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Abstract

Checking for the existence of a common root of a set of polynomials is a fundamental prob-

lem in computer science, primarily since it a�ords reduction from many other problems.

It is easy to see for example that SAT, and therefore all NP complete problems reduce to

checking the existence of common roots. It is therefore unlikely that this problem has an

e�cient algorithm.

In this thesis, we study this problem, and some related problems, in the special case

when the input polynomials have low transcendence degree. The transcendence degree

of a set of polynomials is the size of the largest subset of them that do not satisfy any

polynomial relationship. The case of low transcendence degree generalizes the case of

having fewer polynomials than variables. In particular, the three problems we study are

radical membership, e�ective Nullstellensatz and transcendence degree computation. The

radical membership problem is to check, given polynomials f1, . . . , fm and a polynomial

g, whether some power of g belongs to the ideal generated by the polynomials fi. By

Hilbert's Nullstellensatz, taking g = 1 in the above is equivalent to checking for the ex-

istence of a common root of f1, . . . , fm. In the case when 1 is in the ideal generated by

f1, . . . , fm, it is natural to compute witnesses h1, . . . , hm that satisfy 1 =
∑
fihi. The

e�ective Nullstellensatz gives degree upper bounds on the hi that depend on m and the

degree of the polynomials fi. The transcendence degree problem is to compute, given a

set of polynomials f1, . . . , fm what their transcendence degree is. For each of these, we

give bounds and algorithms that depend on the transcendence degree of the polynomials

f1, . . . , fm.

We also provide exposition of Hilbert's Nullstellensatz and the E�ective Nullstellensatz.

We also study the algebraic independence problem, and provide alternative proofs for many

known results about the problem.
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Chapter 1

Introduction

Given a set of multivariate polynomials f1, . . . , fm, there is a natural certi�cate for the

existence of a common root of these polynomials, namely the root itself. Hilbert's Nullstel-

lensatz [Kru50] is a fundamental theorem in algebraic geometry that states that there exists

a certi�cate for the non existence of a common root, in the form of polynomials h1, . . . , hm

such that
∑
fihi = 1. These certi�cates are not e�cient: every root can have exponential

bit complexity and every set of polynomials h1, . . . , hm with the above property can have

exponential degree. It is therefore natural to ask if there are e�cient certi�cates for one

or both of the above. In this thesis, we study the above problems in the special case when

the polynomials f1, . . . , fm have low transcendence degree.

The thesis is divided into seven chapters, including this one. All chapters except chapter

6 are expositional. Chapter 6 is the main contribution of this thesis, and is based on [GS20].

In chapter 2, we establish some notation that we will use for the rest of the thesis, and

also list some basic facts from �eld theory and algebraic geometry.

In chapter 3, we discuss e�ective versions of the hyperplane intersection theorem and

Noether normalization. We show that random hyperplanes intersect varieties�both pro-

jective and a�ne�property with high probability. We also provide a proof of the Noether

normalization theorem, and what it means in the algebraic geometric setting.

In chapter 4, we discuss the Nullstellensatz. We �rst provide a proof of the classical

Nullstellensatz. We then present a proof of an e�ective version of the Nullstellensatz, which

gives degree bounds on the certi�cates.

In chapter 5, we discuss the notion of transcendence degree and algebraic independence.

We state the algebraic independence problem, and provide alternative proofs of some well

1
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known properties and theorems regarding algebraic independence.

In chapter 6, we show the existence of improved Nullstellensatz certi�cates, radical

membership algorithms, and transcendence degree computing algorithms for polynomials

with low transcendence degree. This chapter is the main contribution of this thesis.

Finally, in chapter 7 we provide a conclusion followed by some potential next steps.

Given the range of topics discussed, we have deferred motivations and literature surveys

of the above topics to the respective chapters.



Chapter 2

Preliminaries

We �rst establish some notation that we will use throughout this thesis. We also state

some basic facts from �eld theory and algebraic geometry that will be useful.

2.1 Notation

• We use k to denote the underlying �eld of constants. This will generally be the

algebraic closure of Fp for some prime p that is either arbitrary or clear from context.

• We use k[x] and k(x) respectively to denote the ring of polynomials with coe�cients

from k with indeterminate x, and its �eld of fractions.

• We use vector notation to denote indexed sets of objects when the indexing set is

clear: for example, we use x to denote variables x1, . . . , xn if the number of variables

is clear. We extend this vector notation greatly. For example, if f1, . . . , fm are

polynomials each in the same n variables and a1, . . . , an ∈ k then f(a) denotes the

evaluations

(f1(a1, . . . , an), f2(a1, . . . , an), . . . , fm(a1, . . . , an)).

If x is a set of n variables and m ∈ Nn is a vector of natural numbers then xm

denotes the monomial
∏
xmi
i .

• We use An and Pn respectively to denote the n dimensional a�ne and projective

spaces. We use Pn∞ to denote the hyperplane at in�nity.

• Given a variety X, we use k[X] to denote its coordinate ring.

3
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2.2 Algebra preliminaries

2.2.1 The polynomial identity lemma

We make extensive use of the following theorem that controls the number of roots of

multivariate polynomials. We refer to it as the polynomial identity lemma.

Lemma 2.2.1 (Polynomial identity lemma, [Sch80, Zip79, Ore22, DL78]). Let f(x1, . . . , xn)

be a polynomial of degree d over the �eld k. Let S be a subset of the �eld k. Then the

number of roots of f in S × · · · × S is at most d|S|n−1. Equivalently, if points a1, . . . , an

are sampled uniformly and independently from S then the probability that f(a1, . . . , an) is

0 is bounded above by d/|S|.

2.2.2 Field theory and commutative algebra preliminaries

We state some basic de�nitions from the theory of �eld extensions and commutative algebra

that we will use throughout this thesis.

SupposeK is a �eld extension of k. Given a subset S ofK, we say that S is algebraically

independent if the elements of S do not satisfy any polynomial equation with coe�cients

in k. The transcendence degree of the extension K/k is the cardinality of the largest

algebraically independent subset ofK. If T is such a subset, then by de�nition the extension

K/k(T ) is algebraic. All maximal algebraically independent subsets of K have the same

cardinality. This is akin to the notion of linear independence of vectors, and in fact the proof

is similar too. We refer the reader to [Lan02, Theorem 1.1, Chapter 8] for an elementary

proof in the case of interest here, which is that of extensions with �nite transcendental

degree.

Suppose now that K/k is an algebraic extension. An element a ∈ K is called separable

if the minimal polynomial of a over k does not have repeated roots. The extension is called

separable if every element is separable. Suppose Ks is the sub�eld of separable elements

of K over k. Then every element a ∈ K and a 6∈ Ks is such that ap
n ∈ Ks. Here p is the

characteristic of the �eld. Inseparability is a property that can only arise in �elds of �nite

characteristic (more speci�cally, only in �elds that are not perfect).

All of the rings we consider will be unital and commutative. Suppose S/R is an

extension of rings. The ring S is called an integral extension of R if every s ∈ S satis�es
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a monic polynomial with coe�cients in R. If S/R is an integral extension and S′/S is

another integral extension, then S′/R is also an integral extension.

2.3 Algebraic geometry preliminaries

Here we state some basic facts from algebraic geometry. An excellent reference for this

material is [SR13]. Another excellent reference with emphasis on computational aspects is

[CLO07]. We use [Eis13] for the commutative algebra facts.

2.3.1 Basic de�nitions

Let k be an algebraically closed �eld, and let A be the ring k[x1, . . . , xn]. The ring k is

Noetherian since it is a �eld, and by repeated applications of the Hilbert Basis Theorem

[Eis13, Theorem 1.2, Chapter 1] we obtain that A is Noetherian. This implies that every

ideal of A is �nitely generated.

Let f1, . . . , fm be a set of polynomials from A. We denote by V (f) the set of common

zeroes of f . More explicitly

V (f) = {(c1, . . . , cn) | ∀i, fi(c) = 0}.

Any simultaneous root of f is a root of every polynomial in the ideal generated by the f ,

and therefore V (f) = V (〈f〉). Since every ideal is �nitely generated, every V (I) for an

arbitrary ideal I will be of the form V (g) where g is a generating set for I. We will call

V (f) the a�ne variety de�ned by f .

We think of V (·) as a map from the set of ideals of A to subsets of An. We also have a

natural map in the opposite direction: Given a subset U of An, we de�ne I(U) to be the

set of all polynomials that vanish on every element of u. More explicitly,

I(U) = {f ∈ A | ∀u ∈ U, f(u) = 0}.

The maps I(·) and V (·) are inclusion reversing. For any variety V we have V (I(V )) = V .

For every ideal I we have I(V (I)) =
√
I. This second statement is one version of the

Nullstellensatz, and will be proved in chapter 4.
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Zariski topology

The n dimensional a�ne space An can be given a topology where the closed sets are

exactly the zerosets of a �nite number of polynomials. This topology is called the Zariski

topology. Given a variety V = V (I), it is irreducible in the Zariski topology if and only if

I is a prime ideal. The Zariski topology in a Noetherian topological space, which means

that every descending chain of closed subsets stabilizes. This follows easily by noting that

a descending chain of closed subsets corresponds to an ascending chain of ideals. As a

consequence of this, every closed subset can be written uniquely as the union of irreducible

closed sets, none containing another.

Suppose f is a polynomial. The set of points given by f 6= 0 is an open set. The

polynomial identity lemma stated above essentially states that given an open set of this

form, a point chosen at random lies in this open set with high probability.

Coordinate rings

Given a variety V ⊆ An corresponding to ideal I, the ring k[x1, . . . , xn]/I is called the

coordinate ring of I. We denote it by k[V ]. It consists of polynomial functions on V , that

is, functions V → k that are given by polynomials. We have k[An] = k[x1, . . . , xn]. In

the general case, x1, . . . , xn generate k[X] as an algebra, and we call these the coordinate

functions on X.

Suppose V is irreducible. Then I is prime, and k[x1, . . . , xn]/I is a domain. The �eld

of fractions of this domain is called the function �eld of V , and is denoted by k(V ). It

consists of functions on V that are de�ned on some open subset of V .

Polynomial maps

Suppose X,Y are varieties in An,Am respectively. A map φ : X → Y is called a regu-

lar map (or polynomial map) if each coordinate function φi of φ is an element of k[X].

Rephrasing, the map is called regular if there exists φ1, . . . , φm ∈ k[X] such that for every

point (a1, . . . , an) in X we have

φ(a1, . . . , an) = (φ1(a1, . . . , an), . . . , φm(a1, . . . , an)).
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Polynomial maps are continuous in the Zariski topology. Given a point y ∈ Y , the set

φ−1(y) is called the �bre of y under φ, or just the �bre of y if φ is clear from context. Since

points are closed in the Zariski topology, and polynomial maps are continuous, the �bre of

any point is a variety.

Given a polynomial map φ : X → Y , there is an induced map φ∗ : k[Y ] → k[X] that

takes f ∈ k[Y ] to f ◦φ ∈ K[X]. This map is a ring homomorphism. Alternatively, given a

ring homomorphism ψ : k[Y ]→ k[X], there exists a map ψ∗ : X → Y such that ψ = (ψ∗)∗.

This map is de�ned by the coordinate functions ψ∗i = ψ(yi), where yi is the ith coordinate

function of the ambient space Am of Y (strictly speaking, the image of the coordinate

function in k[Y ]).

Suppose φ : X → Y is a polynomial map. The image φ(X) might not be a variety. We

use φ(X) to denote the Zariski closure of the image. This is the intersection of all closed

sets containing φ(X).

If the map is such that φ(X) = Y , then the map is called dense. Although a dense map

is not surjective, every polynomial that vanishes on the image of a dense map will vanish

on the entire codomain. If the map φ is dense, then the induced map φ∗ is an injection.

To see this, suppose we have φ∗(f) = 0 for some f ∈ k[Y ]. Then φ∗(f) vanishes on every

point in X, and therefore f vanishes on every point in φ(X). Since the map is dense, f

vanishes on every point in Y whence f = 0 in k[Y ].

Projective varieties

Let Pn be the quotient of the space An+1 \ {0}, where every line through the origin is

identi�ed. In other words, elements of Pn are n + 1 tuples (x0, . . . , xn) of elements of k,

with at least one xi nonzero, and the equivalence (x0, . . . , xn) = (λx0, . . . , λxn) for every

nonzero λ ∈ k. Given a polynomial in n + 1 variables, we do not get a well de�ned map

on Pn since polynomial functions are not scale invariant. However, given a homogeneous

polynomial, the zeroset of the polynomial is a well de�ned subset of Pn. We can give Pn a

topology where the closed sets are exactly the zerosets of a �nite number of homogeneous

polynomials.

Given the n-dimensional projective space Pn, there is a copy of An embedded in it,

namely the set of points of Pn of the form (1, x1, . . . , xn). We call this an a�ne chart.

The complement of this set, namely the set of points of the form (0, x1, . . . , xn) is a closed
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linear subspace of Pn given by x0 = 0, and is called the hyperplane an in�nity. Suppose

we have an a�ne variety X. This set X is subset of Pn via the above inclusion of An into

Pn. Let Xp be the closure of this set in the Zariski topology of Pn. This set is called the

projective closure of X.

There exists an ideal variety correspondence in the projective case which is similar to

the one discussed above. There also exists notions of function �elds for projective varieties.

These constructions are more involved than their a�ne counterparts, and therefore we do

not present them here.

The advantage of projective varieties is that they behave better with respect to in-

tersections. Many of our arguments will therefore involve starting with an a�ne variety,

considering its projective closure, studying intersections in the projective closure and de-

ducing properties of the original a�ne variety.

2.3.2 The dimension and degree of a variety

Dimension

To every a�ne variety we can assign a dimension. It seems natural to want the dimension

of An to be n, and the dimension of an a�ne subspace 1 to be equal to the linear algebraic

dimension of the subspace. There are more motivations for the following de�nition of

dimension which we do not provide here.

Suppose X is an irreducible a�ne variety. As discussed above, k[X] is a domain, and

therefore k(X) is a �eld extension of X. We de�ne the dimension of X to be equal to the

transcendence degree of the extension k(X)/k. Suppose Y is an arbitrary a�ne variety.

As discussed above, we can write Y uniquely as a union of irreducible varieties. We de�ne

the dimension of Y to be the maximum of the dimensions of these irreducible varieties.

We can alternatively de�ne the dimension as follows. Let X be an irreducible variety.

Consider chains of irreducible varieties of the form

∅ 6= X0 ( X1 ( · · · ( Xn = X.

We de�ne the dimension of X to be n if the above is a maximal chain of irreducible

varieties. Given any chain of shorter length, it can always be re�ned to a chain of length

1Here, by a�ne subspace we mean a translate of an linear subspace of An when it is treated as a k-vector
space with origin 0.
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n. This de�nition is very similar to the de�nition of linear algebraic dimension of a�ne

spaces. In that setting, given a vector space of dimension n, the only vector spaces that it

strictly contains are those of dimension n− 1. The re�nement statement also holds.

Note that the second de�nition applies directly to projective varieties, while the �rst

de�nition depends on the function �eld, which we have not de�ned here. For a projective

variety W the intersection W ∩An�where An is considered as a subset of Pn as discussed

above�is an a�ne variety, and the dimension of W matches the dimension of this a�ne

variety. It also holds that the dimension of the projective closure of an a�ne variety is

equal to the dimension of the original variety.

There is a third de�nition of dimension based on the Hilbert polynomial of the coordi-

nate ring of the variety, which we do not discuss here. A fundamental theorem in dimension

theory is that these de�nitions are all equivalent. The proof of this fact is beyond the scope

of the thesis, and can be found in the mentioned references.

Given a variety Y ⊆ X with dimX = n and dimY = m, we de�ne the codimension of

Y in X to be n−m. This is denoted by codimX Y . When X is not explicitly mentioned,

we assume that X is the ambient space in which Y lies.

A hypersurface in An is a variety de�ned by a single polynomial. The variety is irre-

ducible if and only if the polynomial is. Every irreducible component of a hypersurface

has codimension 1. This is similar to the notion of hyperplanes.

We now study how the dimension behaves with the intersection of varieties. Consider

the linear algebra case. Suppose we had a linear subspace L, and a hyperplane H. Then

the dimension of L∩H can be either dimL or dimL−1. The �rst case only occurs when L

is contained in H. If not, then the second case occurs. If we consider a�ne subspaces, then

there is a third possibility, namely that H∩L = ∅. The linear algebraic dimension therefore

either remains the same, or drops by exactly 1 when the intersection is nonempty. In our

setting, a�ne varieties behave like a�ne subspaces: intersection of an a�ne variety with a

hypersurface reduces the dimension by at most 1, as long as the intersection is nonempty.

Projective varieties behave like linear subspaces: intersections of projective varieties and

hypersurfaces are always nonempty (unless the projective variety has dimension 0), and

therefore the intersection reduces the dimension by at most 1. We state the above, and

some corollaries of the above as theorems. These will be used repeatedly throughout this

thesis.
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Theorem 2.3.1 ([SR13, Cor 1.13, Section 6, Chapter 1]). Suppose W is an irreducible

projective variety, and H is a hypersurface that does not containW . Then every component

of W ∩H has dimension dimW − 1. In particular, if dimW ≥ 1, then the intersection is

nonempty.

Suppose X is an irreducible a�ne variety and H is a hypersurface that does not contain

X. Then every nonempty component of X ∩H has dimension dimX − 1.

We say that a hyperplane intersects a variety properly if the dimension drops by exactly

1. We can repeatedly apply the above theorem to obtain the following corollary.

Corollary 2.3.2 ([SR13, Cor 1.14, Section 6, Chapter 1]). Suppose W is an irreducible

projective variety, and Z ⊂ W is the set of zeroes of m homogeneous polynomials on W .

