representation of an ROABP can be obtained by multiplying out UT with

D1 and Dn with T .

C(x) = D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n))

is said to be computed by a width-w ROABP if D1 ∈ F1×w[xπ(1)], Di ∈ Fw×w[xπ(i)] for

2 ≤ i ≤ n− 1 and Dn ∈ Fw×1[xπ(n)].

2.5.2 Sparse-factor ROABP

We call the ABP a sparse-factor ROABP if the edge weights in different layers are sparse

polynomials in disjoint sets of variables. Formally, if there exists a partition of the variable

set x into q sets {x1,x2, . . . ,xq} such that Di ∈ Fw×w[xi], viewed as a polynomial over

the matrix algebra, is a s-sparse polynomial for all i ∈ [q], then the matrix product

UT (
∏q
i=1Di(xi))T is called a s-sparse-factor ROABP. It is read once in the sense that

any particular variable contributes to at most one edge on any path in the corresponding

graph.

For designing the hitting-set we will consider the product D(x) =
∏q
i=1Di(xi), which

is a polynomial over the matrix algebra Fw×w. As each Di is a sparse polynomial, it has a

depth-2 (ΣΠ) circuit over Fw×w. Thus, the polynomial D(x) has a depth-3 (ΠΣΠ) circuit

over Fw×w.
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2.5.3 Commutative ROABP

x3

x4 − 1

2x4 + 1

3x1

x1 + 1

2

1 − x3

x3 + 1

x3 + 5

x2 + 3

2x1 + 3

x4

1 − x2

x2

Figure 2.3: A commutative ROABP

An ROABP UT (
∏q
i=1Di)T is a commutative ROABP, if all Dis are polynomials over

a commutative subalgebra of the matrix algebra. For example, if the coefficients in the

polynomials Dis are all diagonal matrices (see Figure 2.3). Note that the order of the

variables becomes insignificant for a commutative ROABP. A polynomial computed by a

commutative ROABP can be computed by an ROABP in any variable order.

It is easy to see that ROABPs subsume set-multilinear circuits and diagonal circuits.

Reduction from set-multilinear circuits to ROABP: Now, we argue that set-

multilinear circuits are subsumed by sparse-factor ROABP. For a set-multilinear circuit

C(x) =

k∑
i=1

q∏
j=1

`ij(xj),

define Dj ∈ Fk×k[xj ] as a diagonal matrix with the (i, i)-th entry being `ij(xj) and define

U and T to be all one vectors. Clearly,

C(x) = UT

 q∏
j=1

Dj(xj)

T.

Note that Dj(xj), as a polynomial over Fk×k, is a linear polynomial, and hence is sparse.

Along the same lines one can argue that sum of products of univariate polynomials are

captured by ROABP. In that case Dis will be diagonal matrices with entries being uni-

variate polynomials. As diagonal circuits can be reduced to sum of products of univariate
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polynomials, they are also subsumed by ROABP.

In both the cases the resulting ROABP is a commutative sparse-factor ROABP, as Dis

are diagonal matrices.



Chapter 3

Hitting-sets via Basis Isolation

In this chapter, we give new hitting-sets for ROABPs using a technique called basis isola-

tion. For an n-variate, individual degree d polynomial computed by a width-w ROABP,

our time complexity is (ndw)O(logn). Our hitting-set construction goes along the lines of

the whitebox test by Raz and Shpilka [RS05]. Our proof strategy was inspired by the

rank-concentration ideas of Agrawal, Saha and Saxena [ASS13], who gave a blackbox test

for set-multilinear circuits. We first describe the ideas behind these results.

3.1 Previous Works

3.1.1 Whitebox Test for ROABP [RS05]

Here, we give an overview of the polynomial-time whitebox test of Raz and Shpilka.

They actually present their results for non-commutative ABPs, which can also be applied

to ROABPs. Our presentation is different from theirs. Recall that a polynomial C(x)

is computed by a width-w ROABP, if C(x) = UT(
∏d
i=1Di)T with U, T ∈ Fw×1 and

Di ∈ Fw×w[xi]. Raz and Shpilka [RS05] work with the product D :=
∏d
i=1Di, which is a

polynomial over the matrix algebra Fw×w, i.e., its coefficients are w×w matrices. Observe

that for any monomial xa,

coefC(xa) = UT coefD(xa)T.

29
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Hence, if C(x) 6= 0, then clearly, there exists a monomial xa such that UT coefD(xa)T 6= 0.

To test this, one just needs to find a basis for the coefficient space of D(x).

Claim 3.1. Let C(x) = UTD(x)T . Let {xa1 ,xa2 , . . .xak} be a set of monomials whose

coefficients span the coefficient space of D. Then,

C(x) = 0 ⇐⇒ UT coefD(xaj )T = 0,∀j ∈ [k].

Proof. If UT coefD(xaj )T 6= 0 for some j ∈ [k], then clearly C(x) 6= 0.

Now, suppose UT coefD(xaj )T = 0 for each j ∈ [k]. For any monomial xa, its coeffi-

cient in D can be written as

coefD(xa) =

k∑
j=1

αj coefD(xaj )

for some constants {αj}j . Hence, coefC(xa) = UT coefD(xa)T = 0 by linearity of matrix

multiplication. Thus, C(x) = 0.

Now, the goal is to compute a set of monomials, whose coefficients in D span all

the coefficients in D. Let k = w2, the dimension of the underlying algebra. To get the

essential idea, we consider the toy case when D = D1(x1)D2(x2). First compute a basis

for the coefficients of D1 and D2, separately. This can be done easily, as there are only

d + 1 coefficients in both the polynomials D1 and D2 (d is the individual degree). Let

B1 and B2 be the set of monomials corresponding to the basis coefficients in D1 and D2

respectively. Then for any a1, a2 ∈ [[d]], one can write

coefD1(xa11 ) ∈ span{coefD1(xb11 ) | xb11 ∈ B1}, (3.1)

and

coefD2(xa22 ) ∈ span{coefD2(xb22 ) | xb22 ∈ B2}. (3.2)

By multiplying (3.1) and (3.2), we get

coefD1(xa11 ) coefD2(xa22 ) ∈ span{coefD1(xb11 ) coefD2(xb22 ) | xb11 ∈ B1, x
b2
2 ∈ B2}. (3.3)

Its easy to see that coefD1(xa11 ) coefD2(xa22 ) = coefD(xa11 x
a2
2 ), for any a1, a2 ∈ [[d]].
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Thus, (3.3) can be rewritten as, for any a1, a2 ∈ [[d]],

coefD(xa11 x
a2
2 ) ∈ span{coefD(xb11 x

b2
2 ) | xb11 ∈ B1, x

b2
2 ∈ B2}.

In other words, the coefficients corresponding to the monomial set B := B1×B2 span the

coefficient space of D. Clearly, |B| ≤ k2. Now, find a basis among these k2 coefficients.

This procedure can be repeatedly applied to find a basis for the coefficients of the

polynomial D1D2 · · ·Dn. At the i-th step, let us say we have computed the set of basis

monomials B1 for the polynomial D1D2 · · ·Di. Let B2 be a set of basis monomials for

Di+1. To compute a basis for the polynomial D1D2 · · ·Di+1, we just need to consider the

monomial set B1×B2, which is of size k2. Thus, at each step we need to compute a basis

for a set of k2 coefficients, which can be done efficiently.

3.1.2 Blackbox Test for Set-multilinear Circuits [ASS13]

As seen in Section 2.5, set-multilinear circuits are a subclass of ROABP. Hence, the white-

box test of Raz and Shpilka [RS05] applies to them as well. The first completely blackbox

test for set-multilinear circuits was given by Agrawal, Saha and Saxena [ASS13]. Recall

that a set-multilinear circuit is of the form C(x) =
∑k

i=1

∏q
j=1 `ij(xj), where xjs are

disjoint sets of variables and `ijs are linear polynomials. For the polynomial C(x), they

consider the polynomial D = D1D2 · · ·Dq over Hk, where Dj is the vector polynomial

(`ij)i ∈ F[xj ]
k. It is easy to see that

C = (1, 1, . . . , 1) ·D.

Like the test of Raz and Shpilka, here also the goal is to find a basis for the coefficients

in D, but in a blackbox manner. That is, to find a set of points in Fn such that the

evaluations of D on those points span the coefficient space of D.

For this, Agrawal, Saha and Saxena use the idea of rank concentration.

Definition 3.2. A polynomial D(x) over an algebra is said to be `-concentrated if its

coefficients of (< `)-support monomials span all its coefficients.

It is easy to see that for an `-concentrated multilinear polynomial, its evaluations,
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on the set of points {h ∈ {0, 1}n | ‖h‖1 < `}, span its coefficient space [ASS13]. The

cardinality of this set is nO(`), which is efficient for a small `. However, the polynomial

D, corresponding to a set-multilinear circuit, need not have `-concentration. For example,

consider the polynomial 1 · x1x2 · · ·xn, where 1 = (1, 1, . . . , 1) ∈ Hk.

To achieve low-support concentration in set-multilinear circuits, Agrawal, Saha and

Saxena [ASS13] use a shift of variables, i.e., replacing xi with xi + ti for each i, where

{ti}i are constants. For example, the shifted polynomial 1(x1 + 1)(x2 + 1) · · · (xn + 1)

is 1-concentrated. For a general polynomial D(x) over any k-dimensional algebra, one

can show that when tis are taken as formal variables, D(x1 + t1, . . . , xn + tn) is O(log k)-

concentrated over the field F(t1, . . . , tn) (see [ASS13, FSS14, AGKS13]). By the same

arguments, the shift xi = xi + φ(xi), for a univariate map φ : x → {tj}j , does the same

job if φ maps all the monomials to distinct powers of t (concentration will be over the

field F(t)). As the number of all monomials is exponential, separating all of them is not

feasible. Instead, [ASS13] apply this argument only to small degree polynomials.

For the polynomial D = D1(x1)D2(x2) · · ·Dq(xq), [ASS13] construct a shift such that

for any set {i1, i2, . . . , i`} ⊆ [q], the polynomial Di1Di2 · · ·Di` is `-concentrated after the

shift (the product is commutative). They take ` = O(log k). As the number of degree-

` monomials is small, the cost of their shift is small. Their next step is to show that

this shift suffices for an `-concentration in the original polynomial D. The argument

is somewhat similar to the one made in the previous section. Consider the toy case

when Dis are univariates and D = D1(x1)D2(x2) · · ·D`+1(x`+1). Suppose the polynomial

D0 = D1(x1)D2(x2) · · ·D`(x`) has `-concentration. That is,

coefD0(x1x2 · · ·x`) ∈ span{coefD0(xa) | supp(a) < `}.

Multiplying coefD`+1
(x`+1) with this gives us

coefD(x1x2 · · ·x`+1) ∈ span{coefD(xax`+1) | supp(a) < `}.

This shows that the coefficient of the monomial x1x2 · · ·x`+1 is in the span of coeffi-

cients which have support ≤ `. But the (≤ `)-support coefficients are already in the span
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of (< `)-support coefficients, since we assumed `-concentration in any Di1Di2 · · ·Di` . One

gets that (≤ ` + 1)-support coefficients are also in the span of (< `)-support coefficients.

For the general case D = D1D2 · · ·Dq, one can extend this argument to higher and higher

support coefficients, up to support q (see Lemma 5.8, for a detailed proof).

This shows that to achieve low-support concentration in a set-multilinear polynomial,

separating all the monomials is not necessary, just separating all the small degree mono-

mials suffices. One can ask if there is a direct proof for this, without going through small

degree sub-circuits (like D1D2 · · ·D`). In search of such a proof, we found that a shift by

a map φ which isolates a basis among the coefficients of D, achieves low-support concen-

tration in D (see [GKST15, Kor15], for a detailed proof). A univariate map φ maps all

the monomials to a power of t, which we refer as the weight of the monomial. Isolating

a basis means that there exists a basis among the coefficients such that any non-basis

coefficient depends on strictly smaller weight coefficients. The map of [ASS13] does this

for set-multilinear circuits.

In the next section, we show that a basis isolating map can be constructed for an

ROABP with a quasi-polynomial cost. Although basis isolation was motivated from rank-

concentration, a hitting-set can be directly obtained from a basis isolating map, without

using rank-concentration.

Forbes, Saptharishi and Shpilka [FSS14] have also used the rank-concentration ideas

to construct a hitting-set for ROABPs. But, their cost is (nw)d logn logw, where d is the

individual degree.

3.2 Hitting-set for ROABP via Basis Isolation

Following the idea of [ASS13] and [FSS14], we work with polynomials over an algebra.

That is, for a polynomial computed by a width-w ROABP, C(x) = UT(
∏d
i=1Di)T , we

view the product D :=
∏d
i=1Di as a polynomial over the matrix algebra Fw×w. We can

write the polynomial C(x) as the dot product R ·D, where R = UTT. We essentially try

to construct a basis for the coefficient space of D(x) by evaluations of D(x). Clearly, if
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C 6= 0, then the dot product of R with at least one of these basis vectors will be nonzero.

And thus, we get a hitting-set.

Instead of shifting the polynomial D(x) or breaking it into sub-circuits, as was done

in [ASS13] and [FSS14], we directly work with D(x). For a polynomial in F[x], a usual

technique for PIT is to give a univariate monomial map for the variables, such that a

monomial of the given polynomial is isolated (e.g., sparse PIT [KS01]). In other words,

the minimum weight monomial in the polynomial is unique. Our approach can be seen

as a generalization of this technique. We come up with a univariate map (or weight

function) on the variables which can isolate a basis for the coefficients of the polynomial

D(x) ∈ Fw×w[x].

We present our results for polynomials over an arbitrary algebra. Let Ak be a k-

dimensional algebra over the field F. Let D(x) be a polynomial in Ak[x] with individual

degree d. Let M denote the set of all monomials over the variable set x with individual

degree ≤ d.

Now, we will define a basis isolating weight assignment for a polynomial D ∈ Ak[x],

which will lead to a hitting-set for the polynomial C ∈ F[x], where C = R ·D, for some

R ∈ Ak. Recall that any function w: x → N can be naturally extended to the set of

all monomials as follows: w(
∏n
i=1 x

γi
i ) =

∑n
i=1 γiw(xi), for any (γi)i ∈ Nn. Note that if

variable xi is replaced with tw(xi) for each i, then any monomial m just becomes tw(m).

Definition 3.3 (Basis Isolating Weight Assignment). A weight function w: x → N is

called a basis isolating weight assignment for a polynomial D(x) ∈ Ak[x], if there exists a

set of monomials S ⊆M (k′ := |S| ≤ k) whose coefficients form a basis for the coefficient

space of D(x), such that

– for any m,m′ ∈ S, w(m) 6= w(m′) and

– for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

The above definition is equivalent to saying that there exists a unique minimum weight
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basis (according to the weight function w) among the coefficients of D, and also that the

basis monomials have distinct weights. We skip the easy proof for this equivalence, as we

will not need it. Let us emphasize here that according to this definition there could be

many monomials in M \ S which have the same weight as a monomial m in S. The only

requirement is that their coefficients should be linearly dependent on basis coefficients

with weight smaller than w(m).

Note that a weight assignment which gives distinct weights to all the monomials is

indeed a basis isolating weight assignment. However, it will involve exponentially large

weights. To find an efficient weight assignment one must use some properties of the given

circuit. First, we show how such a weight assignment would lead to a hitting-set. We will

actually show that it isolates a monomial in C(x).

Lemma 3.4. Let w: x → N be a basis isolating weight assignment for a polynomial

D(x) ∈ Ak[x]. Let C = R ·D be a nonzero polynomial for some R ∈ Ak. Then, after the

substitution xi = tw(xi) for each i ∈ [n], the polynomial C remains nonzero, where t is an

indeterminate.

Proof. For any monomial m ∈ M , let Dm ∈ Ak denote the coefficient coefD(m). It is

easy to see that after the mentioned substitution, the new polynomial C ′(t) is equal to∑
m∈M (R ·Dm)tw(m).

Let us say that S ⊂ M is the set of monomials whose coefficients form the isolated

basis for D. According to the definition of a basis isolating weight assignment, for any

monomial m ∈M \ S,

Dm ∈ span{Dm′ | m′ ∈ S, w(m′) < w(m)}. (3.4)

First, we claim that there exists a monomial m′ ∈ S such that R ·Dm′ 6= 0. For the

sake of contradiction, let us assume that for all m′ ∈ S, R · Dm′ = 0. Taking the dot

product with R on both sides of (3.4), we get that for any monomial m ∈M \ S,

R ·Dm ∈ span{R ·Dm′ | m′ ∈ S, w(m′) < w(m)}.

Hence, R · Dm = 0 for all m ∈ M . This means that C(x) = 0, which contradicts our
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assumption.

Now, let m∗ be the minimum weight monomial in S whose coefficient gives a nonzero

dot product with R, i.e.,

m∗ = arg min
m∈S

{w(m) | R ·Dm 6= 0}.

There is a unique such monomial in S because all the monomials in S have distinct weights.

We claim that coefC′(t
w(m∗)) 6= 0 and hence C ′(t) 6= 0. To see this, consider any

monomial m, other than m∗, with w(m) = w(m∗). The monomial m has to be in the set

M \ S, as the monomials in S have distinct weights. From (3.4),

Dm ∈ span{Dm′ | m′ ∈ S, w(m′) < w(m∗)}.

Taking the dot product with R on both sides, we get

R ·Dm ∈ span{R ·Dm′ | m′ ∈ S, w(m′) < w(m∗)}.

But, by the choice of m∗, R · Dm′ = 0 for any m′ ∈ S with w(m′) < w(m∗). Hence,

R ·Dm = 0 for any m 6= m∗ with w(m) = w(m∗).

Thus, the coefficient coefC′(t
w(m∗)) can be written as

∑
m∈M

w(m)=w(m∗)

R ·Dm = R ·Dm∗ ,

which, as we know, is nonzero.

We continue to use C ′ and S as in the proofs of Lemma 3.4. To construct a hitting-

set for C ′(t), we can try many possible field values for t. The number of such values

needed will be the degree of C ′(t), which is at most (ndmaxi w(xi)). Hence, the cost of

the hitting-set is dominated by the cost of the weight function, i.e., the maximum weight

given to any variable and the time taken to construct the weight function.
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3.2.1 Basis Isolation for ROABP

In the next step, we show that such a basis isolating weight assignment can indeed be found

for a sparse-factor ROABP, but with a cost quasi-polynomial in the input size. First, we

make the following observation that it suffices that the coefficients of the monomials not in

S, linearly depend on any coefficients with strictly smaller weight, not necessarily coming

from S.

Observation 3.5. If, for a polynomial D ∈ Ak[x], there exist a weight function w: x→ N

and a set of monomials S ⊆M (k′ := |S| ≤ k) such that for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈M, w(m′) < w(m)},

then we can also conclude that for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

Proof. We are given that for any monomial m ∈ S := M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈M, w(m′) < w(m)}.

Any coefficient coefD(m′) on the right-hand side of this equation which corresponds to a

monomial in S can be replaced with some other coefficients which have further smaller

weight. If we keep doing this, we will be left with only the coefficients corresponding to

the set S, because in each step we are getting smaller and smaller weight coefficients.

In our construction of the weight function, we will create the set S := M \S incremen-

tally; i.e., in each step we will make more coefficients depend on strictly smaller weight

coefficients. Finally, we will be left with only k′ (the rank of the coefficient space of D)

coefficients in S. We present the result for an arbitrary k-dimensional algebra Ak instead

of just the matrix algebra.

Lemma 3.6 (Weight Construction). Let x be given by a union of q disjoint sets of

variables x1 t x2 t · · · t xq, with |x| = n. Given k, s, d, we can construct in time

(ksn log d)O(log q) a collection of weight assignments with weights bounded by (ksn log d)O(log q)
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such that for any polynomial D(x) = P1(x1)P2(x2) · · ·Pq(xq), where Pi ∈ Ak[xi] is a s-

sparse, individual degree-d polynomial for each i ∈ [q], one of the weight assignments is

basis isolating.

Proof. Let ` = log q. In our construction, a weight function w will be a combination of

(` + 1) different weight functions, say (w0,w1, . . . ,w`). For any two monomials m and

m′, we say w(m) < w(m′) if (w0(m),w1(m), . . . ,w`(m)) < (w0(m
′),w1(m

′), . . . ,w`(m
′))

according to the lexicographic ordering. Here, the weight functions (w0,w1, . . . ,w`) have

their precedence in decreasing order from left to right, i.e., w0 has the highest precedence

and w` has the lowest precedence. As mentioned earlier, we will build the set S (the set

of monomials whose coefficients are in the span of strictly smaller weight coefficients than

themselves) incrementally in (`+ 1) steps, using weight function wi in the (i+ 1)-th step.

