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Zusammenfassung

Polynomielle Identitätstests, oder polynomial identity testing (PIT) behandelt das
Problem, zwei Polynome P,Q ∈ F[x1, . . . , xn] zu vergleichen. Äquivalent ist es, zu
überprüfen, ob ein Polynom das Nullpolynom ist. So wird aus dem ursprünglichen
Problem einfach der Test, ob das Polynom (P − Q) ∈ F[x1, . . . , xn] für jegliche Ein-
gabe immer 0 auswertet. Wir werden in dieser Arbeit immer letztere Darstellung von
PIT benutzen.

Ziel dieser Arbeit ist es, eine in sich abgeschlossene Präsentation der derzeitigen
Methoden, dieses Problem anzugehen, zu geben. Außerdem werden neue mögliche
Ansätze zur weiteren Behandlung von PIT vorgeschlagen.

Polynome lassen sich durch circuits (,,Schaltungen”) darstellen. Diese sind azykli-
sche Graphen, die genau eine Wurzel haben, und deren Blätter aus den Variablen
des Polynoms bestehen. Es gibt Additions– und Multiplikationsknoten, und die Äste
können Konstanten tragen, die mit dem jeweiligen darunterliegenden Knoten mul-
tipliziert werden. Wir werden nur solche Graphen betrachten, die aus drei Ebenen
bestehen1: Die Wurzelebene ist hat genau einen Additionsknoten. Die nächste Ebene
besteht aus genau k Multiplikationsknoten, welche jeweils genau d Additionsknoten
in der nächsten Ebene besitzen. Wir arbeiten mit n Variablen.

Es gibt verschiedene unterschiedliche Herangehensweisen an PIT. Wir geben einen
Überblick über drei Methoden, und eine ausführliche Darstellung der Methode, die als
ersten eine vom Grad des Polynoms unabhängige ,,Rang-Schranke” aufweist.

Algorithmen, um PIT zu bestimmen, lassen sich in non–blackbox– und blackbox–
Algorithmen einteilen. Erstere haben die möglichkeit, zur Laufzeit in die Darstellung
vom Polynom ,,hineinzusehen”, während dies den letzteren verboten ist.

Wegen seiner Einfachheit zeigen wir zuerst einen blackbox–Algorithmus, den Schwarz–
Zippel Algorithmus [Zip79, Sch80]. Er basiert darauf, daß die Wahrscheinlichkeit, die
Nullstelle eines Polynoms ,,zufällig” zu treffen, sehr gering ist, solange der Grad des
Polynoms klein ist gegenüber dem zugrundeliegenden Körper. Danach präsentieren
wir einen non–blackbox–Algorithmus, der PIT mit einer Laufzeit von poly(n, dk) be-
stimmt [KS07]. Weiterhin zeigen wir dann eine Schranke für den Rang eines ,,circuits”
C [SS09] von

rank(C) ≤ O(k3 log d).

Durch eine Identität vom Rang (log d + 2) über F werden wir zeigen, dass letztere
Schranke tatsächlich fast optimal über beliebige Körper ist. Somit wurde Dvir und
Shpilkas Vermutung [DS05], die obere Schranke wäre O(k), für allgemeine Körper
widerlegt. Allerdings haben Kayal und Saraf [KS09] es geschafft zu zeigen, daß über

1einschließlich der Wurzelebene
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R die obere Schranke tatsächlich nicht vom Grad d abhängt, indem sie eine obere
Schranke von

rank(C) ≤ kO(k)

über R bewiesen haben.
Der Beweis dieser Schranke verbindet Graphen mit Geometrie, und benutzt haupt-

sächlich geometrische Ansätze, um ans Ziel zu kommen. In dieser Arbeit werden wir
zum ersten Mal einen in sich abgeschlossenen und vollständigen Beweis dieser oberen
Schranke erbringen. D.h., daß wir sowohl auf die geometrischen Theoreme eingehen
werden, sowie auf den Beweis der Schranke selbst, einschließlich der Verknüpfung
zwischen den beiden.

Außerdem präsentieren wir weitere neue Ansätze, um mit PIT umzugehen. Auch
diese beruhen auf dem Zusammenhang zwischen Geometrie und PIT. Eine Bearbeitung
dieser Ansätze könnte neue Einsichten zum Verhalten von PIT mit Graphen mit 3
Ebenen bringen.