Then every component of Z has dimension at least dimW −m.

Suppose X is an irreducible a�ne variety and Y ⊆ X is the set of common zeroes

of m polynomials on X. Then every nonempty component of Y has dimension at least

dimX −m.

Finally, we have the following corollary about the intersection of two varieties. It follows

by applying the above to the diagonal Pn × Pn, although we omit the proof.

Theorem 2.3.3 ([SR13, Theorem 1.24, Section 6, Chapter 1]). Suppose W,Z are irre-

ducible projective varieties in Pn of dimensions m1,m2. Then every component of W ∩ Z

has dimension at least m1 +m2 − n.

Suppose X,Y are irreducible a�ne varieties in An of dimensions m1,m2. Then every

nonempty component of X ∩ Y has dimension at least m1 +m2 − n.

We say X and Y intersect properly if equality holds in the above.

The �nal thing we discuss in this chapter is the �bre dimension theorem. It states

that the �bres of a surjective have dimension greater than or equal to the di�erence of the

dimensions of the domain and codomain. This statement also holds in the linear algebraic

setting: the dimension of every �bre of a surjective map is exactly equal to the dimension of

the kernel of the map, which is the di�erence in the dimension of the domain and codomain.

Theorem 2.3.4 ([SR13, Theorem 1.25, Section 6, Chapter 1]). Let φ : X → Y be a

polynomial map. Let n,m denote the dimensions of X and Y respectively, and assume that

φ is surjective. Then n ≥ m. Further,
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1. For every b ∈ Y , every component of the �bre φ−1(b) has dimension at least n−m.

2. There exists an open set U of points b ∈ Y such that dimφ−1(b) = n−m for every

b ∈ U .

We provide a proof sketch for this result in the special case when Y = An. In our

applications, we will require that appropriately sampled random points satisfy the second

item above, and therefore we need some control over which points have that property,

which we also do. Also note that the above statement holds if we replace surjective by

dominant, in which case the �rst item is satis�ed by every point with a nonempty �bre,

and the other statements holds as is.

Proof sketch for a special case of Theorem 2.3.4. Since φ is a surjective map, the induced

map φ∗ : k[Y ] → k[X] is injective. The statement n ≥ m holds from the fact that

trdeg(k(Y )) ≤ trdeg(k(X)), which is clear from the above inclusion of φ∗(k[Y ]) in k[X].

Now let Y = Am, and let y be an arbitrary point in Y . The point b is de�ned in

Y by m equations, namely y1 = b1, . . . , ym = bm, where yi are the coordinate functions

of Am. 2 The �bre in X is therefore de�ned by the equations φ1 = b1, . . . , φm = bm,

where φ1, . . . , φm are the coordinate functions of φi. By Corollary 2.3.2, every nonempty

component of the �bre has dimension at least n −m. Finally, that the �bre is nonempty

follows from the fact that φ is surjective. 3

We now prove the second item. The ring k[Y ] is generated by m algebraically in-

dependent elements y1, . . . , ym. Under φ∗, these map to φ1, . . . , φm, whence these are

algebraically independent elements of k[X]. The transcendence degree of k(X) is n. Let

x1, . . . , xn be a transcendental basis for k(X) ordered so that φ1, . . . , φm, xm+1, . . . , xn are

algebraically independent. Let Ai denote the annihilator of xi, φ1, . . . , φm, xm+1, . . . , xn,

for i = 1, . . . ,m.

Now let b be a point in Y , and consider its �bre φ−1(b). Let W be an irreducible

component of its �bre. The ring k[W ] is generated by x1, . . . , xn. Suppose b is such that

Ai(xi, φ1(b), . . . , φm(b), xm+1, . . . , xn) is nonzero for every i. Then in k[W ], each xi for

i = 1, . . . ,m depends algebraically on xm+1, . . . , xn. This shows that the transcendence

degree of k[W ], and therefore the dimension of W is at most n−m. Combined with item

2When Y is an arbitrary variety, it is not always true that a point is �xed by dimension many equations,
and we have to pass to open subsets.

3The remark about dominant maps is clear, and the same proof works, only changing the last sentence.
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1 in the theorem, it shows that W has dimension exactly n −m. Finally note that if the

Ai are nonzero after specialization, then the above relationships fold for every component

of the �bre, whence the �bre itself has dimension W .

We therefore just have to prove that the set of points b in Y such that the polynomials

Ai(xi, φ1(b), . . . , φm(b), xm+1, . . . , xn) are nonzero form an open set. For this, we look at

Ai as a polynomial in xi, . . . , xm+1, . . . , xn with coe�cients in φi, and let A′i be the highest

degree coe�cients. It su�ces that A′i, which is now a polynomial in k[Y ], is nonzero for

every i for the above to hold. Therefore, we can pick U to be the complement of the unions

of the zerosets of A′i, which is an open set.

Degree

We now de�ne the degree of a variety. This is a far more involved notion than the di-

mension, and therefore we just state the de�nition and theorem we require. The following

de�nition is from [Hei83]. For an irreducible a�ne variety X ⊆ An of dimension r we de�ne

its degree to be the supremum of |X ∩H|, where H is an a�ne subspace of dimension n−r

such that dimX ∩H = 0. It holds that a general linear subspace attains this supremum.

That the supremum is �nite follows from the facts that it is a variety and hence has an

irreducible decomposition. We use degX to denote the degree of X.

Suppose Y is an arbitrary variety, with irreducible decomposition ∪Yi with no Yi con-

taining another. Then we de�ne the degree of Y to be the sum of the degrees of Yi. It no

longer holds that this is cardinality of the intersection of Y with a general a�ne subspace

of dimension n− dimY , unless every Yi has the same dimension as Y .

We note that the above de�nition of the degree of a variety is di�erent from that in

the algebraic geometry literature. In the latter, they extend the �rst de�nition to every

variety, and as noted above, these match only if every component of the variety has the

same dimension.

The degree of a hypersurfaces matches the degree of the polynomial that de�nes it. We

also have the following theorem that controls the degree of the intersection of two varieties.

We refer to it as Bézout's Theorem.

Theorem 2.3.5 (Bézout's Theorem, [Hei83, Theorem 1]). Suppose X and Y are varieties.

Then degX ∩ Y ≤ degX × deg Y .
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Finally, the degree of the projective closure of a variety is the same as the degree of

the original variety.



Chapter 3

Hyperplane intersection and Noether

Normalization

Given a variety of dimension r, intersecting it with a hyperplane chosen randomly reduces

the dimension by 1. The set of hyperplanes that do not have this property form a subvariety

in the space of all hyperplanes. In order to apply this result, we have to get bounds on

the bad set of hyperplanes. We do this in the �rst part of this chapter. In the second

part, we discuss Noether normalization, which is a fundamental result from commutative

algebra and algebraic geometry. We will state some basic results about �nite maps that

will be useful in later chapters. We then use results from the �rst part to get bounds on the

projections that are not Noether normalizing. All of the results presented in this chapter

are folklore.

3.1 Hyperplane intersection

We prove the result for both projective and a�ne varieties. In the case of projective

varieties, the intersection theorem guarantees that the intersection of a hyperplane with a

variety of dimension at least 1 is nonempty. Proving then that a random hyperplane reduces

the dimension by exactly one reduces only to proving that the dimension does not remain

the same. When dealing with a�ne varieties, a new complication arises. The intersection

with a hyperplane might be empty: for example consider the intersection of two parallel

hyperplanes whose de�ning equations have di�erent constant terms. We must therefore

also bound the probability of this event happening. We will �rst prove the projective case,

14
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and use it to prove the a�ne case.

We formally state the �rst lemma that we will prove.

Lemma 3.1.1. Let V ⊆ Pn be a projective variety of degree D. Let S be a subset of the

�eld k that does not contain 0. Let h =
∑n

i=0 cixi be a linear equation, with each coe�cient

ci picked independently and independently from the subset S, and let H be the variety V (h).

Then with probability at least 1−D/|S| we have that dimV ∩H = dimV − 1.

Proof of Lemma 3.1.1. Let V = ∪di=1 be the decomposition of V into irreducible compo-

nents. Since deg V =
∑d

i=1 deg Vi and deg Vi ≥ 1 for each i, we have d ≤ D. Also pick a

point pi from each component Vi.

By the intersection theorem (Theorem 2.3.1), for a �xed irreducible component Vj , the

intersection Vj ∩H has dimension Vj−1 unless Vj ⊆ H in which case dimVj ∩H = dimVj .

The event Vj ⊆ H implies in particular that pj ∈ H. The probability that pj 6∈ H is

at least 1/|S|. To see this, suppose (pj)j′ is the last nonzero coordinate of pj . Then for

any setting of all the ci other than i = j′, there is at most one value of cj′ that makes∑
ci(pj)i = 0. Therefore, the probability that Vj ⊆ H is bounded above by 1/|S|.

To complete the proof, we use the union bound. The condition that for every i the

intersection Vi ∩H has dimension one less than that of Vi guarantees that the intersection

V ∩H has dimension one less than that of V . By the union bound, the probability that

for some i we have dimVi ∩H = dimVi is at most d/|S|, whence with probability alt east

1−d/|S| we have that dimV ∩H = dimV −1. The proof is completed by using the initial

observation that k ≤ D.

In most of our applications, the degree D will be at most single exponential in the

input size. We can therefore sample from subsets of size O(D) in polynomial time, and

still guarantee that the intersections behave as expected with high probability.

We now state and prove the a�ne case.

Lemma 3.1.2. Let V ⊆ An be an a�ne variety of degree D. Let S be a subset of the �eld

k that does not contain 0. Let h = c0 +
∑n

i=1 ci be a linear equation, with each coe�cient

ci picked uniformly and independently from the subset S, and let H be the variety V (h).

Then with probability at least 1− 2D/|S| we have that dimV ∩H = dimV − 1.

As stated before, the di�culty arises in ensuring that the intersection is nonempty. In
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order to do this, we consider the projective closures of the varieties involved, and bound

the probability that the intersection occurs in the hyperplane at in�nity.

Proof of Lemma 3.1.2. Let V p be the projective closure of V , and Hp be the projective

closure of H. The variety Hp is de�ned by the equation
∑n

i=1 cixi = 0. We have deg V =

deg V p and dimV = dimV p.

By the intersection theorem (Theorem 2.3.1), the intersection V p ∩ Hp is non empty

(unless dimV = 0). Therefore, V ∩H = ∅ implies that the intersection V p∩Hp is contained

in the hyperplane at in�nity P∞n . In order for the event dimV ∩H = dimV − 1 to hold,

it is therefore su�cient that the following two conditions hold:

• dimV p ∩Hp = dimV p − 1.

• V p ∩Hp 6⊆ Pn∞ unless V p ∩Hp = ∅.

All of the coe�cients c0, . . . , cn were chosen randomly from S, and we are therefore in

the setting of Lemma 3.1.1. By applying the lemma to V p and Hp, we get that the �rst

condition holds with probability at least 1−D/|S|.

We now prove that if the �rst condition holds, then the second condition also holds

with probability 1 − D/|S|. Since no component of V p is contained in Pn∞, the variety

V p ∩ Pn∞ has dimension dimV p − 1. By Bézout's theorem, deg V p ∩ Pn∞ ≤ D. We can

therefore apply Lemma 3.1.1 to the variety V p∩P∞n and Hp to get that with probability at

least 1−D/|S| the intersection V p∩Pn∞∩Hp has dimension dimV p∩Pn∞−1 = dimV p−2.

If this is the case then V p ∩Hp cannot be a subset of Pn∞, since if it were, then we would

have V p ∩Hp ∩ Pn∞ = V p ∩Hp, and the latter has dimension dimV − 1. Therefore, with

probability at least 1−D/|S| we have that V p ∩Hp 6( Pn∞.

A union bound on the two conditions completes the proof of the lemma.

In our applications, we will frequently use the above lemma iteratively to reduce the

dimension of a variety to 0. It is clear from the above lemmas that if a variety V has

dimension r, then intersecting V with r many random linear hyperplanes will achieve this

with high probability. We will however sometimes require that the intersecting hyperplanes

have some structure. In particular, we will require that only the �rst hyperplane depends

on x1, only the �rst two depend on x2, and so on. In the following lemmas we prove that

the intersection will still behave as expected.
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Lemma 3.1.3. Let V ⊆ Pn be a projective variety of dimension r and degree D. Let S be

a subset of k that does not contain 0. Let h be a linear form that depends only on n− r+ 1

variables, and let H be the hyperplane it de�nes. If the coe�cients of each variable is

picked uniformly and independently from S then with probability at least 1−D/|S| we have

dimV ∩H = dimV − 1.

Let W ⊆ An is an a�ne variety of dimension r ≥ 1 and degree D. Let ` be a linear

equation that depends on n − r + 1 variables, and let L be the hyperplane it de�nes. If

the coe�cients of each variable is picked uniformly and independently from S then with

probability at least 1 − 2D/|S| we have dimW ∩ L = dimW − 1. If r = 0, then ` must

depend on all the variables, and have a constant term.

The following examples show that this is essentially tight, that we cannot always pick

a hyperplane whose equation has fewer nonzero coe�cients. Suppose V is the projective

variety in n dimensions de�ned by x0 = x1 = x2 = 0. This variety has dimension n − 3.

Any hyperplane of the form a0x0 + a1x1 + a2x2 = 0 always contains V , irrespective of

the ai. Therefore, such a hyperplane can never property intersect V . We emphasize

that the above is a worst case statement. If instead we picked an equation of the form

a2x2 + a3x3 + a4x4 = 0 then it is possible to get proper intersection. In the a�ne case,

we must pick n − r + 1 coe�cients, not including the constant term. This ensures that

the intersection on the hyperplane at in�nity is proper, which was essential in the proof

of Lemma 3.1.2. For example, consider the variety W de�ned by x1 = · · · = xn−2 = 0.

This has dimension 2. If we de�ne ` = b0 +
∑n−2

i=1 bixi, then the intersection of W and L

is empty (if b0 6= 0) or not proper (if b0 = 0). For the statement about r = 0, assume that

W = 0. Then if ` does not have a constant term, the intersection will never be proper.

We now prove the lemma.

Proof of Lemma 3.1.3. This proof is similar to the proofs of Lemma 3.1.1 and Lemma 3.1.2,

and we only focus on the di�erences here. We �rst prove the projective case. Assume

without loss of generality that x0, x1, . . . , xn−r are the n− r + 1 variables that h depends

on, that is, h =
∑n−r

i=0 cixi. Let V = ∪di=1Vi be the irreducible decomposition. In the proof

of Lemma 3.1.1, the hyperplane properly intersected every Vi, which ensured that the

dimension of V drops by 1. It is su�cient however that the hyperplane property intersect

all of the components of V that have dimension r. If this happens, even if the intersection
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with a lower dimension component is non proper, the intersection with V will still be. We

can therefore drop all of the lower dimensional components from the above union, and

assume that V1, . . . , Vk are the irreducible components of V of dimension r. The bound

d ≤ D clearly still holds.

We now want to pick a point pi from each component. It might happen however that

the �rst n− r+ 1 coordinates of pi are all zero. If this is the case, then the previous proof

fails, since h(pi) = 0 irrespective of the coe�cients. The proof of Lemma 3.1.1 fails since it

involves picking the coe�cient cj′ corresponding to a nonzero coordinate of pi. Therefore,

we want to ensure that we pick pi such that not all of the �rst n−r+1 coordinates are zero.

Fix a component Vj , and suppose that every pj ∈ Vj has all of the �rst n−r+1 coordinates

zero. Then Vj would be contained in the subspace de�ned by x0 = x1 = · · · = xn−r = 0.

But this subspace has dimension r − 1, whence Vj would have dimension at most r − 1.

This contradicts the assumption that Vj is a component of dimension r.

Once such pi are picked from each component, the same arguments as in the proof of

Lemma 3.1.1 work, and we get the required result.

For the a�ne case, we have two su�cient conditions for the intersection to be proper.

The �rst condition is that Lp intersectsW p properly. The second condition is that Lp∩Pn∞

intersects W p ∩Pn∞ properly. In the proof of Lemma 3.1.2, these were ensured by invoking

Lemma 3.1.1 twice. In order to prove the a�ne case of this lemma, we follow the same

proof, and replace invocations of Lemma 3.1.1 with the projective version of this lemma

instead. All we have to show is that the assumptions are satis�ed.

The de�ning equation of Lp is the homogenization of `, and the equation of Lp ∩Pn∞ is

the degree 1 part of `. For the �rst condition we are intersecting W p which has dimension

r, and hence we require the homogenization of ` to depend on n+ r− 1 variables. For the

second condition we are intersecting with W p ∩ Pn∞. The underlying space here is Pn−1∞ ,

which has dimension n − 1. We therefore require the degree 1 part of ` to depend on

(n − 1) − (r − 1) + 1 = n − r + 1 variables. Both these requirements are satis�ed by the

assumption. This completes the proof.

We now give a simple corollary of the above lemma. The corollary basically states that

we can repeatedly apply the above lemma r times to a variety of dimension r to obtain

a variety of dimension 0. The corollary also states that r + 1 intersections results in the

empty variety. This last statement can alternatively be seen as the fact that a random
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linear space of dimension n− r− 1 avoids a variety of dimension r. While the proof of this

corollary is obvious, we state it here so we can easily invoke the result later on, instead of

having to invoke one of the previous lemmas multiple times inductively.

Corollary 3.1.4. Let V be a projective variety of dimension r and degree D. Let S be

a subset of k not containing 0. Let h1, . . . , hr+1 be linear forms such that hi depends on

n+ 2− i variables, and each coe�cient is picked uniformly and independently from S. Let

Hi be the hyperplane de�ned by hi. Then the intersections V ∩H2∩· · ·∩Hr+1 has dimension

0 with probability at least 1 − rD/|S|. Further, the intersections V ∩ H1 ∩ · · · ∩ Hr+1 is

empty with probability at least 1− (r + 1)D/|S|.