Let M0,1,M0,2, . . . ,M0,q be the sets of monomials and C0,1, C0,2, . . . , C0,q be the sets of

coefficients in the polynomials P1, P2, . . . , Pq, respectively.

Notation. The product of two sets of monomials M1 and M2 is defined as M1 ×M2 =

{m1m2 | m1 ∈ M1, m2 ∈ M2}. The product of any two sets of coefficients C1 and C2 is

defined as C1 × C2 = {c1c2 | c1 ∈ C1, c2 ∈ C2}.

The crucial property of the polynomial D is that the set of coefficients in D, say C0, is

just the product C0,1 × C0,2 × · · · × C0,q. Similarly, the set of all the monomials in D, say

M0, can be viewed as the product M0,1 ×M0,2 × · · · ×M0,q. Let m := mama+1 · · ·mb be

a monomial, where 1 ≤ a ≤ b ≤ q and mj ∈M0,j for a ≤ j ≤ b. Then Dm will denote the

coefficient coefPa(ma) coefPa+1(ma+1) · · · coefPb(mb).

Iteration 0: Let us fix w0 : x→ N to be a weight function on the variables which gives

distinct weights to all the s monomials in M0,i for each i ∈ [q]. As w0 assigns distinct

weights to these monomials, so does the weight function w.

For each Pi we do the following:

• arrange the coefficients in C0,i in an increasing order of their weight according to w

(or, equivalently, according to w0),

• choose a maximal set of linearly independent coefficients, in a greedy manner, going
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from lower weights to higher weights.

The fact that the weight functions w1,w2, . . . ,w` are not defined yet does not matter

because w0 has the highest precedence. The total order given to the monomials in M0,i

by w0 is the same as that given by w, irrespective of what the functions w1, . . . ,w` are

chosen to be.

This gives us a basis for the coefficients of Pi, say C′0,i. Let M ′0,i denote the monomials

in Pi corresponding to these basis coefficients. From the construction of the basis, it

follows that for any monomial m ∈M0,i \M ′0,i ,

Dm ∈ span{Dm′ | m′ ∈M ′0,i, w(m′) < w(m)}. (3.5)

Now, consider any monomial m ∈ M0 which is not present in the set M ′0 := M ′0,1 ×

M ′0,2 × · · · ×M ′0,q. Let m = m1m2 · · ·mq, where mi ∈ M0,i for all i ∈ [q]. We know that

for at least one j ∈ [q], mj ∈ M0,j \M ′0,j . Then using (3.5) we can write the following

about Dm = Dm1Dm2 · · ·Dmq :

Dm ∈ span{Dm1 · · ·Dmj−1Dm′j
Dmj+1 · · ·Dmq | m′j ∈M ′0,j , w(m′j) < w(mj)}.

This holds because the algebra product is bilinear. Equivalently, for any monomial m ∈

M0 \M ′0,

Dm ∈ span{Dm′ | m′ ∈M0, w(m′) < w(m)}.

This is true because

w(m1) + · · ·+ w(m′j) + · · ·+ w(mq) < w(m1) + · · ·+ w(mj) + · · ·+ w(mq) = w(m).

Hence, all the monomials in M0 \ M ′0 can be put into S; i.e., their corresponding

coefficients depend on strictly smaller weight coefficients.

Iteration 1: Now, let us consider monomials in the setM ′0 = M ′0,1×M ′0,2×· · ·×M ′0,q. Let

the corresponding set of coefficients be C′0 := C′0,1 × C′0,2 × · · · × C′0,q. Since the underlying

algebra Ak has dimension at most k and the coefficients in C′0,i form a basis for C0,i,

|M ′0,i| ≤ k for all i ∈ [q]. In the above product, let us make q/2 disjoint pairs of consecutive
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terms and for each pair, multiply the two terms in it. Putting it formally, let us define C1,j

to be the product C′0,2j−1 ×C′0,2j and similarly M1,j := M ′0,2j−1 ×M ′0,2j for all j ∈ [q/2] (if

q is odd, we can make it even by multiplying the identity element of Ak in the end). Now,

let C1 := C′0 = C1,1 × C1,2 × · · · × C1,q1 and M1 := M ′0 = M1,1 ×M1,2 × · · · ×M1,q1 , where

q1 := q/2. For any i ∈ [q1], M1,i has at most k2 monomials.

Now we fix the weight function w1 : x→ N such that it gives distinct weights to all the

monomials in M1,i for each i ∈ [q1]. As w1 separates these monomials, so does the weight

function w. Now we repeat the same procedure of constructing a basis in a greedy manner

for C1,i according to the weight function w for each i ∈ [q1]. Let the basis coefficients for

C1,i be C′1,i and the corresponding monomials be M ′1,i.

As argued before, any coefficient in C1 which is outside the set C′1 := C′1,1×C′1,2× · · · ×

C′1,q1 is in the span of strictly smaller weight (than itself) coefficients. Thus, we can also

put the corresponding monomials M1 \M ′1 in S, where M ′1 := M ′1,1 ×M ′1,2 × · · · ×M ′1,q1 .

Iteration r: We keep repeating the same procedure for (`+1) rounds. After round r, say,

the set of monomials we are left with is given by the productM ′r−1 = M ′r−1,1×M ′r−1,2×· · ·×

M ′r−1,qr−1
, where qr−1 = q/2r−1. Here, Mr−1,i has at most k monomials for each i ∈ [qr−1].

In the above product, we make qr−1/2 disjoint pairs of consecutive terms and multiply the

two terms in each pair. Let us say we get Mr := M ′r−1 = Mr,1×Mr,2× · · · ×Mr,qr , where

qr = qr−1/2. Say, the corresponding set of coefficients is given by Cr = Cr,1×Cr,2×· · ·×Cr,qr .

Note that |Mr,i| ≤ k2 for each i ∈ [qr].

We fix the weight function wr such that it gives distinct weights to all the monomials

in the set Mr,i for each i ∈ [qr]. We once again mention that fixing of wr does not affect

the greedy basis constructed in earlier rounds and hence the monomials which were put

in the set S, because wr has less precedence than any wr′ for r′ < r.

For each Cr,i, we construct a basis in a greedy manner going from lower weight to

higher weight (according to the weight function w). Let this set of basis coefficients be C′r,i

and the corresponding monomials be M ′r,i for each i ∈ [qr]. Let C′r := C′r,1×C′r,2×· · ·×C′r,qr
and M ′r := M ′r,1 ×M ′r,2 × · · · ×M ′r,qr . Arguing similarly as before we can say that each

coefficient in Cr,i \ C′r,i is in the span of strictly smaller weight coefficients (from C′r,i) than
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itself. Hence, the same can be said about any coefficient in the set Cr \ C′r. So, all the

monomials in the set Mr \ M ′r can be put into S. Now, we are left with monomials

M ′r = M ′r,1 ×M ′r,2 × · · · ×M ′r,qr for the next round.

Iteration `: As in each round the number of terms in the product gets halved, after `

rounds we will be left with just one term, i.e., M` = M ′`−1,1 ×M ′`−1,2 = M`,1. Now, we

will fix the function w` which separates all the monomials in M`,1. By arguments similar

to those above, we will finally be left with at most k′ monomials in S, which will all have

distinct weights. It is clear that for every monomial in S, its coefficient will be in the span

of strictly smaller weight coefficients than itself.

Now, let us look at the cost of this weight function. In the first round, w0 needs to

separate at most O(qs2) many pairs of monomials. For each 1 ≤ r ≤ `, wr needs to

separate at most O(qk4) many pairs of monomials. From Lemma 2.3, to construct wr,

for any 0 ≤ r ≤ `, one needs to try poly(k, s, n, log d) many weight functions each having

highest weight poly(k, s, n, log d) (as q is bounded by n). To get the correct combination

of the weight functions (w0,w1, . . . ,w`) we need to try all possible combinations of these

polynomially many choices for each wr. This gives us a collection of (ksn log d)O(`) weight

functions.

To combine these weight functions we can choose a large enough number B (greater

than the highest weight a monomial can get in any of the weight functions), and define

w := w0B
`+w1B

`−1+ · · ·+w`. The choice of B ensures that the different weight functions

cannot interfere with each other, and they also get the desired precedence order.

The highest weight a monomial can get from the weight function w is (ksn log d)O(`).

Thus, the cost of w remains (ksn log d)O(`).

Combining Lemma 3.6 with Observation 3.5 and Lemma 3.4, we can get a hitting-set

for ROABP.

Theorem 3.7. Let C(x) be an n-variate polynomial computed by a width-w, s-sparse-

factor ROABP, with indv-deg(C) ≤ d. Then there is a (wsnd)O(logn)-time hitting-set for
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C(x).

Proof. As mentioned earlier, C(x) can be written as R · D(x) for some R ∈ Fw×w,

where D(x) ∈ Fw×w[x]. The underlying matrix algebra Fw×w has dimension k = w2.

The hitting-set size will be dominated by the cost of the weight function constructed

in Lemma 3.6. After the univariate substitution xi 7→ tw(xi), the polynomial C(x) be-

comes a univariate polynomial with degree ≤ ndmaxi w(xi). This will be bounded by

(wsnd)O(logn) (the parameter q in Lemma 3.6, i.e., the number of layers in the ROABP, is

bounded by n). The final hitting-set will be to plug-in (wsnd)O(logn) distinct field values

for t. Thus, the hitting-set size will be (wsnd)O(logn).

Field Size: After substituting xi = tw(xi) in the polynomial C(x) for each i ∈ [n],

where w comes from Lemma 3.6, it becomes a nonzero univariate polynomial with quasi-

polynomial degree. The hitting-set for this univariate polynomial will require the field

size to be quasi-polynomial. If we want to find a hitting-set with only a polynomial

size field, then we can do the following: do not combine the different weight functions

(w0,w1, . . . ,w`) in the proof of Lemma 3.6. Instead, substitute xi = t
w0(xi)
0 t

w1(xi)
1 · · · tw`(xi)`

for each i, where {tj}j are distinct variables. By similar arguments, one can show that

the polynomial remains nonzero after this substitution. As the degree in each variable

tj is polynomially bounded, a hitting-set of the form H`+1 suffices, where H ⊆ F has

polynomially bounded size (Lemma 2.2).

3.3 Basis Isolation in Diagonal Circuits

In this section, we apply the basis isolation technique to diagonal circuits to get a hitting-

set. Recall that a diagonal circuit is a circuit of the form
∑k

i=1(`i(x))di , where `i(x) is

a linear polynomial for each i. Saxena [Sax08] showed that any polynomial computed

by a diagonal circuit can also be computed by poly(k, n, d)-size ROABP, where d is the

degree of the polynomial (see Lemma 2.4). Thus, there is a (nkd)O(logn)-time hitting-set

for diagonal circuits. However, there are better results known for diagonal circuits. It

is known that any polynomial computed by a diagonal circuit always has a low-support
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monomial with a nonzero coefficient. Agrawal, Saha and Saxena [ASS13] and Forbes and

Shpilka [FS13b] prove this result using different techniques and with different parameters.

Forbes, Saptharishi and Shpilka [FSS14] use this fact to give a (nkd)O(log log k)-time hitting-

set for diagonal circuits. Here, we give a new hitting-set for diagonal circuits using the basis

isolation technique (without a reduction to ROABP). Our time complexity is (nkd)log d,

which is incomparable to the previous results. However, our hitting-set works only when

the field characteristic is zero or greater than the degree of the polynomial. Getting a

polynomial-time hitting-set for diagonal circuits remains an open question.

Before applying the basis isolation technique, we first reduce the PIT question to

homogeneous diagonal circuits. A homogeneous diagonal circuit is given by the form∑k
i=1(

∑n
j=1 aijxj)

d. Given a power of a linear polynomial (a0 +
∑n

j=1 ajxj)
d one can

expand it to write it as sum of homogeneous parts.a0 +
n∑
j=1

ajxj

d

= ad0 + dad−10

 n∑
j=1

ajxj

+ · · ·+

 n∑
j=1

ajxj

d

.

Thus, one can write a diagonal circuit f as a sum of homogeneous diagonal circuits with

different degrees, say, f = f0 + f1 + · · · + fd. To reduce the PIT question simply replace

each variable xi with xit. This separates different degree terms, i.e., f(xt) = f0(x) +

f1(x)t + · · · + fd(x)td. Clearly, a hitting-set for homogeneous diagonal circuits, together

with d+ 1 distinct values for t, will work as a hitting-set for f(xt).

3.3.1 Basis Isolation in Homogeneous Diagonal Circuits

Now, we move on to show basis isolation for homogeneous diagonal circuits. For that we

consider the polynomial over Hadamard algebra. That is, we write

k∑
i=1

 n∑
j=1

aijxj

d

= (1, 1, . . . , 1) ·

 n∑
j=1

vjxj

d

,

where vi = (aij)i is a k-dimensional vector for each j. Like Lemma 3.6, we will create the

set S := M \ S incrementally in log d rounds. Finally, we will get the set S of monomials,

whose coefficients form the isolated basis.
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Lemma 3.8. Let D(x) = (
∑n

j=1 vjxj)
d be a polynomial over the k-dimensional Hadamard

algebra Hk(F), where char(F) is either zero or greater than d. Then we can construct a

basis isolating weight assignment for D(x) with cost (ndk)O(log d).

Proof. In the polynomial D(x) = (
∑n

j=1 vjxj)
d, the coefficient of any monomial is given

by

coefD(xa11 x
a2
2 · · ·x

an
n ) =

(
d

a1 a2 · · · an

)
va11 v

a2
2 · · · v

an
n , (3.6)

where
(

d
a1 a2 ··· an

)
is the number of ways of choosing an ordered collection of n subsets of

[d] with their sizes being a1, a2, . . . , an. It is given by the following:(
d

a1 a2 · · · an

)
=

(
d

a1

)(
d− a1
a2

)
· · ·
(
d− a1 − a2 · · · − an−1

an

)
.

Note that the number
(

d
a1 a2 ··· an

)
is nonzero in the field F, as char(F) = 0 or char(F) > d.

This will be important in the proof when we have a division by this number.

Let ` := blog dc. In our construction, the final weight function w will be a combination

of (`+ 1) different weight functions, say (w0,w1, . . . ,w`). For any two monomials m and

m′, we say w(m) < w(m′) if (w0(m),w1(m), . . . ,w`(m)) < (w0(m
′),w1(m

′), . . . ,w`(m
′))

according to the lexicographic ordering. Here, the weight functions (w0,w1, . . . ,w`) have

their precedence in decreasing order from left to right, i.e., w0 has the highest precedence

and w` has the lowest precedence. Let di = bd/2`−ic for each 0 ≤ i ≤ `. Our construction

will involve `+1 iterations. In the i-th iteration, we will fix the weight function wi such that

the combined weight function (w0,w1, . . . ,wi) will be basis isolating for the polynomial

Di := (
∑n

j=1 vjxj)
di for each 0 ≤ i ≤ `. Let Mi and Ci denote the set of monomials and

coefficients of Di, respectively.

For any two set S1, S2 of monomials or coefficient vectors, S1 × S2 is defined to be

{s1s2 | s1 ∈ S1, s2 ∈ S2}. Similarly, S2
1 := {s1s2 | s1, s2 ∈ S1}.

Iteration 0: Define the function w0 as w0(xi) := i for each i ∈ [n]. w0 gives different

weights to the monomials {x1, x2, . . . , xn} and thus is basis isolating for the polynomial

D0 = (
∑n

j=1 vjxj). From the set of coefficients C0 = {v1, v2, . . . vn}, choose a maximal set

of linearly independent coefficients, in a greedy manner, going from lower weights to higher
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weights. This gives us a basis for the coefficients in C0, say C′0. Let the corresponding set

of monomials be M ′0. Clearly, w0 is basis isolating for D0 with the isolated basis being C′0.

Iteration i: Let us assume the weight function w∗ := (w0,w1, . . . ,wi−1) is basis isolat-

ing for the polynomial Di−1. Let the set of coefficients forming the isolated basis in Di−1

be C′i−1 and the corresponding set of monomials be M ′i−1. Clearly, |C′i−1| = |M ′i−1| ≤ k.

We need to consider two cases depending on whether di is even or odd.

Case 1: Let us take first case when di = 2di−1 and Di = D2
i−1. Clearly the set of

coefficients Ci = C2i−1. For any monomial m ∈Mi \ (M ′i−1)
2, we can write m = m1m2 with

m1,m2 ∈Mi−1 such that either m1 or m2 lies in Mi−1 \M ′i−1. Without loss of generality,

let m1 be that monomial.

From the definition of an isolated basis for Di−1, it follows that

coefDi−1(m1) ∈ span{coefDi−1(m′) | m′ ∈M ′i−1, w∗(m′) < w∗(m1)}. (3.7)

From Equation (3.6), it is easy to see that for any monomials m1 = xa11 x
a2
2 · · ·xann and

m2 = xb11 x
b2
2 · · ·xbnn in Mi−1,

coefDi(m1m2) = α coefDi−1(m1) coefDi−1(m2),

where α =
(

di
a1+b1 a2+b2 ··· an+bn

)
/
((

di−1
a1 a2 ··· an

)( di−1

b1 b2 ··· bn

))
. Note that α is well defined as

the binomial coefficients are all nonzero in F.

Thus, on multiplying α coefDi−1(m2) with (3.7), we get

coefDi(m) ∈ span{coefDi(m
′m2) | m′ ∈M ′i−1, w∗(m′) < w∗(m1)}.

Since m′m2 is a monomial in Mi, we can write

coefDi(m) ∈ span{coefDi(m
′) | m′ ∈Mi, w∗(m′) < w∗(m)}.

This shows that for any monomial m ∈ Mi \ (M ′i−1)
2, its coefficient depends on strictly

smaller weight coefficients. As this is true with respect to the weight function w∗ =

(w0,w1, . . . ,wi−1), it will also be true with respect to (w0,w1, . . . ,wi), whatever the func-

tion wi we fix.
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Now, we are only left with monomials in (M ′i−1)
2. To isolate a basis among the

coefficient set (C′i−1)2, we simply fix the function wi such that it separates all the monomials

in (M ′i−1)
2, which has at most k2 monomials. Thus, the weight function (w0,w1, . . . ,wi)

becomes basis isolating for Di.

Case 2: The case when di is odd, is similar to Case 1. We have di = 2di−1 + 1

and Di = D2
i−1D0. With arguments similar to those in Case 1, we can show that for

any monomial m ∈ Mi \ ((M ′i−1)
2M ′0), its coefficient depends on strictly smaller weight

coefficients. Then we can fix wi to separate all the monomials in (M ′i−1)
2M ′0, which has

at most k3 monomials.

Clearly, after iteration ` we get the weight function (w0,w1, . . . ,w`) which is basis

isolating for D.

Time Complexity: Now, let us look at the cost of this weight function. For each

0 ≤ i ≤ `, wi needs to separate at most O(k6) many pairs of monomials. From Lemma 2.3,

to construct wi one needs to try poly(k, n, d)-many weight functions each having highest

weight poly(k, n, d). To get the correct combination of the weight functions (w0,w1, . . . ,w`)

we need to try all possible combinations of these polynomially many choices for each wi.

Thus, we have to try (knd)O(`) many combinations. To get the final weight function w, we

an combine these weight functions, as was done in Lemma 3.6, by choosing a large enough

base.

The highest weight a monomial can get from the weight function w is (knd)O(log d).

Thus, the cost of w remains (knd)O(log d).

By combining Lemma 3.8 with Lemma 3.4, we get a (knd)O(log d)-time hitting-set for

homogeneous diagonal circuits. As discussed earlier this will give a hitting-set for general

diagonal circuits, with only a polynomial overhead.

Theorem 3.9. Let F be a field with char(F) = 0 or char(F) > d. Then for a polyno-

mial computed by a diagonal circuit
∑k

i=1(ai0 +
∑n

j=1 aijxj)
di over the field F, there is a

(knd)O(log d)-time hitting-set, where d = max{di}i.
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3.4 Discussion

Any polynomial-time hitting-set for ROABP or even for diagonal circuits is not known

till now. One possible approach for this would be to do a basis isolation with only a

polynomially large weight assignment. Also, our technique of finding a basis isolating

weight assignment seems general. It needs to be explored, for what other classes can it be

applied. In particular, can it be used to solve depth-3 multilinear circuits?

