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Polynomial Identity Testing of Non-Commutative Circuits

by Anagha G

The algebraic model of computation has gained a lot of attention in the past few decades,

both due to simplicity and connections to open problems in boolean circuit complexity.

The problem of Polynomial Identity testing is very important due to far reaching connec-

tions with problems like primality testing, multivariate factorization. Identity testing is

the problem of testing whether the given arithmetic circuit computes the zero polynomial

identically. It is also interesting to study because so far we only have a BPP algorithm for

PIT. Derandomizing PIT is a long standing open question, and has strong implications

for lower bounds.

The motivation of this thesis is to obtain a randomized Polynomial Identity Testing

Algorithm for some restricted classes of non-commutative arithmetic circuits with expo-

nential degree. Although we have an efficient randomized algorithm for non-commutative

arithmetic circuits with bounded degree, obtaining an algorithm for the exponential degree

case remains a long standing open question.

We consider the Non-Commutative PIT problem in the black-box setting, wherein we

are not allowed access to the internal structure of the circuit, but can only evaluate the

circuit at different points. We direct our focus towards the non-commutative Algebraic

Branching Programs (ABPs)

The study of sparse black-box PIT by Arvind et al, and rank concentration ideas first

introduced by Saxena et al motivate us to hypothesize rank concentration for non-

commutative circuits.

http://www.bits-pilani.ac.in/
http://www.bits-pilani.ac.in/
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Chapter 1

Introduction

1.1 Introduction

Computers are now integral to nearly every aspect of modern life, performing a vast array

of tasks across science, industry, and everyday decision-making. At the heart of this

computational power lies the design and analysis of algorithms: structured, rule-based

procedures that solve problems efficiently.

Yet, computers are constrained by time and memory, and not all problems are equally easy

to solve. Computational Complexity Theory abstracts away from implementation details

to study the intrinsic difficulty of problems, classifying them based on the resources—such

as time, space, or randomness required to solve them.

To provide a universal and rigorous foundation, complexity theory typically uses the

Turing machine as its canonical model of computation. This model allows us to define

well-known complexity classes such as:

• P: problems solvable in deterministic polynomial time,

• NP: problems for which solutions can be verified in polynomial time.

The central open question of the field, “Does P = NP?”, encapsulates the mystery of

whether every efficiently verifiable problem can also be efficiently solvable.

1



Chapter 1. Intro 2

As the field has matured, new resources such as non-determinism, randomness, interaction,

and communication have been incorporated into the theory, leading to a broader and

richer landscape of computational models.

Beyond Turing machines, other computational models, such as probabilistic Turing

machines and Boolean circuits, classify problems based on their specific resources.

Among these, a particularly elegant and powerful framework emerges when we consider

algebraic computation, where the inputs and outputs are polynomials rather than binary

strings. In this setting, the natural computational model is the arithmetic circuit, which

captures how polynomials can be built using operations like addition and multiplication.

Algebraic models offer a rich interplay between algebra, geometry, and computation. They

allow us to ask structural questions about polynomials, leading to a deeper understanding

of computational hardness.

1.2 Algebraic Complexity Theory

In this thesis, we will study problems of an algebraic nature. Informally, an algebraic

problem is one where the inputs are elements of a field (such as Q,R, or Fp), and the task

is to compute or decide some algebraic property of the input,often involving polynomials.

Polynomials play a central role in algebraic complexity theory. Many natural questions

about polynomials, such as factorization, equivalence, or identity testing, are both mathe-

matically rich and computationally meaningful. This thesis will focus on one of the most

fundamental of these: Polynomial Identity Testing (PIT), the problem of checking whether

a given polynomial is identically zero.

Algebraic Complexity Theory is a subfield of computational complexity theory that studies

the complexity of algebraic problems, especially those involving multivariate polynomials.

It seeks to understand how efficiently polynomials can be computed and how structural

properties of polynomials relate to computational resources.

In this context, the most natural model of computation is the arithmetic circuit. Just as

Boolean circuits compute functions over {0, 1}n, arithmetic circuits compute polynomials

over a field F. An arithmetic circuit is a directed acyclic graph where internal nodes
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(gates) compute either addition or multiplication, and the leaves are labeled by variables

or field constants.

Arithmetic circuits allow us to study complexity questions such as:

• How large (or deep) does a circuit need to be to compute a given polynomial?

• Are there families of polynomials that require super-polynomial size to compute?

• Can we efficiently determine whether a given circuit computes the zero polynomial?

These questions form the heart of algebraic complexity theory and are deeply connected to

some of the biggest open problems in theoretical computer science, such as the algebraic

analog of P ̸= NP (the VP vs VNP conjecture).

This thesis will focus particularly on the PIT problem, and explore its connections to

restricted models of arithmetic circuits- especially in the non-commutative setting.

1.3 Polynomial Identity Testing

Among the various problems studied in algebraic complexity, one particularly central and

well-studied question is Polynomial Identity Testing (PIT)- the task of determining whether

a given arithmetic circuit computes the zero polynomial. PIT has deep connections to

circuit lower bounds, derandomization, and algebraic proof systems. While the general

case remains open, many restricted models admit efficient (sometimes even deterministic)

PIT algorithms. In this thesis, we will explore PIT in the context of non-commutative and

structured arithmetic circuits, with a focus on understanding both their computational

power and the complexity of testing identities within them.

1.4 Organization of the Thesis

In Chapter 2, we cover the necessary preliminaries and basic definitions. Chapter 3

introduces the reader to basic concepts in non-commutative algebra and the theory
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of Polynomial Identity Algebras. Chapter 4 presents a structural result about non-

commutative rational functions. Chapter 5 introduces the problem of Polynomial Identity

Testing (PIT). Chapter 6 surveys recent advances in PIT in the non-commutative setting.

Chapter 7 discusses the Rank Concentration framework introduced by Agrawal, Saha,

and Saxena, which serves as an inspiration for our work. Chapter 8 describes our attempt

to adapt the rank concentration idea for the non-commutative setting. Finally, Chapter 9

presents the conclusion and some open problems.



Chapter 2

Preliminaries

In this chapter, we introduce some notation that will be used in further chapters, as well

as preliminary material required to digest the contents of the thesis. We also direct the

reader to additional material wherever necessary.

2.1 Notation

• We use F[x1, x2, · · ·xn] to denote the ring of polynomials over field F.

• We use F⟨x1, x2, · · · , xn⟩ to denote the free algebra of non-commuting polynomials.

Here, the monomials can be interpreted as words over F⟨x1, x2, · · · , xn⟩ .

• Let m be a monomial and f be a polynomial. The coefficient of m in f is denoted

by coeffm(f)

• The set of all monomials in f such that coeffm(f) ̸= 0 is called the support of f .

• The cardinality of support of f is called its sparsity. In other words, it is the number

of non-zero monomials in f .

2.2 Model of Computation

We fix an underlying field F.

5
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Arithmetic circuits are a standard model for computing polynomials. More formally, an

arithmetic circuit C over F and the set of variables x̄ = {x1, x2. · · ·xn} is a directed acyclic

graph with a unique sink- the output gate. The nodes of the graph are called gates. The

in-degree of a gate is called fan-in and the out-degree its fan-out.

Each of the source vertices (the input gates which have fan-in 0 are labelled by either

variables or field constants. All the other internal nodes are labelled either by +’ or ′×′

and perform addition or multiplication over F. The edges of the graph are called wires,

which may carry weights from F. Wires without labels are assumed to have weight 1.

Each gate can be recursively interpreted as computing a polynomial:

• Input gates compute their own label (a variable or constant).

• A + or × gate computes the sum or product (respectively) of the polynomials

computed by its children, multiplied by the constants on the incoming wires.

We assume without loss of generality that the circuit is layered- that is, wires only connect

gates between successive layers. Additionally, we assume the circuit alternates between +

and × layers. Note that one can always restructure the circuit to have this form..

An arithmetic circuit is called a formula if every internal gate has fan-out one. In other

words, the DAG is a tree. A homogeneous arithmetic circuit is one in which every gate

computes a homogeneous polynomial.

f(x, y, z) = (x+ y)× z

x y z

+

×

Figure 2.1: A simple arithmetic circuit for the polynomial P (x) = (x+ y)× z.

Note that the arithmetic circuit computing P (x) is also an arithmetic formula.

The following are some parameters associated with arithmetic circuits:
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1. The size of an arithmetic circuit is the number of nodes (and edges) in the circuit

2. The depth of an arithmetic circuit is the length of the longest directed path from

the root (the output gate) to any leaf node.

The syntactic degree of the polynomial is the highest degree of any monomial computed

by the circuit at any gate. The degree of the circuit is the syntactic degree of the

polynomial computed at the output gate. We can compute this by computing the degree

at each node in a recursive fashion. Note, that the syntactic degree might not be the same

as the actual degree of the polynomial due to cancellations. For instance, if f = xy − yx,

then the syntactic degree is 2, whereas the degree of the computed polynomial is actually

0.

Thus, arithmetic circuits are a concise way of representing polynomials. A polynomial

that is computed by a size s arithmetic circuit can have degree 2O(s). For example, the

circuit computing x2s has a size O(s) circuit by virtue of repeated squaring.

2.3 Non-Commutative Arithmetic Circuits

We are interested in a variant of the standard arithmetic circuit model: non-commutative

arithmetic circuits. The study of non-commutative computation was introduced by

Hyafil [Hya77] and later developed in more detail by Nisan [Nis91].

These circuits compute polynomials over the free non-commutative algebra F⟨x1, x2, · · · , xn⟩,
where the variables do not commute-in general, xy ̸= yx.

Restrictions on arithmetic circuits can arise in different ways. One natural way is via the

interpretation of the circuit: in the non-commutative setting, we assume the variables live

in a non-commutative world. This is implemented by assigning a left and right label to

the children of each multiplication gate and computing accordingly.

If the circuit has size s, the degree of the computed polynomial can be as large as 2s,

and the number of distinct monomials can be up to 22
s
-highlighting how expressive such

circuits can be, even with small size.
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Such circuits allow for fewer algebraic cancellations, making the computation inherently

harder. This increased rigidity turns out to be a strength: non-commutative models are

better understood from a lower bounds perspective, and have led to several strong results

that remain out of reach in the commutative setting.

2.4 Algebraic Branching Programs

While trying to prove lower bounds for non-commutative formulas, Nisan [Nis91]introduced

the Arithmetic Branching Program (ABP) model.

Definition 2.1. An ABP over a field F is a directed acyclic layered graph along with a

vertex set V and an edge set E = E1 ⊔ E2 ⊔ · · · ⊔ Ed, where Ei ⊆ Vi−1 × Vi, along with

a set of labels L1, L2, . . . , Ld such that each Li : Ei → F[x]. Each label is a linear or

constant polynomial in F[x].

We define the label as a function

L : E → F[x]

L|Ei
= Li

• The vertices are thus partitioned into q + 1 layers, including the source and the sink.

• Each edge e goes from layer Vi−1 to a layer Vi for some i ∈ [q], and is labelled with

an element from Li

The polynomial computed by an ABP is now of the form
∑

γ∈path(s,t)

∏
e∈p

L(e)

We can define the following parameters for an ABP:

• width (w) = maxi |Vi|

• The size of the ABP is the number of vertices = w2q.