LetW be an a�ne variety of dimension r and degree D. Let `1, . . . , `r+1 be linear forms

such that `i depends on n+2− i variables (except `1, which depends on n variables and has

a constant term), and each coe�cient is picked uniformly and independently from S. Let

Li be the hyperplane de�ned by `i. Then the intersections W ∩L2∩· · ·∩Lr+1 has dimension

0 with probability at least 1 − 2rD/|S|. Further, the intersections W ∩ L1 ∩ · · · ∩ Lr+1 is

empty with probability at least 1− 2(r + 1)D/|S|.

Proof of Corollary 3.1.4. The proof of both the projective and a�ne versions essentially

follows from the repeated application of Lemma 3.1.3. In order to ensure the assumptions,

we �rst intersect V (resp. W ) with Hr+1 (resp. Lr+1), then Hr (resp. Lr) and so

on. In both cases, we use Bézout's theorem after each intersection to guarantee that the

variety obtained after intersecting with Hi has degree at most D. The lower bound on the

probabilities are obtained by a union bound on the failure of each of the intersections.

Throughout this section, our model for random a�ne subspaces was to pick de�ning

equations uniformly and independently, and considering their zerosets. In some places, we

will have to consider a slightly di�erent model. Suppose we have a map from An−r to

An with linear coordinate functions. The image of this map is a linear subspace of An of

dimension at most n− r. If the coordinate functions are picked randomly, then the image

is a random subspace. We show that given a variety of dimension r and degree D, with

high probability the image of such a map will properly intersect V . We will require the

statement only for the case of a�ne varieties, but we prove it both for the projective case

and the a�ne case. As was the case before, we will use the former to prove the latter.
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Lemma 3.1.5. Suppose V is a projective variety of degree D and dimension r. Suppose

ψ0, . . . , ψn are linear homogeneous polynomials in z0, z1, . . . , zm with each coe�cient picked

uniformly and independently from a subset S of k. Let ψ be the linear map from Pm to

Pn with coordinate functions ψi, and let H be its image. Then with probability at least

1−n3D/|S| we have that the above map is well de�ned, dimH = n−r, and dimH∩V = 0.

Proof of Lemma 3.1.5. Suppose each ψi is of the form
∑n−r

j=0 ai,jzj . That ψ is well de�ned

requires this map to be injective (we cannot have anything other than 0 mapping to 0,

since this point is not part of Pn). This requires that the matrix Aij = ai,j has full rank.

Fixing any submatrix of size (n − r) × (n − r), its determinant is a polynomial in aij of

degree n− r. By the polynomial identity lemma, with probability at least 1− (n− r)/|S|

this determinant is nonzero, the map is well de�ned and dimH = n− r.

Now suppose we actually pick ψ0, . . . , ψn such that each of them is a homogeneous

equation in n+ 1 variables z0, . . . , zn. Let Ψm for m = n− r, . . . , n denote the restriction

of the map ψ : Pn → Pn to the space de�ned by zm+1 = · · · = zn = 0. By de�nition the

original map that we started with is Ψn−r, after identifying Pm with the subspace zn−r+1 =

· · · = zn = 0. Let Lm denote the image of Ψm. By the same argument as above, each Lm

has dimension m with probability at least 1 − m/|S|. We have Ln = Pn, and therefore

Ln∩V = V , and dimLn∩V = n. We will now show that dimLm−1∩V = dimLm∩V −1

for m = n− r + 1, n− r + 2, . . . , n with high probability. This, combined with the above

statement and a union bound will give us our desired result.

Let W := Lm ∩ V . By Bézout's theorem we have degW ≤ D. Let W = ∪di=1Wi

be the irreducible decomposition of W , and let pi be a point in Wi. Each pi lies in

Lm. The subspace Lm−1 is a linear subspace of Lm. If we can show that pi is not

in Lm−1 then the hyperplane de�ned by Lm−1 properly intersects Wi, using the same

arguments as in the proof of Lemma 3.1.1. The condition that pi is not in Lm−1 is

equivalent to the condition that the coordinate vector of point pi depends linearly on the

�rst m columns of A. By considering a minor and applying the polynomial identity lemma,

this happens with probability at most (n −m + 1)/|S|. The probability that it does not

happen for any pi is at least 1 − (n −m)D/|S| by the union bound. If this happens, we

have dimLm−1 ∩ V = dimLm ∩ V − 1 as required.

We can now take a union bound over the above events for all m. With probability at
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least 1− n3D/|S| therefore we have dimH ∩ V = 0. 1

We can now prove a similar statement for a�ne varieties.

Lemma 3.1.6. Suppose W is an a�ne variety of degree D and dimension r. Suppose

ψ1, . . . , ψn are linear polynomials in z1, . . . , zn−r with each coe�cient picked uniformly and

independently from a subset S of k. Let ψ be the linear map from Am to An with coordinate

functions ψi, and let H be its image. Then with probability at least 1− 2n3D/|S| we have

dimH = n− r and dimH ∩W = 0.

Proof of Lemma 3.1.6. Suppose each ψi is of the form ai0 +
∑n−r

j=1 aijzj . We use ψhi to

denote the homogenization of ψi using the variable z0. Let W p be the projective closure

of W . We now invoke the projective version of the theorem on WP , using φ0 = z0. We

continue to use φ0 = z0 even in the step when we assume that we had random polynomials

in n+ 1 variables. In the projective case, our steps required that certain matrices were full

rank. In the special case with φ0 = z0, the �rst row of all of the matrices will be of the form

1, 0, . . . , 0 follows by the �rst coordinate of pi. In any case, this specialization does not force

the matrices to have lower rank, and therefore the proofs go through. With probability

at least 1 − n3D/|S| therefore the image of the homogeneous version of φ intersects W p

properly.

We �nally have to show that there is a point in the intersection in An, so that the

intersections of the a�ne variety and linear subspace is also of dimension 0. This is similar

to the proof of Lemma 3.1.2 The variety W p ∩ Pn has dimension r − 1. The restriction

of the image of the homogenized version of ψ to the hyperplane at in�nity is given by the

degree 1 part of the polynomials ψ1, . . . , ψn. This image has dimension n− r−1. We want

to invoke the projective version of this lemma on this image and W p. In this case, the sum

of the dimension of the linear space and variety is 1 less than that of the ambient space,

and therefore by repeating the induction step in the proof on additional time, we obtain

that the two varieties have intersection of dimension −1 with high probability. The bound

on the probability of the bad event is n3D/|S| as before. As in the proof of Lemma 3.1.2

this is a su�cient condition for what we require.

The �nal result holds by taking a union bound over the above two results.
1The n3 is just a lazy estimate.
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3.2 Noether Normalization

We now discuss a fundamental theorem of commutative algebra called the Noether nor-

malization lemma. We �rst state and prove a version of the theorem. We then discuss

its applications in algebraic geometry. We use [SR13] and [Gat13] as references for this

section.

3.2.1 The Noether Normalization lemma

We �rst state the main lemma. The following statement is from [Gat13].

Lemma 3.2.1. Let R be a �nitely generated k-algebra, with generators x1, . . . , xn. There

is an injective map k[z1, . . . , zr] → R with indeterminates zi that make R into a �nite

extension of k[z1, . . . , zr]. Further, if k is in�nite, then the images of zi can be chosen to

be linear combinations of the generators xi.

The lemma essentially states that any �nitely generated ring extension R is an integral

extension of a polynomial ring. We do not prove here that every �nite extension is integral,

a proof can be found in [AM94, Chapter 5]. We also use the fact that a �nite extension

of a �nite extension is itself �nite. To prove the above, we use an auxiliary lemma which

proves that a multivariate polynomial can be made monic with an appropriate shift.

Lemma 3.2.2. Let f be a nonzero polynomial in k[x1, . . . , xn] where k is an in�nite �eld.

Then there exist a1, . . . , an−1 ∈ k and λ ∈ k such that g(y) := λf(y1 + a1yn, . . . , yn−1 +

an−1yn, yn) is monic in yn.

Proof of Lemma 3.2.2. Suppose f has degree d. The coe�cient of ydn in the polynomial

g(y) is λfd(a1, . . . , an−1, 1), where fd is the degree d part of f . We need to pick a such

that fd(a, 1) is nonzero. If we can do this, then we can pick λ = fd(a, 1)−1 and complete

the proof.

That such a a exists follows by induction. Write fd =
∑d

i=1 x
i
1gi. The polynomial fd

is nonzero, so some gi is nonzero. The polynomial gi is homogeneous of degree d − i in

n− 1 variables, and so pick can pick a2, · · · , an−1 by induction so that gi(a2, . . . , an, 1) is

nonzero. Then fd(x1, a2, . . . , an−1, 1) is a univariate and has only �nitely many roots, and

we can pick a1 to avoid any such roots. This last step requires k to be in�nite.

We now use Lemma 3.2.2 to prove Lemma 3.2.1.



23

Proof of Lemma 3.2.1. We induct on n, the number of generators of R as a k-algebra.

When n = 0, the statement vacuously holds. Let n be greater than 0. We consider two

cases. Suppose x1, . . . , xn are algebraically independent. Then k[x1, . . . , xn] is isomorphic

to k[z1, . . . , zn], with the map sending zi to xi. The lemma is clearly true in this case.

Assume now that x are not algebraically independent, and that f is a polynomial such

that f(x) = 0. Let a1, . . . , an−1 and λ be as in Lemma 3.2.2. Set yi = xi − aixn for i < n

and set yn = xn. The y form a generating set for R, since xn = yn and xi = yi + aiyn for

i < n. Further, R is an integral extension of k[y1, . . . , yn−1], since λf(y1 +a1yn, . . . , yn−1 +

an−1yn, yn) is a monic equation for yn. By induction, R[y1, . . . , yn−1] can be written as a

�nite extension of a polynomial ring. Therefore R is a �nite extension of a �nite extension

of a polynomial ring, and is hence itself is a �nite extension of a polynomial ring. The

statement that the map sends each zi to a linear combination of the xi follows from the

way we constructed the yi.

In a later chapter, we will use the above result to prove the Nullstellensatz. We now

make an important observation. The a chosen in the proof are such that (a, 1) is not a root

of a homogeneous polynomial. A su�ciently random choice of a satis�es this property.

Therefore, if we map each zi to a su�ciently random linear combination of the x, the

induced ring extension will still be integral.

In the next subsection, we discuss the notion of �nite maps.

3.2.2 Finite maps

Consider a dense map φ : X → Y between a�ne varieties. Since φ is dense, the map

φ∗ : k[Y ] → k[X] is an injection. We identify k[Y ] with its isomorphic copy in k[X] via

φ∗. The map φ is called �nite if k[X] is an integral extension of k[Y ].

Finite maps have a number of useful properties. Before we list these, we state a

consequence of the Noether normalization lemma. Suppose X ⊆ An is an irreducible a�ne

variety. The coordinate ring of X is generated by x1, . . . , xn. If we apply Lemma 3.2.1

to k[X], we get a map ψ : k[z1, . . . , zr] → k[X] such that each zi is mapped to a linear

combination of the xi, and that k[X] is an integral extension of the image of k[z]. The

variety corresponding to k[z] is Ar. The map ψ induces a map ψ∗ : X → Ar. The

map ψ∗ is a �nite map by de�nition. Further, since k[X] is an integral extension of
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k[z], the �eld extension k(X)/k(z) is algebraic. 2 In particular this means that that

trdeg(k(X)) = trdeg(k(z)) = r. The r obtained is therefore the same as the dimension of

the variety. In fact, the above discussion provides some motivation for the de�nition of the

dimension of the variety. We now state the algebraic version of the Noether normalization

lemma.

Lemma 3.2.3. Given an irreducible a�ne variety X ⊆ An, there exists a �nite map

φ : X → Ar where r is the dimension of X. Further, φ is the composition of the inclusion

map and a linear map.

Further, as discussed after the proof of Lemma 3.2.1, a random linear combination

satis�es the above condition. We will soon make this more precise. Before that, we state

some properties of �nite maps.

Lemma 3.2.4. Suppose f : X → Y is a �nite map between a�ne varieties. Then f is

surjective, and every point y ∈ Y has �nite �bres.

We only prove the second part of the lemma. The proof of the �rst part is slightly more

involved (it is essentially an application of the Nullstellensatz followed by an application

of Nakayama's lemma) and can be found in [SR13, Chapter 1, Section 5, Theorem 1.12].

Proof of part of Lemma 3.2.4. Each xi ∈ k[X] satis�es some monic equation fi with coef-

�cients in k[Y ]. For a �xed b ∈ Y , the set f−1(b) is de�ned by the equations yi = bi, where

yi are the coordinate functions. On the set f−1(b) therefore each xi satis�es a specializa-

tion of the the equation fi with yi = bi. These equations only have �nitely many roots,

and therefore each xi can only take �nitely many values on f−1(b), proving that the latter

set is �nite.

Another property that we state here without proof is that �niteness is local property.

This means that if f : X → Y is a map between a�ne varieties, and every point y ∈ Y has

an a�ne neighbourhood V such that f−1(V ) is a�ne and the restricted map f : f−1(V )→

V is �nite, then f itself is �nite. This makes it natural to extend the de�nition of �nite

maps. If f : X → Y is an arbitrary map between quasiprojective varieties, we say that f

is �nite it every point y ∈ Y has an a�ne neighbourhood V with a�ne preimage f−1(V )

2 A short proof of this fact. The �eld k(X) is generated by all a/1, 1/a for a ∈ k[X]. Suppose a satis�es
a monic equation f with coe�cients in k[z]. Then a/1 is algebraic over k(z) because of f , and 1/a is
algebraic because of xdeg ff(1/x). Finally, since all the generators are algebraic, so is the extension.
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such that the map f : f−1(V ) → V is �nite. We therefore have a notion of �nite maps

between projective varieties. Further, Lemma 3.2.3 extends to projective varieties too,

although we not prove it here.

We now return to the statement that a random map is Noether normalizing. First we

de�ne the notion of a projection with a centre. Suppose H is a linear subspace of Pn of

dimension r de�ned by equations h1 = · · · = hn−r = 0. The projection with center H is

the map with coordinate functions (h1 : · · · : hn−r). If X is a projective variety contained

in Pn \ X then the projection with center H is a well de�ned map from X to Pn−d−1.

The following theorem gives a characterization of maps that are Noether normalizing for

projective varieties. It is a direct consequence of [SR13, Chapter 1, Section 5, Theorem

1.15]. We do not prove it here.

Theorem 3.2.5. Let X ⊆ Pn be a projective variety of dimension d, and let H be a linear

subspace of dimension n − d − 1 which avoids X. Then the projection with center H is a

Noether normalizing map for X.

The above theorem along with Lemma 3.1.3 lets us formalize the statement that a

random linear map is Noether normalizing. The statement for projective varieties is im-

mediate, while that for a�ne varieties requires an argument involving projective closures.

Theorem 3.2.6. Let V ⊆ Pn be a projective variety of dimension r and degree D. Let

h1, . . . , hr+1 be linear forms such that hi depends on n+2−i variables, and each coe�cient

of hi is picked uniformly and independently from a subset S of k that does not contain 0.

Then with probability at least 1 − (r + 1)D/|S|, the map with coordinate functions hi is

Noether normalizing.

Let W ⊆ An be an a�ne variety of dimension r and degree D. Let `1, . . . , `r be linear

polynomials such that `i depends on n+ 1− i variables, and each coe�cient of `i is picked

uniformly and independently from a subset S of k that does not contain 0. The `i can also

be linear forms (without constants). Then with probability at least 1 − (r + 1)D/|S|, the

map with coordinate functions `i is Noether normalizing.

Proof of Theorem 3.2.6. By Corollary 3.1.4 with probability at least 1− (r+ 1)D/|S|, the

subspace de�ned by the equations hi avoids V . This also automatically ensures that the

dimension of the subspace is n− r− 1, since if it was more than this, it could not avoid V .
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The projection from this subspace is given by the map with coordinate functions hi, and

this map is Noether normalizing for V by Theorem 3.2.5.

We now show the a�ne statement. We consider W p, the projective closure of W ,

and �nd a normalizing map for W p. Not every normalizing map for W p will give us a

normalizing map for W . In order to ensure we get a normalizing map for W , we pick

`0 = x0, and use this as the �rst coordinate for our Normalizing map for W p. This

ensures that the Pn∞ is mapped to Pr∞, and that the a�ne chart containing W is mapped

to the a�ne space Pr \ Pr∞. Since no component of W p is contained in Pn∞, we have

dimW p ∩ Pn∞ = r − 1. By Lemma 3.1.3 applied to W p ∩ Pn∞, the projective closure of

the subspace de�ned by `1, . . . , `r avoids W p ∩ Pn∞. The subspace de�ned by `0, . . . , `r

then avoids W p, and the projection from this subspace is Noether normalizing. The map

An → Ar with coordinate functions `1, . . . , `r is therefore Noether normalizing for W .



Chapter 4

The Nullstellensatz

In this chapter, we discuss Hilbert's Nullstellensatz (aka the zero-locus-theorem). This is

a foundational result that establishes a fundamental relationship between geometry and

algebra. The Nullstellensatz (more precisely one of its many forms) states that a set of

polynomials do not have a common zero if and only if the ideal they generate is the trivial

ideal. In other words, the Nullstellensatz proves the existence of a natural certi�cate that

a given set of polynomials do not have a common zero.

In the �rst part of the chapter, we state and prove the original non constructive for-

mulation(s) of the Nullstellensatz. In the second part of the chapter, we discuss the ideal

membership problem. In the third part of the chapter, we discuss the e�ective Nullstellen-

satz. This includes a proof of the e�ective Nullstellensatz, and a brief literature survey of

related results.