With our result on ROABP we matched the complexity of the unknown-order case with

the known-order case. One can ask whether we can find a similar result in the Boolean

setting, i.e., get a pseudorandom generator for unknown-order ROBP with seed length

same as the known-order case. Currently there is big gap in the seed lengths of these two

cases (O(
√
n) versus O(log2 n)).





Chapter 4

Testing Zeroness of an XOR of

Read-once Ordered Branching

Programs

The previous chapter solves PIT for polynomials computed by read-once oblivious arith-

metic branching programs (ROABP). The next natural question would be to solve PIT for

a sum of two ROABPs (possibly, in different variable orders). We gave a polynomial time

whitebox test and a quasi-polynomial time blackbox test for this question in [GKST15].

We also extended it to a sum of constantly many ROABPs. The idea was inspired by

a similar question in the Boolean setting: testing equivalence of two read-once ordered

branching programs (ROBP). ROBP (defined below) is a model analogous to ROABP

which computes Boolean functions. Note that testing zeroness of a sum of two ROABPs

is same as testing equivalence of the two given ROABPs.

Bryant [Bry86] defined the notion of ROBP (they call it OBDD) and gave its basic

properties. Later Savický and Wegener [SW97] considered the problem of testing whether

two given ROBPs (possibly, in different variable orders) compute the same Boolean func-

tion. They gave a polynomial time algorithm for this. Like in the arithmetic setting, we

generalize their result to constantly many ROBPs. That is, we give a polynomial time
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algorithm to test whether an XOR of constantly many ROBPs is the zero function (unsat-

isfiable). In this chapter, we first describe the idea of Savický and Wegener [SW97] for two

ROBPs and then present our algorithm for an XOR of c ROBPs. The time complexity of

our algorithm is poly(ncw2c). For the PIT results on sum of ROABPs, see Korwar’s thesis

[Kor15].

4.1 Read-once Ordered Branching Programs

We start by defining ROBPs which are also known as ordered binary decision diagrams

(OBDD).

Definition 4.1. An n-variate ROBP is a directed acyclic layered graph with n+ 1 layers

of vertices such that

• The first layer contains a single node s, called the starting node.

• The last layer contains two nodes t1 and t0, called accepting and rejecting nodes,

respectively.

• Each node in the first n layers has two outgoing edges, each going to a vertex in the

next layer. One is labeled with 0 and another with 1.

• The i-th layer of vertices has an associated variable xπ(i) for each i ∈ [n], where π is

a permutation on [n].

s

t0

t1

0

1

0

0

1
x1

x2

x2

x3

x3

1 1

1

0

0

Figure 4.1: An ROBP computing the function x1 ⊕ x2 ⊕ x3.

Figure 4.1 illustrates an ROBP. For any given assignment (a1, a2, . . . , an) ∈ {0, 1}n of

the variables x, one can construct a path in the ROBP starting from s: at a node in the
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i-th layer take the edge labeled with aπ(i) for each i ∈ [n]. It is easy to see that for each

a ∈ {0, 1}n, one gets a unique path ending in either the accepting node or the rejecting

node. The ROBP is said to compute a function f : {0, 1}n → {0, 1} such that for any

a ∈ {0, 1}n, f(a) = 1 if the path corresponding to a ends in the accepting state and

f(a) = 0 otherwise. Similarly, any node v in the first n layers can be said to compute a

Boolean function which is defined by the paths starting from v and ending in t1 or t0. A

node in the i-th layer computes a function on variables {xπ(i), xπ(i+1), . . . , xπ(n)}.

(xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROBP. The maximum

number of vertices in any layer is called the width of the ROBP. A width-w ROBP can be

seen as a machine with w states, reading the variables in a fixed order. Next, we discuss

a characterization of all the Boolean functions which can be computed by a ROBP in a

particular variable order, given by Bryant [Bry86].

4.1.1 Characterization of an ROBP

The characterization of an ROBP is given in terms of partial evaluations or restric-

tions of the function. For ease of notation we will consider the standard variable order

(x1, x2, . . . , xn). For any function f and for any a = (a1, a2, . . . , ai) ∈ {0, 1}i, fa will

denote the restriction of f on first i variables, i.e.,

fa = f(x1 = a1, x2 = a2, . . . , xi = ai, xi+1, . . . , xn)

for any i ∈ [n]. Clearly, fa is a function on the variables {xi+1, . . . , xn}. The characteri-

zation of the ROBP relates its width with the number of distinct functions among all the

restrictions of f for a fixed i.

Lemma 4.2 ([Bry86]). A Boolean function f : {0, 1}n → {0, 1} is computed by an ROBP

of width-w in variable order (x1, x2, . . . , xn) if and only if

|{fa | a ∈ {0, 1}i}| ≤ w

for each i ∈ [n].

Proof sketch. ( =⇒ ) The forward direction is simple. Let a ∈ {0, 1}i for some i ∈ [n].
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For a given ROBP computing f , take the unique path in the ROBP corresponding to the

assignment a. Let us say the path ends in a node v in the (i + 1)-th layer. It is easy

to see that the fa is nothing but the function computed by the node v. As there are at

most w nodes in any layer, the number of distinct functions in the set {fa | a ∈ {0, 1}i}

is bounded by w.

(⇐= ) Now we prove the other direction. Let f be such that

|{fa | a ∈ {0, 1}i}| ≤ w

for each i ∈ [n]. We will build a width-w ROBP for f iteratively. Put the start node

s. In the second layer put two notes v0 and v1 and draw edges (s, v0) and (s, v1) with

labels 0 and 1 respectively. v0 and v1 are supposed to compute the functions f0 and

f1 respectively. The same way, one can make the third layer with four nodes which are

supposed to compute functions f0,0, f0,1, f1,0, f1,1. One can keep doing this, but the number

of nodes grow exponentially with each layer. The idea is to reduce the number of nodes in

a layer using the fact that there at most w distinct functions among the restrictions of f .

We describe the i-th iteration of this construction. Let us say that the i-th layer of

nodes has been constructed with at most w nodes. Say, the nodes are {va1 , va2 , . . . , vaw}

and they are supposed to compute the functions {fa1 , fa2 , . . . , faw} for some a1,a2, . . . ,aw ∈

{0, 1}i−1. For each j ∈ [w], draw two edges from the node vaj labeled with 0 and

1 to two new nodes vaj ,0 and vaj ,1, respectively. The nodes vaj ,0 and vaj ,1 are sup-

posed to compute the functions faj ,0 and faj ,1. We know that among these 2w functions

{faj ,e | j ∈ [w], e ∈ {0, 1}}, at most w are distinct. One can simply merge two nodes vaj ,e

and vaj′ ,e′ if the functions faj ,e and faj′ ,e′ are the same. Thus, we get at most w nodes in

the (i+ 1)-th layer.

Repeating this procedure for n iterations gives us the ROBP. For any a ∈ {0, 1}n, fa

can be either 0 or 1. Thus, we need only two nodes in the last layer.

Note that the construction of ROBP in the above lemma can be done for any function

f , provided an oracle for testing fa = fb for any a, b. Moreover, the construction requires

at most 2w2n accesses to this oracle. Rest of the procedure works in polynomial time.
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From the construction in the above lemma, the following observation follows easily.

Observation 4.3 ([Bry86]). For any function f , there is a unique minimal ROBP (when

each layer has the minimum possible number of nodes) in a given variable order.

In fact, the construction in Lemma 4.2 gives this minimal ROBP. This observation

forms the backbone of the equivalence test for two ROBPs.

4.2 Equivalence of Two ROBPs

Savický and Wegener [SW97] considered the following question: given two ROBPs, with

variables orders π′ and π, computing the functions f and g, respectively, test whether

f = g. Their idea is to find the minimal ROBPs for both f and g in the same variable

order, say π. From Observation 4.3, the two ROBPs must be the same if f and g are

equal. This can be tested easily. Note that when f and g are different, it is possible that

the minimal ROBP for f in the variable order π has exponential size. In that case, we do

not need to construct the ROBP completely. We can stop the ROBP construction for f

as soon as we find that the number of nodes in some layer is larger than the width of the

other ROBP computing g. If this happens then certainly f 6= g.

Now, the only thing left is the construction of the minimal ROBP. Recall from the

previous section that this construction can be done for any function f , provided an oracle

to test fa = fb for some a, b ∈ {0, 1}i, for any i ∈ [n]. Given an ROBP for f in any

variable order, one can easily construct an ROBP for fa.

Claim 4.4. Given a width-w ROBP computing the function f , one can construct a width-

w ROBP computing the function fa in the same variable order (after removing the vari-

ables involved in the restriction a), for any a ∈ {0, 1}i and any i ∈ [n].

To see this, consider the example when we have a restriction xj = 0. In the layer

corresponding to variable xj , delete all the outgoing edges labeled with 1. As this layer

now has only one outgoing edge for each node, one can delete this layer. To elaborate, let

v be a node in the xj layer and the 0-edge from v goes to the node v0. We can simply
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delete the node v and direct all its incoming edges to v0. This new ROBP will compute

the restriction f(xj = 0). Doing this for all the restrictions given by a gives us an ROBP

for fa. Clearly, the width does not increase in this process.

Note that the ROBPs for fa and fb would be in the same variable order, as a and b

are restrictions on the same set of variables. Now, we come back to the question of testing

fa = fb.

Claim 4.5. Given two ROBPs in the same variable order, one can test whether they

compute the same function in polynomial time.

Bryant [Bry86] and Savický and Wegener [SW97] do this by minimizing the given

ROBPs. However, we present a bit different approach here, which will also help us in the

case of constantly many ROBPs. We rephrase the question as testing whether fa⊕fb = 0.

The next lemma shows that for the function fa⊕fb, one can construct a small ROBP. Thus,

our question will reduce to testing whether a given ROBP computes the zero function.

Lemma 4.6 ([Bry86]). Let f and g be functions computed by two width-w ROBPs A and

B, respectively, in the same variable order. Then we can construct a width-w2 ROBP for

f ⊕ g in the same variable order, in polynomial time.

Proof. Let both the ROBPs have n variables. We will build an ROBP C which ‘remembers’

the states of both the ROBPs A and B. For each 1 ≤ i ≤ n+ 1, the i-th layer of vertices

in C is the cross product of vertices in the i-th layers of A and B. That is the set

{(u, v) | u and v are vertices in the i-th layer of A and B, respectively}.

The start node of C will be (sA, sB), where sA and sB are the start nodes of A and B,

respectively. There is an edge from (u, v) to (u′, v′) labeled with e ∈ {0, 1} if and only if

there is an edge from u to u′ and an edge from v to v′, both labeled with e. It is easy to

see that for any a ∈ {0, 1}i, if the path corresponding to a ends in the node u in A and

in the node v in B, then the corresponding path in C ends in (u, v).

Let the accepting and the rejecting nodes of A be denoted by tA1 and tA0 , respectively.

Similarly, for B they are denoted by tB1 and tB0 . The last layer of C will consist of four



55

nodes {(tA1 , tB1 ), (tA0 , t
B
1 ), (tA1 , t

B
0 ), (tA0 , t

B
0 )}. It is easy to see that the path corresponding

to any string a ∈ {0, 1}n in the ROBP C will end in

(tA1 , t
B
1 ) if f(a) = 1 and g(a) = 1,

(tA1 , t
B
0 ) if f(a) = 1 and g(a) = 0,

(tA0 , t
B
1 ) if f(a) = 0 and g(a) = 1,

(tA0 , t
B
0 ) if f(a) = 0 and g(a) = 0

.

As we want to compute f⊕g, we simply have to merge the nodes (tA1 , t
B
0 ) and (tA0 , t

B
1 ) and

mark it the accepting node. Similarly, merge the nodes (tA1 , t
B
1 ) and (tA0 , t

B
0 ) and mark it

the rejecting node.

It is easy to see that the construction in the above lemma can be done for not just

f ⊕ g, but any Boolean operation on f and g. Once we have an ROBP for f ⊕ g, we can

simply check whether there is a path from its starting node to its accepting node. There

is no such path if and only if f ⊕ g = 0. This proves Claim 4.5 and in turn finishes the

equivalence test of two ROBPs (in different variable orders).

Theorem 4.7 ([SW97]). Given two ROBPs, possibly in different variable orders, we can

decide if they compute the same function, in polynomial time.

4.3 XOR of constantly many ROBPs

In this section, we extend the result of Savický and Wegener [SW97] to the XOR of

constantly many ROBPs. That is, we give a polynomial time algorithm to test if an XOR

of constantly many ROBPs computes the zero function. Let A1, A2, . . . , Ac be width-

w ROBPs (possibly in different variable orders) computing the functions f1, f2, . . . , fc.

The goal is to decide whether f1 ⊕ f2 ⊕ · · · ⊕ fc = 0. To rephrase it whether fc =

f1 ⊕ f2 ⊕ · · · ⊕ fc−1.

The approach is same as in the case of two ROBPs. Let g := f1 ⊕ f2 ⊕ · · · ⊕ fc−1. Let

the variable order of Ac be π. The idea is to build minimal ROBPs for fc and g in the
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variable order π (by the construction in Lemma 4.2). If we detect that the width of the

ROBP computing g is large (more than w), then we can output fc 6= g. Otherwise, we

find the minimal ROBP for g, which is small, and compare it with the minimal ROBP for

fc. They must be the same if g = fc (Observation 4.3).

The construction of Lemma 4.2 requires an oracle for testing ga = gb for some a, b. It

is easy to see that ga = f1a ⊕ f2a ⊕ · · · ⊕ fc−1a. So, the question becomes whether

f1a ⊕ f2a ⊕ · · · ⊕ fc−1a = f1b ⊕ f2b ⊕ · · · ⊕ fc−1b.

By rearranging this equation, we get

(f1a ⊕ f1b)⊕ · · · ⊕ (fc−1a ⊕ fc−1b) = 0.

For each j ∈ [c− 1], fja and fjb have a width-w ROBP in the same variable order (from

Claim 4.4). Thus, from Lemma 4.6, fja ⊕ fjb has a width-w2 ROBP. Let hj denote the

function fja ⊕ fjb for each j ∈ [c− 1]. Now, the question is to test whether

h1 ⊕ h2 ⊕ · · · ⊕ hc−1 = 0.

where each hj is computed by a width-w2 ROBP.

By the above procedure, we have reduced the question of c ROBPs with width w to

the question of c−1 ROBPs with width w2. Recall that in the construction of Lemma 4.2,

we need 2nw2 accesses to the oracle testing whether ga = gb. Thus, we get the following

recursive relation

T (n,w, c) = 2nw2 · T (n,w2, c− 1) + poly(n,w),

where T (n,w, c) is the time needed to test whether an XOR of c ROBPs, with n variables

and width w, is the zero function. Solving this recursive relation,

T (n,w, c) = poly(nc, w2c).

Theorem 4.8. Given c ROBPs, possibly in different variable orders, with n variables

and width w, computing the functions f1, f2, . . . , fc, one can decide in time poly(nc, w2c)
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whether f1⊕f2⊕· · ·⊕fc = 0, or in other words, whether f1⊕f2⊕· · ·⊕fc is unsatisfiable.

4.4 PIT for Sum of constantly many ROABPs

ROABPs have a characterization similar to ROBPs, using partial evaluations. Instead of

the number of distinct functions, here one has to find the number of linearly independent

polynomials among the partial evaluations. Thus, we have an analogous result for sum of

ROABPs over any field.

Theorem 4.9 ([GKST15]). Given c ROABPs, possibly in different variable orders, with n

variables, width w and individual degree d, computing the polynomials f1, f2, . . . , fc ∈ F[x],

one can decide whether f1 + f2 + · · ·+ fc = 0 in time poly(nc, dc, w2c).

The algorithm is exactly along the same lines as in the Boolean setting. Here, instead of

testing the equality ga = gb, one needs to test linear dependencies of the type
∑

j αjgaj =

0. In [GKST15], we also gave a blackbox PIT for the same class of polynomials, but

with quasi-polynomial time complexity. Detailed proofs can be found in Korwar’s thesis

[Kor15].

4.5 Discussion

The first question is whether one can reduce the time complexity for XOR of c ROBPs

from wO(2c) to wO(c). This might also give some ideas for the PIT question. Note that

when all the c ROBPs are in the same variable order, then one can test the zeroness in

time wO(c) (from Lemma 4.6).

In the other direction, one can try to show that for some large enough c, satisfiability

for XOR of c ROBPs (different variable orders) is NP-hard.

As mentioned before, the idea for equivalence of two ROABPs was inspired by the

equivalence of two ROBPs. It would be interesting to know if there are concrete connec-

tions between arithmetic and Boolean branching programs. In particular, can ideas from

identity testing of an ROABP be applied to construct pseudorandomness for ROBPs.





Chapter 5

Better Hitting-sets for Special

Cases of ROABP

In this chapter, we give better hitting-sets for two special cases of ROABP. First is the

case of an ROABP with known variable order. The best hitting-set known for this case

had cost (ndw)O(logn) [FS13b], where n is the number of variables, d is the individual

degree and w is the width of the ROABP. Even for a constant-width ROABP, nothing

better than a quasi-polynomial bound was known. We improve the hitting-set complexity

for the known-order case to poly(ndwlogn), or equivalently, poly(dnlogw). In particular,

this gives the first polynomial time hitting-set for constant-width ROABP (known-order).

However, our hitting-set works only over those fields whose characteristic is zero or quasi-

polynomially large.

The second case we consider is that of commutative ROABP. The best hitting-set

known for this case had cost dO(logw)(nw)O(log logw) [FSS14]. We improve this hitting-set

complexity to (ndw)O(log logw).

5.1 Hitting-set for Known-order ROABP

Our idea is inspired by the pseudorandom generator construction of Impagliazzo, Nisan

and Wigderson [INW94] for read-once ordered Boolean branching programs (defined in
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Chapter 4). First, we give an overview of their idea and describe how our result is analogous

to theirs. The next subsection in not essential for the construction of the hitting-set and

can be skipped.

5.1.1 Pseudorandom Generators for ROBP

A pseudorandom distribution for a class of functions is a distribution which cannot be

distinguished from the uniform distribution by any function of that class. G : {0, 1}` →

{0, 1}n is a pseudorandom generator (PRG) with seed length `, if G(U`) is a pseudorandom

distribution, where U` is the uniform distribution on {0, 1}`. Formally, G is a PRG for a

class of Boolean functions F , if for every function f : {0, 1}n → {0, 1} from the class F ,∣∣∣∣ Pr
x∈Un

[f(x) = 1]− Pr
y∈U`

[f(G(y)) = 1]

∣∣∣∣ ≤ 1/n3.

The result of Impagliazzo, Nisan and Wigderson [INW94] implies an O(log2 n) seed-

length PRG for ROBPs (known variable order). The basic building block of their con-

struction is as follows. Let us say the variable order of the ROBP is (x1, x2, . . . , xn) and

it computes the function f(x1, x2, . . . , xn). They divide the n-variate ROBP in two halves

reading the input bits (x1, . . . , xn/2) and (xn/2+1, . . . , xn), respectively. Let s and t be

the source and the sink (accepting) node of the ROBP, respectively and v1, v2, . . . , vw be

the nodes in the (n/2 + 1)-th layer (w is the width). Any assignment of the variables

x1, x2, . . . , xn/2 gives us a path in the ROBP which leads to one of the nodes in {vi}i. Let

the function computed from the node vi to t be hi(xn/2+1, . . . , xn) for each i ∈ [w]. After

any assignment of the first n/2 variables, the function f becomes one of the functions in

{hi}wi=1. Thus, the function f(x1, x2, . . . , xn) can be written as

f =
w∨
i=1

(gi ∧ hi), (5.1)

where the function gi(x1, . . . , xn/2) is true exactly for those input assignments which lead

to the node vi in the ROBP for each i ∈ [w]. Impagliazzo, Nisan and Wigderson [INW94]

gave a PRG with seed length r/2 +O(logw) for any function of the form given by Equa-

tion (5.1), when each gi, hi is an r/2-bit function. That is, they constructed functions
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G0,G1 : {0, 1}r/2+` → {0, 1}r/2, for ` = O(logw), such that∣∣∣∣ Pr
y1,y2∈Ur/2

[f(y1, y2) = 1]− Pr
y∈Ur/2+`

[f(G0(y),G1(y)) = 1]

∣∣∣∣ ≤ 1/w. (5.2)

The constructed PRG has sample space of size only 2r/2+` = 2r/2 · poly(w) as compared

to the original sample space size 2r. To get the final construction, [INW94] apply this

procedure of replacing (r/2, r/2) random bits with r/2 + ` random bits, recursively in a

bottom-up fashion, starting from r = O(log n).