Given above is a simple 2 layered ABP computing the polynomial x1x3x7 + x1x5x8 +

x2x4x7 + x2x6x8.
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s

v1

v2

w1

w2

t

x1

x2

x3

x4

x5

x6

x7

x8

Figure 2.2: A 2-layered Algebraic Branching Program (ABP)

IMM Representation

ABPs are equivalent to the model of Iterated Matrix Multiplications (IMMs). This follows

from the fact that the sum over all paths in a graph can be represented by an iterated

matrix multiplication. Suppose the set of nodes in some layer Vi is {vi,j : j ∈ [w]}. Then
the polynomial computed by the ABP is the same as the polynomial computed by c⊺Fd,

where c, d ∈ Fw×1 and F =
∏q

i=1 Fi, where each Fi is a w × w matrix for 1 ≤ i ≤ q.

Since then, various specializations of the ABP model have emerged, such as the Read-Once

Algebraic Branching Program (ROABPs)- which are ABPs wherein the edge weights in

different layers are univariate polynomials in distinct variables, and commutative ROABPs.

2.5 Set Multilinear Circuits

Set multilinear circuits are a subclass of ROABPs. More precisely, they are circuits of the

form

C(x) =
∑k

i=1

∏q
j=1 lij(xj)

where x1, x2, . . . , xq are disjoint sets of variables and each lij(xj) is a linear polynomial in

xj for each i and j.

Hadamard Product representation

A polynomial f(x), which can be represented by a set multilinear circuit can be seen as

a polynomial over the Hadamard algebra using a suitable dot product. This property
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was heavily used by [ASS13] to develop a deterministic black-box PIT for set-multilinear

circuits. We will see a short overview of this in 6.



Chapter 3

Non-Commutative Algebra: A

Primer

3.1 Some Basic (Non-Commutative) Algebra

Wedderburn-Artin Theory forms a very central part of non-commutative ring theory.In

this chapter we introduce some important definitions and results in non-commutative

algebra which will mostly be used in Chapter 4. Throughout this chapter and the next,

we mostly follow TY Lam’s book [Lam01], Drensky and Formanek’s notes [DF04], Artin’s

book [Art11] and notes [Art99] . Let K be an infinite field.

Notes

• A ring refers to a not-necessarily commutative ring with unity. We denote a ring by

the symbol R usually.

• A subring of a ring R is a subset of R that in itself is a ring with unity.

• An ideal I of R refers to a two-sided ideal of R.

• Two sided ideals- quotient rings- subjective homomorphism

• Let A be a commutative ring. An A-algebra is a ring R along with a homomorphism

from A to Z(R).

11
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• Let R be a non-commutative ring. Then R⟨x1, . . . , xn⟩ is called a free associative

algebra in R over n variables.

Simple Rings

Let R( ̸= 0) be a ring. R is a simple ring if it has no non-trivial two sided ideals; that is,

it is doesn’t have any two-sided ideals apart from 0 and R. This means that ∀r(̸= 0) ∈ R,

the ideal generated by r is R. However, one can observe that a simple ring may have have

no non-trivial right ideals but may have non-trivial left ideals, for example, the matrix

ring. One can observe the following:

1. R( ̸= 0) is a simple ring if and only if there exists an equation
∑

biaci = 1 for

appropriate bi, ci ∈ R.

2. The center of a simple ring is a field.

3. (Corollary) R is simple if and only if R is a field, in case R is commutative.

Definition 3.1 (Dimension). Let R be a simple ring with the center F . Then dimF R = D

is simply the vector space dimension of of R over F.

Prime Rings

The notion of primeness can be extended to the non-commutative setting.

Definition 3.2 (Prime Ring). Let R be a non-commutative ring. Let a, b ∈ R such that

aRb = {0}. Then R is prime if and only if a = 0 or b = 0.

A non-commutative ring is said to be prime if and only if the zero ideal is a prime ideal.

Equivalently,

1. All non-zero right ideals are faithful as right R-modules

2. All non-zero left ideals are faithful as left R-modules
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Recall that a module M over a ring R is said to be faithful if ∀a, b ∈ R, ∃m ∈ M such

that am ̸= bm.

We will make use of the following facts:

1. Any domain is a prime ring

2. Any simple ring is a prime ring

3. Any matrix ring over an integral domain is prime

Algebras

We can make some quick analogous definitions for algebras. Let k be a field.

• A k-algebra is an associative k−algebra with unity. It is not necessarily commutative.

• A k-algebra is called simple if it has no proper two-sided ideals apart from (0).

• A k-algebra A is said to be central if Z(A) = k.

• If A is simple as well, then it called a central simple algebra.

• A k-algebra D is called a division algebra if every non-zero element has a multiplica-

tive inverse.

3.2 Polynomial Identity Algebras

In this section, we present the basic ideas in the theory of Polynomial Identity Rings

(PI-Rings). As earlier, let R be a not-necessarily commutative ring with unity 1. Further,

we assume all ring homomorphism are unitary: units map to units.

Definition 3.3 (Polynomial Identity). Let A be a commutative ring, and let R be an

A-algebra. Let f(x1, x2, · · · , xn) ∈ A⟨X⟩. Then f is said to be a polynomial identity for

R if f(r1, r2, · · · , rn) = 0 ∀r1, r2, · · · , rn ∈ R

If the algebra R satisfies a non-trivial polynomial identity f = 0, then R is called a

PI-Algebra
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Some Examples

1. Every commutative ring satisfies [x, y] = xy − yx.

2. The free algebra K⟨X⟩ does not satisfy any polynomial identity

3. Any boolean algebra satisfies x2 − x

4. M2(K) satisfies the Hall Identity: [[x, y]2, z] = (xy − yx)2z − z(xy − yx)2

3.2.1 T-Ideals

Definition 3.4 (T-Ideal). The set T (R) of all polynomial identities of R is a two sided

ideal of A⟨X⟩ and is called the T-Ideal of R.

One can observe that T-ideals are invariant under substitutions from A⟨X⟩. They are also

thus closed under A-endomorphisms, since any substitution can be seen as an A-algebra

endomorphism.

Definition 3.5 (Primitive Ring). A ring R is said to be (left) primitive if it has a simple

faithful left R-module

Analogously one can define right primitive rings.

Some examples and properties

1. Every simple ring is both left and right primitive

2. A commutative ring is primitive if and only if it is a field

3. A division ring is always a primitive ring

4. K⟨X⟩ is a primitive ring.

5. K[X] is not a primitive ring because it is not a field, from (2)

Definition 3.6 (Proper polynomial). A polynomial f is said to be proper if some coefficient

in the highest degree homogeneous component of f is equal to 1.
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Definition 3.7 (PI-algebras and PI-rings). Let A be a commutative ring and let R be an

A-algebra. Suppose there is a proper polynomial f ∈ A⟨X⟩ such that f is a polynomial

identity for R. Then,

1. R is said to be a Polynomial Identity Algebra (PI-algebra) over A.

2. If A = Z, then R is said to be a Polynomial Identity Ring (PI-ring).

We state the following theorem from combinatorial PI theory [Ami71].

Theorem 3.8. A PI-ring always satisfies a multilinear proper PI

Suppose a proper polynomial f is a polynomial identity for some A-algebra R. Then,

there exists a proper multilinear polynomial g, with the same degree of f , which is also an

identity for R.

In other words, a PI-ring always satisfies some multilinear proper polynomial identity. We

use this to prove the following corollary, which comes of use later.

Corollary 3.9. Suppose R is a PI-ring, then so is R[T ], where T is a set of central

indeterminates over R

Proof. By Theorem 3.8, R satisfies some multilinear proper polynomial f(x1, x2, · · · , xn) ∈
Z⟨X⟩ . Since f is multilinear, any evaluation of f on R[T ] can be written as a sum of

evaluations where each variable is replaced by a product of the form riµi, where ri ∈ R

and µi is a monomial in T . Due to multilinearity, this decomposes in a clean fashion

as: f(r1µ1, . . . , rnµn) = f(r1, . . . , rn) · µ1 · · ·µn. But R satisfies the identity f , and thus

f(r1, · · · , rn) = 0 and so f(r1µ1, . . . , rnµn) = 0.

And hence f is also a PI for R[T ].

3.3 Amitsur-Levitzki Theorem

Definition 3.10 (Standard Polynomial). The Standard Polynomial of degree n is
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sn(x1, · · · , xn) =
∑

{sgn(σ)xσ(1) · · ·xσ(n) : σ ∈ Sn}

The standard polynomial is a multilinear and alternating polynomial (over all its variables).

Idempotents

The proof presented below uses some new terminology that we introduce here. Let R be a

ring.

1. An idempotent of R is an element r ∈ R such that r2 = r.

2. Let a and b be two idemptotent elements. They are said to be orthogonal if

ab = 0 = ba.

3. Let a ∈ R be an idempotent. a is called centrally idempotent if ∀r ∈ R, ar = ra.

Equivalently, a ∈ Z(R).

4. A primitive idempotent of R is then a nonzero idempotent a ∈ R such that aR

cannot be written as a direct sum of two non-zero submodules. Equivalent, ∄e, f ,

which are nonzero orthogonal idempotents such that a = e+ f .

5. 0 and 1 are trivially idempotent

We also need a few properties of the standard polynomial.

Lemma 3.11. The following are some properties of the standard polynomial sn. Use x′
i

to indicate that xi variable is deleted from the input.

1. sn+1(x1, · · · , xn+1) =
∑

±x1sn(x1, · · · , x′
i, · · · , xn+1)

2. sn(. . . , xi, . . . , xj, . . . ) = −sn(. . . , xj, . . . , xi, . . . )

3. s2n(1, x2, . . . , x2n) = 0

4. sn+1(x1, x2, . . . , xn+1) =
∑

±x1sn(x1, . . . , x
′
i, · · ·xn+1)

Proof. 1. We essentially want to show that if an algebra A satisfies sn, it also satisfies

sn+1. Observe that
∑

±x1sn(x1, · · · , xi, · · · , xn+1) is equal to the sum of those

terms in sn+1(x1, · · · , xn+1) that have xi on their left.



Chapter 3. Non-Commutative Algebra 17

2. We want to show that swapping two variables in sn only changes the sign. Consider

the transposition τ = (I, j) ∈ Sn that swaps i and j. Observe that swapping two

variables is equivalent to composing each permutation σ with the transposition τ

applied to the inputs. Hence

sn(. . . , xj, . . . , xi, . . . ) =
∑

σ∈Sn
sgn(σ)xτ(σ(1)) · · ·xτ(σ(n))

See that σ 7→ τ ◦σ is a bijection of Sn onto itself. Change variables due to invertibility:

sgn(σ) = sgn(τ ◦ σ′) = sgn(τ)sgn(σ′).

By substitution, xτ(σ(1)) · · ·xτ(σ(n)) = xσ′(1) · · ·xσ′(n)

Thus,

sn(x1, . . . , xj, . . . , xi, . . . ) =
∑
σ′∈Sn

sgn(τ) sgn(σ′)xσ′(1) · · · xσ′(n)

= sgn(τ)
∑
σ′∈Sn

xσ′(1) · · ·xσ′(n)

= sgn(τ)sn(x1, . . . , xn)

(3.1)

As τ is a transposition, sgn(τ) = −1 and the assertion holds.

3. Note that for each ordering of x2, . . . , x2n, 1 can be placed in 2n positions, of which

half evaluate to positive and half to negative. So everything cancels out.

4. The RHS
∑

±x1sn(x1, . . . , x
′
i, · · ·xn+1) is equal to the sum of those terms in the

LHS that start with x1 (to the left). Hence the assertion follows.