4.1 The non-constructive Nullstellensatz

We use [CLO07], [Vak17], and [Gat13] as references for this section.

The Nullstellensatz has a number of di�erent (and mostly equivalent formulations).

The following two are the most common ones. Despite their names, they are equivalent.

Theorem 4.1.1 (The Weak Nullstellensatz). Let k be an algebraically closed �eld, and let

I be a nontrivial ideal of k[x1, . . . , xn]. Then V(I) 6= ∅.

Theorem 4.1.2 (The Strong Nullstellensatz). Let k be an algebraically closed �eld, and

let I be a nontrivial ideal of k[x1, . . . , xn]. Then I(V(I)) =
√
I.

27
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If I = k[x], then V(I) = ∅ by de�nition, since the constant polynomial 1 has no roots.

The weak Nullstellensatz states that the converse holds too. The strong Nullstellensatz

completes the ideal-variety correspondence. A discussion about this correspondence can

be found in chapter 2. We will �rst prove the equivalence of the above two statements.

We then state a third form of the Nullstellensatz, which is slightly more general than the

above two forms. We then prove the third form, and �nish by showing how it implies the

above.

Equivalence of Theorem 4.1.1 and Theorem 4.1.2. That the strong Nullstellensatz implies

the weak Nullstellensatz is straightforward: Suppose I is an ideal such that V(I) = ∅. By

the strong Nullstellensatz,
√
I = I(V(I)) = I(∅) = k[x]. This implies that 1 ∈

√
I, which

implies that 1 ∈ I.

We now prove the other direction. Suppose �rst that he ∈ I. Then he = 0 at every point

in V(I), and therefore h = 0 at every point in V(I). This implies that h ∈ I(V(I)), and

hence
√
I ⊆ I(V(I)). For the reverse inclusion we use the Rabinowitsch trick ([Rab30]).

Let I = 〈f1, . . . , fm〉, and let g ∈ I(V(I)). Consider the ring k[x, y], where y is a new

variable. Let J = 〈f1, . . . , fm, 1− gy〉, where fi are considered as elements of k[x, y]. We

show that V(J) = ∅. Suppose (c1, . . . , cn, cn+1) is an element of kn+1. If (c1, . . . , cn) ∈

V(I), then it is also a root of g, and therefore cannot be a root of 1 − yg for any value

of cn+1, and therefore c 6∈ V(J). But if (c1, . . . , cn) 6∈ V(I), then c 6∈ V(J) since every

element of I is also in J . Therefore, V(J) = ∅, and by the Weak Nullstellensatz we get

that J = k[x, y]. We can write then 1 = h0(1 − yg) +
∑m

i=1 hifi where hi ∈ k[x, y]. In

the above equation, we substitute y = 1/g, and clear denominators on the right hand side.

The term h0(1− yg) vanishes after the substitution, and we get 1 = f/ge for some f ∈ I.

This gives us ge ∈ I and therefore g ∈
√
I, proving that I(V(I)) ⊆

√
I.

A third statement, equivalent to the above is that every maximal ideal of k[x] is of the

form 〈x1 − a1, . . . , xn − an〉. We use ma to denote ideals of the above form. To show this

equivalence, we use the fact that f ∈ ma if and only if f(a) = 0. 1 If g is any polynomial

not in m, then g(a) 6= 0. But we also have g(a) ∈ ma + 〈g〉, whence ma + 〈g〉 = k[x].

Conversely, if J is an arbitrary ideal of k[x], then by the weak Nullstellensatz, there is a

common root b1, . . . , bn of every polynomial in J . This implies that J ⊆ mb. If J itself is

1 This fact follows from the division algorithm applied one variable at a time.
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maximal then J = mb, completing the proof of the equivalence.

We now state the �nal form of the Nullstellensatz. This form is slightly more general

than the above, and is sometimes called Zariski's Lemma. We will use this latter name in

order to distinguish it from the above.

Lemma 4.1.3 (Zariski's Lemma). Suppose K is a �eld, and A is a �nitely generated

K-algebra that is also a �eld. Then A is a �nite extension of K.

Equivalently, if K is a �eld and m a maximal ideal of K[x], then K/m is a �nite

extension of K.

The above lemma does not requireK to be algebraically closed. The equivalence follows

from the fact that any �nitely generated K algebra is the quotient of the polynomial ring

K[x], and if the algebra is also a �eld then the kernel is a maximal ideal.

We will prove Zariski's Lemma using the Noether Normalization Lemma. Before we

do this, we show that Zariski's Lemma implies the Nullstellensatz in the above forms.

Proof of Theorem 4.1.1 and Theorem 4.1.2 using Lemma 4.1.3. Suppose I is an ideal of

k[X], and m is a maximal ideal containing I. By Zariski's Lemma, k[x]/m is a �nite

extension of k, and since k is algebraically closed we have k[x]/m = k. Let a1, . . . , an be the

images of x1, . . . , xn under the quotient map. The ideal m consists of xi−ai for every i, since

these elements are mapped to 0 under the quotient map. The ideal 〈x1 − a1, . . . , xn − an〉

is maximal, and is therefore equal to m. Therefore I ⊆ 〈x1 − a1, . . . , xn − an〉 whence the

point (a1, . . . , an) is a common root for every element in I. This proves Theorem 4.1.1.

The proof of Theorem 4.1.2 is also complete since we proved the equivalence of the

two Nullstellensatz. The following is an alternative proof of the fact that I(V(I)) ⊆
√
I,

which is the nontrivial part of the Nullstellensatz. It uses more commutative algebra than

in the preliminaries. Let I = 〈f1, . . . , fm〉, and g be an arbitrary polynomial. Consider

the quotient ring B := k[x]/I. The condition g ∈
√
I is equivalent to Bg = 0. Suppose

Bg 6= 0, and n is a maximal ideal in Bg. The �eld Bg/n is a �nitely generated k algebra,

and hence is equal to k. Let b1, . . . , bn be the images of x1, . . . , xn under the map k[x]→

B → Bg → Bg/n = k. Then xi − bi generate the kernel of the map. Each fi goes to

0 under this map, and hence b is a root of every element in I. On the other hand, g is

nonzero under this map, since g is a unit in Bg, and hence b is not a root of g. We have

proved g 6∈
√
I =⇒ g 6∈ I(V(I)), or equivalent I(V(I)) ⊆

√
I as required.
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We note that the last proof is basically the Rabinowitsch trick: in both places we prove

that Bg is 0 when g ∈ I(V(I)), the Rabinowitsch trick just uses a di�erent representation

of Bg. We �nally prove Zariski's Lemma.

Proof of Lemma 4.1.3. Let A be a �nitely generated k algebra that is also a �eld. By the

Noether normalization lemma, we know that A is an integral extension of some polynomial

ring k[z1, . . . , zr]. We will now prove that if R is a ring and R′ is some integral extension

of R, then R is a �eld if R′ is a �eld. Once we prove this, we obtain in our setting that

k[z1, . . . , zr] is a �eld, whence we must have r = 0. This will complete the proof, since A

will then be an integral extension of k, and therefore a �nite �eld extension of k.

Suppose R′ is a �eld, and x ∈ R is an arbitrary element. Then x−1 ∈ R′, and hence

x−1 is integral over R. Let the minimal monic equation of x−1 be x−m + rm−1x
−m+1 +

· · · + r0 = 0, with ri ∈ R. Then by multiplying by xm−1 and rearranging we get x−1 =

−rm−1 − xrm−2 − · · · − r0xm−1, and therefore x−1 ∈ R. This completes the proof. The

converse of the above statement is also true if we assume that R is a domain, although we

do not need it here. Given an x ∈ R′, the idea there is to basically consider the minimal

polynomial of x, argue that it has a constant term since R is a domain, and that the

reciprocal polynomial is satis�ed by x−1. Finally, the reciprocal polynomial can be made

monic since the coe�cients (which are from R) are units. This proves that x−1 ∈ R′.

The most natural question to ask given an existential statement like the Nullstellensatz,

is whether we can decide by algorithm if a set of polynomials have a common root. In

other words, suppose we are given polynomials f1, . . . , fn over k, and we have to check if

they have common roots. By the Nullstellensatz, it su�ces to check if 1 ∈ 〈f1, . . . , fn〉,

or equivalently, to check if there exists g1, . . . , gn such that 1 =
∑
figi. We call the gi

witnesses, since they witness the fact that 1 ∈ 〈f〉.

The Nullstellensatz itself does not give us any control over gi. It is feasible that gi

have arbitrarily high degree, and therefore no search procedure for them is guaranteed to

terminate. That this is not the case was proven early in the 20th century, by Grete Hermann

[Her26]. She proved double exponential upper bounds for witnesses for arbitrary ideal

membership queries. The following is a version of the theorem statement from [MM82].

Theorem 4.1.4. Let f1, . . . , fm be polynomials of degree at most d in k[x1, . . . xn], and g be

a polynomial of degree d′ in the ideal generated by f1, . . . , fm. Then there exists polynomials
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h1, . . . , hm each of degree at most d′ + (md)2
n

such that g =
∑
figi.

A proof can be found in the appendix of [MM82]. This bound shows that the ideal

membership problem, and in particular the Nullstellensatz problem is decidable, since it

reduces to solving a double exponential sized linear system. Mayr and Meyer in the same

paper also proved that this double exponential bound cannot be improved in general. They

constructed an ideal in 10n variables with 10n+ 1 generators and proved the existence of

a polynomial in the ideal such that every set of witness polynomials has at least one

polynomial of degree d2
n−1

. Here, d is a parameter, and every generator of their ideal is

a di�erence of two monomials with degree at most d+ 2. They also proved that the ideal

membership problem is EXPSPACE hard, by reducing the commutative word equivalence

problem to it. Finally the above double exponential bound along with the e�ective linear

algebra results of [Csa75] show that the ideal membership problem is also in EXPSPACE,

making it EXPSPACE hard.

The above discussion does not bode well for the Nullstellensatz problem, because it

might be EXPSPACE complete too. However, it was proved that single exponential degree

bounds exist in the special case of the Nullstellensatz, putting it in PSPACE. We discuss

these results in the next section, and also prove the degree bound. The proof of single-

exponential bounds for the Nullstellensatz allowed special cases of the ideal membership

problem, such as the case of unmixed and zero dimensional ideals to be solved in single-

exponential time [DFGS91]. In 1996, Koiran [Koi96] gave an AM protocol (conditioned on

GRH) for the Nullstellensatz problem, when the underlying �eld is C and the polynomials

have integer coe�cients. His method is completely di�erent from the previous methods

of using the e�ective Nullstellensatz to reduce the system to a linear one. The positive

characteristic case is an open problem, and the best known complexity remains PSPACE.

4.2 The e�ective Nullstellensatz

The �rst proof of a single exponential upper bound for the Nullstellensatz was given by

Brownawell [Bro87]. He proved the result when k = C using analytic techniques. 2

A year later, an alternate algebraic proof was given by Kollár [Kol88] that worked for

every characteristic. His proof used some properties of local cohomology groups. A more

2The results extend to all characteristic 0 �elds via the Lefschetz principal.
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elementary proof using bounds on Hilbert functions was given by Sombra [Som97]. The

proof that we discuss here was given by Jelonek [Jel05], and is signi�cantly simpler than all

of the proofs above. The above is far from a complete discussion of the existing literature

on the problem. There are a number of other results that improve the above bounds

and/or give improvements for special cases. These include but are not limited to [KPS99,

KPS+01, Som99].

In the projective setting, much better bounds are known. If F1, . . . , Fn are homogeneous

polynomials of degree at most D without a common root in projective space, then the

projective version of the Nullstellensatz states that the ideal generated by the Fi contains

a power of the irrelevant ideal. It follows from classical elimination theory that this power is

upper bounded by nD [Mac02, Laz77]. This is a quadratic bound. In particular, if we have

nonhomogeneous polynomials without a common root even at the hyperplane at in�nity,

then the improved quadratic bounds apply instead of the single exponential bounds. In

the general case however, the single exponential bounds are essentially tight. An example

witnessing this is given in [Bro87], and is presented later in this section.

We �rst state the version of the e�ective Nullstellensatz from [Jel05].

Theorem 4.2.1. Let k be algebraically closed, and let f1, . . . , fm ∈ k[x1, . . . , xn] be polyno-

mials of degrees d1, . . . , dm. Assume that d1 ≥ d2 ≥ · · · ≥ dm. Also assume that f1, . . . , fm

do not have any common roots. Then there exists g1, . . . , gm such that 1 =
∑m

i=1 figi.

Further, the gi also satisfy the property that deg figi ≤
∏m
i=1 di.

We note that this is not the tightest version of the theorem statement in [Jel05], in the

case when m > n. However, in our application we only use the case of m = n+ 1, and in

this case the di�erence is only a factor of dm/2. Dropping the last factor will increase the

length of the proof by a factor of at least 2, and therefore we do not do it here.

Before we prove this, we give the example from [Bro87] that shows that this is essentially

tight. Fix some d, and let f1 = xd1 and fn = 1 − xn−1x
d−1
n . For 2 ≤ i ≤ n − 1, let

fi = xi−1 − xdi . These polynomials do not have any common root, since the only common

roots of f1, . . . , fn−1 has �rst n− 1 coordinates 0, and no such point can be a root of fn.

Suppose 1 =
∑
figi for some gi. In the above equation, we substitute xi = t(d−1)d

n−i−1

for i ≤ n− 1, and xn = tn. Under this substitution, the polynomials f2, . . . , fn all vanish,

and therefore we get 1 = f ′1(t)g
′
1(t). Now f ′1(t) = t(d−1)d

n−1
. The only way the product is

equal to 1 is if g1 has degree at least dn − dn−1, which shows the required bound.
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A key ingredient in Jelonek's proof of the e�ective Nullstellensatz is the classical result

of Perron which bounds the degree of the annihilator of n+ 1 polynomials in n variables.

The following statement is from [Pª05], while the original proof is from [Per51, Satz 57].

This theorem will also be of fundamental importance when we discuss algebraic indepen-

dence.

Theorem 4.2.2. Let f1, . . . , fn+1 be a sequence of polynomials in k[x1, . . . , xn], with de-

grees d1, . . . , dn+1. Then there exists a polynomial A in k[y1, . . . , yn+1] such that

• A(f1, . . . , fn+1) is identically 0, and

• degw(A) ≤
∏n+1
i=1 di, where degw is the weighted degree with degw(yi) = di.

The above bound on the weighted degree of A will be referred to as the Perron bound.

A proof can be found in [Pª05], and involves only linear algebra.

Before we present the proof of Theorem 4.2.1, we make an observation. Suppose we

had n + 1 polynomials that did not have a common root, and suppose the polynomial A

from Theorem 4.2.2 was such that it had a nonzero constant term. Then the polynomial

A also gives us a Nullstellensatz witness that matches the degree bound of Theorem 4.2.1.

We start with the equation A(f1, . . . , fn+1) = 0, move the constant term to the other side

and divide by it. We then collect all monomials in which f1 appears, and after factoring

out f1 label the other factor g1. We then collect all the monomials among the remaining

ones in which f2 appears, factor it, and call the remaining bit g2, and so on. This gives us

an equation of the form
∑
figi = 1. In the case when the fi have transcendence degree n,

the condition that A has a nonzero constant term is equivalent to the condition that the

fi do not have a common approximate root, for an appropriate de�nition of approximate

roots. Therefore we can deduce that the hard case of the e�ective Nullstellensatz is when

the polynomials do not have a common root, but have a common approximate root. A

discussion on approximate common roots, and a proof of the above equivalence can be

found in [GSS18].

We now prove Theorem 4.2.1.

Proof of Theorem 4.2.1. If m ≤ n, then we add polynomials fm+1 = · · · = fn+1 = 0, and

we assume that m > n. This does not change either the assumption of empty zeroset.

Further, we set dm+1, . . . , dn+1 = 1 in this case. The degree bounds also therefore go

unchanged.
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Let h1, . . . , hm be polynomials such that 1 =
∑
fihi. Such polynomials exist by the

classical Nullstellensatz. Let z be a fresh variable. De�ne the map φ : An+1 → An+m as

φ(x1, . . . , xn, z) = (x1, . . . , xn, zf1(x1, . . . , xn), . . . , zfm(x1, . . . , xn)). (4.1)

The space An+1 is isomorphic to its image under φ, since the following polynomial map is

an inverse of φ when restricted to the image:

φ′(y1, . . . , yn+m) =

(
y1, . . . , yn,

m∑
i=1

hiyn+i

)
. (4.2)

In particular, the image φ
(
An+1

)
is closed, and has dimension n+ 1 and when treated as

a map from An+1 to φ
(
An+1

)
, the map φ is �nite. Let d denote the degree of the image.

We will prove in later sections that d ≤
∏m
i=1(di + 1), but for this proof we just require

that d is �nite.

Let π : An+m → An+1 be a linear projection of the form

π(y1, . . . , yn+m) =

(
m+n∑
i=1

a1,iyi,
n+m∑
i=2

a2,iyi, . . . ,
n+m∑
i=n+1

an+1,iyi

)
. (4.3)

Note that the �rst coordinate function is a linear combination of all the variables, the

second is a linear combination of all variables except the �rst, and so on. Suppose each

aij is picked uniformly and randomly from a subset S of of k. By Corollary 3.1.4, with

probability at least 1− 2(n+ 2)d/|S|, the subspace de�ned by the equations
∑n+m

i=j aj,iyi

is disjoint from φ(An+1). If this is the case then by Theorem 3.2.5, the map π is Noether

normalizing for φ(An+1). For the rest of the proof, we assume that π has this property.

Both the maps φ and π are �nite. Since integral extensions of integral extensions are

integral, the composition ψ := π ◦ φ : An+1 → An+1 is also a �nite map. Explicitly, the

jth coordinate function ψj is lj(x1, . . . , xn) +
∑m

i=j aj,izfi, where lj is a linear form.