For the PIT question, we start with a polynomial of a form analogous to Equation (5.1).

f(x1, x2) =

w∑
i=1

gi(x1)hi(x2). (5.3)

Here, we take the polynomials gis and his as univariates, as a multivariate polynomial

can be converted to a univariate polynomial with an appropriately high degree, while

preserving the non-zeroness. If the degree of each gi and hi is bounded by d then there is

a trivial hitting-set for f(x1, x2) of size (d + 1)2 (Lemma 2.2). Here, our goal is to get a

hitting-set of size d · poly(w) (as in the Boolean setting).

To do this, we simply show that for any polynomial f of the form given by Equa-

tion (5.3), the polynomial f(tw, tw + tw−1) is nonzero (for zero characteristic fields). This

substitution gives a nonzero univariate polynomial of degree 2dw, which has a hitting-

set of size 2dw + 1. Applying this bivariate to univariate reduction recursively to an

n-variate ROABP, in log n rounds, will give us a nonzero univariate polynomial with de-

gree ndwlogn, and thus, a hitting-set of the same size. For constant width ROABP, the

complexity becomes poly(n, d).

Note that in the Boolean setting, the recursive procedure of [INW94] does not lead

to a PRG with a polynomial size sample space (or O(log n) seed length), even when the

width of the ROBP is constant. The reason is that the error probability in (5.2) is 1/w

and to make it 1/poly(n), one needs r/2 +O(log n) seed length instead of r/2 +O(logw).

The error probability needs to be 1/poly(n), because in the lower levels of the recursion,

the PRG needs to work for many functions simultaneously. The total error probability is

upper bounded by the union bound, and hence, the error probability in one step cannot
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be independent of n.

Forbes and Shpilka [FS13b] have applied a similar scheme for the arithmetic setting.

They also have the problem of a union bound, when they want their hitting-set (or rank

extractor) to work for many polynomials simultaneously. Thus, their final hitting-set

complexity becomes nO(logn), even for the constant-width case.

In contrast, our map (x1, x2) 7→ (tw, tw + tw−1) works for every polynomial of the

form (5.3) simultaneously. Thus, there is no need for applying a union bound. Our

technique has another crucial difference from previous works on ROABP ([FSS14, FS13b]

and Chapter 3). The basic building block in all the previous techniques is a monomial

map, i.e., each variable is mapped to a univariate monomial. On the other hand we

use a polynomial map. It is possible that our ideas for the arithmetic setting can help

constructing an optimal PRG for constant-width ROBP.

5.1.2 Bivariate ROABP

To construct a hitting-set for ROABPs, we start with the bivariate case. Recall that a

bivariate ROABP is of the form UTD1(x1)D2(x2)T , where U, T ∈ Fw×1, D1 ∈ Fw×w[x1]

and D2 ∈ Fw×w[x2]. It is easy to see that a bivariate polynomial f(x1, x2) computed by a

width-w ROABP can be written as f(x1, x2) =
∑w

r=1 gr(x1)hr(x2). To give a hitting-set

for this, we will use the notion of a partial derivative matrix defined by Nisan [Nis91] in

the context of lower bounds. Let f have its individual degree bounded by d. The partial

derivative matrix Mf for f is a (d+ 1)× (d+ 1) matrix with

Mf (i, j) = coeff (xi1x
j
2),

for all i, j ∈ [[d]]. It is well known that rank of Mf is equal to the smallest possible width

of an ROABP computing f [Nis91].

Lemma 5.1 (rank ≤ width). For any polynomial f(x1, x2) =
∑w

r=1 gr(x1)hr(x2),

rank(Mf ) ≤ w.

Proof. Let us define fr = grhr, for all r ∈ [w]. Clearly, Mf =
∑w

r=1Mfr , as f =
∑w

r=1 fr.



63

We will show that rank(Mfr) ≤ 1, for all r ∈ [w]. As fr = gr(x1)hr(x2), its coefficients

can be written as a product of coefficients from gr and hr, i.e.,

coeffr(x
i
1x
j
2) = coefgr(x

i
1) coefhr(x

j
2).

Now, it is easy to see that

Mfr = urv
T
r ,

where ur, vr ∈ Fd+1 with ur = (coefgr(x
i
1))

d
i=0 and vr = (coefhr(x

i
2))

d
i=0.

Thus, rank(Mfr) ≤ 1 and rank(Mf ) ≤ w.

One can also show that if rank(Mf ) = w then there exists a width-w ROABP com-

puting f . We skip this proof as we will not need it. Now, using the above lemma we give

a hitting-set for bivariate ROABPs.

Lemma 5.2. Let char(F) = 0, or char(F) > d. Let f(x1, x2) =
∑w

r=1 gr(x1)hr(x2) be a

nonzero bivariate polynomial over F with individual degree d. Then f(tw, tw + tw−1) 6= 0.

Proof. Let f ′(t) be the polynomial after the substitution, i.e., f(tw, tw + tw−1). Any

monomial xi1x
j
2 will be mapped to the polynomial twi(tw + tw−1)j , under the mentioned

substitution. The highest power of t coming from this polynomial is tw(i+j). We will

cluster together all the monomials for which this highest power is the same, i.e., i + j is

the same. The coefficients corresponding to any such cluster of monomials will form a

diagonal in Mf . The set {Mf (i, j) | i + j = k} is defined to be the k-th diagonal of Mf ,

for all 0 ≤ k ≤ 2d. Let ` be the highest number such that the `-th diagonal has at least

one nonzero element, i.e.,

` = max{i+ j |Mf (i, j) 6= 0}.

As rank(Mf ) ≤ w (from Lemma 5.1), we claim that the `-th diagonal has at most w

nonzero elements. To see this, let {(i1, j1), (i2, j2), . . . , (iw′ , jw′)} be the set of indices

where the `-th diagonal of Mf has nonzero elements, i.e., the set {(i, j) | Mf (i, j) 6=

0, i + j = `}. As Mf (i, j) = 0 for any i + j > `, it is easy to see that the rows

{Mf (i1),Mf (i2), . . . ,Mf (iw′)} are linearly independent. Thus, w′ ≤ rank(Mf ) ≤ w.
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Now, we claim that there exists an r with w(`− 1) < r ≤ w` such that coeff ′(t
r) 6= 0.

To see this, first observe that the highest power of t which any monomial xi1x
j
2 with i+j < `

can contribute is tw(`−1). Thus, for any w(` − 1) < r ≤ w`, the term tr can come only

from the monomials xi1x
j
2 with i+ j ≥ `. We can ignore the monomials xi1x

j
2 with i+ j > `

as Mf (i, j) = 0, when i+ j > `. Now, for any i+ j = `, the monomial xi1x
j
2 goes to

tw(`−j)(tw + tw−1)j =

j∑
p=0

(
j

p

)
tw`−p.

Hence, for any 0 ≤ p < w,

coeff ′(t
w`−p) =

w′∑
a=1

Mf (ia, ja)

(
ja
p

)
.

Writing this in the matrix form we get

[coeff ′(t
w`) · · · coeff ′(t

w`−w+1)] = [Mf (i1, j1) · · · Mf (iw′ , jw′)]C,

where C is a w′ × w matrix with C(a, b) =
(
ja
b−1
)
, for all a ∈ [w′] and b ∈ [w]. If all the

rows of C are linearly independent then clearly, coeff ′(t
r) 6= 0 for some w(`−1) < r ≤ w`.

We show the linear independence in Lemma 5.3.

To finish the proof, we only need to show that the matrix C in the proof of Lemma 5.2

has all independent rows. To show this we need to assume that the numbers {ja}a are all

distinct. Hence, we need the field characteristic to be zero or strictly greater than d, as ja

can be as high as d for some a ∈ [w′].

Lemma 5.3. Let C be a w × w matrix with C(a, b) =
(
ja
b−1
)
, for all a ∈ [w] and b ∈ [w],

where {ja}a are all distinct numbers. Then C has full rank.

Proof. We will show that for any nonzero α := (α1, α2 . . . , αw) ∈ Fw×1, Cα 6= 0. Consider

the polynomial h(y) =
∑w

b=1 αb
y(y−1)···(y−b+2)

(b−1)! . As h(y) is nonzero polynomial with degree

bounded by w − 1, it can have at most w − 1 roots. Thus, there exists an a ∈ [w] such

that h(ja) =
∑w

b=1 αb
(
ja
b−1
)
6= 0.

As mentioned above, the hitting-set proof works only when the field characteristic

is zero or greater than d. We given an example over a small characteristic field, which
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demonstrates that the problem is not with the proof technique, but with the hitting-set

itself. Let the field characteristic be 2. Consider the polynomial f(x1, x2) = x22 + x21 + x1.

Clearly, f has a width-2 ROABP. For a width-2 ROABP, the map in Lemma 5.2 would

be (x1, x2) 7→ (t2, t2 + t). However, f(t2, t2 + t) = 0 (over F2). Hence, the hitting-set does

not work.

Now, we move on to getting a hitting-set for an n-variate ROABP.

5.1.3 n-variate ROABP

Observe that the map given in Lemma 5.2 works irrespective of the degree of the polyno-

mial, as long as the field characteristic is large enough. We plan to obtain a hitting-set

for general n-variate ROABP by applying this map recursively. For this, we use the stan-

dard divide and conquer technique. First, we make pairs of consecutive variables in the

ROABP. For each pair (x2i−1, x2i), we apply the map from Lemma 5.2, using a new vari-

able ti. Thus, we go to n/2 variables from n variables. In Lemma 5.4, we show that after

this substitution the polynomial remains nonzero. Moreover, the new polynomial can be

computed by a width-w ROABP. Thus, we can again use the same map on pairs of new

variables. By repeating the halving procedure log n times we get a univariate polyno-

mial. In each round the degree of the polynomial gets multiplied by w. Hence, after log n

rounds, the degree of the univariate polynomial is bounded by wlogn times the original

degree. Without loss of generality, let us assume that n is a power of 2. Recall that a

width-w ROABP can be represented by the product D1D2 · · ·Dn, where D1 ∈ F1×w[x1],

Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi] for all 2 ≤ i ≤ n− 1.

Lemma 5.4 (Halving the number of variables). Let char(F) = 0, or char(F) > d. Let

f(x) = D1(x1)D2(x2) · · ·Dn(xn) be a nonzero polynomial computed by a width-w and

individual degree-d ROABP, where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi] for

all 2 ≤ i ≤ n− 1. Let the map φ : x→ F[t] be such that for any index 1 ≤ i ≤ n/2,

φ(x2i−1) = twi ,

φ(x2i) = twi + tw−1i .
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Then f(φ(x)) 6= 0. Moreover, the polynomial f ′(t1, t2, . . . , tn/2) := f(φ(x)) is computed

by a width-w ROABP in the variable order (t1, t2, . . . , tn/2).

Proof. We will prove the lemma by induction on the number of variables.

Base Case (n=2): When there are only two variables, Lemma 5.2 proves the statement.

Induction Hypothesis: The statement is true for any (n− 2)-variate ROABP.

Induction Step: We will prove the statement for the case of n variables. LetG(x1, x2) :=

[g1 g2 . . . gw] = D1D2 and H(x3, x4, . . . , xn) := [h1 h2 . . . hw]T = D3D4 · · ·Dn. Clearly,

f = GH. We can assume that the polynomials {gi}wi=1 are all linearly independent1. Be-

cause if it is not true then, as we argue below, one can modify the ROABP to have this

property.

Without loss of generality, let {g1, g2, . . . , gw′} be a maximal independent set for some

w′ ≤ w. That is, for any w′ < j ≤ w, gj is in the linear span of {gi}w
′

i=1. Thus, there exists

a matrix Γ ∈ Fw′×w such that

G = [g1 g2 . . . gw′ ]Γ. (5.4)

Consider the matrix Γ1 ∈ Fw×w′ such that

Γ1(i, j) =


1 if i = j,

0 otherwise.

It is easy to see that,

[g1 g2 . . . gw′ ] = GΓ1. (5.5)

From Equations (5.4) and (5.5), we can write

f = GH = GΓ1ΓH.

Let us define E2 = D2Γ1 and E3 = ΓD3. Clearly, the ROABP D1E2E3D4 · · ·Dn computes

the polynomial f .

Now, we move on to prove that f remains nonzero under the map φ. Let us rede-

fine G(x1, x2) := [g1 g2 . . . gw′ ] = D1E2 and H(x3, x4, . . . , xn) := [h1 h2 . . . hw′ ]
T =

1The polynomials {gi}i are linearly independent if there is no nonzero (αi)i with
∑
i αigi = 0.
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E3D4 · · ·Dn. First we apply the map φ on the variables {xi}ni=3. Observe that any hi is a

polynomial computed by an (n − 2)-variate ROABP of width w, as hi = eTi E3D4 · · ·Dn,

where ei is the i-th elementary unit vector. Hence, by induction hypothesis, any nonzero

hi would remain nonzero under the map φ. Thus,

H ′(t2, . . . , tn/2) := H(φ(x3), φ(x4), . . . , φ(xn)) 6= [0 0 . . . 0]T.

This means there exists a monomial ta in variables {ti}n/2i=2 such that coefH′(t
a) ∈ Fw′×1

is a nonzero vector.

As the polynomials {gi}w
′

i=1 are linearly independent,

G coefH′(t
a) 6= 0.

Clearly, the polynomial G coefH′(t
a) = D1E2 coefH′(t

a) is computed by a width-w bi-

variate ROABP in variables (x1, x2). Thus, it must remain nonzero under the map φ by

Lemma 5.2. That is,

G′(t1) coefH′(t
a) = G(φ(x1), φ(x2)) coefH′(t

a) 6= 0.

This implies that f ′ = G′(t1)H
′(t2, . . . , tn/2) 6= 0. To see this, consider a monomial tb1 such

that

coefG′(t
b
1) coefH′(t

a) 6= 0.

This product is nothing but coeff ′(t
b
1t

a).

Now, we argue that f ′ has a width w ROABP. Let D′i := D2i−1(t
w
i )D2i(t

w
i + tw−1i )

for all 1 ≤ i ≤ n/2. Clearly, D′1D
′
2 · · ·D′n/2 is an ROABP computing f ′ in variable

order (t1, t2, . . . , tn/2), as D′1 ∈ F1×w[t1], D
′
n/2 ∈ Fw×1[tn/2] and D′i ∈ Fw×w[ti] for all

2 ≤ i ≤ n/2− 1.

By applying the map φ in Lemma 5.4, we reduced an n-variate ROABP to an (n/2)-

variate ROABP, while preserving the non-zeroness. The resulting ROABP has same width

w, but the individual degree goes up to become 2dw, where d is the original individual

degree. As our map φ is degree independent, we can apply the same map again on the
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variables {ti}n/2i=1. It is easy to see that when the map φ is repeatedly applied in this way

log n times, we get a nonzero univariate polynomial of degree ndwlogn. Next lemma puts

it formally. For ease of notation, we use variable numbering from 0 to n−1. Let p0(t) = tw

and p1(t) = tw + tw−1.

Lemma 5.5. Let char(F) = 0, or char(F) > ndwlogn−1. Let f ∈ F[x] be a nonzero

polynomial, with individual degree d, computed by a width-w ROABP in variable order

(x0, x1, . . . , xn−1). Let the map φ : {x0, x1, . . . , xn−1} → F[t] be such that for any index

0 ≤ i ≤ n− 1,

φ(xi) = pi1(pi2 · · · (pilogn(t))),

where ilogn ilogn−1 · · · i1 is the binary representation of i.

Then f(φ(x)) is a nonzero univariate polynomial with degree ndwlogn.

Note that the map φ crucially uses the knowledge of the variable order. We need

char(F) > ndwlogn−1 as in the last round when we are going from two variables to one,

the individual degree is ndwlogn−1 and Lemma 5.2 requires char(F) to be higher than

the individual degree. For a univariate polynomial, the standard hitting-set is to plug-in

distinct field values as many as one more than the degree. Thus, we get

Theorem 5.6. For an n-variate, individual degree d and width-w ROABP, there is a

blackbox PIT with time complexity dnlogw+1, when the variable order is known and the

field characteristic is zero or larger than ndwlogn−1.

From this, we immediately get the following result for constant-width ROABPs. Note

that when w is constant, the lower bound on the characteristic becomes (poly(n)).

Corollary 5.7. There is a polynomial time blackbox PIT for constant width ROABPs,

with known variable order and field characteristic being zero (or polynomially large).

5.2 Commutative ROABP

In this section, we give better hitting-sets for commutative ROABPs. Recall that an

ROABP is commutative if the matrices involved in the matrix product come from a com-
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mutative algebra. To elaborate, a commutative ROABP is of the form UTD1D2 · · ·DnT ,

where U, T ∈ Fw×1 and Di ∈ Fw×w[xi] is a polynomial over a commutative subalgebra

of Fw×w for each i. In simple words, DiDj = DjDi for any i, j ∈ [n]. As the order of

variables does not matter for a commutative ROABP, we take the standard variable order

(x1, x2, . . . , xn). Like Chapter 3, here we work with the polynomial D = D1D2 · · ·Dn

over the matrix algebra. With an abuse of notation, we say D1D2 · · ·Dn is an ROABP

computing a polynomial over matrices.

Our approach is similar to that of Forbes, Saptharishi and Shpilka [FSS14], who gave a

dO(logw)(nw)O(log logw)-time hitting-set for width-w, n-variate commutative ROABPs with

individual degree bound d. We improve the time complexity for this case to (ndw)O(log logw).

Note that when both d and w are O(n), the complexity of [FSS14] becomes nO(logn) which

is comparable to the hitting-set complexity for general ROABPs (Chapter 3). On the other

hand, our hitting-set for the commutative case is significantly better than the general case.

Forbes, Saptharishi and Shpilka [FSS14] constructed the hitting-set in two steps. Their

first step is to show that for a given width-w ROABP, O(logw)-concentration can be

achieved by a shift with cost ndO(logw), which is polynomially bounded when d is small.

Recall that a polynomial D(x) over an algebra is said to be `-concentrated if its coefficients

of (< `)-support monomials span all its coefficients (Definition 3.2). And by a shift we

mean replacing each variable xi with xi + ti for some {ti}i. The second step in [FSS14]

is to show that if a given commutative ROABP is O(logw)-concentrated then there is a

hitting-set for it of size (ndw)O(log logw). We improve the first step by giving a shift with

cost (ndw)O(log logw). Our improvement of the first step implies an (ndw)O(log logw)-time

hitting-set for commutative ROABP.

First, we elaborate the first step of Forbes, Saptharishi and Shpilka [FSS14]. To achieve

concentration they use the idea of Agrawal, Saha and Saxena [ASS13], i.e., achieving con-

centration in small sub-circuits implies concentration in the whole circuit. The following

lemma puts it formally.

Lemma 5.8 ([ASS13, FSS14]). Let D(x) = D1(x1)D2(x2) · · ·Dn(xn) be a product of

univariate polynomials over a commutative algebra Ak. Suppose there exists an ` such
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that for any S ∈ [n] with |S| = `, the polynomial
∏
i∈S Di has `-concentration. Then D(x)

has `-concentration.

Proof. For any set S ⊆ [n], let us define a sub-circuit DS of D as
∏
i∈S Di(xi). We will

show `-concentration in all the sub-circuits DS of D, using induction on the size of S.

Base Case: DS is trivially `-concentrated if |S| < `. In the case of |S| = `, DS is

`-concentrated from the hypothesis in the lemma.

Induction Hypothesis: DS has `-concentration for any set S with |S| < j.

Induction Step: We will prove `-concentration in DS for a set S with |S| = j. Let

S = {xi1 , xi2 , . . . , xij}. Consider a monomial xa = xa1i1 x
a2
i2
· · ·xajij with support from the

set S. Without loss of generality let us assume a1 6= 0. Now, let the set S′ = S \ {xi1}

and let the monomial xa′ = xa/xa1i1 . As |S′| = j − 1, by the inductive hypothesis DS′ is

`-concentrated. Thus,

coefDS′ (x
a′) ∈ span{coefDS′ (x

b) | Supp(b) ⊆ S′, supp(b) < `}. (5.6)

It is easy to see that for any monomial xb with its support in S′,

coefDS (xbxa1i1 ) = coefDS′ (x
b) coefDi1 (xa1i1 ).