Zuletzt sei noch bemerkt, dass Saxena und Seshadhri [SS10] kürzlich eine quadrati-
sche obere Schranke

rank(C) ≤ O(k2)

angekündigt haben. Wir werden auch hierauf kurz eingehen. Obwohl dies nun schon
sehr nah an Dvir und Shpilkas obere Schranke herankommt, kann es aber durchaus
noch Sinn machen, weiter an PIT mit 3 Ebenen zu arbeiten, unter anderem, um daraus
womöglich auch Erkenntnisse für PIT mit 4 Ebenen zu gewinnen.
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Chapter 1. Introduction

In many fields of mathematics we often need to compare two polynomials, or need to
check whether a given polynomial outputs zero on all input. We already learn early on
that, although two polynomials may have a different appearance, they can “represent”
the same function, i.e. they can always compute the same output, e.g. the difference
of squares:

a2 − b2 = (a− b)(a+ b), (1.1)

or the sum of four identities:

(a21 + a22 + a23 + a24) (b21 + b22 + b23 + b24) =

(a1b1 − a2b2 − a3b3 − a4b4)2 +

(a1b2 + a2b1 + a3b4 − a4b3)2 +

(a1b3 − a2b4 + a3b1 + a4b2)
2 +

(a1b4 + a2b3 − a3b2 + a4b1)
2.

Comparing two polynomials is also required in a lot of higher level algorithms, e.g. for
primality testing, or in fundamental structural results, e.g. in Complexity Theory for
PCP related theorems. Most importantly, polynomial identity testing is also connected
to circuit lower bounds [KI04,Agr05].

In theory, identities can be easily proven by expanding the products and comparing
the resulting monomials. But the problem with this method is that the number of
monomials “explodes” when increasing the number of variables and the degree. Thus,
we need a way of formalizing the problem.

1.1 Basics

In order to study polynomial identities, we will start off by stating a few basic defi-
nitions. We are looking for ways to represent polynomials such that we can classify
them and perform computations on their basic properties.

Unless explicitly denoted by R or C, F will always be an arbitrary field, i.e. either
finite or infinite.

Definition 1.1.1 (Polynomial Identity Testing). Given a polynomial

P (x1, . . . , xn) ∈ F[x1, . . . , xn],

polynomial identity testing (PIT) is the problem of deciding whether P is the zero
polynomial, i.e. if

P (x1, . . . , xn) = 0
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for all (x1, . . . , xn) ∈ Fn.

Remark 1.1.2. The problem of deciding whether two polynomials P and Q are
equal can be simply transformed into PIT by deciding whether (P − Q) is the zero
polynomial.

We will thus always be testing polynomials against 0 ∈ F[x1, . . . , xn], i.e. the zero
polynomial.

Let us now introduce a representation of polynomials taken from Complexity The-
ory: arithmetic circuits. They are the extension of Boolean circuits over arbitrary
fields.

Definition 1.1.3 (Arithmetic circuit). An arithmetic circuit C on n variables and a
field F is an acyclic graph with only one root and with input variables at the leaves
and output at the root. The two types of nodes, called gates , are

∑
(addition) and∏

(multiplication) and correspond to their respective operation in the field F. The
edges of C, called wires , can hold constants from F which are multiplied to the value
at the tail of the edge. The fanin of a gate is the number of its inputs. The fanin of
C is the largest fanin of any gate inside C.

It should be obvious that a circuit with n different input variables has an n-variate
polynomial over F at its root. It is therefore an elegant way for us to describe poly-
nomials.

Remark 1.1.4. By abuse of notation, we will often denote a circuit and its corre-
sponding polynomial by the same symbol, e.g. C.

Example 1.1.5. The circuit corresponding to the polynomial (2x−y2) can be graphed
as follows: ∑

x
∏

y y

2 -1

Remark 1.1.6. Just as polynomial representations are not unique, circuit represen-
tations are also not unique.

With a small formal trick, we are able to classify circuits. In later chapters, we will
restrict ourselves to specific classes of circuits.

Definition 1.1.7. By adding trivial gates of fanin 1, any circuit can be written as
alternating levels of

∑
and

∏
gates. Let C be such a circuit. We call C a ΣΠΣ . . . or

ΠΣΠ . . . circuit, depending on whether it has, respectively, a
∑

or
∏

root–level gate.
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From now on, a circuit always has alternating levels, i.e. it is either a ΣΠΣ . . . or a
ΠΣΠ . . . circuit.