Let ψj also denote the polynomial corresponding to this function. Each of these poly-

nomials can be treated as a n variate polynomial over the �eld k(z). Since deg fi ≥

deg fi+1 for all i, and since each ψi is a linear combination of fi, fi+1, . . . , fm, we have

degψi = di when treated as polynomials over k(z). Since there are n + 1 of them, by

Theorem 4.2.2 there exists a n + 1 variate polynomial A with coe�cients in k(z) such

that A(ψ1, . . . , ψn+1) = 0. Further, this A also satis�es weighted degree bounds, that is
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degw A ≤
∏n+1
i=1 di, where the i

th variable of A has weight di.

Each coe�cient of A is an element of k(z), and by potentially clearing denominators,

we can assume that the coe�cients are in k[z]. This does not change the degree of A. We

can therefore construct a polynomial B in n+ 2 variables v1, . . . , vn+2 by starting with A,

labelling its n+1 variables as v1, . . . , vn+1 and replacing the variable z which occurs as part

of the coe�cients with the variable vn+2. The polynomial B satis�es B(ψ1, . . . , ψn+1, z) =

0. By construction, B has weighted degree at most
∏n+1
i=1 di, where the �rst n+1 variables

v1, . . . , vn+1 have weights d1, . . . , dn+1 respectively, and vn+2 has weight 0.

The composed map ψ : An+1 → An+1 is �nite, and therefore surjective, and in particu-

lar also dominant. The corresponding map of coordinate rings ψ∗ is therefore an injection,

and the coordinate ring of the domain An+1 is an integral extension of the image of ψ∗.

More explicitly, the ring k[x1, . . . , xn, z] is an integral extension of the ring k[ψ1, . . . , ψn+1].

Let C denote the minimal polynomial of z over k[ψ1, . . . , ψn+1]. By de�nition, C is a monic

univariate polynomial, say in the variable u, with coe�cients from k[ψ1, . . . , ψn+1] such

that C(z) = 0. We write C =
∑D

i=0 pi(ψ1, . . . , ψn+1)u
i, where D is the degree of C.

Since the extension is integral, the ideal of univariates in k[ψ1, . . . , ψn+1][u] with root

z is a principal ideal generated by C. 3 We can also treat B as a polynomial in

k[ψ1, . . . , ψn+1][u] by specializing the �rst n + 1 variables of B to ψ1, . . . , ψn+1, and rela-

belling the last variable to u. This univariate has z as a root by construction, therefore, C

divides B in k[ψ1, . . . , ψn+1][u].

The polynomials ψ1, . . . , ψn+1 themselves are algebraically independent over the �eld

k: suppose there some polynomial ρ such that ρ(ψ1, . . . , ψn+1) = 0. Then ρ would vanish

on the image of the map ψ, but since ψ is a �nite map, it is surjective and has image An+1,

and therefore ρ would have to be 0. Therefore, we can naturally treat C as a polynomial in

the n+ 2 variables v1, . . . , vn+2. We do this by replacing u with vn+2, and occurrences of

ψi in the coe�cients with vi, obtaining C =
∑D

i=0 pi(v1, . . . , vn+1)v
i
n+2. This conversion is

well de�ned and unique by the independence of ψi. That C divides B in k[ψ1, . . . , ψn+1][u]

now also means that C divides B as polynomials in k[v1, . . . , vn+2], as can be seen by

applying a similar conversion to the factor B/C. This implies that the weighted degree of

C is at most the weighted degree of B, which itself is at most
∏n+1
i=1 di. Here the variable

vi has weight di for i ≤ n + 1, and vn+2 has weight 0. In particular this means that for

3The same proof that shows that a univariate polynomial ring over a �eld is a PID works here: the
scaling step can be performed since we assume that C is monic.
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every i, the polynomial pi(ψ1, . . . , ψn+1) is a polynomial of degree at most
∏n+1
i=1 di when

treated as a polynomial in x1, . . . , xn, z.

Finally, consider the expansion C(z) =
∑D

i=0 pi(ψ1, . . . , ψn+1)z
i written as a polynomial

in k[x1, . . . , xn][z]. By de�nition this is the 0 polynomial, and therefore the coe�cient of

every zi in this expansion is 0. Consider in particular the coe�cient of zD, which is∑D
i=0 coeffzD−i(pi(ψ1, . . . , ψn+1)). The term corresponding to i = D in the summand is

1, since C is monic. Every other coeffzD−i(pi(ψ1, . . . , ψn+1)) is a sum of multiples of the

original polynomials f1, . . . , fm, since in each ψi the variable z only occurs multiplied to

some fj . Therefore the coe�cient of zD is of the form 1+
∑
figi for gi ∈ k[x1, . . . , xn], and

we can rearrange (and change signs) to obtain 1 =
∑
figi. By the weighted degree bound

proved in the previous paragraph, each figi has degree at most
∏n+1
i=1 di, which completes

the proof.



Chapter 5

Algebraic independence

In this chapter, we take a detour from our previous discussion and discuss the algebraic

independence problem. The problem is to determine, given a set of polynomials f1, . . . , fn

whether or not they are algebraically independent in the function �eld k(x1, . . . , xn).

There is evidence (see discussion in [Mul12]) that from a computational perspective, it

is advantageous to de�ne varieties by giving a polynomial map whose closure is the given

variety, as opposed to describing the generators of the ideal corresponding to the given

variety. The algebraic independence problem is equivalent to computing the dimension of

such an explicit variety.

In this chapter, we will focus more on the second formulation of the problem, even

though it requires more technical background. It turns out that the problem is easier in

characteristic 0 than in �nite characteristics, even though there is considerable evidence

that it cannot be too di�cult in the latter case. The hope is that this more complicated

formulation will also a�ord the use of the more sophisticated tools of algebraic geometry.

This chapter is organized as follows. In the �rst section we will state the problem in

multiple equivalent ways. In the second section we will state some results about algebraic

independence and we will use the polynomial map formulation to provide proofs of these

results. All of these results are well know, and all we do is provide (in some cases) alterna-

tive proofs. A survey, including many of the original proofs of this result and the history

of the problem can be found in [Sin19].

37
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5.1 Problem de�nition

Let k be the underlying �eld, and p denote its characteristic. Let f1, . . . , fm be n variate

polynomials from k[x1, . . . , xn] of degrees d1, . . . , dm respectively. In �elds that are of

interest to us, the problem does not change if we replace k by an algebraic extension, and

therefore we assume that k is replaced by its algebraic closure. When required, we will be

more explicit about the �eld in which the coe�cients of fi lie.

The polynomials are said to be algebraically independent if and only if for every non-

zero polynomial G ∈ k[y1, . . . , ym], it holds that G(f1, . . . , fm) is not the identically zero

polynomial. Equivalently, the polynomials are said to be algebraically dependent if and

only if there exists some polynomial A ∈ k[y1, . . . , ym] such that A(y1, . . . , ym) is the iden-

tically zero polynomial. For example, if f1 := x1 + x2 and if f2 := (x1 + x2)
2, then f1

and f2 are algebraically dependent, with A = y2 − y21. On the other hand, if f1 := x1 and

f2 := x1 +x2, then no such polynomial A exists, and thus f1 and f2 are algebraically inde-

pendent. 1 When polynomials f1, . . . , fm are dependent, any polynomial A that satis�es

A(f1, . . . , fm) ≡ 0 will be called an annihilator of f1, . . . , fm. The set of annihilating poly-

nomials form an ideal. Note that the dependence/independence of polynomials depends

on the underlying �eld. Consider for example polynomials f1 := x1 +x2 and f2 := x21 +x22.

If char k = 2, then f1 and f2 are dependent, with annihilator y2 − y21. If char k 6= 2, then

some more variable chasing will show that f1 and f2 are independent.

An alternative formulation of this problem is to check, given some �eld extensions,

whether or not they are algebraic. Consider the �eld extensions k(x)/k(f), k(f)/k and

k(x)/k. We have

trdegk k(x) = trdegk k(f) + trdegk(f) k(x),

where trdegK L denotes the transcendence degree of the extension L/K. We also have

trdegk k(x) = n by de�nition, and therefore trdegk k(f) ≤ n. By de�nition, the polynomi-

als are algebraically independent if and only if trdegk k(f) = m. If m > n therefore, the

polynomials are always dependent. Finally, the polynomials are dependent if and only if

the �eld extension k(f) is algebraic over k(f1, . . . , fi−1, fi+1, . . . , fm) for some i. In general,

we will refer to trdegk k(f) as the transcendence degree of the polynomials f1, . . . , fm.

1Proving this involves some simple variable chasing.
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At this point, we show that going to an extension of k does not change the algebraic

independence of the polynomials. We will assume that the �eld k is perfect, which is the

case when k is a �nite �eld or a �eld of characteristic 0. Suppose f1, . . . , fm are polynomials

with coe�cients in k that are dependent when considered as polynomials in an algebraic

extension K of k. Let B be the annihilator of the polynomials f1, . . . , fm in K[y1, . . . , ym].

It su�ces to replace K with the sub�eld that contains k and all the coe�cients of B. We

assume therefore that K is a �nite extension, and by the primitive element theorem, is

generated by a single element α ([Lan02, Chapter 5, Theorem 4.6]). We can now write B

as B =
∑D−1

i=0 αiBi(y1, . . . , ym) where each Bi has coe�cients in k, and D is the degree

of the extension. Each Bi when evaluated at x results in an element of k[x] since the

coe�cients of fi are from k. Further, since αi are k-linearly independent, they are also

k[x1, . . . , xn] linearly independent, and therefore each Bi must be 0 when evaluated at f .

That B is nonzero implies that some Bi is nonzero, and this Bi is an annihilator for f as

polynomials in k. We can also note that since the degree of Bi is at most the degree of B,

going to an extension does not even imply the existence of annihilators of smaller degree.

Therefore, we can assume that k is algebraically closed.

We now present the �nal formulation. Given its importance in this chapter, we reserve

a subsection for it, and provide some motivation.

5.1.1 Polynomial maps and algebraic independence

Given the ring k[f ], a natural object to look at is the a�ne variety that it corresponds to.

2 Since k[f ] is a �nitely generated algebra over k with m generators, it is isomorphic to

k[y1, . . . , ym]/U for some ideal U. The isomorphism takes each yi to fi. If f satisfy some

algebraic relation, then applying the inverse of the above isomorphism we see that y also

must satisfy the same relation. The converse also holds. Thus the ideal U is exactly the

ideal of all annihilators of f .

The ring k[y]/U corresponds to the a�ne variety de�ned by the equations in U. We

call this a�ne variety Y . When we want to emphasize the dependence of Y on f , we use

Yf . There is a natural map i from k[y]/U to k[x] that takes each yi to fi. As discussed

above, this is well de�ned since elements in U are exactly the algebraic relationships in f .

Further, this map is an injection, since U consists of all algebraic relationships between f .

2Of course one has to make sure that the ring has no nilpotent elements, a property that k[f ] satis�es.
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The map i corresponds to a map i∗ from the a�ne variety corresponding to k[x](namely

An) to Y . The map i∗ has jth coordinate function fj , and is thus exactly the polynomial

map with coordinates f1, . . . , fm. We will call this map φf . Since i is an injection, the map

φf is dominant. In other words, Y is exactly the closure of the image of An under φf . 3

The above discussion shows that given k[f ], it is natural to consider the map φf with

coordinate functions f1, . . . , fm. This point is driven home by the fact that the dimension

of the a�ne variety Y is exactly the transcendence degree of f . This follows by (one of)

the de�nition(s) of the dimension of an a�ne variety. We �rst make the following simple

observation.

Lemma 5.1.1. The a�ne variety Y is irreducible.

Proof of Lemma 5.1.1. The a�ne variety An is irreducible, and hence so is its image under

the regular map φf . The a�ne variety Y is thus the closure of an irreducible set 4 , and

hence is itself irreducible.

Alternatively, an a�ne variety is irreducible if and only if its coordinate ring is a

domain. That k[f ] is a domain follows from the fact that it is a subring of the domain

k[x].

We can now use the de�nition of the dimension.

De�nition 1 ([SR13, p. 67]). The dimension of an irreducible a�ne variety is the tran-

scendence degree of its function �eld.

Lemma 5.1.1 allows us to apply the above to Y . In particular, polynomials f1, . . . , fm

are algebraically independent if and only if dimYf = m. Alternatively, the polynomials

are independent if and only if the image of the map φf is dense in Am.

Before we prove properties about algebraic independence, we state an upper bound on

the degree of Y that will be useful. We collect this property, and the statement about the

dimension of Y in a single lemma to make it easier to invoke later. The proof of the degree

bound is non trivial, and we only provide a reference.

Lemma 5.1.2. The variety Y has degree equal to the transcendence degree of the polynomi-

als f1, . . . , fm. Further, the degree of Y is at most (max di)
r, where r is the transcendence

degree.
3The focus of this document is the �nite characteristic case, and thus unless stated otherwise, the

topology is always the Zariski topology.
4The image is also a quasi-projective variety, just maybe not a�ne.
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Proof of Lemma 5.1.2. The �rst statement follows from the discussion preceding the lemma.

A proof of the second statement can be found in [BCS97, Theorem 8.48]. The idea is to

write φf as the composition of the Veronese embedding followed by a linear map. Studying

the Hilbert polynomial shows that the Veronese embedding has degree equal to the prod-

uct of the degrees, reducing the statement to the case of linear maps, where it is easily

proved.

We will now prove some known results using the above framework.

5.2 Some properties of algebraic independence

5.2.1 Basic results

We start with some fairly easy results. The �rst is that if the transcendence degree of

f1, . . . , fm is m− 1, then the ideal of annihilators is principal. The following statement is

from [Kay09].

Theorem 5.2.1 ([Kay09, Lemma 7]). If f1, . . . , fm are algebraically dependent such that

no subset of them are algebraically dependent, then the ideal of annihilators U is principal.

This is a consequence of the fact that ideals corresponding to irreducible varieties of

dimension m− 1 in Am are principal. The proof is immediate given this fact.

Lemma 5.2.2 ([SR13, Theorem 1.21]). If X ⊂ Ak is an irreducible a�ne variety of

dimension k−1, then the coordinate ring k[X] is isomorphic to k[y]/UX with UX principal.

The next statement is the fact that if we have m polynomials that have transcendence

degree r, then taking r linear combinations of these polynomials results in a set of indepen-

dent polynomials. Further, taking r+ 1 linear combinations results in a set of polynomials

of transcendence degree r, and therefore the previous result applies. Finally, random linear

combinations have the above properties. This is a consequence of the Noether Normaliza-

tion lemma.

Theorem 5.2.3. Let f1, . . . , fm be a set of m polynomials in n variables. Let trdeg(f) = r.

Then there exist polynomials g1, . . . , gr+1 of the form

gi =
m∑
j=i

ai,jfj
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such that trdeg(g1, . . . , gr) = r and also trdeg(g1, . . . , gr+1) = r.

Further, suppose each aij is picked uniformly and randomly from a subset S of the �eld

k that does not include zero. Then the above holds with probability at least 1−2(r+1)D/|S|,

where D = (max di)
r.

Proof of Theorem 5.2.3. Let φf be the polynomial map with coordinate functions fi, and

let Y be the closure of its image. We have dimY = r and deg Y ≤ D by Lemma 5.1.2. Let

π be the linear map Am → Ar with coordinate functions πi(y1, . . . , ym) =
∑m

j=i aijyj . By

Theorem 3.2.6, the map π is Noether normalizing for Y with the mentioned probability, and

in particular �nite. The composed map π ◦φf is therefore dense. This map has coordinate

functions g1, . . . , gr, which proves that these polynomials have transcendence degree r. Let

π′ : Am → Ar+1 be the map with coordinate functions π′i(y1, . . . , ym) =
∑m

j=i aijyj . The

image of Y under this map has dimension r at most r since Y has dimension r. The image

has dimension at least r since the projection π of π′ has dimension r, and therefore the

image has dimension exactly r. Therefore the polynomials g1, . . . , gr+1 have transcendence

degree r.

The next result we discuss is variable reduction. Suppose polynomials f1, . . . , fm have

transcendence degree r. We can then replace each xi with a linear combination of r new

variables z1, . . . , zr such that the resulting r variate polynomials are also algebraically

independent.

Theorem 5.2.4 ([Kay09, Claim 11.1], [Mit12, Theorem 4.2.2]). Let f1, . . . , fm be a set

of m polynomials in n variables, with m < n. Let trdeg(f) = r. Then there exist a

homomorphism ψ∗ : k[x1, . . . , xn]→ k[z1, . . . , zm] of the form

ψ∗(xi) = ai,0 +

m∑
j=1

ai,jzj

such that trdeg(ψ∗(f)) = trdeg(f) = r.

In fact we will show the stronger statement that a random such homomorphism will

work.

Proof of Theorem 5.2.4. By potentially considering just a subset of the polynomials, we

can assume without loss of generality that m = r. Let b be a point in the image φf (An)

that has �bre of dimension exactly n − m. We use V to denote φ−1f (b). Let H be any
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linear subspace of dimension m such that dimH ∩ V = 0. Let ψ be a linear map from Am

to An that maps Am isomorphically to H. The corresponding map ψ∗ : k[An]→ k[Am] is

a linear map of the stated form. We will prove that trdeg(ψ∗(f)) = m.

Let Y ′ := φf ◦ ψ(Am), and let m′ := dimY ′ be the dimension of the image of the

composed map. By construction, the point b is in Y ′. Further, b has a �nite �bre under

this map, since the �bre corresponds exactly to the set H ∩ V which we assumed was

�nite. By the dimension theorem, every �bre has dimension at least m−m′, and therefore

m′ ≥ m. Further, since the map φf ◦ ψ : Am → Y ′ is dominant, we also have m ≥ m′

whence we deduce that m = m′. Finally, m′ = trdeg(ψ∗(f)) by the de�nition of dimension,

and therefore we have trdeg(ψ∗(f)) = m as required.