Thus, by multiplying coefDi1 (xa1i1 ) in (5.6), we get

coefDS (xa) ∈ span{coefDS (xbxa1i1 ) | Supp(b) ⊆ S′, supp(b) < `}.

Hence,

coefDS (xa) ∈ span{coefDS (xb) | Supp(b) ⊆ S, supp(b) ≤ `}. (5.7)

Now, we claim that for any monomial xb with Supp(b) ⊆ S and supp(b) = `,

coefDS (xb) ∈ span{coefDS (xc) | Supp(c) ⊆ S, supp(c) < `}. (5.8)

To see this, let T be the support of the monomial xb. As |T | = `, DT has `-concentration.

Thus,

coefDT (xb) ∈ span{coefDT (xc) | Supp(c) ⊆ T, supp(c) < `}. (5.9)
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For any monomial xc with support in T , one can write

coefDS (xc) = coefDT (xc)
∏
i∈S\T

coefDi(1).

Note that the commutativity of the underlying algebra is crucial for this. Thus, by mul-

tiplying
(∏

i∈S\T coefDi(1)
)

in (5.9) we get (5.8).

By combining (5.8) with (5.7), we get

coefDS (xa) ∈ span{coefDS (xc) | Supp(c) ⊆ S, supp(c) < `},

for any monomial xa with Supp(a) ⊆ S. This proves `-concentration in DS .

Taking S = [n], we get `-concentration in D.

Now, the goal is just to achieve `-concentration in an `-variate ROABP (computing a

polynomial over the matrix algebra). We would remark here that for an `-variate poly-

nomial over a k-dimensional algebra, one can hope to achieve `-concentration only when

` ≥ log(k + 1). To see this, consider the polynomial D(x) =
∏`
i=1(1 + vixi) over a k-

dimensional algebra such that k > 2` − 1. Suppose the vector vis are such that all the

2` coefficients of the polynomial D are linearly independent. There are only 2` − 1 coef-

ficients of D with (< `)-support. Hence, they cannot span the whole coefficient space of

D, whatever the shift we use.

[ASS13] and [FSS14] achieve `-concentration in arbitrary `-variate polynomials over a

k-dimension algebra for ` = log(k + 1) by an appropriate shift of the variables. They do

a shift by a univariate map φ : x→ F[t], i.e., they replace each xi with xi + φ(xi). Their

map φ is such that when it is naturally extended to all the monomials, i.e., φ(
∏
i x

γi
i ) =∏

i φ(xi)
γi , all the monomials in the specified ` variables are mapped to distinct mono-

mials (or linearly independent polynomials) under φ. The cost of such a map would be

proportional to number of `-variate monomials, which is dO(`) = dO(log k) (Lemma 2.3). A

map which has this property for all size-` subsets of n variables will have cost ndO(log k).

Note that after a shift by the univariate map, the new coefficients belong to F(t)k and the

concentration is over the field F(t).
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We give a new shift with cost (ndw)O(log `) = (ndw)O(log logw), for a width-w, `-variate

ROABP (w2 is the dimension of the underlying algebra). The cost has n as a parameter

because the shift works for any size ` subset of n variables. Note that while the map

of [ASS13, FSS14] works for an arbitrary `-variate polynomial, our map works only for

`-variate ROABPs. The map we use is the basis isolating weight assignment for ROABPs

from Chapter 3. We simply use the fact that for any polynomial over a k-dimensional

algebra, shift by a basis isolating map achieves log(k+ 1)-concentration. That is, we take

the map φ(xi) = tw(xi), where w is a basis isolating weight assignment (Definition 3.3).

In [GKST15, Lemma 5.2], we showed that shifting by a basis isolating weight assign-

ment achieves concentration (a proof can also be found in Korwar’s thesis [Kor15]).

Lemma 5.9 (Isolation to concentration). Let A(x) be a polynomial over a k-dimensional

algebra Ak. Let w be a basis isolating weight assignment for A(x). Then A(x + tw) is `-

concentrated, where ` = dlog(k+ 1)e and tw denotes the n-tuple (tw(x1), tw(x2), . . . , tw(xn)).

We now recall the construction of a basis isolating weight assignment for ROABP.

Here, we present a slightly modified version of Lemma 3.6 which easily follows from it.

Lemma 5.10. Let x be a set of n variables. Let D(x) = D1(xi1)D2(xi2) · · ·D`(xi`) be

an `-variate polynomial over a k-dimensional algebra Ak. Then we can construct a basis

isolating weight assignment for D(x) with the cost being (poly(k, n, d))log `, where d is the

individual degree.

The construction in the proof of Lemma 3.6 actually gives a family B of (knd)O(log `)

weight assignments such that for any `-variate ROABP, at least one of them is basis

isolating. However, we are interested in a single map which works for every `-variate

ROABP. As seen in Lemma 5.9, shift by the n-tuple tw gives `-concentration in A(x)

when w is basis isolating for A(x). To get a single shift for every ROABP, we take a

Lagrange Interpolation of all the n-tuples in the family {tw}w∈B.

Let F = {f1(t),f2(t), . . . ,fN (t)} be this family of n-tuples, where f i is given by

{fi1(t), fi2(t), . . . fin(t)} for each i. Here, N = (knd)O(log `). Their degrees are bounded by
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D = max{deg(fi,j) | i ∈ [N ] and j ∈ [n]} = (knd)O(log `). The family F can be generated

in time (knd)O(log `).

Let L(y, t) ∈ F[y, t]n be the Lagrange interpolation of F . That is, for all j ∈ [n],

Lj =
∑
i∈[N ]

fi,j(t)
∏
i′∈[N ]
i′ 6=i

y − αi′
αi − αi′

,

where {αi}i∈[N ] are distinct field elements. (Recall that we assume the field F to be large

enough so that these elements exist.) Note that Lj |y=αi = fi,j . Thus, L|y=αi = f i. Also,

degy(Lj) = N − 1 and degt(Lj) ≤ D.

Lemma 5.11. Let A(x) be a polynomial over Ak and there exists an f ∈ F such that

A′(x, t) = A(x + f) ∈ Ak(t)[x] is `-concentrated. Then, A′′(x, y, t) = A(x + L) ∈

Ak(y, t)[x] is `-concentrated.

Proof. Let rankF{coefA(xa) | xa ∈ M} = k′, for some k′ ≤ k, and M` = {xa ∈ M |

supp(a) < `}. We need to show that rankF(y,t) {coefA′′(x
a) | xa ∈M`} = k′.

Since A′(x) is `-concentrated, we have that rankF(t) {coefA′(x
a) | xa ∈M`} = k′. Re-

call that A′(x) is an evaluation of A′′ at y = αi, i.e., A′(x, t) = A′′(x, αi, t) for some αi.

Thus, for all xa ∈M , we have coefA′(x
a) = coefA′′(x

a)|y=αi .

Let C ∈ F[t]k×|M`| be the matrix whose columns are coefA′(x
a), for xa ∈M`. Similarly,

let C ′ ∈ F[y, t]k×|M`| be the matrix whose columns are coefA′′(x
a), for xa ∈M`. Then we

have C = C ′|y=αi .

As rankF(t)(C) = k′, there is a k′ × k′ submatrix in C, say indexed by (R, T ), such

that det(C(R, T )) 6= 0. Because det(C(R, T )) = det(C ′(R, T ))|y=αi , it follows that

det(C ′(R, T )) 6= 0. Hence, we have rankF(y,t)(C
′) = k′. Thus, the (< `)-support coef-

ficients of A′′ span its coefficient space.

Using the Lagrange interpolation, we can construct a single shift which works for all

`-variate ROABPs.

Lemma 5.12. Given n, d, w and ` = log(w2 + 1), in time (ndw)O(log `) one can compute

a polynomial tuple f(t) ∈ F[t]n of degree (ndw)O(log `) such that for any `-variate poly-
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nomial A(x) ∈ Fw×w[x] of individual degree d that can be computed by an ROABP of

width w, the polynomial A(x + f(t)) is `-concentrated.

Proof. Note that the dimension k of the underlying algebra is bounded by w2. After

shifting the polynomial A(x) of by L(y, t), its coefficients will be polynomials in y and t,

with degree d′ = dn(ndw)O(log `). Consider the determinant polynomial det(C ′(R, T ))

from Lemma 5.11. As k′ ≤ k, det(C ′(R, T )) has degree bounded by d′′ = kd′.

Note that when we replace y by td
′′+1, it does not affect the non-zeroness of the

determinant, and hence, the concentration is preserved. Thus, f = L(td
′′+1, t) is an

n-tuple of univariate polynomials in t that fulfills the claim of the lemma.

Combining Lemma 5.8 and Lemma 5.12 we get the following.

Lemma 5.13. Given n, d, w, one can compute an n-tuple f(t) with cost (ndw)O(log logw)

such that for any n-variate, individual degree-d polynomial D(x) ∈ Fw×w[x] computed by

a width-w commutative ROABP, D(x + f(t)) is O(logw)-concentrated.

Note that if the polynomial D(x) ∈ Fw×w[x] is `-concentrated then the polynomial

C(x) = UTDT is also `-concentrated, where U, T ∈ Fw×1. This is true because multiplying

by UT and T are linear operations. Recall that for polynomial C(x) ∈ F[x], O(logw)-

concentration means that there is a monomial with O(logw)-support which has a nonzero

coefficient.

Now, we move on to the second step of Forbes, Shpilka and Saptharishi [FSS14]. They

give a (ndw)O(log logw)-time hitting-set for an already O(logw)-concentrated commuta-

tive ROABP. They do this by reducing the PIT question to an O(logw)-variate ROABP

[FSS14, Lemma 7.6].

Lemma 5.14 ([FSS14]). Let C(x) ∈ F[x] be an n-variate, individual degree-d polynomial

computed by a width-w ROABP. Suppose C(x) has an (≤ `)-support monomial with a

nonzero coefficient. Then, there is a poly(n,w, d)-time computable m-variate map φ : x→

F[y1, y2, . . . , ym] such that C(φ(x)) is a nonzero polynomial with degree < d2n4, where m =

O(`2). Moreover, C(φ(x)) is computed by a width-w, m-variate commutative ROABP.
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We know from Theorem 3.7 that an m-variate, width-w ROABP has an (mdw)O(logm)-

time hitting-set. Combining Lemma 5.13 and Lemma 5.14 with this fact and putting

m = O(log2w), we get the following.

Theorem 5.15. There is an (ndw)O(log logw)-time hitting-set for n-variate commutative

ROABPs with width w and individual degree d.

5.3 Discussion

For our first result (Theorem 5.6), there are three directions of improvement. Ideally, one

would like to have all three at once.

1. Find a similar hitting-set for the unknown-order case. In fact, we conjecture that

the same hitting-set (Lemma 5.5) works for the unknown-order case as well.

2. Get a hitting-set for all characteristic fields. It is easy to construct examples over

small characteristic fields where our hitting-set does not work.

3. Reduce the time complexity to polynomial time. To achieve this, it seems one has

to do away with the divide and conquer approach.

As mentioned earlier, the ideas here can help in finding a better PRG for ROBPs. In

particular, it is a big open question to find an O(log n)-seed-length PRG for constant-

width ROBPs (analogous to Corollary 5.7). Note that in the context of PRGs, usually

the variable order is assumed to be known.

Following our second result (Theorem 5.15), it would be interesting to achieve the same

time complexity for set-multilinear circuits. Recall from Section 2.5 that set-multilinear

circuits are subsumed by commutative sparse-factor ROABPs, but not by commutative

ROABPs. Following the approach for commutative ROABP (Lemma 5.13), one can

achieve O(log k)-concentration in a set-multilinear circuit in time nO(log log k). However,

it is not clear whether the second step of the hitting-set construction can be done for

set-multilinear circuits, i.e., finding a better hitting-set by assuming that the polynomial

is already concentrated (Lemma 5.14).





Chapter 6

Parallel Complexity of Bipartite

Matching

In this chapter, we give an introduction to the matching problem and its parallel complex-

ity, and present some preliminary ideas towards finding an efficient parallel (NC) algorithm

for bipartite matching.

6.1 Preliminaries

6.1.1 Complexity Classes

The complexity class NC is used to study the inherent parallel complexity of a problem.

Definition 6.1. A problem is in the class NC if it can be solved in polylogarithmic time

using polynomially many processors. In particular, it is said to be in NCi if the time

required is O(logi n).

As one is interested in the theoretical limits of parallelization, it is assumed that the

processors have a shared memory and can access any bit of the memory in constant time.

An equivalent definition of the class NCi is given by the set of all problems which have

log-space uniform Boolean circuits with depth logi n and size nO(1) (see [Pap94, Chapter

15] for details).
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All the basic arithmetic operations and matrix operations are in NC. In particular,

determinant computation is in NC2 [Ber84, MV97]. Determinant computation plays a cru-

cial role in the RNC algorithm of Mulmuley, Vazirani and Vazirani [MVV87] for matching.

RNC stands for randomized NC, i.e., an NC algorithm which uses random bits. Another

class related to determinant computation is the class SPL, which is a subset of NC2.

Definition 6.2. A language L is in the class SPL if there is a non-deterministic log-space

turing machine M such that

#acc(M(x))−#rej(M(x)) =


1 if x ∈ L

0 if x /∈ L,

where #acc(M(x)) and #rej(M(x)) are the number of accepting and rejecting paths of

M on input x, respectively.

For an integer matrix whose determinant is promised to be 0 or 1, deciding whether it

is 0 or 1 is in SPL. See [ARZ99] for more details on the class SPL.

6.1.2 Graphs and Matchings

G(V,E) denotes a graph with the vertex set V and the edge set E. We start by defining

matchings in a graph.

Definition 6.3 (Matching). In a graph G(V,E), a matching M ⊆ E is a subset of edges

with no two edges sharing an endpoint. A matching which covers every vertex is called a

perfect matching.

The perfect matching problem (Decision-PM) asks whether a given graph has a

perfect matching. In other words, say for a group of people we are given connections of

the form ‘person x and person y know each other’ and the question is whether one can

make pairs of persons known to each other such that every person is paired with someone.

In the context of matchings, a natural class of graphs which has been widely studied is

bipartite graphs. In this thesis, we will only deal with matchings in bipartite graphs.
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Definition 6.4 (Bipartite Graphs). A graph is bipartite if there exist two partitions of

the vertices such that any edges connects a vertex from one partition to a vertex from the

other partition.

Planar graphs is another special class of graphs for which the matching problem has

been extensively studied.

Definition 6.5 (Planar Graphs). A planar graph is a graph which can be drawn in a

plane without its edges intersecting.

Various versions of the matching problem are known to have better solutions in case

of planar graphs as compared to general graphs, especially, in terms of their parallel

complexity. For example, counting the number of perfect matchings in planar graphs is

in NC [Kas67, Vaz89], while it is #P-complete for general graphs [Val79]. Constructing a

perfect matching in a bipartite planar graph is in NC [MN95, MV00, DKR10], while no

such result is known for general graphs.

6.1.3 Matching Polytope

Matchings are also one of the well-studied objects in polyhedral combinatorics. Matchings

have an associated polytope, called the perfect matching polytope. The perfect matching

polytope is also important from the computational complexity perspective. In fact, it

forms the basis of one of the NC algorithms for bipartite planar matching [MV00].

The perfect matching polytope PM(G) of a graph G(V,E) is a polytope in the edge

space, i.e., PM(G) ⊆ R|E|. For any perfect matching M , consider its incidence vector

xM ∈ RE given by

xMe =


1 if e ∈M,

0 otherwise.

This vector is referred to as a perfect matching point for any perfect matching M . The

perfect matching polytope of a graph G is defined to be the convex hull of all the perfect

matching points.

Definition 6.6. PM(G) = conv{xM |M is a perfect matching in G}.
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It is well known that for a bipartite graph G, its perfect matching polytope has a

simple description (see [LP86]).

Lemma 6.7. For a bipartite graph G, a point x ∈ RE is in PM(G) if and only if

∑
e∈δ(v)

xe = 1 ∀v ∈ V, (6.1)

xe ≥ 0 ∀e ∈ E, (6.2)

where δ(v) denotes the set of edges incident on the vertex v.

It is easy to see that any perfect matching point will satisfy these two condition. In

fact, all perfect matching points are vertices of this polytope. The non-trivial part is to

show that any point satisfying these two conditions is in the perfect matching polytope

[LP86, Chapter 7]. For general graphs, the polytope described by (6.1) and (6.2) can

have vertices which are not perfect matchings. Thus, the description does not capture the

perfect matching polytope for general graphs.

We hope to leverage this simple description of the bipartite matching polytope to find

an NC algorithm for bipartite matching.

6.2 RNC algorithm for Search-PM [MVV87]

Let us first recall the RNC algorithm of Mulmuley, Vazirani and Vazirani [MVV87] for

construction of a perfect matching (Search-PM). Though the algorithm works for any

graph, we will only consider bipartite graphs here.

For any weight assignment w : E → Z on the edges of a graph, the weight of a matching

M is defined to be the sum of the weights of all the edges in M , i.e., w(M) =
∑

e∈M w(e).

Let G be a bipartite graph with vertex partitions U = {ui}ni=1 and V = {vi}ni=1, each with

n nodes. Consider the following n×n matrix whose rows and columns are indexed by the

vertices in U and V , respectively.

B(i, j) =


2w(e) if e = (ui, vj) ∈ E,

0 otherwise.

,
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where w is a weight assignment on the edges. The algorithm in [MVV87] computes the

determinant of this matrix. By the definition of the determinant,

det(B) =
∑
π∈Sn

sgn(π)

n∏
i=1

B(i, π(i)), (6.3)

where Sn is the set of all permutations on [n]. Now, observe that each permutation π poten-

tially has a corresponding perfect matching Mπ = {(u1, vπ(1)), (u2, vπ(2)), . . . , (un, vπ(n))}.

Mπ is a valid perfect matching only if all the mentioned edges are present in the graph. If

for some j, the edge (uj , vπ(j)) is not present in the graph then clearly,
∏n
i=1B(i, π(i)) = 0.

Thus, one can write the sum in Equation 6.3 as a sum over all perfect matchings.

det(B) =
∑

M is a perfect matching in G

sgn(M)2w(M),

where sgn(M) is the sign of the corresponding permutation.

If the graph G does not have a perfect matching, then clearly, det(B) = 0. However,

even when the graph has perfect matchings, there can be cancellations due to sgn(M)

and det(B) can become zero. To avoid such cancellations, one needs to design the weight

function w cleverly. In particular, if w is such that the minimum weight perfect matching

in the graph G is unique then det(B) 6= 0. This is because the term 2w(M) corresponding

to the minimum weight perfect matching cannot be cancelled with other terms which are

strictly higher powers of 2. Such a weight function is called an isolating weight assignment.

Definition 6.8 ([MVV87]). For a graph G(V,E), a weight assignment w: E → Z is

isolating if the minimum weight perfect matching (if one exists) in G is unique.

Given an isolating weight assignment for G, one can easily construct the minimum

weight perfect matching in NC. Let M∗ be the minimum weight perfect matching in

G. For all edge e ∈ E, do the following: delete e from G and compute det(B). If the

term 2w(M
∗) disappears from det(B), then e ∈ M∗. Doing this in parallel for each edge,

we can find all the edges in M∗. Note that to compute the determinant efficiently, the

entries in matrices should have poly(n) bits and thus, the weights on the edges should be

polynomially bounded. As the determinant computation is in NC2, this construction is
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also in NC2.

To get an isolating weight assignment, Mulmuley, Vazirani and Vazirani [MVV87]

simply assign each edge a random weight from a small range. Their isolation lemma says

that with a good probability, a random weight assignment is isolating.

Lemma 6.9 (Isolation lemma [MVV87]). Let G be a graph with n vertices. For each edge

e, let its weight w(e) be chosen randomly, independently from [2n2]. Then

Pr[the minimum weight perfect matching in G is unique] ≥ 1/2.

Clearly, if one can get a deterministic NC construction of an isolating weight assign-

ment, then Search-PM would fall in NC.