Definition 1.1.8. A circuit is called a depth–h circuit if it has exactly h levels of
gates.

A depth–3 ΣΠΣ–circuit with n variables, top–fanin k, and 2nd–level–fanin1 d (called
the degree d) will be denoted by ΣΠΣ(k, d, n). We can then also define sets of depth–3
circuits:

ΣΠΣ = {ΣΠΣ(k, d, n) | k, d, n ∈ N} ,
ΣΠΣ(k) = {ΣΠΣ(k, d, n) | d, n ∈ N} ,

ΣΠΣ(k, d) = {ΣΠΣ(k, d, n) | n ∈ N} .

Remark 1.1.9. It can easily be seen that the degree of a circuit coincides with the
degree of its polynomial.

Example 1.1.10. From the difference of squares (1.1), we know that the output of
the following ΣΠΣ (3, 2, 2) circuit is always zero:∑

∏ ∏ ∏
∑ ∑ ∑ ∑ ∑ ∑

a b a b a b

−1 −1

−1

Definition 1.1.11. For n ∈ N, we denote the set {1, 2, . . . , n} by [n].

When working with circuits, we will often need the following properties:

Definition 1.1.12. A depth–3, ΣΠΣ (k, d, n), circuit

C = T1 + . . .+ Tk =
∏
j∈[d]

l1j + . . .+
∏
j∈[d]

lkj

is called minimal if there is no S ⊂ [k], |S| > 0, such that∑
j∈S

Tj = 0.

1i.e., the maximum fanin of any of the
∏

gates
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The greatest common denominator of C, gcd(C) is defined as

gcd(C) = gcd
i∈[k]

Ti.

It is called simple if
gcd(C) = 1.

We define sim(C) to be

sim(C) :=
C

gcd(C)
.

The rank of C is the following: Identify each linear form lij =
∑

κ∈[n] aijκXijκ of C

with the vector (aij1, . . . , aijn) ∈ Rn. Then, set

rank(C) := dim(span{lij | i ∈ [k], j ∈ [d]}).

1.2 Dvir and Shpilka Rank Bound Conjecture

In 2005, Dvir and Shpilka conjectured a rank bound of O(k) for simple, minimal
depth–3 identities (Chapter 7, [DS05]). I.e., for every fanin size k, there is a constant
c(k), such that essentially all ΣΠΣ(k) circuits computing the zero polynomial have
rank at most c(k).

Note that the conjecture for c(k) is independent of the degree d of the circuit. All
rank bounds prior to Kayal and Saraf’s kO(k) rank bound [KS09] also depend on the
degree d. We will present these “weaker”2 results in Chapter 2, and the kO(k) rank
bound as part of Chapter 4.

In the meantime, Saxena and Seshadhri could improve the bound3 to a very promis-
ing O(k2) [SS10]. We briefly pick up this result in Chapter 5.

1.3 Overview

In Chapter 2, we will give an overview of various algorithms and rank bound in order
to decide PIT. Here, we will also only be giving restricted versions4 of their proofs.

Chapter 3 will provide the geometric tools needed by the lower rank bound proofs
and for further studying PIT.

The main goal of this paper is to give a self–contained proof of the kO(k)–rank bound
for PIT. Also, we will suggest new methods for working with matchings, a fundamental
tool that proved valuable when studying PIT. Both of these can be found in Chapter
4.

2Weaker only over R, since the rank bound of kO(k) only works over R. Therefore, the previous
results are still of interest, as they work over arbitrary fields.

3Again over R.
4I.e., we will be restricting ourselves to special cases, for which we can simplify the proof.
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Chapter 2. Depth-3 PITs

While PIT is easily solved for depth–2 circuits (it has a blackbox polynomial time
algorithm [KS01]), depth–4 is still quite far away [Sax09]. We will therefore focus on
depth–3 ΣΠΣ PIT. (Note that a ΠΣΠ circuit is zero iff any factor of the first product
is zero, and therefore can be reduced to multiple depth–2 ΣΠ PIT–problems.)

In this chapter, we will only sketch the ideas used in the proofs of the current
depth–3 PIT algorithms, mainly following the presentation given in Saxena’s survey
paper [Sax09].