Lemma 3.12. 1. Let s′′′ be the sum of the terms in sn(x1, . . . , xn) in which the product

x1x2x3 occurs. Then s′′′ = sn−2(x1x2x3, x4, · · · , xn)

2. Use x′
i to indicate that xi variable is deleted from the input. Let s′′ be the sum

of the terms in sn(x1, . . . , xn) in which the product x1x2 occurs. Then s′′ =

±sn−2(x3, x4, · · · , xn)x1x2 +
∑n

3 (±)sn−2(x1x2xi, x3, . . . , x
′
i, . . . , xn)

Proof. 1. We need to confirm whether the terms in s′′′ and (x1x2x3, x4, · · · , xn) that

correspond to each other have the same sign. To see this, we study the number of

transpositions. In s′′′, x1x2x3 can be brought to the leftmost positions be shifting

through the, say r preceding elements. The number of transpositions needed is 3r.

In sn−2(x1x2x3, x4, · · · , xn), you need only r transpositions. Then, (−1)3r = (−1)r.
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2. ±sn−2(x1x2x3, x4, · · · , xn) has all those terms in s′′ with x1x2 followed by xi. This

follows from the variable flip rule 2 and from the fact proved above. Then,

±sn−2(x3, x4, · · · , xn)x1x2 has all those terms with x1x2 followed by nothing. We

are done.

Lemma 3.13. Suppose n > 1, and Mn−1(K) satisfies s2n−2. Let {eaibi} be a collection of

2n elements of the standard basis of Mn(K). Further, suppose the evaluation of s2n on

these basis elements is non-zero. Define the following quantity:

For each u = 1, 2, . . . , n, let ν(u) be the number of times u occurs in the subscript in

{eaibi}. Then ν(u) has only the following three possible configurations:

• 3, 5, 4, 4, 4, . . .

• 3, 3, 6, 4, 4, . . .

• 4, 4, 4, 4, 4, . . .

Proof. Claim: ∀u, ν(u) ≥ 3

We show this by eliminating the other cases.

• Suppose ν(u) = 0 for some u. See that {eaibi} ⊆ Mn(K)(u) ∼= M
(u)
n−1. By assumption,

Mn−1(K) satisfies s2n−2. It also satisfies s2n by 4. But since s2n is not an identity

for our chosen set, this cannot happen.

• Suppose ∃u such that ν(u) = 1. Further suppose eiu is in our chosen set. See

that only the monomials that survive in s2n(ea1b1 , . . . , ea2n,b2n) must have eiu on the

right. Thus, s2n(ea1b1 , . . . , ea2n,b2n) = s2n−1(ea1b1 , . . . , e
′
iu, . . . , ea2n,b2n)eiu. Now all the

values in s2n−1(. . . ) are contained in Mn(K)(u), and we reach a similar contradiction.

Mimic a parallel argument by assuming eui is one of our chosen elements.

• Suppose ∃u such that ν(u) = 2. Observe that s2n(. . . ) = 0 if the subscript u occurs

in any of the following three ways:

– euu
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– eiu and eju

– eui and euj

for any i and j. This leaves us with only one combination: eui and eju. The non-zero

monomials in s2n(. . . ) then occur in one of the two possible ways.

– Suppose euj is on the leftmost end and eiu is on the rightmost end. The sum

of such terms is 0 as s2n−2 is an identity for Mn−1(K).

– If we have eiu followed immediately by euj, this breaks down to eij and these

terms also go to 0 by 1. Thus we are done.

– Since s2n(. . . ) ̸= 0, some monomial survives. Due to symmetry, either all ν(u)

are even or all but two are even. We want to satisfy
∑n

1 ν(u) = 4n, and there

are exactly 4n subscripts in our chosen set. This completes the proof.

While it seems rather irrelevant, the above combinatorial observation is what ties together

the following proof of the Amitsur Levitzki theorem!

Theorem 3.14 (Amitsur-Levitzki Theorem). Let K be a field. Then,

1. s2n(x1, · · · , x2n) is a polynomial identity for Mn(K)

2. Mn(K) does not satisfy any polynomial identity of degree ≤ 2n− 1

Proof. 1. We give an inductive proof that slightly varies from the original, based on

[Pas11]. It is largely combinatorial.

The proof is by induction on n. For n = 1, M1(K) is commutative, and s2(x, y) =

xy − yx.

For the inductive step, suppose n > 1 and Mn−1(K) satisfies s2n−2.

Step 1: We show that s2n(e, f, E, · · · , E) = 0 for orthogonal primitive idempotents

e, f ∈ Mn(K).

We use a standard basis {eij} with e = e11 and f = e22. Suppose s2n(e, f, E, · · · , E) ̸=
0. By a linearity argument, some term s2n(ea1b1 , . . . , ea2nb2n) ̸= 0 where eij ∈
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{e11, e22, . . . }. By Lemma 3.13, at most one index has ν(u) > 4, where ν(u) is the

number of occurrences of row or column index u. Hence at least one of ν(1) ≤ 4 or

ν(2) ≤ 4. Now replace e11 by 1−
∑n

2 eii. Invoking 3, you can see that s2n(1, . . . , ) = 0.

Then, in the remaining terms we get ν(u) < 2. But again by Lemma 3.13, they

must vanish, leading to a contradiction.

Step 2: Show that s2n(e, E,E, · · · , E) = 0. where e ∈ Mn(K) is a primitive

idempotent element.

Take e = e11 as an element of the standard basis. We now evaluate s2n(x1, . . . , x2n)

where x1 = e11, and the rest are arbitrary basis elements. Consider a term in the

polynomial: xσ(1)xσ(2) . . . xσ(2n). For this term to be nonzero, the product of the

basis elements need to form a chain in the following way: if x1 = eab then the product

is nonzero only if each index matches: ea1b1ea2b2 . . . ea2nb2n ̸= 0 =⇒ bi = ai+1 ∀i.

There are two possible cases for the basis elements:

(a) All xi ∈ Span{ei1, e1j}, that is every basis element has row or column index as

1. But there are only 2n− 1 basis elements left. By the pigeonhole principle,

some index appears at least twice. By 2, this term is zero, and the entire term

vanishes.

(b) Some xi = eij with i, j ̸= 1, that is there is some basis element that does

not involve the index 1. Then this basis element is orthogonal to e11 unless

there is some overlap due to chaining. But due to Step 1, we saw that placing

two primitive orthogonal idempotents together in the standard polynomial

anniholates it. Thus replacing eij with some linear combination of such elements

vanishes all the terms.

Hence the assertion holds.

Step 3: Show that s2n(E,E,E, · · · , E) = 0. where e ∈ Mn(K)

Show that the polynomial vanishes on the whole algebra. By linearity, it suffices to

show that it is zero on the standard basis. We again have two cases: Let eab denote

any basis element.

(a) Suppose eab with a = b. These are diagonal basis elements, and are primitive

idempotents. By step 2, the standard polynomial vanishes here.
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(b) Suppose eab with a ̸= b. These are the off-diagonal entries. Write any eab as

eab = (eaa + ebb)− (eaa + ebb− eab), where eaa and ebb are primitive idempotents.

Again, using linearity of s2n and expanding, as well as using the result from

Step 2, these terms vanish! and thus s2n is zero on the basis.

2. Suppose Md(K) satisfies a polynomial identity of degree k < 2d. It must be that it

satisfies a multilinear identity of the following form:

f(x1, x2, · · · , xk) =
∑

σ∈Sk
ασxσ(1) · · ·xσ(k)

where ασ ∈ K.(This follows from a linearization argument). Let {eij}ki,j=1 be the

basis of the k × k matrix algebra. We then use staircase arguments:

f(e11, e12, e22, e23 · · · emn) = αεe1m

. Depending on whether k is even or odd, m = n or m = n− 1, and ε is the identity

permutation. It follows that αϵ = 0.

3.4 Chain Conditions

Definition 3.15 (Artinian Rings). A ring R is left Artinian if it satisfies the descending

chain condition on left ideals, that is every descending chain of left ideals is stationary.

Lemma 3.16. Let E be a field. If R is a sub-ring of Mn(E) which contains an E-basis

for Mn(E), then R is a prime PI-ring.

Proof. Since R is a subring of Mn(E), which is a PI-ring, R is also a PI-ring. It remains

to show that R is prime.

Let {eij}1≤i,j≤n, where eij ∈ Mn(E) is the matrix with 1 in the (i, j)th position and zeroes

everywhere else.

We now show that R ⊆ Mn(E) contains some E-basis of Mn(E), it must be equal to the

entire ring. Suppose {b1, · · · , bn2} be an E-basis of Mn(E). Then any A ∈ Mn(E) can be

written as an E-linear combination as:
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A =
∑n2

i=1 λ1bi for λi ∈ E.

Observe that the scalar matrices are the only matrices that commute with the center of

the matrix ring, and thus Z(Mn(E)) = {λIn : λ ∈ E}.

However, {λIn : λ ∈ E} ∼= E. In particular, E ⊆ Z(Mn(E)).

Since bi ∈ R, and the scalar multiples of elements in a ring are in the ring, we get A ∈ R,

and thus R = Mn(E). Note that we need the scalars to be from a central subring, which

E satisfies.

Matrix rings over fields are simple, and simple rings are prime. Thus Mn(E) is also a

prime ring.

3.4.1 Wedderburn-Artin Theorem

The following result is due to Wedderburn and Artin:

Theorem 3.17. Wedderburn’s Theorem Suppose R is a simple left Artinian ring. Then

there exists a division ring D and an integer n such that R ∼= Mn(D).

For example, suppose R = Mn(K). Thus R is already a matrix algebra over a field K

For a detailed simple exposition of the theorem we direct the reader to [Bre24]. The proof

makes use of idempotents that we introduced earlier,

3.5 Central Polynomials

Definition 3.18 (Central Polynomial). Let A be a commutative ring, and let R be an

A−algebra with a center C. A polynomial f ∈ A⟨X⟩ is a central polynomial for R if the

following hold:

1. ∀r1, · · · , rn ∈ R, f(r1, r2, · · · , rn) ∈ C
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2. ∃r1, · · · , rn ∈ R, such that f(r1, r2, · · · , rn) ̸= 0

3. f(x1, · · · , xn) does not have a constant term.

Informally, a central polynomial (for the n×n matrix algebra) can be seen as a polynomial

in non-commutating variables, that is not a constant polynomial, but forms a scalar matrix

on evaluation at n× n matrices.

Some properties and examples

• (xy − yx)2 is a central polynomial for M2(K)

• If a ring R does not satisfy any PI, then R has no central polynomials.

We introduce a polynomial called Formanek polynomial, which is used in later sections.

The existence of the polynomial can be shown constructively, and we direct the reader to

[For72] for the explicit construction. We present the definition below.

Definition 3.19 (Formanek Polynomial). ∀n, there exists a polynomial Fn = f(x, y1, · · · , yn)
which satisfy the following:

1. F is homogeneous (in the usual sense) of degree n2 − n in x, and is multilinear in

y1, · · · , yn

2. Suppose K is a field. Then Fn is a central polynomial for Mn(K)

The following corollary can be obtained from the construction, and we simply state it:

Corollary 3.20. Suppose f ∈ Z⟨X⟩ is a polynomial identity for Mn(Z). Then f is a

polynomial identity for Mr(Z) for r < n.

3.6 Kaplansky’s Theorem

This theorem is of historical importance because the study of PI algebras originated

with this paper of Kaplansky in which he showed that primitive PI algebras are finite

dimensional over their centers. This can be seen as a generalization of the fact in the

commutative setting that ”A primitive commutative ring is a field”.
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Theorem 3.21 (Kaplansky’s Theorem). Let R be a primitive PI-ring. Then R ∼= Mn(D),

where D is a division algebra finite dimensional over its center K. In other words, R is a

central simple algebra that is finite dimensional over its center K.

We state the following lemma without proof.