6.3 An Approach towards Matching in Bipartite Graphs

Despite much effort, no construction of an isolating weight assignment is known for general

graphs or bipartite graphs, not even with sub-exponential weights. Our idea is to relax

the condition of a unique minimum weight perfect matching. Instead, we ask if one can

assign weights in a graph G such that the number of minimum weight perfect matchings is

significantly smaller than the total number of perfect matchings. If this can be done, then

we consider the new graph G′ whose edge set is the union of all minimum weight perfect

matchings in G. One can ask: is G′ significantly smaller than G, in terms of number of

edges? The answer turns out to be no. In fact, it is possible that G′ is same as G, even

when not all perfect matchings in G have the minimum weight. Figure 6.1 gives such an

example. Interestingly, such graphs are always non-bipartite. For bipartite graphs we can

show that G′ does become strictly smaller than G. Theorem 6.10 shows precisely this.

Ideally, we would want that the number of edges in G′ is only a constant fraction of

that in G. If this can be done, then we can repeat this weight construction process for

the new graph G′. After O(log n) iterations, we will be left with a graph with only one

perfect matching. For now, we do not know a weight construction which will reduce the

number of edges by a constant fraction. Theorem 6.10 just shows that the number of
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Figure 6.1: A graph with weighted edges. The minimum weight perfect matchings have
weight 1 and their union contains all the edges of the graph.

edges definitely decreases, if not all perfect matchings are of minimum weight.

Theorem 6.10. Let G(V,E) be a bipartite graph with a weight function w : E → R on its

edges. Let E′ be the union of all minimum weight perfect matchings in G according to w.

Then every perfect matching in graph G′ = (V,E′) has the same weight – the minimum

weight of any perfect matching in G.

Proof. For the proof we use the description of the perfect matching polytope for bipartite

graphs (Lemma 6.7). A point x ∈ RE is in PM(G) if and only if

∑
e∈δ(v)

xe = 1 ∀v ∈ V, (6.4)

xe ≥ 0 ∀e ∈ E, (6.5)

Let us view w as a linear function on RE by extending it in the natural way, i.e., for

any x ∈ RE ,

w(x) =
∑
e∈E

xew(e).

Recall that xM denotes the incidence vector of matchingM . Clearly, for a perfect matching

M , w(M) = w(xM ). Let q be the weight of any minimum weight perfect matching in G.

As the vertices of the matching polytope are all perfect matching points,

min{w(x) | x ∈ PM(G)} = q.

In any polytope, the set of points minimizing a linear function form a face of the

polytope. Let F be the face of the polytope PM(G) consisting of all the points x with
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w(x) = q.

One can describe a face of a polytope by replacing some of the inequalities in the de-

scription of the polytope by equalities. For the perfect matching polytope, the inequalities

are given by (6.5). Thus, for the face F there must exist a set S ⊆ E such that a point

x ∈ F if and only if

∑
e∈δ(v)

xe = 1 ∀v ∈ V, (6.6)

xe ≥ 0 ∀e ∈ E \ S, (6.7)

xe = 0 ∀e ∈ S. (6.8)

Clearly, for any minimum weight perfect matching M , the matching point xM should

satisfy the above three conditions as it lies on the face F . In particular, Equation (6.8)

implies that for any e ∈ S, e /∈M . Hence, one can write,

E′ ∩ S = ∅,

where, E′ is the union of all minimum weight perfect matchings.

Now, consider any perfect matching M ′ in the graph G′ = (V,E′). It does not have

any edges from the set S, hence xM ′ satisfies Equation (6.8). As M ′ is a perfect matching,

xM ′ also satisfies (6.6) and (6.7). Thus, xM ′ ∈ F . Hence, w(M ′) = w(xM ′) = q. This

proves the theorem statement.

Theorem 6.10 shows that in the union of all minimum weight perfect matchings, every

perfect matching is of minimum weight. That is, taking the union does not create extra

perfect matchings. Note that such a property would not hold for most combinatorial

objects. For example, if one takes the union of all minimum weight spanning trees, the

resulting graph will have other spanning trees which are not of the minimum weight. We

hope that this special property of bipartite matching will help in finding an NC algorithm.
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6.4 Discussion

The main question here is to find a weight assignment which ensures that the union of

minimum weight perfect matchings has only a constant fraction of edges from the actual

graph.





Chapter 7

Derandomizing Isolation Lemma

for K3,3-free or K5-free Bipartite

Graphs

As discussed in the previous chapter, an NC construction of an isolating weight assignment

would put matching in NC. In this chapter, we give such a construction for two special

classes of graphs, namely K3,3-free bipartite graphs and K5-free bipartite graphs.

Using the isolation lemma, Allender, Reinhardt and Zhou [ARZ99] showed that the

Decision-PM is in non-uniform SPL (SPL is defined in Section 6.1.1). The non-uniformity

part is just for finding an isolating weight assignment. Hence, if an isolating weight

assignment can be constructed in L, then Decision-PM would be in SPL. Moreover, it

would put Search-PM in FLSPL (see [DKR10]). FLSPL is the set of function problems

which can be solved by a log-space Turing machine with access to an SPL oracle.

Theorem 7.1. Given a K3,3-free or K5-free bipartite graph, an isolating weight assign-

ment (polynomially bounded) for it can be constructed in log-space.

This theorem together with the results of [ARZ99] and [DKR10] gives us the following

results about matching.

Corollary 7.2. For a K3,3-free or K5-free bipartite graph,
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(a) K3,3 (b) K5

Figure 7.1: The graphs K3,3 and K5

– Decision-PM is in SPL.

– Search-PM is in FLSPL.

– Min-Weight-PM is in FLSPL.

The problem Min-Weight-PM asks to construct the minimum weight perfect match-

ing in a given graph with polynomially bounded weights on its edges. Actually our results

work for a general class of graphs defined via clique-sum operation, which subsumes K3,3-

free or K5-free bipartite graphs.

7.1 Preliminaries

Our starting point is the result of Datta, Kulkarni and Roy [DKR10], which showed the

same result for bipartite planar graphs. Let us recall the definition of a planar graph.

Definition 7.3 (Planar Graphs). A planar graph is a graph which can be drawn on a

plane without its edges intersecting.

Wagner [Wag37] gave an interesting characterization of planar graphs in terms of graph

minors. A graph H is a minor of a graph G, if H can be obtained from G by deleting some

vertices and edges and contracting some edges. Contraction of an edge means deleting the

edge and identifying its two endpoints. G is called H-free if H is not a minor of G.

Theorem 7.4 ([Wag37]). A graph is planar if and only if it is both K3,3-free and K5-free.

K3,3 is the complete bipartite graph on (3, 3) nodes and K5 is the complete graph on

5 nodes (Figure 7.1). These two graphs are non-planar. Hence, if any graph G has either
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K3,3 or K5 as its minor, then G would be non-planar. Wagner [Wag37] essentially showed

that any non-planar graph must have a K3,3 or K5 as a minor. A natural generalization

of planar graphs would be graphs which have one of these two graphs as a minor, but not

the other one. Such a graph would be a K3,3-free graph or a K5-free graph.

Wagner [Wag37] and Asano [Asa85] gave exact characterizations of K3,3-free graphs

andK5-free graphs, respectively, in terms of graph decomposition. They essentially showed

that these graphs can be formed as combinations of planar graphs and constant-sized

graphs, glued together by an operation called clique-sum (defined in Section 7.4). Actually,

the class of graphs obtained by such combinations is bigger than K3,3-free graphs and K5-

free graphs. Our techniques will also work for this bigger class.

7.1.1 Log-space Operations on Graphs

As we want our construction to be in log-space. We will need to do several standard graph

operations in log-space. We describe these operations with appropriate references.

Reachability in an undirected graph, i.e., given two vertices u and v, deciding whether

u and v are connected by a path, is in log-space due to the famous result of Reingold

[Rei08]. Thus, finding connected components of a graph is also in log-space.

Allender and Mahajan [AM04] have shown that deciding whether a graph is planar

and computing a planar embedding can be done in log-space with an oracle access to

reachability. Together with Reingold’s result [Rei08], it follows that both the things can

be done in log-space.

For a given tree, we describe its log-space traversal which will be used to make the

tree rooted. A tree is rooted when a root is fixed and every connected pair of vertices has

a child-parent relationship with the one closer to the root being the parent.

Log-space tree traversal [Lin92]: Fix an arbitrary root r for the tree. For every

node in the tree, give its edges an arbitrary cyclic ordering, i.e., every edge has a left and a

right neighbor. Start traversing from the root r by taking an arbitrary edge. If you arrive

at a node u using its edge e, then leave node u using the right neighbor of e. If e is the

only edge on u, then leave using the same edge. Stop when you see the edge from where
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the travel started. It is easy to see that this traversal ends at the root node r with every

edge being traversed exactly twice (in different directions). To find the parent of a node

u, one just need to stop the traversal when the node u is reached for the first time. The

previous node in the traversal will be the parent of u. Finding the parent for every node

will give us the complete rooted tree.

Any node u and all its descendants form a subtree rooted at u. It is easy to count

the number of nodes in the subtree rooted at u: Go over each node v and decide if it is a

descendant of u, i.e., it appears after u in the tree traversal. Similarly, given a weight for

every node one can compute the sum of weights of all the descendants of u. We will need

to compute these functions on a given tree in our constructions.

7.1.2 Biconnected Graphs

If a graph G is disconnected then a perfect matching in G can be constructed by taking

a union of perfect matchings in its different connected components. As connected compo-

nents of a graph can be found in log-space [Rei08], we will always assume that the given

graph is connected.

Let G be a connected graph. A vertex a in G is called an articulation point, if its

removal will make G disconnected. A graph without any articulation point is called

biconnected. Let a be an articulation point in G such that its deletion creates connected

components G1, G2, . . . , Gm. It is easy to see that for G to have a perfect matching, exactly

one of these components should have an odd number of vertices, say G1. Then, in any

perfect matching of G, the vertex a will always be matched to a vertex in G1. Thus, we

can delete any edge connecting a to other components, and all the perfect matchings will

still be preserved. The above reduction can be done in log-space via reachability queries

[Rei08, TW14] as follows: go over each vertex a and check whether its deletion disconnects

the graph. If yes, then find out the cardinalities of different components after deletion of

a. Now, delete any edge incident on a which connects it to a set of even size. Thus, we

will always assume that the given graph is biconnected.
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7.2 Isolation in Bipartite Planar Graphs [DKR10]

We first describe the approach of Datta, Kulkarni and Roy [DKR10] for bipartite planar

graphs. Our presentation slightly differs from theirs and follows that of Korwar [Kor09].

Let us first define a skew-symmetric weight function on the edges of a graph. For this,

we consider the edges of the graph directed in both the directions. We call this directed

set of edges ~E. A weight function w : ~E → Z is called skew-symmetric if for any edge

(u, v), w(u, v) = −w(v, u).

Definition 7.5 (Circulation). For a cycle C, whose edges are given by {(v1, v2), (v2, v3),

. . . , (vk−1, vk), (vk, v1)}, its circulation is defined to be w(v1, v2)+w(v2, v3)+· · ·+w(vk, v1).

Clearly, as our weight function is skew-symmetric, changing the orientation of the

cycle, only changes the sign of the circulation. The following lemma [TV12, Theorem 6]

gives the connection between nonzero circulations and isolation of a matching (it appears

in [DKR10] in a slightly different form). For a bipartite (undirected) graph G(V1, V2, E),

a skew-symmetric weight function w : ~E → Z on its edges, has a natural interpretation on

the undirected edges as w: E → Z such that w(u, v) = w(u, v), where u ∈ V1 and v ∈ V2.

Lemma 7.6 ([DKR10, TV12]). Let w : ~E → Z be a skew-symmetric weight function on

the edges of a bipartite graph G such that every cycle has a non-zero circulation. Then,

w: E → Z is an isolating weight assignment for G.

The bipartiteness assumption is needed only in the above lemma. We will show a

log-space construction of a skew-symmetric weight function that guarantees nonzero cir-

culation for every cycle in a given planar graph, i.e., without assuming bipartiteness.

A planar embedding of a given planar graph can be computed in log-space [AM04,

Rei08]. We start with a planar embedding of the graph. For any weight assignment

w : ~E → Z on the edges of the graph, we define the circulation of a face as the circulation

of the corresponding cycle in the clockwise direction. More formally,

Definition 7.7 (Circulation of a face). Let G(V,E) be a planar graph with a skew-

symmetric weight function w on the edges. In the given planar embedding, let the vertices
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of an inner face f be given by v1, v2, . . . , vl (clockwise ordering). Then the circulation of

the face w(f) is given by w(v1, v2) + w(v2, v3) + · · ·+ w(vl, v1).

Instead of assigning the edge weights directly, we will fix circulations for the inner faces

of the graph. The following lemma relates the circulations of cycles with that of the faces.

Lemma 7.8 ([BTV09]). In a planar graph with a given planar embedding, the circulation

of a cycle in clockwise orientation is the sum of the circulations of the faces inside it.

Proof sketch. For a cycle C, consider the sum of circulations of all the faces inside it. Any

edge which is a part of cycle C contributes to this sum once, as it appears in exactly one of

the faces. Also, its direction will be same as that in the clockwise orientation of the cycle.

Any edge which lies inside the cycle C, appears in two faces and with opposite directions.

Thus, it has zero contribution to the sum. Hence, we get the lemma statement.

Clearly, fixing positive circulations for all inner faces will avoid any cancellations.

[DKR10] gives +1 circulation for every face which ensures a nonzero circulation for every

cycle. The only task that remains is to assign weights to the edges such that each inner

face gets the desired circulation. To do this, we will use the concept of the dual graph.

Definition 7.9 (Dual graph). For a planar graph G and a given planar embedding, its

dual graph G∗ is a graph that has a vertex for each face of G and any two vertices in G∗

are joined by an edge if the corresponding faces in G have a common edge.

Clearly, there is a one-to-one correspondence between the edges of G and G∗. Hence,

we treat the edge sets E(G) and E(G∗) of the two graphs as the same set. The next lemma

shows that one can achieve arbitrary circulations for the inner faces, using the dual graph

of G.

Lemma 7.10 ([Kor09]). Let G(V,E) be a planar graph with F being its set of inner faces

in a given planar embedding. For any given function on the inner faces w′ : F → Z, a

skew-symmetric weight function w : ~E → Z on the edges can be constructed in log-space

such that each face f ∈ F has circulation w′(f).
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Proof. The construction in [Kor09] gives +1 circulation to every face of the graph and is

in NC. We modify it to assign arbitrary circulations to the faces and argue that it works

in log-space.

Let G∗ be the dual graph of G and T ∗ be a spanning tree of G∗. The dual graph can be

easily constructed in log-space from the planar embedding, one just needs to identify the

edges present in each face. See [NTS95, Rei08] for a log-space construction of a spanning

tree. Make the tree T ∗ rooted at the outer face of G. Let E(T ∗) denote the edges of the

tree T ∗ (and also the corresponding edges in graph G). All the edges in E \E(T ∗) will get

weight 0. For any node f in G∗ (a face in G), let T ∗f denote the subtree of T ∗ rooted at f .

Let w′(T ∗f ) denote the total sum of the weights in the tree, i.e., w′(T ∗f ) =
∑

f1∈T ∗f
w′(f1).

This function can be computed for every node in the tree T ∗ by the standard log-space

tree traversal (see Section 7.1.1). For any inner face f , let ef be the edge connecting f to

its parent in the dual tree T ∗. We assign the edge ef , weight w′(T ∗f ) in clockwise direction

(w.r.t. face f).

We claim that under this weight assignment, circulation of any inner face f is w′(f).

To see this, let us say f1, f2, . . . , fk are the children of f in the dual tree T ∗. These nodes

are connected with f using edges ef1 , ef2 , . . . , efk respectively. Now, consider the weights

of these edges in the clockwise direction w.r.t. face f . For any 1 ≤ i ≤ k, weight of efi is

−w′(T ∗fi) and weight of ef is w′(T ∗f ). Clearly, sum of all these weights is w′(f).

This finishes the isolation of a perfect matching in a bipartite planar graph.

7.3 Our Techniques

We start with the idea of Datta, Kulkarni and Roy [DKR10] that a skew-symmetric weight

function on the edges such that every cycle has a nonzero circulation implies isolation of

a perfect matching in bipartite graphs. To achieve nonzero circulation in a K3,3-free or

K5-free graph, we work with its 3-connected or 4-connected component decomposition

given by [Wag37, Asa85] which can be constructed in log-space [TW14, STW14]. The

components are either planar or constant-sized and share a pair/triplet of vertices. These
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components form a tree structure, when each component is viewed as a node and there

is an edge between two components if they share a pair/triplet. For any cycle C in the

graph, we break it into its fragments contained within each of these components, which

we call projections of C. Any such projection can be made into a cycle by adding virtual

edges for separating pairs/triplets in the corresponding component.

Circulation of any cycle can be seen as a sum of circulations of its projections. The

projections of a cycle can have circulations with opposite signs and thus, can cancel each

other. To avoid this cancellation, we observe that the components, where a cycle has a

non-empty projection, form a subtree of the component tree. The idea is to assign edge

weights using a different scale for each level of nodes in the tree. This ensures that for

any subtree, its root node will contribute a weight higher than the total weight from all

its other nodes. To avoid any cancellations within a component, weights in a component

are given by modifying some known techniques for planar graphs [DKR10, Kor09] and

constant sized graphs.

This idea would work only if the component tree has small depth, which might not be

true in general. Thus, we create an O(log n)-depth working tree by finding ‘centers’ for

the component tree and its subtrees recursively. The working tree ‘preserves’ the subtree

structure in some sense. The construction of such a balanced working tree has been studied

in context of evaluating arithmetic expressions [Bre74]. In the literature, this construction

is also known as ‘centroid decomposition’ or ‘recursive balanced separators’. Its log-space

implementation is more involved.

As the working tree has O(log n) levels, the straightforward way of using a different

scale for each level will lead to edge weights being nO(logn). So instead, in a component

node, we assign weights to only those edges which surround a separating pair/triplet. The

weighting scheme ensures that the total weight grows only by a constant multiple, when

we move one step higher in the working tree.

Achieving non-zero circulation in log-space also puts directed reachability in UL [RA00,

BTV09, TV12]. Thus, we get an alternate proof for the result – directed reachability for

K3,3-free and K5-free graphs is in UL [TW14].
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Figure 7.2: Graph G obtained by taking (i) 2-clique-sum of G1 and G2 by identifying
〈u1, v1〉 with 〈u2, v2〉 and (ii) 3-clique-sum of the resulting graph with G3 by identifying
〈a2, b2, c2〉 with 〈a3, b3, c3〉.

In Section 7.4, we introduce the concepts of clique-sum, graph decomposition and

the corresponding component tree. In Section 7.5, we give a log-space construction of a

weight assignment with nonzero circulation for every cycle, for a class of graphs defined

via clique-sum operations on planar and constant-sized graphs. In Section 7.6, we argue

that K3,3-free and K5-free graphs fall into this class.

7.4 Graph Decomposition

7.4.1 Clique-sum

Clique-sum is a graph operation, via which we will define a special class of graphs. Later,

we will see that any K3,3-free or K5-free graph belongs to this class.

Definition 7.11 (Clique-Sum). Let G1 and G2 be two graphs each containing a clique (of

the same size). A clique-sum of graphs G1 and G2 is obtained from their disjoint union

by identifying pairs of vertices in these two cliques to form a single shared clique, and by

possibly deleting some of the edges in the clique. It is called a k-clique-sum if the cliques

involved have at most k vertices.

One can form clique-sums of more than two graphs by a repeated application of clique-

sum operation on two graphs (see Figure 7.2). Using this, we define a new class of graphs.

Let Pc be the class of all planar graphs together with all graphs of size at most c, where c

is a constant. Define 〈Pc〉k to be the class of graphs constructed by repeatedly taking k-
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clique-sums, starting from the graphs which belong to the class Pc. The starting graphs are

called the component graphs. We will construct a nonzero circulation weight assignment

for the graphs which belong to the class 〈Pc〉3.

Taking 1-clique-sum of two graphs will result in a graph which is not biconnected. As

we are interested in perfect matchings, we only deal with biconnected graphs (see Sec-

tion 7.1.2). Thus, we assume that every clique-sum operation involves either 2-cliques or

3-cliques. A 2-clique which is involved in a clique-sum operation is called a separating pair.