We will now prove that a random map has this property. The subspaces here are the

images of random linear maps, and therefore we use Lemma 3.1.6. The �bre V of b is

de�ned by the equations f1 = b1, . . . , fm = bm. By Bézout's theorem it has degree D. By

Lemma 3.1.6, if we pick each aij from a subset S of k not containing 0, the image of the

map ψ properly intersects V with probability at least 1−n3D/|S|. If we pick |S| = 3n3D,

the required statement holds with probability at least 2/3. We can sample from this set

in time polynomial in log nD, which is polynomial in n, di.

5.2.2 The Jacobian criterion

We now prove the Jacobian criterion. This is an e�cient way of checking if a given set of

polynomials is algebraically independent when the underlying �eld has characteristic 0 (or

large enough).

Given polynomials f , de�ne the Jacobian matrix J (f) as J (f)ij := ∂fi/∂xj . This is a

matrix with entries from the �eld k(x). The following statement of the Jacobian criterion

is from [PSS16], the references therein point to the places where di�erent cases were �rst

proved.

Theorem 5.2.5 ([PSS16, Lemma 5]). Let f1, . . . , fm be polynomials of degree at most d

and transcendence degree r. If char k = 0 or char k > dr then trdeg(f) = rankk(x) J (f).

To prove this, we will use the notion of tangent spaces. Given a point w on a variety

W , we can de�ne ideal mw of k[W ] consisting of all polynomials vanishing on w. This ideal

is maximal, since the quotient k[W ]/mw is k, which is a �eld. Further, the k[W ]-module
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mw/m
2
w is annihilated by mw, and is thus a k-vector space. The vector space mW /m

2
w is

called the cotangent space at w, and the dual (mw/m
2
w)∗ is called the tangent space. This

is denoted by ΘW,w. This de�nition of tangent spaces matches the more classical de�nition

using di�erentials in the case of complex numbers, but has the advantage of being purely

algebraic, and thus being well de�ned over the closures of �nite �elds.

Given a regular map φ : W → Z, we have an induced map φ∗ : k[Z]→ k[W ]. Suppose

φ(w) = z for some w ∈ W, z ∈ Z. Then φ∗(mz) ⊆ mw, and φ∗(m2
z) ⊆ m2

w. We thus get

an induced map φ∗ : mz/m
2
z → mw/m

2
w, which in turn induces a map between ΘW,w and

ΘZ,z. We denote this map dwφ : ΘW,w → ΘZ,z.

If W is an irreducible variety, then a point w ∈ W is called nonsingular if dimW =

rank ΘW,w. The set of nonsingular points in a variety form a dense open set (a proof can

be found in [SR13, Section 1.4]). Further, we have the following useful lemma.

Lemma 5.2.6 ([SR13, Theorem 2.3]). The dimension of the tangent space at a nonsingular

point equals the dimension of the variety.

We now consider our setting. We have a map from An to Y de�ned by the polynomials

f . The tangent space at every point in An is a vector space of dimension n since An is

irreducible and nonsingular. The induced map dx0φf at point x0 is given by the linear map

J (f)(x0).

Given the above, we can prove one part of Theorem 5.2.5. Suppose the Jacobian has

rank r. If r < m, then we can restrict our attention to some r linearly independent rows,

and thus we can assume without loss of generality that r = m. Let x0 be a point such

that J (f)(x0) is rank r. The set of points where this does not hold is a subvariety of An

of dimension at most n − 1. The map dx0φf then has image a linear space of rank m,

whence the codomain, that is ΘY,φvf (x0) must have rank at least m. This shows that in a

dense open subset of Y , the tangent space has dimension at least m, which shows that the

dimension of Y is at least m.

The above proof does not require the characteristic of k to be large, and indeed this

requirement is only required for the other direction. For this, we use the following lemma.

Lemma 5.2.7 ([SR13, Lemma 2.4]). Suppose char k = 0. Then there is a nonempty open

subset V ⊂ X such that dxF is surjective for x ∈ V .

While the above lemma assumes that the characteristic is zero, the proof works as long
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as the characteristic is large enough, that is bigger than dr. The above lemma immediately

gives us the other direction of the Jacobian criterion: since the map on the tangent spaces

is surjective, it must be that for a dense open subset of Y we have rank ΘY,y ≤ m. This

implies that dimY ≤ m, as required.

5.2.3 Functional dependence

Suppose we have dependent polynomials g1, . . . , gr. In general, the dependency of any

gi on the rest will is nonlinear, and we cannot write say g1 = H(g2, . . . , gr) for some

polynomial H. [PSS16] showed that while the above is not possible, if we randomly shift

the polynomials and allow power series, then we can write a power of g1 as a function of

g2, . . . , gr. Formally, they proved the following theorem.

Theorem 5.2.8 ([PSS16, Theorem 10]). Let f be a set of polynomials of transcendence

degree r. Then there exist an algebraically independent subset {g1, . . . , gr} ⊂ f of polynomi-

als such that for a random a ∈ kn and every fj, there is a power series hj ∈ k[[y1, . . . , yr]]

such that fj(x + a) = hj(g1(x + a)− g1(a), . . . , gr(x + a)− gr(a)).

We now prove the result. De�ne the polynomial map φf with coordinate functions

(f1, . . . , fm). Given polynomials f , the shifted polynomials f(x+a)−f(a) have the property

that 0 is mapped to 0. Further, the variety corresponding to the shifted polynomials, which

we call Ya, is such that the origin of Ya is the image of a in Y . If a is picked randomly,

then f(a) is a general point, and thus by shifting we have made the origin of Ya a general

point. In particular, in Ya, we can assume that the origin is a nonsingular point.

The ideal m := m0 in k[Y ] is generated by y1, . . . , ym. A subset of these elements also

then generate the vector space m/m2. Since the origin is nonsingular, this vector space

has dimension r. Let y′1, . . . , y
′
r be the yj whose images generate this vector space. The y′i

form a system of local parameters at the origin. 5 Since the point is nonsingular, the local

ring O0 has an isomorphic inclusion into the power series ring generated by the y′i. Each

yj can thus be written as a power series in the y′i on Ya. Finally, given the power series

for yj in terms of y′i, we can substitute fi(x + a)− fi(a) for yi everywhere to get a power

series for fj(x + a)− fj(a). This completes the proof.

This proof essentially uses a Newton iteration like procedure to �nd the power series.

5The de�nition of systems of local parameters can be found in [SR13], in Chapter 2.
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The result can also be proved directly using Newton iteration. We provide this proof in

appendix A

5.2.4 coAM and AM protocols

We now prove that the algebraic independence problem over �nite �elds is in AM and in

coAM. These results are by [GSS18], and is the result that motivates this whole enterprise

of polynomial maps.

We �rst provide an intuitive idea for why the result holds, in the special case of m = n.

In order to check for independence, Arthur can pick a random point b in Am, and ask

Merlin for a point a in An such that φf (a) = b. If the polynomials are independent, then

the image of the map φf is dense, and with high probability such a a exists, and if the

polynomials are dependent, then b is not in the image, and no such a exists. In order

to check for dependence, Arthur can pick a point in a ∈ An, and ask Merlin for a list

of points that also map to φf (a). If the polynomials are dependent, then the �bres have

dimension at least 1, and therefore Merlin can produce an arbitrary number of points with

this property. If the polynomials are independent, then we can prove a bound on the sizes

of the �bres, and therefore Merlin can only produce a list of bounded size.

Both the above protocols are incorrect, since the interactions are not polynomial sized.

The actual protocols will use the Sipser-Goldwasser protocol.

Lemma 5.2.9. Let S ⊆ {0, 1}m be a set, such that membership in S can be veri�ed in

AM. Let K be a number between 0 and 2m. If S is promised to have size either less than

K or greater than 2K, then there is an AM protocol to verify that the size of S is at least

2K.

The setting of the above is very similar to our second protocol. The idea is that instead

of listing 2K members of S, which would have size exponential, Arthur sends a random

hash function to Merlin, and asks Merlin to send a string which is not only a member of

S, but also hashes to a particular randomly chosen string. If S is large then this holds

with high probability. The details regarding the size of the hash function etc can be found

in [AB09]. Standard statements of the above require that membership in S can be NP ,

but the same proof works when testing is done in AM , by adding two more rounds to the

protocol and using the result that constant round AM protocols are equivalent to 2 round

protocols.
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If m > n the polynomials are always dependent. If m < n, then by Theorem 5.2.4 we

can replace the input variables by random linear combinations of n variables. We assume

therefore that m = n. Let f1, . . . , fn be the input polynomials. We continue to use the

notation from section 5.1.1, that is φf denotes the polynomial map de�ned by the input

polynomials, and Y is the closure of the image of the map. We also use D to denote∏n
i=1 di, where di = deg fi. Since we are aiming for a protocol that runs in polynomial

time, it will be important to address the issues of representing elements of the �eld, and

performing operations on them. To this end, we assume that the inputs fi have coe�cients

in the �eld Fq, and that operations in this �eld take unit time. We will require operating

in a �eld extension of degree e, where e will be �xed later. It su�ces to ensure that e is

polynomial in the inputs, in which case operations in Fqe take polynomial time. We will

still use k to denote the algebraic closure Fq. We will �rst show some facts about sets

of independent and dependent polynomials, then use them to state and prove the formal

protocols.

Independent polynomials: Suppose polynomials f1, . . . , fn are algebraically inde-

pendent. For i = 1, . . . , n let Ai be the annihilator of the polynomials f1, . . . , fn, xi. Each

Ai is a polynomial in n+ 1 variables z1, . . . , zn+1. By the Perron bound (Theorem 4.2.2),

each Ai has weighted degree D.

Let a be a random point in An. Write Ai as a polynomial in the variable zn+1 and

consider the coe�cient of the highest degree term. This is a polynomial in the variables

z1, . . . , zn, call this polynomial A′i. It follows from the degree bound on Ai that the weighted

degree of A′i is at most D. Therefore the polynomial Bi := A′i(f1, . . . , fn) has degree at

most D. Note that this polynomial is nonzero since f are independent.

Suppose a is such that Bi(a) is nonzero for all i. Then the polynomials Ai are nonzero

after specializing the �rst n variables to fi(a). Since the equations Ai(f(a), xi) holds on

the �bre of φf (a), the di�erent ith coordinates on the �bre is bounded by the degree of this

polynomial, which is D. The �bre itself therefore has size at most Dn.

By the polynomial identity lemma, if a is picked randomly from Fqe , and if qe > D,

then Bi(a) is nonzero with probability 1−D/qe for a �xed i. By a union bound, every Bi

is nonzero with probability 1− nD/qe, and in this case the �bre of φf (a) has size at most

Dn.

Dependent polynomials: Let f1, . . . , fn be a set of dependent polynomials. Let A
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be an annihilator of f1, . . . , fn, which by Theorem 4.2.2 has degree at most D. We use φ′f

to denote the restriction of φf to Fnqe . Since the coe�cients of f all lie in Fqe , the image of

φ′f also lies in Fnqe . Further, every point in the image satis�es the polynomial A. Therefore,

by the polynomial identity lemma the image has size at most Dqe(n−1). We now crudely

bound the number of points a in the domain Fnqe such that φ′f (a) has �bre of size at most

2Dn. Suppose T is this set of points. The images of the elements of T , namely φ′f (T ), has

size at most Dqe(n−1), since this is a upper bound on the entire image space itself. Each

point in φ′f (T ) can have at most 2Dn elements in the �bre by the de�nition of T , whence

the size of T is at most 2Dn+1qe(n−1).

We can now prove the main statements. Informally, AM protocol for dependence is as

follows: Arthur picks a random point a in An. He then asks Merlin to prove to him that

there are at least 2D points in Fqe all lie in the �bre of φf (a).

Theorem 5.2.10 ([GSS18]). Given polynomials f1, . . . , fn with coe�cients in Fq, there is

an AM protocol to check if they are algebraically dependent.

Proof of Theorem 5.2.10. We will use the notation from the above discussion. Set e such

that qe > 6nDn+1. This requires e to be polynomial in log q, n, di, which is polynomial in

the input size.

Arthur picks a random point a in Fnqe . If the polynomials are dependent, with prob-

ability at least 2/3 the �bre of the point φf (a) has at least 2D elements in Fnqe . If the

polynomials are independent, with probability at least 5/6, the �bre of the point φf (a) has

less than D elements. The Goldwasser Sipser protocol Lemma 5.2.9 can therefore be used

to provide an interactive AM proof for dependence. Note that membership in the �bre can

be checked in P itself.

Informally, AM protocol for independence is as follows: Arthur asks Merlin to prove

that there are more than 2Dqe(n−1) points in the image of φ′f . If Merlin can prove this,

Arthur accepts that the polynomials are independent.

Theorem 5.2.11 ([GSS18]). Given polynomials f1, . . . , fn with coe�cients in Fq, there is

an AM protocol to check if they are algebraically independent.

Proof of Theorem 5.2.11. As before, set e such that qe > 6nDn+1. If the polynomials are

dependent, then there are only Dqe(n−1) points in the image of the map φ′f .
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Suppose the polynomials are independent. Then the number of points in a ∈ Fnqe that

are such the �bres of φf (a) have size greater than Dn is at most Dqe(n−1). By a counting

argument, the number of points in the image of the map is at least (qen −Dqe(n−1)/Dn,

assuming the worst case where every other point has �bre of size Dn. By our choice of e,

this is greater than 2Dqe(n−1).

The Goldwasser Sipser protocol Lemma 5.2.9 can therefore be used to provide an

interactive AM proof for independence. Membership in the set (that is, the images) can

be checked in NP , with a point in the preimage acting as the certi�cate.



Chapter 6

E�cient algorithms for polynomials

with low transcendence degree

In this chapter, we give algorithms for the Nullstellensatz and transcendence degree com-

putation that depend on the transcendence degree of the polynomials. When the input

polynomials are independent, the complexities of our algorithms match known algorithms,

but when the transcendence degree is constant (or logarithmic, with constant degree poly-

nomials), our algorithms perform signi�cantly better.

The workhorse of all our algorithms will be an algorithm by Lakshman and Lazard

[LL91] that can check if a variety is zero dimensional, given generators for the ideal. This

algorithm itself is fairly nontrivial, and we do not state or prove the correctness of the

algorithm, we just use it as a blackbox.

Certain radical membership methods were developed by Gupta [Gup14] in his work on

deterministic polynomial identity testing algorithms for restricted depth-four circuits. The

focus there however was on a deterministic algorithm for the above problem. Further, he

restricts his attention to systems where the underlying �eld is C.

The results of this chapter are from [GS20]. We �rst state the three main results of

this chapter, and provide rough proof sketches. We then prove each of these results.

6.1 Main results

Our algorithms will be Monte Carlo algorithms. We assume that our base �eld k is alge-

braically closed, but our algorithms only use operations in the �eld in which the coe�cients

50
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of the inputs lie, which we denote by ki. For example, ki might be Fp, and k would then

be Fp. By time complexity we mean operations in ki, where operations include arithmetic

operations, �nding roots, and computing GCD of polynomials. Our results are valid for

any �eld where the above procedures are e�cient, for example �nite �elds.

We have three main results. We relate the complexity of radical membership, and

the degree bounds in e�ective Nullstellensatz, to the transcendence degree of the input

set of polynomials. We do this by showing that given a system of polynomials, we can

reduce both the number of variables and the number of polynomials to one more than the

transcendence degree, while preserving the existence and non-existence of common roots.

Before we state our results, we provide a motivating example. Suppose f1, . . . , fm are

polynomials in n variables. Suppose further that h1, . . . , hn are polynomials in r variables.

Then the polynomials f1(h), . . . , fm(h) have transcendence degree r. If this r is small,

then our algorithms will be faster.

6.1.1 Radical membership

Our �rst result is an improvement in the complexity of radical membership.

Theorem 6.1.1 (Radical membership). Suppose f1, . . . , fm and g are polynomials, in

variables x1, . . . , xn, of degrees d1, . . . , dm and dg respectively, given as blackboxes. Suppose

that trdeg(f1, . . . , fm) ≤ r. De�ne d := max(maxi di, dg).

Then testing if g belongs to the radical of the ideal generated by f1, . . . , fm can be done

in time polynomial in n,m and dr, with randomness.

Remarks:

(1) The transcendence degree r can be much smaller than n, and this improves the

complexity signi�cantly to dr from the prior dn [LL91]. On the other hand, the usual

reduction from SAT to HN results in a set of polynomials with transcendence degree n,

due to the presence of polynomials x2i − xi (that enforce the binary 0/1 values). It is

therefore unlikely that this complexity can be improved.

(2) We also show that the transcendence degree itself can be computed in time dr,

independent of the characteristic (Theorem 6.1.3). In the above statement therefore, we

can always pick r = trdeg(f), and we can assume that r is not part of the input.

(3) The transcendence degree is upper bounded by the number of polynomials, and

therefore we generalize the case of few polynomials. It is surprising if one contrasts this case
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with that of ideal membership� where the instance with three polynomials (i.e. tr.deg=3)

is as hard as the general instance making it EXPSPACE-complete. For completeness, we

present a reduction of the general ideal membership problem to the case of membership

with ideals generated by three elements here. This transformation is from [Sap19]. Suppose

g ∈ 〈f1, . . . , fm〉 is an instance of ideal membership. This is equivalent to zm1 z
m
2 g ∈〈

zm+1
1 , zm+1

2 ,
∑

i fiz
i
iz
m−i
2

〉
. Here, z1, z2 are new variables.