Lemma 3.22. Let R be a central simple algebra that is finite dimensional over its center

K. Then, ∃n ∈ N such that

1. dimK(R) = n2

2. Every PI satisfied by Mn(Z) is satisfied by R.

3. No polynomial of degree ≤ 2n− 1 is a PI for R

4. Fn = F (x, y1, · · · , yn) (where Fn is the Formanek polynomial as in Definition 3.19)

is a central polynomial for R.

Definition 3.23 (PI-degree). A ring R has PI-degree n if (2), (3) and (4) of Lemma 3.22

hold.

3.7 Ring of Generic Matrices

Definition 3.24 (Generic Matrix). Let K be an infinite field. We denote the set of

(independent) commuting indeterminates by {xi
j,k : a ≤ j, k ≤ d, i ∈ N}. Define a matrix

Xi = [xi
j,k] for each i ∈ Z>0. By a generic matrix we mean a matrix of indeterminates.

K[{xi
j,k}] is the polynomial ring over xi

j,k.

Definition 3.25 (Ring of Generic Matrices). The subalgebra generated by {Ti : i ∈
Z 0} is Rd ⊆ Md(K[{tij,k}]), the ring of generic matrices. We also use the notation

K{X1, X2, · · · , Xn} = K{X}.

T-ideal

The notion of T-ideal of identities has been introduced earlier. In this section, we show

an important theorem that characterizes these T-ideals.
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Theorem 3.26 (Isomorphism). Let K be an infinite field. Let K{X} be the ring of n×n

generic matrices over K. Consider the map ϕ : K⟨X⟩ → K{X}, induced by xi → Xi.

The kernel of ϕ is given by

M(n) = {f ∈ K⟨X⟩ : f is a PI for Mn(R) for any commutative K-algebra R}

M(n) is equal to the T-ideal of identities of Mn(K)

The main goal of this section is to build up a theorem of Amitsur that will be proved in

Chapter 4. Some prior knowledge of Galois theory is assumed, and we direct the reader

to [Mor96].

Definition 3.27 (Twisted Laurent Polynomial Construction). The construction present

here is slightly different from the one given by Amitsur. Let K be a field. Let

K[x1, x2, · · · , xn] be the polynomial ring over K, and let L = K(x1, · · · , xn) be its

quotient field.

.Let ϕ be the K-algebra automorphism induced by ϕ(xi) = xi+1. (Assume the indices go

modulo n).

Then define the K-algebra R = (L, φ, σ±1) as follows:

• R is free as a left L-module. Further, R has the basis {σi : I ∈ Z}

• Multiplication is defined as : σiσj = σi+j

• Let a ∈ L. σa = φ(a)σ.

Theorem 3.28. Let R be defined as above. Let C be the center of R and let S = C \ {0}.
Then,

1. R has no zero divisors

2. Suppose Lφ denotes the fixed field (elements of L unchanged by the action of φ).

Then C = Lφ[an, a−n]

3. R is a free module over C and has rank n2
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4. S−1R is a division ring of dimension n2 over the center S−1C. Then, R has PI-degree

n.

Proof. 1. We use degree arguments. Every element in R is a finite sum of the form∑
i aiσ

i, where each ai ∈ L and only finitely many ai are nonzero. Define the degree

of the term aiσ
i as i, and the degree of the sum to be the highest appearing degree

with a nonzero coefficient. Suppose you multiply x that has leading term aiσ
i and y

with leading term bjσ
j then xy has a leading term aiφ

i(bj)σ
i+j.

Note that ai, bj ̸= 0, and φi(bj) ̸= 0 as φ is a field automorphism, so it preserves

nonzero elements. The product of leading terms is nonzero and hence xy is also

nonzero.

2. We find all elements of R that commute with everything.

(a) The Centralizer of L in R is L[σ±n]

An element
∑

i aiσ
i centralizes L if and only if (σiaiσ

i)c = c(σiaiσ
i) for all

c ∈ L.

This means
∑

i aiφ
i(c)σi =

∑
i caiσ

i for all c ∈ L.

Comparing coefficients, aiφ
i(c) = c(ai) for all i and for all c ∈ L.

For ai ̸= 0, this is equivalent to φi(c) = c for all c ∈ L.

Since φ has order n, φi(c) = c for all c ∈ L if and only if n|i. Therefore the

centralizer of L in R is L[σ±n]

(b) The centralizer of σ in L is Lφ[σ±1]

An element
∑

i aiσ
i centralizes σ if and only if σ(

∑
i aiσ

i) = (
∑

i aiσ
i)σ

This gives
∑

i φ(ai)(σ)
i+1 =

∑
i aiσ

i+1.

Comparing the coefficients, φ(ai) = ai for all i. Thus ai ∈ Lφ. Hence The

centralizer of σ in L is Lφ[σ±1]

Combining the two, C = Lφ[σ±1] ∩ L[σ±n] = Lφ[σ±n]

3. We know that R is built from L and a. Since φ has order n, L has dimension n over

Lφ. R is thus a free left L-module on {ai : 0 ≤ i < n}.

As a free left Lφ[an] module, R has a basis {tjak : 0 ≤ j, k < n} where {tj} is a

basis of L over Lφ. Thus the rank is n× n = n2.
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4. By 1 and 3, we can see that R has no zero divisors, and is finite over center C.

Invoking Posner’s theorem (Corollary 4.7,) S−1R is a central simple ring over S−1C.

3.8 Some Theorems on Radicals

The Jacobson Radical can be defined in the non-commutative setting similar to the

commutative setting. We use the following notion consistently.

Definition 3.29 (Jacobson Radical). The Jacobson Radical J (R) of a ring R is the

intersection of the maximal left ideals of R.

It is interesting to observe the following hold even in the non-commutative setting.

Lemma 3.30. Let R be a ring, and let J (R) be the Jacobson radical of R. Then,

1. J (R) = {r ∈ R : 1− ar is invertible ∀a ∈ R}

2. J (R) = {r ∈ R : 1− ra is invertible ∀a ∈ R}

The proof mirrors that of the commutative case.

Definition 3.31 (Subdirect Product). Let R be a ring. R is said to be the subdirect

product of the rings {Rα : α ∈ A} if the following hold:

1. Each Rα is isomorphic to some R/Mα of R, where each Mα is a two-sided ideal of R

2. The map R →
∏
{Rα : α ∈ A} is injective.

Definition 3.32 (Semi-primitive Rings). A ring R is semi-primitive if it can be written

as a subdirect product of primitive rings

It can be seen that a ring R is semi-primitive if and only if J (R) = 0

Definition 3.33 (Semi-prime Rings). A ring R is said to be semi-prime if it is a subdirect

product of prime rings.



Chapter 3. Non-Commutative Algebra 28

Similarly, one can also define the notion of a formal power series ring.

Definition 3.34 (Formal Power Series Ring). Let R be a commutative ring. The formal

power series ring over R, denoted by R[[t]] is the set of all power series with coefficients in

R.

Before this lemma, we recall a result from the commutative world.

Lemma 3.35 (Atiyah McDonald Chapter 1 Exercise 2.1). Let R be a ring and let R[x]

be the polynomial ring. Let f = a0 + a1x+ · · ·+ anx
n ∈ R[x]. Then, f is invertible in R[x]

if and only if a1, · · · , an are nilpotent elements.

Lemma 3.36. Let R be a ring. Let r = r0 + r1t+ · · ·+ rnt
n ∈ R[t] where r0, r1, · · · , rn

are commuting entries. Then, r is invertible over R[t] if and only if

1. r0 is invertible in R

2. r1, r2, · · · , rn are nilpotent elements.

Proof. Suppose r is invertible in R[t]. By multiplying and expanding out, we can see

that r0 is invertible in R. Suppose R̃ be the commutative subring of R generated by

r0, r1, · · · , rn and r−1
0 . Then r is invertible in the power series ring R̃[[t]].

To show that r−1 ∈ R̃[t], notice that R̃[t] = R[t]∩R̃[[t]]. The rest follows from Lemma 3.35.

Lemma 3.37. Let R be a prime ring, and let L be a left ideal of R. Let r(L) = {r ∈ R :

Lr = 0}. Then,

1. Define M = r(L) ∩ L. M is a two-sided ideal in L.

2. L/M is a prime ring.

Proof. 1. First, we show that M is a left ideal in L. Since for any m ∈ M and l ∈ L,

we need to show that l · m ∈ M . Since m ∈ M, we have m ∈ L and m ∈ r(L).

Then, l ·m ∈ L since L is a left ideal of R and l,m ∈ L. Now since m ∈ r(L) we

have Lm = 0. In particular, L(lm) = (Ll)m = 0, and thus lm ∈ r(L). Therefore

lm ∈ L ∩ r(L) = M
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Now we show that M is a right ideal in L. For any m ∈ M and l ∈ L, we need to

show m · l ∈ M . We know that m ∈ L,m ∈ r(L). Since L is a left ideal of R, we

have ml ∈ L only if ml ∈ R, which holds. Now we are left to show ml ∈ r(L), that

is L(ml) = 0. Let x ∈ L. We have xml = 0 as m]inr(L) and this implies Lm = 0.

Therefore, L(ml) = 0 and thus ml ∈ r(L). Thus ml ∈ L ∩ r(L) = M .

2. To show that L/M is a prime ring, we need to verify that for any two sided ideals

A/M and B/M of L/M , if (A/M)(B/M) = 0, then either A/M = 0 or B/M = 0.

So let A/M and B/M be two sided ideals of L/M such that (A/M)(B/M) = 0.

Then, AB ⊆ M . Since M ⊆ r(L), we also have AB ⊆ r(L) =⇒ L(AB) = 0.

Recall that R is prime. Let a ∈ A and b ∈ B. Now ∀l ∈ L and r ∈ R we have

(a) l(arb) = (la)rb ∈ (LA)(RB) = LRB ⊆ LB (as A is an ideal of L.

(b) But LRB = 0 as L(AB) = 0.

Hence ARB ⊆ r(L). Now if A ⊈ M, ∃a ∈ A such that a /∈ r(L). Since a /∈ r(L),

∃l ∈ L such that la ̸= 0. Since R is prime and ARB ⊆ r(L), we have la · R · B =

0 =⇒ laRB = 0. Now la = 0 or B = 0. Since la ̸= 0 by choice of a, it forces

B = 0. But this means B ⊆ M , and thus B/M = 0.

Mimicking this argument, if B ⊈ M , can conclude that A/M = 0.

Lemma 3.38. Suppose that R is a prime ring that is not a domain. Then ∃r(̸= 0) ∈ R

such that r2 = 0.

Proof. Since R is not a domain, there exist a, b ∈ R such that ab = 0. Now consider

the element r = ba. If r = 0, then we have ab = 0 and ba = 0. Then (aRb)2 = 0 since

∀x, y ∈ R, (axb)(ayb) = (ax)(ba)(yb) = 0. But since R is prime, (aRb)2 = 0 =⇒ aRb = 0,

which means a = 0 or b = 0, contradicting our choice of a and b. Thus r = ba ̸= 0 and

r2 = (ba)(ba) = b(ab)a = 0.

Recall that an ideal is said to be nil if each of its elements is nilpotent.
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Theorem 3.39 (Levitzki ). Let R be a prime PI-ring, and let R be an A-algebra. Then

R contains no non-zero nil ideals.

Proof. From , R satisfies a proper multilinear polynomial, say f such that

f(x1, · · · , xn) = x1x2 · · ·xn +
∑

{a(σ)xσ(1)xσ(2) · · ·xσ(n) : σ ∈ Sn, σ ̸= 1}

We induct on the degree of f. For n = 1, f(x1) = x1 and R = 0, which is true.