Similarly, a 3-clique is called a separating triplet. In general, they are called separating

sets. Note that deletion of any separating pair/triplet will make the graph disconnected.

7.4.2 Component Tree

In general, clique-sum operation can be performed many times using the same separating

set. In other words, many components can share a separating set. In Section 7.6, we show

that any graph in 〈Pc〉3 can be modified via some matching preserving operations such

that on decomposition, any separating set is shared by only two components. Henceforth,

in this section we assume this property.

Using this assumption, we can define a component graph for any graph G ∈ 〈Pc〉3

as follows: each component is represented by a node and two such nodes are connected

by an edge if the corresponding components share a separating set. Observe that this

component graph is actually a tree. This is because when we take repeated clique-sums,

a new component can be attached with only one of the already existing components,

as a clique will be contained within one component. In literature [HT73, TW14], the

component tree also contains a node for each separating set and it is connected by all the

components which share this separating set. But, here we can ignore this node as we have

only two sharers for each separating set.

In the component tree, each component is shown with all the separating sets it shares

with other components. Thus, a copy of a separating set is present in both its sharer

components. Moreover, in each component, a separating set is shown with a virtual

clique, i.e., a virtual edge for a separating pair and a virtual triangle for a separating
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Figure 7.3: A graph G ∈ 〈Pc〉3 is shown with its component tree. Dotted circles show the
nodes and dotted lines connecting them show the edges of the component tree. Dashed
lines represent virtual edges and dotted triangles represent the virtual triangles, in the
components.

triplet. These virtual cliques represent the paths between the nodes via other components

(see Figure 7.3). If any two vertices in a separating set have a real edge in G, then that

real edge is drawn in one of the sharing components, parallel to the virtual edge. Note that

while a vertex can have its copy in two components, any real edge is present in exactly

one component.

In literature [HT73, TW14], for any real edge in a separating set, the component tree

contains a new node called “3-bond” (a real edge with two parallel virtual edges). But,

here we do not have this node and represent the real edge as mentioned above.

7.5 Nonzero Circulation

In this section, we construct a nonzero circulation weight assignment for a given graph

in the class 〈Pc〉3, provided that the component tree and the planar embeddings of the

planar components are given. Moreover, to construct this weight assignment we will make

some assumptions about the given graph and its component tree.

1. In any component, a vertex is a part of at most one separating set.

2. Each separating set is shared by at most two components.

3. Any virtual triangle in a planar component is always a face (in the given planar

embedding).
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In Section 7.6, we will show how to construct a component tree for a given K3,3-free or

K5-free graph and then to modify it to have these properties. The third property comes

naturally, as the inside and outside parts of any virtual triangle can be considered as

different components sharing this separating triplet. All these constructions are in log-

space. We will not need the bipartiteness assumption in any of these steps. Lemma 7.6 is

the only place where bipartiteness is required.

7.5.1 Components of a Cycle

We look at a cycle in the graph as sum of many cycles, one from each component the

cycle passes through. Intuitively, the original cycle is broken at the separating set vertices

which were part of the cycle, thereby generating fragments of the cycle in various nodes of

the component tree. In all the component nodes containing these fragments, we include

the virtual edges of the separating sets in question to complete the fragment into a cycle,

thus resulting in component cycles in the component nodes (see Figure 7.4).

Consider a directed cycle C = {(v0, v1), (v1, v2), . . . , (vk−1, v0)} in a graph G = (V,E).

Without loss of generality, consider that G is separated into two components G1 and G2

via a separating pair (vi, v0) or a separating triplet (vi, v0, u), where 1 ≤ i < k and u ∈ V .

Then, one of the components, say G1, will contain the vertices vi, vi+1 mod k, . . . , vk−1, v0,

and the other (G2) will contain the vertices v0, v1, . . . , vi−1, vi. Then the cycles C1 =

{(vi, vi+1 mod k), . . . , (vk−1, v0), (v0, vi)} and C2 = {(v0, v1), . . . , (vi−1, vi), (vi, v0)} in G1

and G2 respectively are the component cycles of C, and we say that C is the sum of C1

and C2. Observe that the edges (vi, v0) and (v0, vi) are virtual.

Repeat the processes recursively for C1 and C2 until no separating set breaks a cycle

component, and we get the component cycles of the cycle C. Note that any edge in a

cycle C is contained in exactly one of its component cycles. Moreover for any component

cycle, all its edges, other than the virtual edges, are contained in C.

Observe that for any separating set in a component, a cycle can use one of its vertices

to go out of the component and another vertex to come in (this transition is represented

by a virtual edge in the component). As any separating set has size at most 3, a cycle can
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Figure 7.4: Breaking a cycle into its component cycles (projections) in the component
tree. Notice that the original cycle and its components share the same set of real edges.

visit a node of the component tree only once. In other words, a cycle can have only one

component cycle in any component tree node (this would not be true if we had separating

sets of size 4). Also, a component cycle can take only one edge of any virtual triangle.

Definition 7.12 (Projection of a cycle). For a given component node N in the component

tree, the component cycle of a cycle C in N is called the projection of C on N . If there

is no component cycle of C in N , then C is said to have an empty projection on N .

It is easy to see that for any cycle C, the components on which C has a non-empty

projection, form a subtree of the component tree. To construct the weight assignment

(Section 7.5.2), we will work with the component nodes of the component tree. Within

any component, weight of a virtual edge will always be set to zero. Hence, the following

lemma.

Lemma 7.13. The circulation of a cycle is the sum of the circulations of its component

cycles.

Note that for a cycle, its component cycles can have circulations with different signs

(positive or negative) as they can have different orientations (clockwise or anti-clockwise)

in the planar components. Hence the total circulation can potentially be zero. Our idea

is to ensure that one of the component cycles get a circulation greater than all the other

component cycles put together. This will imply a nonzero circulation.
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7.5.2 Weighting Scheme

The actual weight function we employ is a combination of two weight functions w0 and

w1. They are combined with an appropriate scaling so that they do not interfere with

each other. w1 ensures that all the cycles which are within one component have a non-zero

circulation and w0 ensures that all the cycles which project on at least two components

have a non-zero circulation. We first describe the construction of w0.

Working Tree: The given component tree can have arbitrary depth, while our

weight construction would need the tree-depth to be O(log n). Thus, we define a new

working tree. It is a rooted tree which has the same nodes as the component tree, but

the edge relations are different. The working tree, in some sense, ‘preserves’ the subtree

structure of the original tree.

For a tree S, its working tree wt(S) is constructed as follows: Find a ‘center’ node c(S)

in the tree S and mark it as the root of the working tree, r(wt(S)). Deleting the node c(S)

from the tree S, would give a set of disjoint trees, say {S1, S2, . . . , Sk}. Apply this proce-

dure recursively on these trees to construct their working trees wt(S1),wt(S2), . . . ,wt(Sk).

Connect each wt(Si) to the root r(wt(S)), as a subtree. In other words, make r(wt(Si)) a

child of r(wt(S)) for each Si. This completes the construction. Let us say the component

c(S) shares the separating set τi with Si, then the subtree wt(Si) is said to be attached to

the root r(wt(S)) at τi.

The center nodes are chosen in a balanced way so that the working tree depth is

O(log n). The obvious candidate for a center would be a node whose deletion gives |Si| ≤

1/2|S| for each Si. With this definition of center, it is not clear if the whole working

tree can be constructed in log-space. Choosing the centers more cleverly, von Braunmühl

and Verbeek [vBV83] and later Limaye, Mahajan and Rao [LMR07] gave a log-space

construction of such a balanced tree, but in terms of well-matched strings. Das, Datta

and Nimbhorkar [DDN13] described a way to translate a tree into a well-matched string

and then applied the algorithm of [LMR07] on this string. In Section 7.5.4, we present a

direct log-space construction in terms of a tree.
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Note that for any two nodes v1 ∈ Si and v2 ∈ Sj such that i 6= j, path(v1, v2) in S

passes through the node c(S) = r(wt(S)). Thus, we get the following property for the

working tree.

Claim 7.14. For any two nodes u, v ∈ S, let their least common ancestor in the working

tree wt(S) be the node a. Then path(u, v) in the tree S passes through a.

The root r(wt(S)) of the working tree wt(S) is said to be at level 1. For any other

node in wt(S), its level is defined to be one more than the level of its parent. Henceforth,

level of a node will always mean its level in the working tree. From Claim 7.14, we get

the following.

Claim 7.15. Let S′ be an arbitrary subtree of S, with its set of nodes being {v1, v2, . . . , vk}.

There exists i∗ ∈ {1, 2, . . . , k} such that for any j ∈ [k] with j 6= i∗, vj is a descendant of

vi∗ in the working tree wt(S).

Proof. Let l∗ be the minimum level of any node in S′, and let vi∗ be a node in S′ with

level l∗. We claim that every other node in S′ is a descendant of vi∗ in the working tree

wt(S). For the sake of contradiction, let there be a node vj ∈ S′ which is not a descendant

of vi∗ . Then, the least common ancestor of vj and vi∗ in wt(S) must have a level, strictly

smaller than l∗. By Claim 7.14, this least common ancestor must be present in the tree

S′. But, we assumed l∗ is the minimum level in S′. Thus, we get a contradiction.

This claim plays a crucial role in our weight assignment construction, as for any cycle

C, the components with a non-empty projection of C form a subtree of the component

tree. To assign weights in the graph, we work with the working tree of its component tree.

Let the working tree be T . We start by assigning weight to the nodes having the largest

level, and move up till we reach level 1, that is, the root node r(T ). The idea is that for

any cycle C, its unique lowest-level projection should get a circulation higher than the

total circulation of all its other projections.

Complementary to the level, we also define height of every node in the working tree.

Let the maximum level of any node in the working tree be L. Then, the height of a node

is defined to be the difference between its level and L+ 1.
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Circulations of cycles spanning multiple components: For any subtree T of the

working tree T , the weights to the edges inside the component r(T ) will be given by two

different schemes depending on whether the corresponding graph is planar or constant

sized.

Let the maximum possible number of edges in a constant sized component be m. Then,

let K be a constant such that K > max (2m+2, 7). Also, suppose that the height of a node

N is given by the function h(N), and the number of leaves in subtree T is given by l(T ).

Lastly, suppose the set of subtrees attached at r(T ) is {T1, T2, . . . , Tk}.

Constant sized graph: Let the set of (real) edges of the graph be {e1, e2, . . . , em}.

The edge ej will be given weight 2j ×Kh(r(T ))−1 × l(T ) for an arbitrarily fixed direction.

The intuition behind this scheme is that powers of 2 ensure that sum of weights for any

subset of edges remain nonzero even when they contribute with different signs.

Planar graph: We work with a given planar embedding of the graph. We use some

concepts from Section 7.2. Recall that the circulation of a face is the circulation of the

corresponding cycle in the clockwise direction. Instead of directly assigning edge weights,

we will fix circulations for the inner faces of the graph. Lemma 7.10 already described

how to assign weights to the edges of a planar graph to get the desired circulation for each

of the inner faces.

Assigning circulations to the faces: Here, only those inner faces are assigned nonzero

circulations which are adjacent to some separating pair/triplet shared with a subtree. This

is a crucial idea. As we will see in Lemma 7.16, this ensures that the maximum possible

circulation of a cycle grows only by a constant multiple as we move one level down in the

working tree.

If T is a singleton, i.e., there are no subtrees attached at T , we give a zero circulation

to all the faces (and thus zero weight to all the edges) of r(T ). Otherwise, consider a

separating pair {a, b} where a subtree Ti is attached to r(T ). The two faces adjacent to

the virtual edge (a, b) will be assigned circulation 2×Kh(r(Ti))× l(Ti). Similarly, consider

a triplet {a, b, c} where a subtree Tj is attached. Then all the faces (at most 3) adjacent to
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the virtual triangle {a, b, c} get circulation 2×Kh(r(Tj))× l(Tj). Repeat this procedure for

all the faces adjacent to any pairs and/or triplets where subtrees are attached. If a face

is adjacent to more than one virtual edge/triangle, then we just take the sum of different

circulations due to each virtual edge/triangle.

Recall that by definition, each face has a positive circulation in the clockwise direction.

The intuition behind this scheme is the following: circulation of any cycle in the planar

component is just the sum of circulations of the faces inside it (Lemma 7.8). As all of

them have the same sign, they cannot cancel each other. Moreover, it will be ensured that

the contribution to the circulation from this planar component is higher than the total

contribution from all its subtrees, and thus, cannot be canceled.

Now, we formally show that this weighting scheme ensures that all the cycles spanning

multiple components in the tree get non-zero circulation.

Nonzero Circulation of a cycle: First, we derive an upper bound on the circulation

of any cycle completely contained in a subtree T of the working tree.

Lemma 7.16. The upper bound on the circulation of any cycle contained in a subtree T

of the working tree T is UT = Kh(r(T )) × l(T ).

Proof. We prove this using induction on the height of r(T ).

Base case: The height of r(T ) is 1. Notice that this means that r(T ) has the maximum

level amongst all the nodes in T , and therefore, r(T ) is a leaf node, and T is a singleton.

Consider the two cases: i)when r(T ) is a planar node, and ii)when it is a constant sized

node.

By our weight assignment, if r(T ) is planar, the total weight of all the edges is zero.

On the other hand, if r(T ) is a constant sized graph, the maximum circulation of a cycle

is the sum of weights of its edges, that is,
∑m

i=1(K
0 × 1 × 2i) < 2m+1 ≤ K. Thus, the

circulation is upper bounded by Kh(r(T )) × l(T ) (as l(T ) = 1).

Induction hypothesis: For any tree T ′ with h(r(T ′)) ≤ j − 1, the upper bound is

UT ′ = Kh(r(T ′)) × l(T ′).



104

Induction step: We will prove that for any tree T with h(r(T )) = j, the upper bound

is UT = Kh(r(T )) × l(T ).

Let the subtrees attached at r(T ) be {T1, T2, . . . , Tk}. For any cycle in T , sum of the

circulations of its projections on the subtrees T1, T2, . . . , Tk can be at most
∑k

i=1 UTi .

First, we handle the case when r(T ) is planar. For any subtree Ti, the total circulation

of faces in r(T ) due to connection to Ti can be 6 ×Kh(r(Ti)) × l(Ti). This is because the

circulation of each face adjacent to the separating set connecting with Ti is 2×Kh(r(Ti))×

l(Ti), and there can be at most 3 such faces. Thus,

UT =

k∑
i=1

UTi +

k∑
i=1

(
6×Kh(r(Ti)) × l(Ti)

)
=

k∑
i=1

(
Kh(r(Ti)) × l(Ti)

)
+

k∑
i=1

(
6×Kh(r(Ti)) × l(Ti)

)
= 7×Kh(r(T ))−1 ×

k∑
i=1

l(Ti) (∵ ∀i, h(r(Ti)) = h(r(T ))− 1)

< Kh(r(T )) ×
k∑
i=1

l(Ti) (∵ K > 7)

= Kh(r(T )) × l(T )

Now, consider the case when r(T ) is a small non-planar graph. The maximum possible

contribution from edges of r(T ) to the circulation of a cycle in T is less than 2m+1 ×

Kh(r(T ))−1 × l(T ). Similar to the case when r(T ) is planar, contribution from all subtrees

is at most Kh(r(T ))−1× l(T ). The total circulation of a cycle in T can be at most the sum

of these two bounds, and is thus bounded above by (2m+1 + 1)×Kh(r(T ))−1× l(T ). Since,

K > 2m+2, the total possible circulation is less than Kh(r(T )) × l(T ).

Therefore, the upper bound UT = Kh(r(T )) × l(T ).

To see that each cycle gets a nonzero circulation, recall Lemma 7.13, which says that the

circulation of the cycle is the sum of circulations of its projections on different components.

Consider a cycle C. Recall that components with a non-empty projection of C form a

subtree SC in the component tree. From Claim 7.15, we can find a node v∗ ∈ SC such that

all other nodes in SC are its descendants in the working tree T . Thus, v∗ is the unique
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minimum level component on which C has a non-empty projection. Now, we show two

things: (i) the contribution to the circulation from this component is nonzero, and (ii)it

is larger than sum of all the circulation contributions from all its subtrees in the working

tree.

Let v∗ be the root of a subtree T in the working tree. Let the subtrees attached at

r(T ) (= v∗) be {T1, T2, . . . , Tk} and the separating sets in r(T ) at which they are attached

be {τ1, τ2, . . . , τk} respectively.

Case 1: when r(T ) is a constant-sized component. It is easy to see that the circulation

of any cycle in this component will be nonzero as long as it takes a real edge, because

the weights given are powers of 2. Also, the minimum weight of any edge in r(T ) is

2Kh(r(T ))−1 × l(T ) = 2 ×
∑k

i=1 UTi . Thus, when a cycle takes a real edge, contribution

to its circulation from r(T ) is larger than the contribution from higher level components

(components in the subtrees attached at r(T )). Further, any cycle has to take a real

edge, as the virtual edges and triangles all have disjoint set of vertices. (Here, the virtual

triangle does not count as a cycle).

Case 2: when r(T ) is a planar component. The crucial observation here is that in a

planar graph, all the faces inside a cycle contribute to its circulation in the same orientation

(Lemma 7.8).

Since C passes through at least one of the subtrees attached at r(T ), say Ti, it must

go through the separating set τi. Hence, the projection of C in r(T ), say C ′, must use

the virtual edge (or one of the edges in the virtual triangle) corresponding to τi. This

would imply that at least one of the faces adjacent to τi is inside C ′. This is true for any

subtree Ti which C passes through. As the faces adjacent to separating sets have nonzero

circulations and each face has a positive circulation in clockwise direction, the circulation

of C ′ is nonzero.

Recall that circulation of any face adjacent to τi is 2UTi , where UTi is the upper bound

on circulation contribution from Ti. This implies that the circulation of C ′ will surpass

the total circulation from all the subtrees which C passes through. Thus, we can conclude

the following.
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Lemma 7.17. Circulation of any cycle which passes through at least two components is

nonzero.

Weights from faces to edges: Now, we come back to the question of assigning

weights to the edges in a planar component such that the faces get the desired circulations.

Lemma 7.10 describes this procedure for any planar graph.

The scheme in Lemma 7.10 can assign a weight to any edge, while we are not allowed

to give weights to virtual edges/triangles. So, first we collapse all the virtual triangles

to one node and all the virtual edges to one node. As no two virtual triangles/edges

are adjacent, after this operation, every face remains a non-trivial face (except the virtual

triangle face). Now, we apply the procedure from Lemma 7.10. After undoing the collapse,

the circulations of the faces will not change and we will have the desired circulations.

Circulation of cycles contained within a single component: To construct w1 for

planar components, we assign +1 circulation to every face using Lemma 7.10 (similar to

the case of multiple components). This would ensure nonzero circulation for every cycle

within the planar component. This construction has been used in [Kor09] for bipartite

planar graphs. Tewari and Vinodchandran [TV12] also give a log-space construction which

ensures nonzero circulation for all cycles in a planar graph, using Green’s theorem.

For the non-planar components, w0 already ensures that each cycle has non-zero cir-

culation. Therefore, we set w1 = 0. Use a linear combination of w0 and w1 such that they

do not interfere with each other. This together with Lemma 7.17 gives us the following.

Lemma 7.18. Circulation of any cycle is non-zero.

Polynomially bounded weights: Now, we show that the weight given by this scheme

is polynomially bounded.

Lemma 7.19. The total weight given by the weighting scheme is polynomially bounded.

Proof. The weight w1 is polynomially bounded according to the procedure in Lemma 7.10.
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Consider w0. Observe that the upper bound UT for the circulation of a cycle in T

is actually just the sum of weights of all the edges in constant sized components, and of

all the faces in planar components. By the construction given in the proof of Lemma

7.10, weight of any edge in the planar component is bounded by the sum of circulations

of all the faces. Therefore, UT gives the bound on the weight function w0. Since the

maximum level of any node in T can be at most O(log|T |), the height of r(T ), that is

h(r(T )) = O(log|T |). Also, the total number of leaves in T is at most |T |.

UT = Kh(r(T )) × l(T ) ≤ KO(log|T |) × |T | = |T |O(logK)|T | = |T |O(logK)

If n is the size of the original graph G, then clearly |T | ≤ n. Therefore, UT = O(nO(logK)).

Recall that K is a constant, and thus, w0 is also polynomially bounded.

Since we use a linear combination of w0 and w1, the total weight function is polyno-

mially bounded.