6.1.2 Nullstellensatz certi�cates

Next, we show that taking constant-free random linear combinations preserves the zeroset

of the polynomials, if the number of linear combinations is at least one more than the

transcendence degree. This allows us to get bounds on the Nullstellensatz certi�cates that

depend on the transcendence degree.

Theorem 6.1.2 (E�ective Nullstellensatz). Suppose f1, . . . , fm are polynomials in x1, . . . , xn,

of degrees d1 ≥ · · · ≥ dm respectively, with an empty zeroset. Suppose further that

trdeg(f) = r.

Then, there exist polynomials hi such that deg fihi ≤
∏r+1
i=1 di that satisfy

∑
fihi = 1.

Remark: The prior best degree-bound for the case of small transcendence degree is
∏m
i=1 di

[Jel05]. Our bound is signi�cantly better when the transcendence degree r is smaller than

the number of polynomials m.

6.1.3 Computing transcendence degree

Finally, we show that the transcendence degree of a given system of polynomials can be

computed in time polynomial in dr (and m,n), where d is the maximum degree of the

input polynomials, and r is their transcendence degree. The algorithm is output-sensitive

in the sense that the time-complexity depends on the output number r.

Theorem 6.1.3 (Computing transcendence degree). Given as input polynomials f1, . . . , fm,

in variables x1, . . . , xn, of degrees at most d, we can compute the transcendence degree r of

the polynomials in time polynomial in dr, n,m.

Remark: In the case when the characteristic of the �eld is greater than dr, there is a

much more e�cient (namely, randomized polynomial time) algorithm using the Jacobian

criterion discussed in the previous chapter [BMS13]. The algorithm presented here is useful
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when the characteristic is `small'; whereas the previous best known time-complexity was

> dr
2
if one directly implements the PSPACE algorithm.

6.1.4 Proof ideas

We prove brief proof ideas for each of the above three theorems before providing the

complete proofs.

Proof idea for Theorem 6.1.1: We �rst use the Rabinowitsch trick to reduce to HN: the

case g = 1. Next, we perform a random linear variable reduction. We show that replacing

each xi with a linear combination of r new variables zj preserves the existence of roots.

This is done by using the fact that a general linear hyperplane intersects a variety properly

(Corollary 3.1.4). Once we are able to reduce the variables, we can interpolate to get dense

representation of our polynomials, and invoke existing results about testing nonemptiness

of varieties (Theorem 6.2.1).

Proof idea for Theorem 6.1.2: For the second theorem, we show that random linear

combinations of the input polynomials, as long as we take at least r + 1 many of them,

preserve the zeroset. For this, we study the image of the polynomial map de�ned by the

polynomials. We will use Corollary 3.1.4 and Theorem 3.2.6 for this. In order to get the

degree bounds, we must allow these hyperplanes to depend on fewer variables, and allow

their equations to be constant free. Once this is proved, we can use an existing bound on

the Nullstellensatz certi�cates for the new polynomials to obtain a bound for the original

polynomials.

Proof idea for Theorem 6.1.3: The image of the polynomial map de�ned by the poly-

nomials is such that the general �bre has codimension equal to the transcendence degree.

We �rst show that a random point, with coordinates from a subset which is not `too large',

satis�es this property. In order to e�ciently compute the dimension of this �bre, we take

intersections with hyperplanes; and apply Corollary 3.1.4 and Theorem 6.2.1.

6.2 Proofs of main results

We will need the following algorithm for checking if a variety has dimension 0. The state-

ment assumes that the polynomials are given in the monomial (also called dense) repre-

sentation. We only state the part of the theorem that we require. We note that the below
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theorem itself invokes results from [Laz81], section 8 of which proves that the operations

occur in a �eld extension of degree at most dn of the �eld ki.

Theorem 6.2.1. [LL91, Part of Thm.1] Let f1, . . . , fm be polynomials of degree at most

d in n variables. There exists a randomized algorithm that checks if the dimension of the

zeroset of f1, . . . , fm is 0 or not, in time polynomial in dn,m. The error-probability is 2−d
n
.

In the special case when r is a constant, we can alternatively use the dimension compu-

tation result of [GHS93]. The complexity is slightly worse, but the proof is a bit simpler.

We will also continue to use notation from section 5.1.1, which we recall here. Given

polynomials f1, . . . , fm, we use φf to denote the map An → Am with coordinate functions

fi. We use Y to denote the closure of the image of this map.

6.2.1 Proof of radical membership

Proof of Theorem 6.1.1. We �rst assume g = 1, which is the Nullstellensatz problem HN.

De�ne D :=
∏m
i=1 di, and V := V (〈f〉). The set of common zeroes of these polynomials is

the �bre of the point 0 under the map φf . The problem HN is thus equivalent to testing

if a particular �bre of a polynomial map is nonempty. By the �bre dimension theorem

(Theorem 2.3.4), the codimension of the zeroset�if it is nonempty�is bounded above by

the dimension of the image of the map, which by Lemma 5.1.2 is r. The zeroset V is

therefore either empty, or has dimension at least n − r. Assume that V is nonempty. By

repeated applications of Bézout's theorem (Theorem 2.3.5), deg V ≤ D. Let S be a subset

of the underlying �eld ki (or an extension) of size at least 6(n− r)D that does not contain

0. We can sample from S in time polynomial in d, n,m, since S has size exponential in

these parameters. Further, if we were required to go to an extension to form S, the degree

of the extension would be polynomial in d, n,m. Pick n − r random linear polynomials

`1, . . . , `n−r with coe�cients from S, and call their zero sets H1, . . . ,Hn−r respectively. By

Corollary 3.1.4, we get dimV ∩H1 ∩Hn−r ≥ 0 with probability at least 2/3.

Therefore, when the polynomials f have nonempty zeroset and are restricted to the r

dimensional a�ne subspace ∩Hi, the new zeroset has dimension at least 0, and in particular

is nonempty. If the zeroset of the polynomials was empty to begin with, then the restriction

to the linear subspace also results in an empty zeroset.

This restriction can be performed by a variable reduction, as follows. Treating An as

a vector space of dimension n over k, let H0 be the linear subspace corresponding to the
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a�ne subspace H := ∩Hi. The space H0 has dimension r, and hence has basis a1, . . . , ar.

Further, let vector b be such that H = H0 + b. De�ne linear forms c1, . . . , cn in new

variables z1, . . . , zr as ci :=
∑r

j=1 ajizj + bi, where aji is the ith component of aj . De�ne

f ′i := fi(c1, . . . , cn). Then by construction, the zeroset of f ′1, . . . , f
′
m is equal to V ∩ (∩Hi).

Further, deg f ′i = deg fi, and these polynomials are in r variables. Also, the construction

of these f ′i can be done in a blackbox manner, given blackboxes for fi. This construction

takes time polynomial in m, r, n.

We now repeatedly invoke Theorem 6.2.1 to check if f ′is have a common root. First

we must convert them to a sparse representation. The polynomial f ′i has at most
(
r+di
r

)
many monomials, and therefore we can �nd every coe�cient in time polynomial in

(
r+di
r

)
by simply solving a linear system. Applying Theorem 6.2.1, we can test whether the

dimension of the zeroset of f ′1, . . . , f
′
m is 0 or not. However, we want to check if the

dimension is at least 0. For this, we randomly sample r more hyperplanes H ′1, . . . ,H
′
r as

in the previous part of the proof, this time in the new variables z1, . . . , zr. Let V ′ be the

zeroset of f ′1, . . . , f
′
m. We �rst use Theorem 6.2.1 to check if V ′ has dimension 0. If not,

then we check if V ′ ∩ H ′1 has dimension 0. If not, then we check V ′ ∩ H ′1 ∩ H ′2, and so

on. We return success if any one of the above iterations returns success (implying that

the corresponding variety has dimension 0). By Lemma 3.1.2 with high probability each

intersection reduces the dimension by 1. If V ′ originally had dimension r′, then after

intersecting with r′ hyperplanes, the algorithm of Theorem 6.2.1 returns success. If V ′

was empty, then the algorithm does not return success in any of the above iterations.

This allows us to decide if V ′ has dimension at least 0. Finally, using the fact that the

dimension of the zeroset of f ′1, . . . , f
′
m is at least 0 if and only if dimV ≥ 0, we get the

required algorithm for HN.

We now estimate the time taken. Computing the dense representation takes time

polynomial in dr and m. Each of the at most r applications of Theorem 6.2.1 also take

the same amount of time. The sampling steps take time polynomial in log nD (in turn

polynomial in d,m) and only requires an extension of degree polynomial in n and log d.

The total time taken is therefore polynomial in m, dr.

Now assume that g is an arbitrary polynomial. We reduce the problem to the case of

g = 1 using Rabinowitsch trick [Rab30], as in the proof of the equivalence of Theorem 4.1.1

and Theorem 4.1.2. The polynomial g belongs to the radical of the ideal 〈f〉 if and only
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if the polynomials f , 1 − yg have no common root (here y is a new variable). Further, if

f have transcendence degree r, then the set f , 1− yg has transcendence degree r + 1. We

therefore reduce the radical membership problem to HN problem, with a constant increase

in the transcendence degree, number of polynomials and the number of variables. By the

result in the previous paragraph, we can solve this in time polynomial in n,m and dr.

6.2.2 Proof of improved Nullstellensatz certi�cates

We �rst prove that by taking random linear combinations of the input polynomials, we can

reduce the number of polynomials to be one more than the transcendence degree while pre-

serving the existence of roots. This reduction gives degree bounds for the Nullstellensatz

certi�cates. Note that this reduction does not help in the above radical membership pro-

cedure, since we will only be saving a factor in m if we reduce the number of polynomials.

This theorem can be seen as an extension of [Hei83, Lemma 3].

Theorem 6.2.2 (Generator reduction). Let f1, . . . , fm be polynomials, in x1, . . . , xn, of

degrees d1, . . . dm; and of tr.deg= r. Let g1, . . . , gr+1 be polynomials de�ned as gi :=∑m
j=i cijfj, where each cij is randomly picked from a �nite subset S of k. Then with

probability at least 1− 2(r + 1)
∏m
i=1 di/|S|, we have V (〈f〉) = V (〈g〉).

Proof of Theorem 6.2.2. We use y1, . . . , ym to denote the coordinate functions of Am, the

space in which Y lies. By Lemma 5.1.2, Y has dimension r and degree at most D :=

(maxi di)
r. Let `1, . . . , `r+1 be the linear polynomials `i :=

∑m
j=i cijyj . Further, let L be

the map from Am to Ar with coordinate functions `1, . . . , `r, and let M be the map from

Am → Ar+1 with coordinate functions `1, . . . , `r+1.

By Theorem 3.2.6, with probability at least 1 − (r + 1)D/|S|, the map L is Noether

normalizing for Y . Suppose this is the case. By Lemma 3.2.4, L when restricted to Y is

surjective onto Ar and every point has �nite �bres. Let Q be the �bre of 0 under L when

restricted to Y . We want to bound the size of Q. The image Ar is normal, and hence |Q| is

bounded by the degree of the map [SR13, Theorem 2.28]. Here, by the degree of the map we

mean the degree of k(Y ) over the pullback L∗(k(Ar)). Note that k(Y ) = k(f1, . . . , fm), and

L∗(k(Ar)) = k(`1, . . . , `r). We therefore need to compute the degree of the �eld extension

k(f1, . . . , fm)/k(l1, . . . , lr), which is algebraic since the extension k[f1, . . . , fm]/k[l1, . . . , lr]

is integral. By Perron's bound, for each i there exists an annihilator of fi, l1, . . . , lr of

degree at most di. The degree of the extension, and hence |Q|, is bounded by
∏m
i=1 di.
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No point of Q other than 0 has all of the last m− r coordinates as zero. This follows

from the fact that L−1(0) is a linear space of dimension m − r, and its intersection with

yr+1 = yr+2 = · · · = ym = 0 has dimension 0. Consider now the linear form `r+1. For every

0 6= q ∈ Q, the probability that `r+1(q) = 0 is at most 1/|S|. Therefore, with probability

at least 1−
∏m
i=1 di/|S|, the polynomial `r+1 is nonzero on every nonzero point of Q.

Consider the polynomials g1, . . . , gr+1, and let φg be the polynomial map An → Ar+1

with coordinate functions gi. By the choice of `i in the previous paragraph, the map φg

is exactly the composition of the map φf : An → Am with M : Am → Ar+1. Let Q be

as de�ned earlier, the �bre of 0 under L. By construction, the set M−1(0) is a subset

of Q. But since the polynomial `r+1 is nonzero on every nonzero point of Q, the set

M−1(0) consists only of 0. Therefore, φ−1f (M−1(0)) = φ−1f (0). Since φg = M ◦ φf we get

φ−1g (0) = φ−1f (0); which is the same as V (〈f〉) = V (〈g〉). The probability bound follows

from a union bound.

That we pick the linear combinations so that the �rst involves all polynomials, the

second involves all except f1, the third involves all except f1, f2 and so on is crucial for the

improvement in the degree bounds for the Nullstellensatz certi�cates. We now prove the

second main result of the chapter.

Proof of Theorem 6.1.2. Using Theorem 6.2.2, there exists polynomials g1, . . . , gr+1 of de-

grees d1, . . . , dr+1 that are linear combinations of f1, . . . , fm that do not have a com-

mon root. By Theorem 4.2.1, there exist h′1, . . . , h
′
r+1 with deg gih

′
i ≤

∏r+1
i=1 di such that∑

gih
′
i = 1. In this equation, substituting back f1, . . . , fm for each gi we get the equation∑

fihi = 1 with the required degree bound.

6.2.3 Algorithm for computing transcendence degree

We now give an algorithm to compute the transcendence degree. For this, we use the

e�ective version of the �bre dimension theorem.

Lemma 6.2.3. Let h1, . . . , hm be polynomials of degree at most d in n variables, and let

W be the Zariski closure of the image of the map h with coordinates hi. Let S ⊂ k be of

size 6ndn. If a1, . . . , an are randomly picked from S, then with probability at least 5/6, the

�bre of (h1(a), · · · , hm(a)) has codimension exactly dimW .
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Proof. First assume that the hi are algebraically independent. Then W = Am. Let the in-

put variables be labelled such that x1, . . . , xn−m, h1, . . . , hm are algebraically independent,

and let Aj(z0, z1, . . . , zn−m, w1, . . . , wm) be the (minimal) annihilator of xj over this set

of variables, that is Aj(xj , x1, . . . , xn−m, h1, . . . , hm) = 0. By the proof of the �bre dimen-

sion theorem (Theorem 2.3.4), a su�cient condition for point a1, . . . , an to be such that

h(a) has �bre of dimension exactly n −m is that Aj(xj , x1, . . . , xn−m, h1(a), . . . , hm(a))

is a nonzero polynomial. The polynomial Aj , when treated as polynomials in variables

z0, . . . , zn−m with coe�cients in k[w1, . . . , wm] are such that the leading monomial has

coe�cient a polynomial in w1, . . . , wm of weighted-degree at most
∏m
i=1 di (by Theo-

rem 4.2.2). By the polynomial identity lemma if we pick each ai randomly from a set

of size 6
∏m
i=1 di then, with probability at least 5/6, none of the polynomials Aj(xj , x1, . . . ,

xn−m, h1(a), . . . , hm(a)) is zero. In this case, the codimension of the �bre of h(a) is exactly

m.

In the general case, the hi may be algebraically dependent, and W is a subvariety of

Am. Suppose dimW = trdeg((h)) =: s. Then we take s many random linear combinations

gi of the hi, as in the proof of Theorem 6.1.1. The map de�ned by the gi is dense in As

and therefore the gi (i ∈ [s]) are algebraically independent. By the previous paragraph,

point a picked coordinatewise from S is such that the �bre of g(a) has codimension s. The

�bre of h(a) is a subset of the �bre of g(a), and therefore it has codimension at least s.

Finally, by the �bre dimension theorem (Theorem 2.3.4) the �bre has codimension at most

s, whence the �bre of h(a) has codimension s.

We can now use this to compute the transcendence degree.

Proof of Theorem 6.1.3. For each i from 1 to n, we do the following steps. We iterate till i

reaches the transcendence degree r of the m polynomials. In the i-th iteration, we intersect

An with n − i random hyperplanes `1, . . . , `n−i, as in the proof of Theorem 6.1.1. Here,

the coe�cients are picked from a set S of size at least n · 18
∏m
i=1 di. We therefore reduce

the problem to i variables.

Randomly pick point a where each coordinate (of the n many) is picked from S. By

Lemma 6.2.3, with error-probability ≤ 1/6n, the point f(a) has intersected �bre of di-

mension (n − r) − (n − i) = (i − r). We need to check this algorithmically, which is

done by interpolating the polynomials f after hyperplane intersections, and then using
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Theorem 6.2.1. If the intersected �bre dimension is zero, we have certi�ed that the tran-

scendence degree is r; so we halt and return i as output. If not, we move to the next

i 7→ i+ 1. The interpolation step above is performed by solving a linear system which has

size polynomial in di which is the count of the monomials of degree at most d in i variables.

For i < r, with probability ≤ 1/6n, the �bre of f(a) has an empty intersection with

`1, . . . , `n−i and hence gets veri�ed by Theorem 6.2.1. By a union bound therefore, with

error-probability ≤ 1/6, the above algorithm gives the correct answer. For each i, the

time complexity of the above steps is polynomial in di,m, which is the time taken for the

interpolation step and to verify zero-dimension of the �bre. Therefore the algorithm as a

whole takes time polynomial in dr, n,m as claimed.



Chapter 7

Conclusion

In this thesis, we �rst provided exposition of some results in commutative algebra and

algebraic geometry, namely Noether normalization, hyperplane intersection and the Null-

stellensatz. We proved e�ective versions of most of the results we discussed.