There are various types of algorithms. In this paper, we will present four different
methods1. The first three can be found in this chapter, along with a short overview of
their proofs2. The fourth, the first rank bound kO(k) to be independent of the degree
d, will follow in Chapter 4.

First, we will present a randomized algorithm. This dates from 1980, and uses the
fact that it is hard to randomly hit a root of a polynomial.3 Then, we will show an
algorithm that can look “inside” the circuit, i.e. a non–blackbox algorithm, which
gives a poly(n, dk)–time algorithm deciding PIT.

One may wish to use algorithms that cannot look “inside” the circuits, i.e. blackbox
algorithms4. There has been a lot of progress lately for ΣΠΣ(k, d, n) identities with
constant top fanin k. We are thus able to show a rank bound of (k3 log d) for circuits
over any field F in the third part of this chapter.

2.1 A Randomized PIT

Both Zippel [Zip79] and Schwartz [Sch80] independently found the following random-
ized polynomial time algorithm, which simply picks a random point in a field, and
uses the output of the circuit in that point in order to decide whether the polynomial
is the zero polynomial or not:

1Actually, there is a short overview of a fifth algorithm at the very end of this paper: Saxena and
Seshadhri’s newest achievement, a rank bound of O(k2).

2We will try to convey the main ideas used in the proofs, on subsets of ΣΠΣ(k) in order to keep
the proofs short and simple.

3For polynomials of “small” degree relative to the field size.
4The Schwarz–Zippel algorithm is a very obvious example for such a blackbox algorithm, since it

only evaluates a circuit C at various random points.
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Algorithm 1: Schwartz–Zippel randomized PIT
Input: (P, S): P ∈ F[x1, . . . , xn] with degP ≤ d, S ⊆ F finite

Output: With probability
(

1− d
|S|

)
, outputs TRUE if P is zero on S

begin
Pick x ∈R S

n;
if P (x) = 0 then

output TRUE;

else
output FALSE;

end
end

It is obvious that the algorithm cannot err on outputting FALSE. The probability

for TRUE,
(

1− d
|S|

)
, follows from the Schwartz–Zippel Lemma, for which we still

introduce the following, simple definition:

Definition 2.1.1. We say that we pick x randomly from X, x ∈R X, if we choose a
purely random x out of a set X using the standard distribution, i.e. each element is
picked with a probability of 1

|X| for |X| <∞, or with a probability of 0 for |X| =∞.

Lemma 2.1.2 (Schwartz–Zippel). Let P ∈ F[x1, . . . , xn] be a non–zero polynomial of
degree d ≥ 0 over a field F. Let S ⊆ F be finite.

Then

Prob
x1,...,xn∈RS

[P (x1, . . . , xn) = 0] ≤ d

|S|
.

Proof. We will prove the lemma by induction.
Let n = 1, i.e. P is a univariate polynomial. Being non–zero, it can therefore only

have at most d roots. So the probability of hitting a root is at most d
|S| .

Let the statement hold for polynomials with (n − 1) variables. We can view an
n-variate polynomial over F as a univariate polynomial over F[x1, . . . , xn−1] as follows:

P (x1, . . . , xn) =
d∑
i=0

xinPi (x1, . . . , xn−1) .

Note that, since P is non–zero, at least one Pi must be non–zero. Pick the greatest
i such that Pi is non–zero. Then, deg(Pi) ≤ (d − i) holds. From the induction
hypothesis, we know that

Prob
x1,...,xn−1∈RS

[Pi (x1, . . . , xn−1) = 0] ≤ d− i
|S|

.

By our choice of i, P is a univariate polynomial over F[x1, . . . , xn−1] of degree i. Thus,
by the univariate case, it holds that

Prob
x1,...,xn∈RS

[P (x1, . . . , xn) = 0|Pi (x1, . . . , xn−1) 6= 0] ≤ i

|S|
.
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We can now see that, for x1, . . . , xn ∈R S,

Prob [P (x1, . . . , xn) = 0] ≤Prob [Pi (x1, . . . , xn−1) = 0] +

Prob [P (x1, . . . , xn) = 0|Pi (x1, . . . , xn−1) 6= 0]

≤d− i
|S|

+
i

|S|

=
d

|S|
.

Corollary 2.1.3. The probability of randomly picking a root of a polynomial over a
field of characteristic 0 is zero.