For the inductive step, suppose the claim is true whenever a prime PI ring satisfies a

proper multilinear PI of degree n− 1. We will then show assuming that R has a nonzero

nil ideal leads to a contradiction.

Suppose R has a nonzero nil ideal N . Pick 0 ̸= a ∈ N such that a2 = 0 (can do this as it

is nil ideal). Also let L = Ra, a left ideal of R. Then, R′ = L/(r(L) ∩ L) is a prime ring

by Lemma 2. The idea is to plug in elements involving a to reduce the degree. Substitute

ar1, r2a, · · · rna into f where r1, · · · , rn ∈ R. On expanding, this splits into two parts:

1. Terms involving a2: These vanish as a2 = 0 by assumption

2. Terms where a appears exactly once: these are the terms that survive

These terms now involve a new multilinear polynomial, call it g(x2, · · · , xn) of degree

n− 1. Thusg(x2, · · · , xn) is a proper multilinear polynomial identity for L and thus also

for R′.

By the inductive hypothesis, R′ has no nonzero nil ideals. Observe that

1. L = Ra ⊆ N , so all the elements of L are nilpotent

2. R′ = L/(r(L) ∩ L) is nil

R′ is prime and nil, and thus R′ = 0.

We will now conclude that L2 = 0. Since R′ = 0, L ⊆ r(L) and hence for any l1, l2 ∈
L, l1l2 = 0 and thus L2 = 0. In particular, as L = Ra,, RaRa = 0. But thus means the

square of the two sided ideal generated by a is 0. But this contradicts the hypothesis that
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R is a prime ring. Thus our assumption that N ≠ 0 is wrong. Thus R has no non-zero

ideals, completing the induction

Theorem 3.40 (Amitsur). Let R be a ring with no nil ideals. Let t be a commuting

indeterminate over R. Then R is a semiprimitive ring.

Proof. Claim: Suppose J (r) ̸= 0. Then R must contain a non-zero nil ideal. Suppose

J (R[t]) ̸= 0. Let n be the minimal degree of a nonzero element of the radical. Now define

I = {rn ∈ R : ∃r ∈ J (R[t]) withr =
∑n

i=0 rit
i}

Then one can see I is a two sided ideal of R. We now use an inductive argument to

show that r0, r1, . . . , rn all commute with each other. Since n is the minimal degree of

any nonzero element in J (R[t]), rn · r − r · rn = 0 =⇒ [rn, r] = 0. Using a cascading

argument, ∀i = 0, 1, · · · , , n, [rn, ri] = 0. Now inductively show that [rn−1, ri], [rn−2, ri] etc

are all zero.

Observe that from the properties of Jacobson radical, 1− rt is an invertible element in

R[t]. From Lemma 3.8, rn is a nilpotent element. Thus I is further a non-zero nil ideal of

R.

Corollary 3.41. Let {Rα : α ∈ A} be a collection of prime PI-rings. Then, each Rα[t] is

a semiprimitive ring.

Proof. Follows from Theorem 3.8 and Theorem 4.2.



Chapter 4

Invertibility of Non-Commutative

Rational Functions

In this section, we prove an important fact about non-commutative rational expressions:

Theorem 4.1. Any non-zero non-commutative rational expression in d × d generic

matrices must be invertible.

This uses a theorem of Amitsur that states that Universal Division Algebras (to be defined

later) are in fact division algebras in the usual sense.

We largely follow the proof presented in Visu Makam’s thesis. We first present some

preliminaries; the remaining material needed is present in Chapter 2

Let K be an infinite field.

4.1 A Localization Theorem

In this section, we prove a localization theorem due to Posner. In the commutative setting,

every integral domain has a field of fractions—a smallest field in which the domain embeds.

Posner seeks to generalize this construction to the non-commutative setting.

Informally, he shows that a prime PI-ring R admits a quotient ring Q(R) that is also

a primitive PI-Ring that satisfies the same polynomial identities as R. We present a

32
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proof based on central polynomials, avoiding the use of Goldie’s theorem, which appears

in Posner’s original argument.

Lemma 4.2. Let R be a prime ring with a center C. Let S = C \ {0}. Then

1. C is a domain

2. S−1C is the center of S−1R

Proof. 1. Let a, b ∈ C be non-zero. We want to show that ab ̸= 0. ∀r ∈ R, ar =

ra, br = rb. Also, R is prime. For any x, y ∈ R, if xRy = {0}, then x = 0 or y = 0.

Now consider aRb ⊆ R. Then,

aRb = {arb : r ∈ R} = {abr : r ∈ R}

So if ab = 0, then aRb = {0}, contradicting the fact that R is a prime ring.

2. We show both directions.

=⇒ S−1C ⊆ Z(S−1R)

Let c
a
∈ S−1C with c ∈ C, s ∈ S and r

t
∈ S−1R with r ∈ R, t ∈ S

Then, c
s
· r
t
= cr

st
= rc

st
= r

t
· c
s
. Thus c

s
∈ Z(S−1R)

To show Z(S−1R) ⊆ S−1C, suppose z ∈ Z(S−1R). Then ∀ r
s
∈ S−1R, z · r

s
= r

s
· z

holds. Suppose z = r0
s0

for some r0 ∈ R, s0 ∈ S. We have to show r0
s0

∈ S−1C, that is

r0 ∈ C. Let r ∈ R. Then, r0
s0

= r0
s0
· r
1
= r

1
· r0
s0

=⇒ r0r
s0

= rr0
s0

and thus r0 ∈ C.

Finally, z = r0
s0

∈ S−1C

Lemma 4.3. Suppose R is semiprime ring and t is a central indeterminate. Then R[t] is

a semiprimitive Pi-ring

Proof. By Corollary 3.9, R[t] is a PI-ring. Let Rα : α ∈ A be a collection of prime PI-rings.

Then the following map induces a subdirect product:

R →
∏
{Rα : α ∈ A}
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By Corollary 3.41, each Rα[t] is semiprimitive. Then R[t] →
∏
{Rα[t] : α ∈ A} expresses

R[t] as a subdirect product of semiprimitive rings.

The following lemma is due to Rowen [Row74].

Lemma 4.4. Let R be a semiprime PI-ring with a center C. Suppose J is a non-zero

two sided ideal of R. Then J ∩ C ̸= 0.

Proof. Recall that a ring is said to be semiprimitive if its Jacobson radical is zero. Introduce

a central indeterminate t, and consider the polynomial ring R[t]. By Lemma 4.1, R[t]

is a semiprimitive PI-ring. The center of R[t] is C[t]. Further for any ideal J ⊆ R,

(J [t] ∩ C[t]) = (J ∩ C)[t]. This essentially means studying the question for R and J is

equivalent to studying the question for R[t] and J [t]. Hence we can now assume R to be

semiprimitive.

Since R is semiprimitive and satisfies a PI of degree d, we can write it as its subdirect

product decomposition of primitive PI rings Rα.

R ↪→
∏

α∈A Rα

Let nα be the PI-degree of Rα. By Kaplansky’s theorem, each Rα can be seen as a centrally

simple ring of dimension n2
α over its center. Further, 2nα ≤ d, as Rα cannot satisfy any

polynomial identity of degree < 2nα by Lemma 3.22. So the collection {nα} is bounded

above.

We now understand how J maps under this decomposition. J ⊆ R ↪→
∏

Rα, and its

projection to Rα is either 0 or all of Rα due to primitivity. But since J ≠ 0, at least one

projection is non zero, and thus for some α, J 7→ Rα.

Let n be the maximum nα for which the projection of J onto Rα is all of Rα. We make

use of the Formanek polynomial introduced earlier, which Is a central polynomial for all

central simple algebras of PI-degree n. We now plug elements of J into Fn =: f and see

what happens in each Rα.

• If nα > n, the projection is 0. Thus f(J) = 0

• If nα < n, then Fn is a PI for Rα, by a theorem of Procesi.
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• If nα = n, since Fn is a central polynomial for Rα, it evaluate to a central and maybe

nonzero element in Rα.

From these observations, Fn(J) ⊆ J ∩C contains some non-zero element, as required.

Lemma 4.5. Let R be a semiprime PI-ring with center C. If C is a field, then R is a

finite dimensional central simple C-algebra

Proof. By Lemma 4.4, R is simple and thus primitive. Using Theorem 3.21, R is a finite

dimensional simple algebra over its center C.

Theorem 4.6. Let R be a prime PI-ring with a center C. Let S = C \ {0}. Then,

1. S−1R is a central simple S−1C algebra.

2. R and S−1R satisfy the same polynomial identities as K⟨X⟩

Proof. From Lemma 4.2, S−1R is a prime ring and its center S−1C is a field. For (2), we

consider two cases:

• Suppose C is finite. Then C is a field, and thus R = S−1R.

• Suppose C is infinite. Then from Corollary 3.9, R and R[T ] satisfy the same set

of polynomial identities for any set of commuting indeterminates T . S−1R is a

homomorphic image of R[T ] for large enough T , and thus S−1R also satisfies every

identity satisfied by R. The converse follows because R ⊆ S−1R.

Corollary 4.7 (Posner). The central quotient of a prime Polynomial Identity Ring is a

simple algebra.

Proof. S−1R is a prime PI-ring whose center is a field. By Lemma 4.1, it is also a finite

dimensional central S−1C algebra.
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4.2 A theorem of Amitsur

Theorem 4.8 (Amitsur). The ring of d× d generic matrices Rd is an non-commutative

integral domain.

Proof. For the sake of this proof, we use K{X} to denote the ring of generic matrices.

Let X1, · · · , be n × n generic matrices. Let R = K[{xi
jk}] be the polynomial ring over

these variables. As seen earlier, K{X} ⊆ Mn(R).

Now consider K{X} ⊆ Mn(E), where E = K({xi
jk}), where E is the quotient field of R.

Thus K{X} can be viewed as a subalgebra of Mn(E).

We use a linear independence argument.

Claim: The n2 matrices {X i
1X2X

j
1 : i ≤ i, j ≤ n} are linearly independent over E, and

thus form a basis for Mn(E).

To show this, we consider the n2 × n2 matrix formed by flattening each X i
1X2X

j
1 into a

1× n2 matrix, and then ”stacking” them.

The determinant of this matrix is a polynomial in the variables of X1 and X2. Our goal is

to show this is non-zero. To do this, we make X1 a diagonal matrix by setting all its off

diagonal entries to non-zero.

Now, suppose under this setting X1 = diag(t1, · · · , tn) where the ti’s are new algebraically

independent variables. Then the entries of X i
1X2X

j
1 form a Vandermonde style matrix,

and thus its determiant is a non-zero polynomial.

Therefore, K{X} contains an E-basis for Mn(E), and is thus a prime PI ring by

Lemma 3.16.

Suppose for contradiction, K{X} is not a domain. Because it is a prime ring, it has a

non-zero element whose square is zero, by Lemma 3.38. This then corresponds to a non

identity f ∈ K⟨X⟩ that vanishes in K{X} (due to the isomorphism by Theorem 3.26)

and thus lies in the t-ideal of polynomial identities of Mn(K), denote this by M(n). But

f 2 is an element of M(n).

We now use the domain construction from section . Let R = (L, ϕ, σ±1 be the domain

under consideration. By Corollary 4.7, R has the same identities satisfied by Mn(K).
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Since R is a domain, and f would be a PI for R but f 2 isn’t a PI for R. This is absurd as

R is a domain.

Corollary 4.9. Rd is a prime ring.

Proof. Every non-commutative integral domain is a prime ring.

4.3 Tying it all up

Finally, we present the main theorem of this section:

Let Zd denote the center of Rd. Recall the center of a ring R is a subring with all elements

x such that xy = yx∀y ∈ R. Let the field of fractions of Zd be denoted by Qd.