We proved degree bounds in existence statements such as the Nullstellensatz. We also

explicitly controlled bad choices when picking random hyperplanes to intersect a variety,

and random linear maps to Noether normalize.

We then discussed the algebraic independence problem, and framed it as a problem

in computational algebraic geometry. We used this view to give alternative proofs of a

number of known results. Finally, we used all of the above to give improved algorithms

for radical membership and transcendence degree computation, and improved bounds for

Nullstellensatz certi�cates in the special case of polynomials with low transcendence degree.

There are some natural directions in which the above can be extended, which we list.

• We can try to further improve the dependency on the transcendence degree in some of

the above algorithms. For example, our algorithms are polynomial time when either

the transcendence degree of the polynomials is constant, or when the transcendence

degree is logarithmic and the degrees of the polynomials are constant. We can look

for algorithms that are polynomial time when the transcendence degree is logarithmic

irrespective of the degree. There is some evidence that the above results cannot be

greatly improved, since the Nullstellensatz problem is NP hard.

• Another natural problem is proving that the Nullstellensatz is in the polynomial

hierarchy in the �nite characteristic case. This result holds (assuming the GRH) in

Z, but the methods use do not extend to �elds of �nite characteristic.
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• Finally, another open problem is to come up with a randomized polynomial time

algorithm for computing the transcendence degree. This problem is unlikely to be

NP hard, since it is in AM ∩ coAM , and given that the characteristic 0 case is in

BPP , it seems likely that there exists a BPP algorithm for the �nite �eld case.



Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.

Cambridge University Press, 2009. 46

[AM94] M.F. Atiyah and I.G. MacDonald. Introduction To Commutative Algebra.

Addison-Wesley series in mathematics. Avalon Publishing, 1994. 22

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Alge-

braic complexity theory, volume 315 of Grundlehren der mathematischen Wis-

senschaften. Springer, 1997. 41, 67

[BMS13] M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox

identity testing. Information and Computation, 222:2 � 19, 2013. (Also, 38th

International Colloquium on Automata, Languages and Programming, ICALP

2011). 52

[Bro87] W. Dale Brownawell. Bounds for the degrees in the Nullstellensatz. Annals of

Mathematics, 126(3):577�591, 1987. 31, 32

[CLO07] David A. Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms:

An Introduction to Computational Algebraic Geometry and Commutative Algebra,

3/e (Undergraduate Texts in Mathematics). Springer-Verlag, Berlin, Heidelberg,

2007. 5, 27

[Csa75] L. Csanky. Fast parallel matrix inversion algorithms. 16th Annual Symposium on

Foundations of Computer Science (SFCS 1975), pages 11�12, 1975. 31

[DFGS91] Alicia Dickenstein, Noaï Fitchas, Marc Giusti, and Carmen Sessa. The mem-

bership problem for unmixed polynomial ideals is solvable in single exponential

time. Discrete Applied Mathematics, 33(1-3):73�94, 1991. 31

62



63

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic

program testing. Information Processing Letters, 7(4):193 � 195, 1978. 4

[DSS18] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uni-

form closure results for algebraic classes under factoring. In Proceedings of the

50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,

pages 1152�1165, New York, NY, USA, 2018. ACM. 67

[Eis13] David Eisenbud. Commutative Algebra: with a view toward algebraic geometry,

volume 150. Springer Science & Business Media, 2013. 5

[Gat13] Andreas Gathmann. Commutative algebra. Class Notes TU, Kaiserslautern, 14,

2013. 22, 27

[GHS93] Marc Giusti, Joos Heintz, and Juan Sabia. On the e�ciency of e�ective Nullstel-

lensätze. Computational Complexity, 3:56�95, 1993. 54

[GS20] Abhibhav Garg and Nitin Saxena. Algorithms for blackbox radical membership,

nullstellensatz and tr.deg. 2020. Accepted at ISSAC 2020. 1, 50

[GSS18] Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and

pspace algorithms in approximative complexity. In Proceedings of the 33rd Com-

putational Complexity Conference, CCC '18, 2018. 33, 46, 48

[Gup14] Ankit Gupta. Algebraic geometric techniques for depth-4 PIT & Sylvester-Gallai

conjectures for varieties. Electronic Colloquium on Computational Complexity

(ECCC), 21:130, 2014. 50

[Hei83] Joos Heintz. De�nability and fast quanti�er elimination in algebraically closed

�elds. Theoretical Computer Science, 24(3):239 � 277, 1983. 12, 56

[Her26] Grete Hermann. Die frage der endlich vielen schritte in der theorie der polyno-

mideale. Mathematische Annalen, 95(1):736�788, Dec 1926. 30

[Jel05] Zbigniew Jelonek. On the e�ective Nullstellensatz. Inventiones mathematicae,

162(1):1�17, Oct 2005. 32, 52

[Kay09] N. Kayal. The complexity of the annihilating polynomial. In 24th Annual IEEE

Conference on Computational Complexity, pages 184�193, July 2009. 41, 42



64

[Koi96] Pascal Koiran. Hilbert's Nullstellensatz is in the polynomial hierarchy. J. Com-

plexity, 12(4):273�286, 1996. 31

[Kol88] János Kollár. Sharp e�ective Nullstellensatz. Journal of the American Mathemat-

ical Society, 1(4):963�975, 1988. 31

[KPS99] Teresa Krick, Luis Miguel Pardo, and Martín Sombra. Arithmetic Nullstellen-

sätze. ACM SIGSAM Bulletin, 33(3):17, 1999. 32

[KPS+01] Teresa Krick, Luis Miguel Pardo, Martín Sombra, et al. Sharp estimates for the

arithmetic Nullstellensatz. Duke Mathematical Journal, 109(3):521�598, 2001. 32

[Kru50] Wolfgang Krull. Jacobsonsches radikal und Hilbertscher Nullstellensatz. In Pro-

ceedings of the International Congress of Mathematicians, Cambridge, Mass, vol-

ume 2, pages 56�64, 1950. 1

[Lan02] Serge Lang. Graduate Texts in Mathematics: Algebra. Springer, 2002. 4, 39

[Laz77] Daniel Lazard. Algèbre linéaire sur k[x_1, . . . , x_n] et élimination. Bulletin de

la Société Mathématique de France, 105:165�190, 1977. 32

[Laz81] Daniel Lazard. Resolution des systemes d'equations algebriques. Theoretical Com-

puter Science, 15(1):77 � 110, 1981. 54

[LL91] Y. N. Lakshman and Daniel Lazard. On the Complexity of Zero-dimensional

Algebraic Systems, pages 217�225. Birkhäuser Boston, 1991. 50, 51, 54

[Mac02] Francis Sowerby Macaulay. Some formulae in elimination. Proceedings of the

London Mathematical Society, 1(1):3�27, 1902. 32

[Mit12] Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD thesis,

Hausdor� Center for Mathematics, Bonn, 2012. 42

[MM82] Ernst WMayr and Albert R Meyer. The complexity of the word problems for com-

mutative semigroups and polynomial ideals. Advances in Mathematics, 46(3):305

� 329, 1982. 30, 31

[Mul12] K. D. Mulmuley. Geometric complexity theory v: Equivalence between blackbox

derandomization of polynomial identity testing and derandomization of noether's



65

normalization lemma. In 2012 IEEE 53rd Annual Symposium on Foundations of

Computer Science, pages 629�638, 2012. 37

[Ore22] Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15,

1922. 4

[Per51] Oskar Perron. I, Die Grundlagen. In Algebra, 1951. 33

[PSS16] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over

positive characteristic: New criterion and applications to locally low algebraic

rank circuits. In 41st International Symposium on Mathematical Foundations of

Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages

74:1�74:15, 2016. (Comput.Compl., 27(4), 617�670, 2018). 43, 45

[Pª05] Arkadiusz Pªoski. Algebraic dependence of polynomials after O.Perron and some

applications. Computational Commutative and Non-Commutative Algebraic Ge-

ometry, pages 167�173, 2005. 33

[Rab30] JL Rabinowitsch. Zum Hilbertschen Nullstellensatz. Mathematische Annalen,

102(1):520�520, 1930. 28, 55

[Sap19] Ramprasad Saptharishi. Private Communication, 2019. 52

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial iden-

tities. J. ACM, 27(4):701�717, October 1980. 4

[Sin19] Amit Kumar Sinhababu. Power series in complexity: Algebraic Dependence, Fac-

tor Conjecture and Hitting Set for Closure of VP. PhD thesis, Indian Institute of

Technology Kanpur, 2019. 37

[Som97] Martín Sombra. Bounds for the Hilbert function of polynomial ideals and for the

degrees in the Nullstellensatz. Journal of Pure and Applied Algebra, 117-118:565

� 599, 1997. 32

[Som99] Martín Sombra. A sparse e�ective Nullstellensatz. Advances in Applied Mathe-

matics, 22(2):271 � 295, 1999. 32

[SR13] I.R. Shafarevich and M. Reid. Basic Algebraic Geometry 1: Varieties in Projective



66

Space. SpringerLink : Bücher. Springer Berlin Heidelberg, 2013. 5, 10, 22, 24, 25,

40, 41, 44, 45, 56

[Vak17] Ravi Vakil. The rising sea: foundations of algebraic geometry. 2017. 27

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings

of the International Symposiumon on Symbolic and Algebraic Computation, EU-

ROSAM '79, page 216�226, Berlin, Heidelberg, 1979. Springer-Verlag. 4



Appendix A

Functional dependence and Newton

iteration

In this appendix, we look at a proof of part of the functional dependence criterion via

Newton Iteration. This vastly simpli�es the proof. It also gives an idea of why the random

shift is necessary, and the role of the inseparability.

Assume that we are given polynomials f1, . . . , fn ∈ k[x]. Assume that the f have

transcendence degree n. Let g be any polynomial in F[x]. We know that the transcendence

degree of {f , g} will also be n, and thus g depends algebraically on the f . Let A be an

annihilator of {f , g}. By de�nition, A(f , g) = 0. We will also look at A as a polynomial in

one variable, say y, which is the variable in which we plug in g. We assume that A is an

annihilator with minimum degree in y. We will now show that after a random shift, we

can write g as a power series in f .

We use the following formulation of Newton iteration from [DSS18], which is a slight

modi�cation of Theorem 2.31 from [BCS97]. For completeness, we provide a proof of this

lemma in the last section.

Lemma A.0.1 (Newton Iteration). Let F (x, y) ∈ k[[x]][y] be a polynomial in y with

coe�cients power series in k[[x]]. Suppose µ is such that F (0, µ) = 0 and also F ′(0, µ) 6= 0,

where F ′ is the derivative with respect to the last variable. There is then a unique element

Y ∈ k[[x]] with constant term µ such that F (x, Y ) = 0. We also have

yt+1 = yt −
F (x, yt)

F ′(x, yt)
,
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such that Y ≡ yt (mod 〈x〉2
t

).

In the above lemma, it is essential that F is a polynomial in y. This allows us to

evaluate it at power series with non-zero constant term. In general, if F were a power

series in y, we would require µ = 0.

In order to get g as a power series in f , we will try and use NI to get a power series

in x, and then try and argue that what we get is actually a power series in f . First note

that if g depended inseparably on f , then A′ would be an identically zero polynomial. In

this case, we will not be able to satisfy the conditions of the lemma. Thus we assume that

g depends separably on f . In general, this can be obtained by replacing g by a power gp
i
.

Therefore we can assume now that g depends separably on f .

A possibly bigger issue is the fact that if the fi have non-zero constant terms, then

power series in fi are not valid elements in F[[x]]. To �x this, we apply the shift operator,

to remove the constant term: De�ne Hfi := fi(x+z)−fi(z), and similarly for Hg = g(x+

z)− g(z). For now we treat the z as part of the base �eld, that is, we switch from working

with k to working with k(z). Eventually we show that we can replace z by an arbitrary

element from kn, and the proof will continue to hold. We have A(Hf + f(z),Hg+ g(z)) =

A(f(x+z), g(x+z)) = 0. We de�ne B(x, y) = A(Hf+f(z), y+g(z)) = A(f(x+z), y+g(z)).

The polynomial B has root y = Hg. Now note that B(0, 0) = A(f(z), g(z)) = 0, since A

is an annihilator1 . Further, consider B′(0, 0). We have

B =
d∑
i=0

ci(y + g(z))i,

where the ci are polynomials in x and z, and d is the degree with respect to y. Di�erenti-

ating, we get

B′ =
d∑
i=0

ici(y + g(z))i−1.

When evaluated at (0, 0), each of the ci is a polynomial in fi(z). Therefore, B′(0, 0) is a

polynomial in fi(z) and g(z), of degree d − 1. As a polynomial in z, this is non-zero: if

it were not, we would have an annihilator for f , g of degree d − 1 in y, contradicting the

1 The choice of setting µ = 0 is motivated by the fact that we know that the root Hg has no constant
term. We also know that this is not a repeated root, due to minimality and separability assumption. The
calculation of B(0, 0) and B′(0, 0) thus also act as a sort of sanity check.
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assumption that A is the annihilator with minimum y degree. In general, when we replace

z with a vector of random elements from F, we can still say that B′(0, 0) 6= 0 (for most

choices), by using the polynomial identity lemma.

We have now satis�ed the conditions of the lemma. The lemma then gives us a root

Y ∈ k[[x]] such that B(x, Y ) = 0. Further, this is the unique root with constant term 0.

But we know that Hg is also a root of B(x, y) with constant term 0. Thus it must be that

Y = g. All that is left to show is that we can actually get Y as a power series in Hf , since

the lemma only promises us a power series in x. For this, we look at the series yt whose

limit is Y . We will inductively show that yt can be written as a power series in Hf for all

t.

The base case is t = 0. We have y0 = 0, and thus vacuously y0 is a power series

in Hf . Assume inductively that yt is a power series in Hf . First consider B(x, yt) =

A(Hf + f(z), yt + g(z)). The �rst argument, Hf + f(z) is vacuously a power series in

Hf , and by the inductive hypothesis, so is the second argument yt + g(z). Thus B(x, yt)

is also a power series in Hf . Now consider (B′(x, yt))
−1. The term B′(x, yt) is a power

series in Hf by an argument similar to the one above. In this form B′(x, yt) must have a

nonzero constant term, since the constant term will be exactly B′(0, 0), which is non-zero

by assumption. Thus we have B′(x, yt) = c0 + D(Hf), where c0 6= 0, and D is a power

series with no constant term. But then we have

1

B′(x, yt)
=

1

c0 +D(Hf)

=
1

c0

1

1−D1(Hf)
(Setting D1 = −D/c0)

=
1

c0

(
1 +D1(Hf) +D2(Hf)2 + . . .

)
This converges since each D1(Hf)i has x-adic valuation at least i. It is also a power series

in Hf . The product B(x, yt)(B
′(x, yt))

−1 is thus also a power series in Hf , and so is yt+1.

Note that c0 is a non-zero element in F(z), and by Schwartz Zippel, it continues to remain

non-zero after we replace z by random �eld elements. It is crucial that the term c0 is

independent of t, since otherwise the random choice of z would have had to be such that

a countable number of equations are non-zero. This completes the proof.

We now prove the version of Newton iteration used.
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Proof of Lemma A.0.1. In order to see the existence of Y , we plug in a power series with

unknown coe�cients, equate with zero, and compare coe�cients on both sides. This gives

us a system of linear equations, with unknowns corresponding to monomials, and equations

also corresponding to monomials. In particular, let Y =
∑
cex

e where the sum runs over

all N valued vectors of length n. We will �rst show that c0 = µ satis�es the equation

corresponding to the constant term. Then we will use the yt described in the statement of

the lemma, to get coe�cients ce in the following way: we will look at some yt, and use the

coe�cients of monomials up to degree 2t as the values for the corresponding variables in

our system. We will show that these satisfy the equations corresponding to the monomials

of degree at most 2t. Note that these equations do not have any other variables. This is

equivalent to showing that F (x, yt) ≡ 0 (mod 〈x〉2
t

). When showing that the yt satisfy

these equations, we will additionally show that the values for the variables that we already

had from yt−1, namely those for the coe�cients of degree at most 2t−1, are the same as

those in yt−1. More succinctly, we will show that yt ≡ yt−1 (mod 〈x〉2
t−1

). As hinted, the

proof will proceed by induction on t.

First we show the base case, namely t = 0. Consider the equation F (x, Y ) = 0. The

constant term in this expression is F (0, c0). By assumption, since F (0, µ) = 0, we can

set c0 = µ. This also ensures we satisfy the requirement of our Y having constant term

µ. In the notation of the question, we also get y0 = µ. The statement about equality of

coe�cients holds vacuously.

Assume now that the statement holds for t. First note that F (x, yt) ≡ F (x, y0)

(mod 〈x〉), since yt ≡ y0 (mod 〈x〉) by the induction hypothesis. This implies that

F ′(x, yt) has constant term F ′(0, µ), which is non-zero by assumption. This implies that

F ′(x, yt) is invertible in the power series ring, and that the expression for yt+1 is well

de�ned. Further, by induction, we have that F (x, yt) ≡ 0 (mod 〈x〉2
t

). This implies

that yt+1 − yt ≡ 0 (mod 〈x〉2
t

), proving the consistency requirement. Now we compute

P (x, yt+1). For this, we will use the Taylor expansion. We have

F (x, yt+1) = F

(
x, yt −

F (x, yt)

F ′(x, yt)

)
= F (x, yt) +

F ′(x, yt)

1!

(
− F (x, yt)

F ′(x, yt)

)
+
F ′′(x, yt)

2!

(
− F (x, yt)

F ′(x, yt)

)2

+ . . .

On the right hand side, the �rst two summands cancel. All other summands, and hence
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the entire right hand side, are 0 (mod 〈x〉2
t+1

). This shows that yt+1 has the required

property.

Finally we must show that Y is unique. This follows from the fact that µ is not a

repeated root of F (0, y).
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