2.2 Non–Blackbox PIT

A blackbox PIT algorithm is given access to a circuit C, which it can call “for free”5

with any (valid) input, and uses only the output of C in order to decide PIT. A non–
blackbox algorithm on the other hand can “look into” the circuit C and also make
decisions based upon its structure, in addition to the output.

In 2005, Kayal and Saxena presented a non–blackbox PIT algorithm that runs
in polynomial time on bounded top fanin circuits [KS07]. Although we are mainly
interested in blackbox algorithms, we will give a short overview of the ideas involved
(for k ∈ {2, 3}).

Since we restrict our proof to k ∈ {2, 3}, we are able to use a generalization of the
ABC Theorem [Sto81, Mas84, dB09] in order to help us find a lower bound on the
degree of a polynomial, allowing us to prove the non–blackbox PIT algorithm. The
ABC Theorem cannot be applied when k > 3, and therefore is not used in [KS07].6

Theorem 2.2.1 (ABC Theorem [Sto81,Mas84]). Let F be an algebraically closed field
of characteristic zero. Let A,B,C ∈ F[x] be polynomials such that

gcd(A,B,C) = 1 (2.1)

and
A+B = C (2.2)

hold. Then the number of distinct roots is greater than their largest degree.

Proof. Let f, g ∈ F(x) be two rational functions with

f =
A

C
,

g =
B

C
.

5I.e., the cost for running the query are the same as any field operation, both in terms of size and
runtime.

6By restricting ourselves to k ∈ {2, 3}, we can therefore find an alternate, simpler proof than
in [KS07].
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Then, dividing (2.2) by C gives us

f + g = 1.

Without loss of generality, let

A(x) =c1
∏

(x− αi)mi ,

B(x) =c2
∏

(x− βi)ni ,

C(x) =c3
∏

(x− γi)ri .

Then, by differentiation, we get that

f ′ + g′ =
f ′

f
f +

g′

g
g = 0,

and thus it can be determined that

B

A
= −

f ′

f

g′

g

= −
∑

mi
x−αi −

∑
ri

x−γi∑
ni
x−βi −

∑
ri

x−γi
.

Note that
D =

∏
(x− αi)

∏
(x− βi)

∏
(x− γi)

is a common denominator for f ′

f
and g′

g
. Also, the degree of D is the number of distinct

roots of A,B, and C. Then, D f ′

f
and D g′

g
have degree less than the number of distinct

roots.
The theorem then follows from

B

A
= −

D f ′

f

D g′

g

and (2.1).

Theorem 2.2.2 (General ABC Theorem [dB09]). For r ≥ 3, let

f1, . . . , fr ∈ C[x1, . . . , xn]

be polynomials, not all constant, such that

gcd
i,j∈[r],i 6=j

(fi, fj) = 1 (2.3)

and ∑
i∈[r]

fi = 0. (2.4)

Then

max
i∈[r]

deg (fi) ≤ (r − 2)

deg rad
∏
i∈[r]

(fi)− 1

 .
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We will refer to [dB09] for the proof of this theorem.

Theorem 2.2.3. There is a poly
(
n, dk

)
-time algorithm that determines whether a

ΣΠΣ(k, d, n) circuit computes the zero polynomial over F.

Proof. We will only prove the existence for k ∈ {2, 3}, for k ≥ 4 and runtime analysis
cf. [KS07, Section 3].

Let the components of C := ΣΠΣ(k, d, n) be denoted as follows:

C =
∑
i∈[k]

Ti

=
∑
i∈[k]

∏
j∈[d]

lij

=
∑
i∈[k]

∏
j∈[d]

∑
κ∈[n]

aijκxκ,

with aijκ ∈ F. Assume all Ti to be coprime, else replace C with sim(C).
If C = T1 + T2, i.e. k = 2, we simply have to check whether

T1 = −T2.

Since F[x1, . . . , xn] is a unique factorization domain, T1 and −T2 are equal iff the linear
forms correspond one-to-one and the monomials match on both sides.