Definition 4.10 (Central Localization). UD(d) := Qd ⊗Zd
Rd

UD(d) is called the central quotient. Amitsur showed that this is infact a division algebra,

and is called a universal division algebra of degree d.

Lemma 4.11. UD(d) has no non-zero nilpotents.

Proof. Elements of UD(d) can be seen as Qd-linear combinations of elements 1⊗ r where

r ∈ Rd. Every element x ∈ UD(d) can be written as

x =
∑k

i=1 q1 ⊗ ri

where qi ∈ Qd and ri ∈ Rd. Now each qi can be written as qi = z−1
i z′i for some zi, z

′
i ∈ Zd,

with zi ̸= 0. Thus,

x =
∑k

i=1(z
−1
i z′i)⊗ ri =

∑k
i=1 1⊗ (z−1

i z′iri)

Now elements of UD(d) are sums of elements which are of the form 1 ⊗ (z−1r) where

z ∈ Zd \ {0}, r ∈ Rd. But Rd is localized at S = Zd \ {0}, and thus the element r/z

corresponds to 1⊗ (z−1r).
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Suppose x = /z is a nilpotent. ∃n > 0 such that (r/z)n = 0 in UD(d). Since z is central,

(r/z)n = rn

zn
and rn

zn
= 0 =⇒ rn = 0 in Rd. But Rd is an integral domain! So we have

r = 0 =⇒ r/z = 0 =⇒ x = 0.

Theorem 4.12 (Universal Division Algebras are division algebras). UD(d) := Qd ⊗Zd
Rd

is a division algebra and is called a universal division algebra of degree d.

Proof. By Corollary 4.2, Rd satisfies the Amitsur-Levitzki polynomial, that is s2d, by

Theorem 3.14 and is thus a polynomial identity ring. Further, it is a domain and thus a

prime ring. By Corollary 4.7, the central quotient of a prime PI-ring is a simple algebra,

and thus UD(d) is a simple algebra. From Theorem 3.17, ∃r ∈ N and a division algebra D

such that UD(d) ∼= Mr(D). From Lemma 4.3, UD(d) has no non-zero nilpotents. Finally,

UD(D) ∼= M1(D) ∼= D, finishing the proof.

Corollary 4.13. Any non-zero non-commutative rational expression in d × d generic

matrices must be invertible.

Proof. UD(d) ⊆ Md(K{xi
jk}). Informally, Rd lives inside matrices over polynomials. After

localization, we are left with matrices over rational functions.



Chapter 5

Polynomial Identity testing

In this chapter, we introduce Polynomial Identity Testing, as well as a few other notations

and concepts that come of use later.

5.1 Polynomial and Matrix Identities

Let F be a field, and A be an associative A-algebra, particularly the algebra Matd(F) of

d× d dimensional matrices over F.

F[x1, x2, · · · , xn] denotes the ring of commutative polynomials polynomials with coefficients

in F over n variables. Thus every polynomial is a linear combination of monomials, where

each monomial is a product of variables. We can now define a non-commutative polynomial

over F as a formal linear combination of monomials where the product of variables do not

commute: these are polynomials over the free algebra.

A polynomial f(x1, x2, · · ·xn) ∈ is an identity for the algebra A, if ∀c ∈ A, f(c) = 0. In

our case, A is a matrix algebra, and f is called a matrix identity. A matrix identity (for

a particular matrix algebra) can thus be seen as a non-commutative polynomial that

vanishes over all assignments of matrices to variables. As seen earlier, the standard identity

in 2n variables is the polynomial identity for the n× n matrix algebra.

39
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5.2 Polynomial Identity Testing

Polynomial Identity Testing (PIT) is the problem of efficiently determining whether a

given polynomial is identically the zero polynomial. We are interested in testing PIT

using arithmetic circuits: Given an arithmetic circuit C computing a polynomial p, decide

whether C computes the zero polynomial or not. Note that we are interested in deciding

only whether the polynomial is identically 0; not whether the polynomial evaluates to the

zero polynomial over the field: for example, x2 − x ∈ F2[x] is not a zero-polynomial, but

xy − yx ∈ F[x1, x2, · · ·xn] is. For infinite fields, one can see that a polynomial evaluates

to zero over all elements of the field if and only if the polynomial is identically zero (use

induction and the fact that any non-zero univariate polynomial of degree d over a field F

has at most d roots.

Suppose the input polynomial is given as a list of coefficients (and the corresponding

monomials), the problem is simple: check whether the list has a non-zero entry or not.

When the input polynomial is given as a circuit, however, expanding the polynomial out

and checking whether there is a non-zero coefficient is a costly affair: you can have an

exponential (in the commutative case) or a doubly exponential (in the non-commutative

case) number of monomials.

Before delving deeper, we shall state the problem formally.

Let Cs,d be the set of algebraic circuits of size ≤ s and degree ≤ d computing polynomials

in F[x1, x2, · · ·xn]. Let ϕ ̸= C ∈ Cs,d.

Problem 5.1 (PIT). Given a circuit C ∈ C, computing a polynomial f , determine whether

f ≡ 0

We usually try to find an efficient algorithm that does in poly(s, n, d) steps. PIT can

either be blackbox or whitebox.

Whitebox PIT: Here the polynomial is given to us as a circuit and we have access to all

the gates inside the circuit. Some classes of circuits have trivial whitebox PIT algorithms.

For instance,

Blackbox PIT: Here, we are not allowed to ”look into” the arithmetic circuit: that

is, we only have oracle access to the circuit and can evaluate it at certain points (field
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elements or matrices, according to whether we are in the commutative or non-commutative

case respectively). We are in search of an efficient PIT algorithm in its input parameters,

usually the size of the circuit. Blackbox PIT is equivalent to the concept of hitting sets.

Again, let us define this notion formally:

Let Cs,d be the set of algebraic circuits of size ≤ s and degree ≤ d computing polynomials

in F[x1, x2, · · ·xn]. Let ϕ ̸= C ∈ Cs,d. A hitting set H ⊆ Fn for Cs,d is a set of points such

that if C ∈ Cs,d computes some non-zero polynomial fC , then ∃ā ∈ H such that f(ā) ̸= 0.

The converse follows trivially; if a circuit C computes the zero polynomial f , then ∀ā ∈ H,

f(ā) = 0

Thus, a poly(s, n, d) hitting set H for a set of circuits C amounts to giving an efficient

blackbox PIT algorithm for C. We just evaluate fC on all points of H. If ∃ā ∈ H such

that fC(ā) ̸= 0, we can output non-zero. Otherwise output zero. This takes no more than

O(s) field operations.

The use of arithmetic circuits is natural: for there are 2(
n+d
d ) possible monomials for

a degree-d polynomial over F⟨x1, x2, · · ·xn⟩. Simply expanding and checking whether

coefficients cancel out would be infeasible. Even in the commutative case, the trivial

way of expanding out is inefficient: there are
(
n+d
d

)
possible monomials. From now on,

we will clearly distinguish whether we are referring to commutative PIT (c-PIT) or

non-commutative PIT (nc-PIT).

The question of c-PIT is one of the central problems of algebraic complexity theory. The

proofs of several important theorems like the AKS Primality Test [AKS04], IP=PSPACE

use PIT techniques.

c-PIT has no efficient deterministic algorithm, Indeed, derandomizing c-PIT has great

consequences for arithmetic circuit and boolean circuit lower bounds due to a result of

[KI04]

5.3 Polynomial Identity Lemma

c-PIT, however, has a co-RP algorithm due to Schwartz and Zippel. Due to its vast

history, we call it the Polynomial Identity Lemma. We state it here:
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Theorem 5.2 (Polynomial Identity Lemma). Let f(x) ∈ F[x] be a non-zero, n-variate

degree d polynomial. Let S ⊆ F be a set of size > d. If a1, a2, · · · an are chosen independently

and uniformly at random from S, then

Pr(a1,a2,···an)[f(a1, a2, · · · an) = 0] ≤ d
|S|

Proof Idea: We use the fact that a univariate polynomial of degree d has atmost d distinct

roots, and then induct on the number of variables.

Proof. We prove this by induction on the number of variables n.

Base case: n = 1

Let f(x) be a non-zero univariate polynomial of degree at most d. Then f has at most d

roots. Thus, if a ∈ S is chosen uniformly at random, Pra[P (a) = 0] ≤ d
|S| .

For the induction step, assume the lemma holds for n− 1 variate polynomials. We will

prove it for n variate polynomials. Let g(x1, x2, · · ·xn−1) be any non-zero polynomial over

n− 1 variables of degree at most d. Then, by the hypothesis,

Pr(a1,a2,···an−1)[g(a1, a2, · · · an−1) = 0] ≤ d
|S|

Now, let f(x1, x2, · · ·xn be an n-variate polynomial of degree at most d. Rewrite f as

follows:

f(x1, x2, · · ·xn) =
∑d

i=0 fi(x1, x2, · · · xn−1) · xi
n

where each fi is a polynomial in n− 1 variables. Since f is not identically zero, all the

fi’s cannot be identically zero simultaneously. Thus there is atleast one polynomial fi

with non zero coefficients. Let i0 be the largest i suchh that fi0 ̸= 0. Then,

Pr(ā = 0) = Pr[Pi(ā) = 0] · Pr[P (ā) = 0|Pi(ā) = 0] + Pr[Pi(ā) = 0] · Pr[P (ā) = 0|Pi(ā) ̸= 0]

≤ d− i0
|S|

+
i0
|S|

≤ d

|S|
(5.1)
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Observe that the algorithm given the PI lemma is a blackbox algorithm: we only needed

evaluation points as input to the circuit, and not the structure of the circuit. We also have

whitebox PIT algorithms, which exploit the structure of the circuit in some way. More

formally:

5.4 Applications of PIT

PIT has a wide range of applications, both in the design of algorithms for problems

that may seem to be unrelated at first g;ace, as well as for establishing lower bounds in

computational complexity. We highlight a few examples below:

• Primality Testing: The first deterministic polynomial-time primality testing

algorithm, the AKS algorithm [AKS04] was developed by formulating primality as

a special instance of PIT: testing whether Ps(x) = (x+ 1)n − (xn + 1) over Z/nZ.

This resolved an important open question in computation.

• Perfect Matching: A much older application is in perfect matching due to

Tutte’s theorem that states that a graph has no perfect matching if and only if the

determinant of its Tutte matrix A is zero. This involves checking whether detA = 0,

which becomes a special case of PIT.

• Polynomial Equivalence Testing: Determining whether two polynomials f

and g are identical reduces to checking if f − g ≡ 0. This reduction is crucial in

various models, such as verifying the equivalence of two read-once oblivious algebraic

branching programs (ROABPs).

• Circuit Lower Bounds: PIT is deeply intertwined with circuit complexity. In a

celebrated result, Kabanets and Impagliazzo [KI04] showed that a deterministic PIT

algorithm would imply either a separation in boolean circuit complexity classes (NP

⊈ P/poly) or a separation in algebraic circuit complexity classes (VP ̸= VNP).

• Polynomial Factorization: It has been shown that deterministic multivariate

polynomial factorization reduces to deterministic PIT [KSS14]
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• IP=PSPACE Testing whether two multivariate polynomials are equal by evaluating

them at randomly chosen points played a key role in proving IP=PSPACE [Sha92]

Thus there is no doubt that PIT is an interesting as well as important problem to be

studied.