7.5.3 Complexity of the Weight Assignment

Section 7.5.4 gives a log-space construction of the working tree. We use simple log-space

procedures in sequence to assign the weights in the working tree. After construction of the

working tree, we use iterative log-space procedures to store the following for each node: i)

the level of the node, and ii) the number of leaves in the subtree rooted at it. Both just

require a tree traversal while keeping a counter, and can clearly be done in log-space (see

Section 7.1.1). We use another straightforward log-space function to compute height of

every node using the maximum level amongst all the nodes. For each component node of

the working tree, we store a list of all the separating sets in it and corresponding pointers

for the subtrees attached at them.

Next, we iterate on the nodes of the working tree to assign the weights. For every

non-planar component N , we assign a weight of 2i×K(h(N)−1)× l(T (N)) to the i-th edge

of component N , where T (N) is the subtree rooted at N .

For every planar component N , we visit all its virtual edges/triangles. For a given

virtual edge/triangle τi, let Ti be the subtree attached to N at τi. We add a circulation
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of 2 × Kh(r(Ti)) × l(Ti) to all the faces adjacent to τi. Clearly, the procedure works in

log-space. As the last step, we find the weights for the edges which would give the desired

circulations of the faces. Lemma 7.10 shows that it can be done in log-space.

7.5.4 Construction of the Working Tree

Now, we describe a log-space construction of the working tree. The idea is obtained from

the construction of [LMR07, Lemma 6], where they create a O(log n)-depth tree of well-

matched substrings of a given well-matched string. Recall that for a tree S, the working

tree wt(S) is constructed by first choosing a center node c(S) of S and marking it as the

root of wt(S), and then recursively finding the working trees for each component obtained

by removing the node c(S) from S and connecting them to the root of wt(S), as subtrees.

First, consider the following possible definition of the center: for any tree S with n

nodes, one can define its center to be a node whose removal would give disjoint components

of size ≤ 1/2|S|. Finding such a center is an easy task and can be done in log-space.

Clearly, the depth of the working tree would be O(log n). It is not clear whether the

recursive procedure of finding centers for each resulting component can be done in log-

space. Therefore, we give a more involved way of defining centers, so that the whole

recursive procedure can be done in log-space.

First, we make the tree S rooted at an arbitrary node r (see Section 7.1.1). For

any node v, let Sv denote the subtree of S, rooted at v. For any node v and one of its

descendant nodes v′ in S, let Sv,v′ denote the tree Sv \ Sv′ . Moreover Sv,ε would just

mean Sv, for any v. With our new definition of the center, at any stage of the recursive

procedure, the component under consideration will always be of the form Sv,v′ , for some

nodes v, v′ ∈ S. Now, we give a definition of the center for a rooted tree of the form Sv,v′ .

Center c(Sv,v′): case (i) When v′ = ε, i.e., the given tree is Sv. Let c be a node in

Sv, such that its removal gives components of size ≤ 1/2|Sv|. If there are more than one

such nodes then choose the lexicographically smaller one (there is at least one such center

[Jor69]). Define c as the center of Sv,v′ .

Let the children of c in Sv be {c1, c2, . . . , ck}. Clearly, after removing c from Sv, the
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components we get are Sc1 , Sc2 , . . . , Sck and Sv,c. Thus, they are all of the desired form

and have size ≤ 1/2|Sv|.

case (ii) When v′ is an actual node in Sv. Let the node sequence on the path connecting

v and v′ be (u0, u1, . . . , up), with u0 = v and up = v′. Let 0 ≤ i < p be the least index

such that |Sui+1,v′ | ≤ 1/2|Sv,v′ |. This index exists because |Sup,v′ | = 0. Define ui as the

center of Sv,v′ .

Let the children of ui, apart from ui+1, be {c1, c2, . . . , ck}. After removal of ui from

Sv,v′ , the components we get are Sc1 , Sc2 , . . . , Sck , Sui+1,v′ and Sv,ui . By the choice of

i, |Sui,v′ | > 1/2|Sv,v′ |. Thus, |Sv,ui | ≤ 1/2|Sv,v′ |. So, the only components for which

we do not have a guarantee on their sizes, are Sc1 , Sc2 , . . . , Sck . Observe that when we

find a center for the tree Scj ,ε in the next recursive call, it will fall into case (i) and the

components we get will have their sizes reduced by a factor of 1/2.

Thus, we can conclude that in the recursive procedure for constructing the working

tree, we reduce the size of the component by half in at most two recursive calls. Hence,

the depth of working tree is O(log n). Now, we describe a log-space procedure to construct

the working tree.

Lemma 7.20. For any tree S, its working tree wt(S) can be constructed in log-space.

Proof. We just describe a log-space procedure for finding the parent of a given node x in

the working tree. Running this procedure for every node will give us the working tree.

Find the center of the tree S. Removing the center would give many components. Find

the component S1, to which the node x belongs. Apply the same procedure recursively on

S1. Keep going to smaller components which contain x, till x becomes the center of some

component. The center of the previous component in the recursion will be the parent of

x in the working tree.

In this recursive procedure, to store the current component Sv,v′ , we just need to store

two nodes v and v′. Apart from these, we need to store center of the previous component

and size of the current component.

To find the center of a given component Sv,v′ , go over all possibilities of the center,

depending on whether v′ is ε or a node. For any candidate center c, find the sizes of the
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Figure 7.5: Vertex-split: A vertex v is split into three vertices v, v′, v′′, which are connected
by a path. Some of the edges incident on v are transferred to v′′.

components generated if c is removed. Check if the sizes satisfy the specified requirements.

Any of these components is also of the form Su,u′ and thus can be stored with two nodes.

By the standard log-space traversal of a tree (see Section 7.1.1), for any given tree

Sv,v′ , one can count the number of nodes in it and test membership of a given node. Thus,

the whole procedure works in log-space.

7.6 K3,3-free and K5-free Graphs

In this section, we will see that any K3,3-free or K5-free graph falls into the class 〈Pc〉3. We

will show how to construct the desired component tree for any given K3,3-free or K5-free

graph and modify it to satisfy the assumptions made in Section 7.5. All these constructions

are in log-space. As mentioned before, we do not need to assume bipartiteness.

7.6.1 Matching Preserving Operation

Vertex-split: For a graph G, we define an operation called vertex-split, which preserves

matchings, as follows: Let v be a vertex and let X be the set of all edges incident on

v. Let X1 t X2 be an arbitrary partition of X. Create two new vertices v′ and v′′ (see

Figure 7.5). Make the edges (v, v′) and (v′, v′′). We call these two edges as auxiliary

edges. For all the edges in X2, change their endpoint v to v′′. We denote this operation

by vertex-split(v,X1, X2).

Let the modified graph be G′. One can go back to the graph G by identifying vertices

v, v′ and v′′ and deleting auxiliary edges. This operation is matching preserving in the

following sense.

Lemma 7.21. There is a one-one correspondence between perfect matchings of G and G′.
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Figure 7.6: The four-rung Möbius ladder V8.

Proof. Consider a perfect matching M in G, where v is matched with a vertex in X1. It

is easy to see that the matching M ′ := M ∪ {(v′, v′′)} is a perfect matching in G′. The

other case when v is matched with a vertex in X2 is similar.

Consider a perfect matching M ′ in G′. Removing the auxiliary edge from M ′ and

identifying the vertices v, v′ and v′′ will give us a perfect matching in G.

7.6.2 Component Tree

Wagner [Wag37] and Asano [Asa85] gave exact characterizations of K5-free graphs and

K3,3-free graphs, respectively. These characterizations essentially mean that any graph in

these two classes can be constructed by taking 3-clique-sums of graphs which are either

planar or have size bounded by 8. Recall that 〈C〉k denotes the class of graphs obtained

by taking repeated k-clique-sums of graphs starting from the graphs in class C.

Theorem 7.22 ([Asa85]). Let C be the class of all planar graphs together with the 5-vertex

clique K5. Then 〈C〉2 is the class of K3,3-free graphs.

Theorem 7.23 ([Wag37, Khu88]). Let C be the class of all planar graphs together with

the four-rung Möbius ladder V8 (Figure 7.6). Then 〈C〉3 is the class of K5-free graphs.

As mentioned in Section 7.1.2, we can assume that the given graph is biconnected.

It is known that for any given biconnected K3,3-free graph G, its component tree can

be constructed in log-space [TW14, Lemma 3.8]. The components here are all planar or

K5, which share separating pairs. Also, for any given biconnected K5-free graph G, its

component tree can be constructed in log-space [STW14, Definition 5.2, Lemma 5.3]. The
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components here are all planar or V8. They can share a separating pair or a separating

triplet.

The procedure of [TW14, STW14] for computing the component tree goes on the

following lines: As the graph is assumed to be biconnected, there are no articulation

points. First step is to find all separating pairs and triplets. To do this, go over each pair

and triplet of vertices and test whether its deletion makes the graph disconnected. To find

the components of the component tree, go over all pairs of vertices (u1, u2): u1 and u2

will be in different components if after deletion of some separating pair/triplet, there is no

path between u1 and u2. Otherwise they will be in the same component of the component

tree. Note that it is possible that u1, u2 belong to the same component and u2, u3 belong

to the same component but u1, u3 do not. It is easy to find which components share a

separating pair/triplet with each other. There is a special treatment for the components

which are just cycles, because in a cycle, almost every pair is a separating pair. They keep

the cycle as one component instead of splitting it at every separating pair.

As connectivity can be tested in log-space [Rei08], the above procedure works in log-

space. Moreover, a planar embedding of a planar component can be computed in log-space

[AM04, Rei08].

The component tree defined in [TW14, STW14] slightly differs from our definition in

Section 7.4.2. They have an extra component for each separating set. This component

is connected to all the components which share this separating set. Moreover, whenever

there is a real edge between two nodes of a separating set, it is represented by a 3-bond

component (one real edge and two parallel virtual edges). The 3-bond component is also

connected to the corresponding separating set node. For our purposes, these two kinds of

components are not needed.

For any given biconnected K3,3-free graph or K5-free graph G, we start with the

component tree which is constructed by [TW14, STW14]. We show how to modify the

component tree, in log-space, to have the assumptions made in Section 7.5.

Applying the clique-sum operations on the modified component tree will give us the

actual modified graph G′. We will argue that all these modifications in G are just repeated
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application of the vertex-split operation (Lemma 7.21) in G. Thus, these are matching

preserving. As mentioned earlier, from a perfect matching in G′, one can get a perfect

matching in G by just deleting the auxiliary vertices and edges created in the vertex-split

operations.

We emphasize here that these operations might create some new pairs/triplets in the

graph G′ such that their removal will make the graph disconnected. But, we do not con-

sider these new pairs/triplets as separating sets. By a separating pair/triplet we only mean

those pairs/triplets which are shared by different components in the original decomposition

of G.

(i) Removing “3-bond” components: For all the 3-bond components we do the

following: Remove the 3-bond component. Let τ be the separating set and Cτ be the

corresponding node in the component tree, where this 3-bond component is attached (a

3-bond component is always a leaf). Take an arbitrary component attached to Cτ . This

component will have a virtual clique for τ . Make an appropriate real edge parallel to the

existing virtual edge, in this virtual clique corresponding to τ . Note that if this component

was planar, it will remain so. Moreover, it is easy to adjust the planar embedding. Clearly,

this operation can be done in log-space. This does not change the actual graph G in any

way.

(ii) Any separating set is shared by at most two components: Let τ be a sepa-

rating set shared by m components G1, G2, . . . , Gm. Let the cardinality of τ be t (t can

be 2 or 3). Let us define a gadget M as follows: it has three sets of nodes {ai | 1 ≤ i ≤ t},

{bi | 1 ≤ i ≤ t}, {ci | 1 ≤ i ≤ t}. For each i, connect ai with bi by a length-2 path and

also connect ai with ci by a length-2 path. Make 3 virtual cliques each of size t, one each

for nodes {ai}i, {bi}i and {ci}i. Thus, three components can be attached with M .

Now, we construct a binary tree T which has exactly m−1 leaves. Replace leaves of T

with components G2, G3, . . . , Gm. Replace all other nodes of T with copies of the gadget

M . Further, make an edge between component G1 and the root of T (see Figure 7.7). In

this binary tree, any node of type M (gadget) shares its separating set {ai}i with its parent
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Figure 7.7: (a) A separating pair 〈u, v〉 is shared by four components G1, G2, G3, G4. (b)
Copies of 〈u, v〉 connected by length-2 paths, to form a binary tree. Different copies are
shared by different components.

node, {bi}i with its left child node and {ci}i with its right child node. The components

G2, G3, . . . , Gm share their copy of τ with their respective parent nodes in the tree T . The

component G1 shares its copy of τ with the root node of T .

Doing this procedure for every separating set will ensure that every separating set is

shared between at most two components. Moreover, now there is no extra component for

the separating set, and the components which share a separating set are joined directly

by an edge. A binary tree with m− 1 leaves can be easily constructed in log-space (Take

nodes {x1, x2, . . . , x2m−3}, xi has children x2i and x2i+1). All the other operations here

are local like deleting and creating edges and changing vertex labels. Thus it can be done

in log-space.

Now, we want to argue that this operation is matching preserving for the actual graph

G. Let us view this operation as a repeated application of the following operation: Par-

tition the set of components {G2, G3, . . . Gm} in two parts, say G′1 and G′′1. Now, take a

copy of the gadget M and connect it to all three components G1, G
′
1 and G′′1. M shares

its separating sets {ai}i, {bi}i and {ci}i with G1, G
′
1 and G′′1 respectively. In the actual

graph G, this operation separates the edges incident on a vertex in τ into three parts:

edges from G1, G
′
1 and G′′1 respectively. These three sets of edges are now incident on
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Figure 7.8: (a) Vertex a is a part of two separating pairs 〈a, d〉 and 〈a, e〉 and a separating
triplet 〈a, b, c〉. (b) Vertex-Split is applied on vertex a, 3 times, to split it into a star. The
new separating sets are 〈a1, b, c〉, 〈a2, d〉 and 〈a3, e〉.

three different copies of the vertex. Moreover, the first copy is connected to the other two

copies via a length-2 path. Hence, it is easy to see this as applying vertex-split operation

(Lemma 7.21) twice. Now, we recursively do the same operation after partitioning the set

of components G′1 and G′′1 further. Thus, the whole operation can be seen as a vertex-split

operation applied many times in the actual graph G.

Instead of a binary tree we could have also taken a tree with one root and m−1 leaves.

This operation would also be matching preserving but the component size will depend on

m. On the other hand, in our construction the new components created have size at most

15 (number of real edges is bounded by 12). Thus, the graph G′ remains in class 〈Pc〉3.

(iii) Any vertex is a part of at most one separating set: Let a be vertex in a

component C, where it is a part of separating sets τ1, τ2, . . . , τm. We apply the vertex-split

operation (Lemma 7.21) on a, m times, to split a into a star. Formally, create a set of m

new nodes a1, a2, . . . , am. Connect each ai with a by a path of length 2. For each i, replace

a with ai in the separating set τi. Let the updated separating set be τ ′i . The edge in the

component tree which corresponds to τi, should now correspond to τ ′i . Any real edge in

the component C which is incident on a, remains that way (see Figure 7.8). Clearly, doing

this for every vertex in all the components will ensure that every vertex is a part of at

most one separating set.

It is easy to see that a planar component will remain planar after this operation. The

modification of the planar embedding and other changes here are local and can be done

in log-space.
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Now, we want to argue that this operation is matching preserving. Let us see how

does this operation modifies the actual graph G. Let Ci be the component which shares

τi with C. Removal of τi would split the graph G into two components, say G′i and G′′i ,

where G′i is the one containing C. The above operation means that any edge in G′′i which

was incident on a, is now incident on ai instead of a. As each ai is connected to a by

a length-2 path, this operation can be seen as a repeated application of the vertex-split

operation (Lemma 7.21). Thus, this operation is matching preserving.

Increase in the size of non-planar components: After this operation, the size of each

component will grow. Let us find out the new bound on the size of constant-sized graphs.

For a K3,3-free graph, all non-planar components are of type K5. Moreover, they are only

involved in a 2-clique-sum. Hence, it can have at most
(
5
2

)
= 10 separating pairs. In this

case, each vertex is a part of four separating pairs. Thus, each vertex will be split into a

4-star, creating 8 new vertices and 8 new edges. Totally, there will be 45 vertices and 40

real edges. Additionally, there can be some already existing real edges, at most 10. Thus,

the total number of edges is bounded by 50.

For a K5-free graph, all the non-planar components are of type V8. Note that V8 does

not have a 3-clique, thus, can only be be involved in a 2-clique-sum. In the worst case,

it will have 12 separating pairs. Each vertex will be a part of 3 separating pairs. Hence,

each vertex will be split into a 3-star, creating 6 new vertices and 6 new edges. Totally,

there will be 56 vertices and 48 edges. Thus, together with already existing real edges,

total number of real edges is bounded by 60.

(iv) A separating triplet in a planar component already forms a face: If a

separating triplet does not form a face in a planar component, then the two parts of

the graph – one inside the triplet and the other outside – can be considered as different

components sharing this triplet. In fact, the construction in [STW14] already does this.

When they decompose a graph with respect to a triplet, the different components one gets

by deleting this triplet are all considered different components in the component tree.
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7.7 Discussion

One of the open problems is to construct an isolating weight assignment for a more general

class of graphs, in particular, for all bipartite graphs. Note that nonzero circulation for

every cycle is sufficient but not necessary for constructing an isolating weight assignment.

Although existence of an isolating weight assignment can be shown by randomized argu-

ments, no such arguments exist for showing the existence of a nonzero circulation weight

assignment. It needs to be investigated whether it is possible to achieve a nonzero circu-

lation for every cycle (with polynomially bounded weights) in a complete bipartite graph.

Log-space construction of such a weight assignment would imply that Bipartite Perfect

Matching is in NC and answer the NL=UL? question.

Like K3,3-free or K5-free graphs, small genus graphs are another generalization of

planar graphs for which Count-PM is in NC [GL99, KMV08]. Thus, Search-PM for

small genus bipartite graphs is in NC [KMV08]. Can we do a log-space isolation of a

perfect matching for these graphs?

The isolation question is also open for general planar graphs. In fact, planar graphs

do not have any NC algorithm for Search-PM, via isolation or otherwise. On the other

hand, counting the number of perfect matchings in a planar graph is in NC. It is surprising,

as counting seems to be a harder problem than isolation.





Chapter 8

Conclusion

This thesis makes an incremental progress on the derandomization question for two prob-

lems: polynomial identity testing and parallel algorithms for matching.

For polynomial identity testing, one of our main contributions is the concept of basis

isolation (Chapter 3). We show that basis isolation for polynomial D over an algebra

implies isolation of a monomial in the corresponding polynomial C = 1 ·D over the field.

As seen in Chapter 5, basis isolation not only implies a hitting-set but also gives low-

support rank-concentration. An open question is whether we can do basis isolation for

ROABPs in polynomial time. To do this, one must avoid the divide and conquer approach

(Lemma 3.6). Another question is to find if the basis isolation approach can work for other

circuit models, especially for depth-3 multilinear circuits.

Another novelty we add is the use of a polynomial map to get a hitting-set for known-

order ROABP (Chapter 5). In all the previous approaches on ROABPs and set-multilinear

circuits, the final map used might have been a polynomial map but at the lowest level, the

basic map used was a monomial map, i.e., a variable is mapped to a univariate monomial.

We have made significant progress on ROABPs and its special cases, but a polynomial

time hitting-set is still elusive. The following are the simplest models for which finding a

polynomial time hitting-set is open.

• Read-once formulas
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• Diagonal circuits

• Basic set-multilinear circuits (
∑

i bi
∏
j(1 + aijxi))

As discussed before, our result on ROABPs with known variable order was inspired

from one of the PRG constructions for ROBPs. It would be interesting to find more

concrete connections between hitting-sets for ROABPs and PRGs for ROBPs.

For bipartite matching, we made some progress on derandomizing the isolation lemma.

We showed that the approach of nonzero circulation, which was used for bipartite planar

graphs, also works for K3,3-free or K5-free bipartite graphs. The next class of graphs,

for which one can hope that the same approach would work, is O(log n)-genus bipartite

graphs.

The big open question is to isolate a matching in a bipartite graph. It is not at all

clear if a nonzero circulation for each cycle can be achieved in a general bipartite graph.

It would be interesting to show that this is not possible for the complete bipartite graph.
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