5.5 Derandomizing PIT

Using the Polynomial Identity Lemma, we obtain a simple randomized algorithm for

solving blackbox PIT. major research direction has been the effort to derandomize PIT:

that is, to design an efficient deterministic algorithm for the problem. One approach to

derandomization is to systematically break down the general PIT problem into smaller,

more manageable subproblems, by studying PIT for restricted classes of circuits (such as

formulas and algebraic branching programs (ABPs), as we have already seen). Similar

efforts have also been made in the non-commutative setting.

In this thesis, however, we focus solely on developing an efficient randomized algorithm

for PIT in the setting of non-commutative arithmetic circuits with potentially exponential

degree.



Chapter 6

Non-Commutative Polynomial

Identity Testing: A Survey

In the following sections, we will survey relevant results (both recent, and ancient) for

nc-PIT.

6.1 Whitebox ABP

In an attempt to prove lower bounds in the non-commutative model, Nisan introduced the

ABP model. In [RS04], Raz and Shpilka gave a deterministic polynomial time whitebox

algorithm for PIT of non-commutative formulas. They first efficiently simulated the

formula using an ABP; then gave an algorithm for PIT of homogeneous ABPs. ABPs can

be homogenized with only a polynomial blowup.

Proof Idea:

Simulation of Non-Commutative Formulas by ABPs

We first create a temporary ABP. For each gate ϕ in the formula, we construct the ABP

accordingly.

• When ϕ is an input gate,create a trivial ABP with one edge labelled accordingly.
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• When ϕ = ϕ1 × ϕ2, sequentially connect the ABPs for ϕ1 and ϕ2 (make the sink of

ABP(ϕ1) the source for ABP(ϕ2)

• When ϕ = ϕ1 + ϕ2, make a parallel connection: both ABPs start from the same

source and sink and reach the same target.

We now make this temporary ABP layered by degree such that the vertices at layer i

correspond to homogeneous polynomials of degree i. For each vertex in the temporary

ABP

• Create r copies (v, 1), (v, 2), . . . , (v, r) where r = deg ϕ. Place all copies (v, i) in the

layer i

• Rewrite the edges to preserve the degree. If an edge from u to v in the previous

ABP contributed some degree d, then in the final ABP connect (u, i) to (v, i+ d).

This may incur a size blowup of almost O(r).

We now present the idea for the ABP PIT.The idea comes from Nisan’s rank bound using

the Partial Derivative Matrix.

Let C be an arithmetic circuit computing the polynomial f. For every degree 2 monomial of

f, say xixj , construct a new ABP that computes the portion of f whose monomials begin

with xixj. Then, C computes the zero polynomial if and only if each of the individual

ABPs compute the zero polynomial (we are in a non-commutative setting). To do this,

a depth reduction is performed that merges all the new ABPs to a single ABP, say C̃

with one level lesser than C. The important trick here is to relabel the edges accordingly:

simply introducing a new variable yij for xixj would not work because it could result in

exponentially many new variables.

Thus, they fully expand the ABP in the monomial one variable at a time. Then, for each

new variable, they change the basis to reduce to the rank bound.
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6.2 Non-Commutative Randomized Blackbox PIT

Bogdanov and Wee [BW05] gave a randomized polynomial time-algorithm for non-

commutative arithmetic circuits where the degree of the circuit is bounded by the size.

They use a classical theorem loaned from the study of Polynomial Identity Algebras, called

the Amitsur-Levitzki theorem [AL50].

Theorem 6.1. Non-Commutative Randomized Blackbox PIT Let F be a field. Let X be

a set of indeterminates. Any non-zero polynomial p ∈ F⟨Z⟩ of degree ≤ 2d− 1 is not a

polynomial identity for the matrix algebra Md(F)

In other words, P does not vanish on all d× d matrices over F.

Proof. Suppose Md(F) satisfies a polynomial identity of degree k < 2d. It must be that it

satisfies a multilinear identity of the following form:

f(x1, x2, · · · , xk) =
∑

σ∈Sk
ασxσ(1) · · ·xσ(k)

where ασ ∈ F.(This follows from a linearization argument). Let {eij}ki,j=1 be the basis of

the k × k matrix algebra. We then use staircase arguments:

f(e11, e12, e22, e23 · · · emn) = αεe1m

. Depending on whether k is even or odd, m = n or m = n − 1, and ε is the identity

permutation. It follows that αϵ = 0.

They then used the above theorem to obtain a randomized PIT algorithm.

Instead of field elements like in The PI lemma, they substitute elements from the d× d

matrix algebra (technically, matrices over the field extension) to test PIT for circuits

computing polynomials of syntactic degree ≤ 2d−1. We state a non-commutative analogue

of Schwarz Zippel Lemma:

Theorem 6.2 (Non-Commutative Schwartz Zippel). Let f ∈ F⟨x1, x2, · · ·xn be a non-

commutative polynomial of degree d. Let L be a field extension of F. Let {eij}, 1 ≤ i, j ≤ k

be the standard basis of Mk(F), Lk be a linear subspace of Mk(L) generated by some subset

of the unit matrices, and T ⊆ L. Then, one of the two holds:
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• f is a Polynomial Identity for Lk

• Pr[f(M1,M2, · · ·Mn) = 0] ≤ d
|T |

Proof. Choose a basis e1, . . . , ek2 for Lk×k such that the Lk is generated by e1, . . . , el.

Then define a polynomial map that expresses each xi as follows:

xi =
∑l

j=1 yijej

where yij are new indeterminates. Under this map, the polynomial f is transformed into

a polynomial q ∈ F⟨y11, . . . , yn]⟩ whose evaluations represent k × k matrices. Further, q

has a unique decomposition like

q(y11, · · · ynl) =
∑k2

j=1 qj(y11, · · · ynl).

Each qj has degree almost d, and q ≡ 0 if and only if all the qj vanish identically. Let i0

be the largest index such that qi0 ≡ 0.

Choose random matrices M1, · · ·Mn to keep qi0(a11, · · · anl) non-zero, and by the polyno-

mial map, f(M1, · · ·Mn) ̸= 0.

From this theorem follows a black-box, randomized nc-PIT algorithm for circuits computing

polynomials with degree bounded by size.

Theorem 6.3. Non-Commutative Randomized Blackbox PIT There is a randomized

black-box PIT algorithm for circuits computing n-variate polynomials of degree atmost d.

Proof Idea: Let C(x1, x2, · · ·xn) be a nc-circuit of syntactic degree ≤ 2d − 1 For each

i ∈ [n], substitute xi by a matrix Mi with commuting entries. Mp = p(M1,M2, · · ·Mp) is

not identically zero. Then, some entry in Mp has a commutative non-zero polynomial, say

g. But deg(g) < 2d. We then randomly susbtitute elements from a field of size 4d: Using

the non-commutative Schwarz Zippel Lemma seen above, we get a randomized PIT with

error ≤ 1
2
.
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However, this approach cannot be used for an efficient randomized algorithm for general

non-commutative circuits, as the dimension of the matrices needed grows linearly with the

degree of the polynomial. The following is a well-known open problem in the community:

Open Problem: WACT 2016

Let f ̸= 0 be a non-zero polynomial computed by a non-commutative circuit of

size s and degree 2s. Then, there exist matrices B1, B2, · · · , Bn of dimension poly(s)

such that f(B1, B2, · · ·Bn) ̸= 0

The goal of this thesis is to move closer towards solving this problem.

Bogdanov and Wee [BW05]also gave some important query complexity lower bounds for

non-commutative circuits. These lower bounds imply that an improvement to the blackbox

algorithm for general circuits (with unbounded degree) either needs simulating an algebra

of exponential dimension that somehow can he represented implicitly (because otherwise,

our model of computation would not have enough space for storing the matrices) or needs

to exploit properties of the circuits themselves. This observation motivated us to look

into properties of the circuits, and PIT algorithms for other restricted classes that have

developed over the years.

6.3 nc-PIT for sparse polynomials

Arvind, Mukhopadhyay and Srinivasan introduced the idea of using automata theory to

design efficient nc-PIT algorithms. This is a natural choice, because our monomials can

be seen as words over the free algebra. In [AMS08], they gave an efficient deterministic

whitebox PIT algorithm for non-commutative circuits computing n-variate polynomials of

degree d with t monomials. This algorithm ran in poly(d, n, |C|, t).

We are more interested in another randomized algorithm by Arvind, Joglekar, Mukhopad-

hyay and Raja [Arv+19].

In [Arv+19], they show the following theorem about non-commutative identities:

Theorem 6.4. Theorem LLet F be a field of size ≥ (n+ 2)d. Let f ∈ F⟨x1, x2, · · ·xn⟩ be
a non-zero degree d polynomial of sparsity t. Then, f cannot be a polynomial identity for

the k × k matrix algebra where k ≥ ⌈log t⌉+ 1
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They prove this theorem using techniques from automata theory. We briefly detail the

idea below:

Proof Idea:

• We first compute the non-commutative polynomial to a polynomial over F⟨x, y⟩
using a simple encoding trick. This is a bijective encoding, and thus it is enough to

study non-commutative polynomials over F⟨x, y⟩.

• For every subset of monomials, construct an isolating index set. Let M be a subset

of degree d monomials. I ⊆ [d] is an isolating index set for M if ∃m ∈ M such that

∀m′ ̸= m,∃i ∈ I such that m′[i] ̸= m[i]. In simple terms, it is the collection of all

those indices where the monomials differ in atleasr one index.

• We then show that every subset of monomials has an isolating index set of size

k ≤ log |M|, using a halving argument.

• Construct a small substitution automata (an NFA) to guess the isolating index set

for the monomials in the support. Even though there are (more than) exponentially

many wrong guesses, using a substitution automata alleviates this issue because the

monomials computed on different paths have disjoint support.

• Thus a nonzero polynomial is output by the automata (the isolated monomial can

never get cancelled)

From the above theorem, a randomized blackbox PIT follows using a Schwarz Zippel type

argument (substitute (log t+ 1)× (log t+ 1) matrices).

We get a poly(log d, n, log t) randomized PIT. However, this also becomes exponential in

case we have doubly exponential monomials in the support.

6.4 PIT for UPT circuits

Lagarde et. al in [LLS18] gave deterministic whitebox PIT algorithms for arithmetic

circuits of bounded degree with unique parse trees. They also gave PIT for sum of
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constantly many UPTs. Their idea is an adaptation of Raz and Shpilka’s algorithm for

whitebox ABP.

We tried to adapt this work to the case we are interested in: homogeneous arithmetic

circuits of exponential degree. Their deterministic whitebox PIT algorithm, inspired by

Rank Bound ideas of Raz and Shpilka works in the case of exponential degree, on the

condition that the parse trees of the monomials have small size. This is because we are

inducting on the size of the parse tree. Thus, we don’t get an efficient PIT algorithm for

circuits with unrestricted degree.

6.5 PIT for sum of UPT circuits

They also gave whitebox PIT for sum of k many UPT circuits by modifying an algorithm

for ROABPs by [Gur+17]. This is equivalent to the problem of equivalent testing of two

UPTs, say P and Q, and this is the problem we will be tackling.

Theorem 6.5. Let N, k, s ∈ N be some parameters. Then there is a deterministic sO(2k)

algorithm, which on input k + 1 UPT circuits C0, C1, . . . , Ck each of size ≤ s over N

variables tests whether the circuit computed by their sum computes the zero polynomial.

Proof Idea:

• Transform each circuit Ci to its normal form. This transformation can incur a

quadratic blowup. We can also assume that each Ti has fan-in ≤ 2.

• Construct a set of characterizing identities for the polynomial P of size poly(N, s, d).

• Verify whether these identities are satisfied by Q. This is done by a call to the

algorithm in time sO(2k).

• Then show that if Q satisfies these identities, and if P and Q agree on even a small

set of coefficients, P and Q are identical. Comparing these coefficients is also done

in poly(s) time.

It works efficiently for the first few steps, but the final step is to test the equality of

coefficients of P and Q using an automata construction of [AMS08]. Their automata takes

time poly(s, d) to construct; this is inefficient for our use case.



Chapter 7

Rank Concentration

The idea of rank concentration was first introduced in the context of developing black-box

PIT algorithms for set-multilinear circuits , as discussed in Chapter 2.

An algebra A is a vector space V along with a vector product. The vector product is a

binary operation from V × V to V , and is distributive and associative with respect to the

addition operation of the v. sp. We have already learnt discussed

When the vector product is a co-ordinate wise product it is called a Hadamard Algebra.

A k-dimensional hadamard algebra is denoted by Hk.

Definition 7.1 (Rank Concentration). A polynomial f(x) over an algebra A is said to be

ℓ-concentrated if the coefficients of its < ℓ support monomials span all of its coefficients.

If a polynomial f is ℓ-concentrated, then evaluating it on the unit cube suffices to receiver

all its coefficients via linear combinations. However, a general polynomial g need not be

ℓ-concentrated.

Agrawal, Saha and Saxena [ASS13] introduced a variable shift technique to show concen-

tration. For a general polynomial over Hk, applying a formal shift xi 7→ xi + ti, where ti

are formal variables results in the shifted polynomial being O(log k) concentrated over

F(t1, . . . , tn), provided the number of monomials is small. But since the monomials are

usually exponential in number, the shift is applied only to the low-degree parts of the

circuit. For example, consider the product P =
∏m

i=1 Pi(xi). The shift ensures every
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subproduct of l = O(log k) is ℓ-concentrated. Finally, they argue inductively that this

local concentration implies global concentration, that is concentration of the full product

7.1 Basis Isolation

For the sake of completion, we also provide an overview of the Basis Isolation Weight

Assignment (BIWA) idea introduced by [Agr+14]. This was an improvement to the

rank concentration idea studied earlier, and is used for the construction of hitting sets of

ROABPs. As seen earlier, ROABPs can be written as IMM products. That is, the output

polynomial can be expressed as some

f(x) = c⊺(
∏d

i=1 Fi(x))d

where each Fi(x) is a matrix with polynomial entries. The key idea is to view F (x) :=∏d
i=1 Fi(x) as a polynomial over the matrix algebra, say Fw×w and to study its coefficient

space. It then sufficues to evaluate D(x) on a set of points that span its coefficient space.

The BIWA technique aims to isolate a basis for the coefficient space of F (x) by assigning

weights to the variables such that the coefficients of a small set of monomials, those with

minimum weight form a basis. Such an assignment ensures that the basis monomials

receive distinct weights, and every other coefficient lies in the span of those smaller weights.

This guarantees that the substituted polynomial is nonzero provided the input polynomial

is.



Chapter 8

Rank Concentration in

Non-Commutative Circuits:

Structural Insights and Techniques

8.1 Structural Results

These are the steps to be undertaken during preprocessing.

Converting to a bivariate polynomial

Proposition 8.1. A non-commutative polynomial f ∈ F⟨z1, ..., zn⟩ of degree d having a

circuit of size s can be encoded into a bivariate polynomial f ′ ∈ F⟨x, y⟩ of degree almost

(n+ 2)d and size O(s), where x and y are non-commuting variables.

Proof. Let f =
∑t

i=1 ciwi where ci ∈ and each wi is a monomial in variables {z1, ..., zn}.
Encode each zi using the following substitution: ∀i ∈ [n] : zi 7→ xyix. Thus each wi is

encoded as a as some w̃i in two variables. Moreover, the substitution map is bijective.

Injectivity: Let w = zi1zi2 . . . zik and w′ = zj1zj2 . . . zjm be two different monomials.

These are mapped to w̃ = xyi1xxyi2x . . . xyikx and w̃′ = xyj1xxyj2x . . . xyjmx respectively.

The corresponding exponent sequences (i1, i2, . . . , ik) and (j1, j2, . . . , jm) are different

whenever w ̸= w′, and thus w̃ ̸= w̃′.
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Surjectivity: We are given an arbitrary monomial of the form xyi1xxyi2x . . . xyikx. The

sequence (i1, i2, . . . , ik) corresponds exactly to the original monomial w = zi1zi2 . . . zik .

Due to the bijection, if f is given by a black-box access for evaluation on matrices, we can

efficiently create from it a black-box access for f ′.

Circuit to ABP

Proposition 8.2. Let C be a noncommutative arithmetic circuit of size s computing

f ∈ ⟨x1, x2, . . . , xn⟩. Then there is a non-commutative ABP of width and length at most

2s that computes the same polynomial f .

Proof. We define a configuration as a subset of gates that have already been dealt with.

To simulate the circuit using an ABP, we track which gates have already been dealt with

(that is, evaluated) and what values have already been computed.

Definition 8.3 (Configuration). A configuration is a subset of the set of gates G such

that, if a gate g is a member of the configuration, then all the input gates of g are also in

the configuration.

They can thus be seen as downward closed subsets. Since there are at most s gates, there

are at most 2s possible subsets, and thus the number of possible configurations is also

upper bounded by 2s.

We construct the ABP as follows: Each node of the ABP corresponds to a configuration

S ⊆ G of gates that have been evaluated already. The start node (source) corresponds

to the configuration S = ∅. The accepting node (sink) corresponds to the configuration

S where the output gate has been evaluated. From a configuration S, you can go to

S ′ = S ∪{g} where g /∈ S is a gate with all its inputs in S. The edge is labelled as follows:

• If g is an input gate labelled variable xi, label the edge xi

• If g is an input gate labelled constant α, label the edge α
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• We can move from one subset of evaluated gates to another by evaluating a new

gate whose inputs have already been evaluated. We have three cases here.

1. If we evaluate an input gate (a variable or a constant), simply label the edge

with the corresponding variable or constant.

S
xi−→ S ∪ {g}

S
α−→ S ∪ {g}

2. Suppose we evaluate an addition gate: say, g = g1 + g2

Suppose g1, g2 ∈ S such that their values are evaluated. We now evaluate g

and from from S to S ∪ {g}. Label the edge by 1 because no new variable is

introduced.

S
α−→ S ∪ {g}

The ABP will sum over multiple such paths.

3. Suppose we evaluate a multiplication gate: say, g = g1 × g2. Again, we label

the edge by 1 as we move from S to S to S ∪ {g}. However, the structure of

the ABP has the product order now: it ensures that g1’s contribution occurs

before g2’s in any path that computes g. To sum it up, multiplication is thus

realized by sequencing paths.

Length and Width: The width of an ABP is the maximum number of nodes in a layer.

Each layer corresponds to a set of configurations of a fixed size k, where k is the number

of gates that has been evaluated till then. For 0 ≤ k ≤ s, atmost
(
s
k

)
configurations are

there. Hence,

Width ≤ maxk
(
s
k

)
≤ 2s

The length of an ABP is the number of layers from source to sink. The size of the

configuration is increased one gate per step, and in the worst case, we need to evaluate

s gates one by one. However. all possible configurations are being accounted for in a

sequence, and this corresponds to the longest path through the configuration space. Thus

Length ≤ 2s
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8.2 Proposed Ideas

We consider the problem of rank concentration for a class of non-commutative polynomials,

as a step towards black-box PIT. The input is given to us in the form f = c⊺
∏l

j=1(uix+

ui+1y), where f ∈ F⟨x, y⟩, and the uj ∈ Fd are known vectors. This corresponds to a

non-commutative depth 3 circuit model. A natural generalization to non-commutative

ABPs replaces these vectors with matrices.

An overview of the strategy

The high level goal is to demonstrate ℓ-rank concentration: that is to show that the

coefficient span of all monomials of degy < ℓ terms equals the span of all coefficients.

A typical attempt at proving rank concentration involves the following steps, as seen in 7.

1. Decompose the polynomial, usually as a product of simpler components

2. Apply a suitable map to introduce new dependencies among the monomials

3. Show some local concentration: this involves analyzing the low support monomials

4. Use inductive (or structural) arguments to show that local concentration implies

global concentration

The idea is to introduce non-commuting auxiliary elements a, b that commute with the

original variables x and y . Although they look like generalized monomials, they rest

inside a matrix algebra of suitable dimension.

The map suggested can then be a Hadamard product. Define a map ϕℓ.

x 7→ xa = a⊙ x

y 7→ yb = b⊙ y

This transformation embeds f into the ring F⟨a, b⟩⟨x, y⟩.

Instead of using the sparse PIT algorithm as a subroutine, we try to embed the ideas used

in the sparse PIT algorithm. We simulate the substitution automaton indirectly.
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Given an input monomial w and the current state qi, reading some symbol xb ∈ {x, y}
the automaton has two choices:

1. Don’t care transition: This interprets the current symbol as not being a part of

the isolating set and emits a block variable ξi+1.

2. Step-down Path transition: This interprets the current symbol as a part of the

isolating index set, and emits an index variable yb,i+1, and moves to the next state.

This path is thus the one in which the automaton follows a sequence of transitions that

include exactly one ”step-down” for each i ∈ [k], identifying k = log t positions of the

monomial as the isolating indices.

We now define the following term.

Definition 8.4 (y- stepdown path). yspℓ is the term that corresponds to picking the

stepdown entry in all the y factors.

We hypothesize that the image of f under ϕℓ when analyzed using this idea will exhibit ℓ-

rank concentration. In particular, we expect the stepdown path term to act as a certificate

as non-zeroness- isolating a non-zero contribution to the coefficient space.



Chapter 9

Conclusion, Open Questions &

Future Directions

In this thesis we addressed the question of polynomial identity testing of non-commutative

arithmetic circuits. Chapter 3 introduces essential concepts from non-commutative algebra

and polynomial identity algebras for a general computer science audience. We also present

a self-contained proof of the Amitsur-Levitzki theorem using combinatorial techniques,

exploiting the properties of sn. Chapter 4 presents an important structural property of

non-commutative rational functions and proves their invertibility over matrix algebras.

We can now see these functions as natural objects living in skew fields. The latter chapters

initiate a study of rank concentration for polynomials computed by non-commutative

arithmetic circuits.A major challenge during the course of the thesis was to come up with

a suitable computational model as well as a corresponding notion of rank concentration.

We propose a candidate for the transformation as well as a framework that relies on

existing sparse PIT ideas.

Open Questions

• Rank Concentration Proof: The central open problem remains to prove that

the proposed map induces ℓ-rank concentration

• Lower Bounds: Proving the rank concentration conjecture and the black-box PIT

algorithm would lead to better lower bounds for the standard polynomial sn over
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suitable matrix algebras. This would then be the first hardness result of this type:

the standard polynomial is a hard polynomial, much like the permanent polynomial

in the commutative setting.

Future Directions

• The study of Polynomial Identity Algebras in the context of nc-PIT remains largely

underdeveloped. Beyond the Amitsur-Levitzki Theorem and the result on invertibil-

ity, there has been little meaningful interaction between these two areas. I firmly

believe that a deeper understanding of PI algebras could yield valuable insight into

the nc-PIT problem.

• In Chapter 7, we briefly introduced the notion of Basis Isolating Weight Assignment in

the context of (commutative) arithmetic circuits. It remains to see if a similar notion

of weight assignment based basis isolation can be observed in the non-commutative

setting as well. This method relies on assigning ”weights” to monomials, and

there seems to be no natural way to separate ”weighted” generalized monomials.

Developing a meaningful notion of ”weight” for generalized monomials may enable

a new class of rank concentration maps
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