If C = T1 + T2 + T3, i.e. k = 3: Define L := {lij}i∈[3],j∈[d]. Then C = 0 iff

∀ l ∈ L : C = 0 mod l. (2.5)

Say, without loss of generality, l comes from T1. Then we have C = T2 + T3 mod l,
and we can apply the previous case,7 k = 2. Now, if (2.5) holds, it follows that

∀ l ∈ L : C = 0 mod l

⇒ C = 0 mod
∏
l∈L

l

⇒ C = 0 mod rad(T1T2T3),

with rad(T1T2T3) being the radical of the polynomial (T1T2T3). Since we ensured that
C is simple, and thus

gcd(T1, T2, T3) = 1,

we can apply Theorem 2.2.2, and we get that deg(rad(T1T2T3)) > d. Thus,

C ≡ 0,

already as element of F[x1, . . . , xn].
Since Theorem 2.2.1 does not hold for more than 3 summands, or over arbitrary F,

the previous approach has to be tweaked for these cases (cf. [KS07]).

7Note that F[x1, . . . , xn]/(l) is also a unique factorization domain.
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A simplified version of this algorithm finally boils down to Algorithm 2 [Sax09].
Cf. [KS07, Section 3.2] for a better explanation of the algorithm, on how to select each
I, and when a specific I is considered useful.

Algorithm 2: Non–blackbox PIT
Input: Circuit C = T1 + . . .+ Tk
Output: Output TRUE iff C is zero, FALSE otherwise
begin

repeat

I← {(f1, . . . , fl) |l ∈ [k − 1],∀i ∈ [l] :

fi is a maximal factor of some Tj s.t.

fi is not a zero-divisor modulo (0, f1, . . . , fi−1) and

fi is power of a linear polynomial modulo rad(0, f1, . . . , fi−1)}

forall I ∈ I do
if C tests “bad” with respect to Ia then

output FALSE;

end

end
until no useful I left ;
output TRUE;

end

aE.g., but not only, C 6= 0 mod I.

2.3 k3logd rank bound over arbitrary fields

In 2008, Saxena and Seshadhri presented the rank bound for simple, minimal depth–
3 circuits ΣΠΣ(k, d, n) over an arbitrary field F of (k3 log d) [SS09]. This bound is
actually almost optimal, since the proof suggests the following identity C of rank
(log2 d+ 2) over F2:

C(x1, . . . , xr) :=
∏

b1,...,br−1∈F2,b1+···+br−1=1

(b1x1 + . . .+ br−1xr−1)

+
∏

b1,...,br−1∈F2,b1+···+br−1=0

(xr + b1x1 + . . .+ br−1xr−1)

+
∏

b1,...,br−1∈F2,b1+···+br−1=1

(xr + b1x1 + . . .+ br−1xr−1)

=0.

This is a ΣΠΣ(3, d, r) identity with k = 3. We will also only outline the proof of
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their main theorem for the case that k = 3. The theorem is the following:8

Theorem 2.3.1 (Theorem 2, [SS09]). Let C be a simple, minimal ΣΠΣ(k, d, n) circuit
computing the zero polynomial. Then

rank(C) ≤ O(k3 log d).

For the proof, we will need the following definitions and lemmas:

Definition 2.3.2. A list of linear forms is a multiset (of linear forms) with some
ordering. The specific ordering is not important, as long as it allows to distinguish
between repeated elements in the list.

Definition 2.3.3. Let U and V be two lists of linear forms and π a bijection between
them. U and V are called similar, if, for all u ∈ U , there is a c ∈ F× such that
u = cπ(u).

Definition 2.3.4 (Matching. Definition 12, [SS09]). Let U, V be two lists of linear
forms, and I be a form. We call a bijection π an I–matching between U and V , if for
all l ∈ U , there is a c ∈ F× and v ∈ span(I) such that π(l) = (cl + v).

For I, we will be picking different linear forms l of T1 and count the l-matchings
between T2 and T3:

Lemma 2.3.5 (Lemma 14, [SS09]). Let U, V be two lists of linear forms, each of size
d, i.e. |U | = |V | = d. Let I1, . . . , Ir be linearly independent linear forms such that for
all i ∈ [r], there is an Ii-matching πi between U and V .

If r > (log2 d+ 2), then U and V are similar lists.

Proof. We will prove this by contradiction, using the following combinatorial process:
View the setup as a bipartite graph G = (U, V,E), with the edges E referencing the
matchings πi. I.e., for every πi and u ∈ U , there is an edge in E labeled πi(u) that
connects u with its Ii-neighbor π(u).

We will now describe an iterative process over the linear forms Ii in order to build
a basis B that will span all (U ∪ V ). In each round, the set Ji will be composed of
those linear forms that we have considered until then, i.e.

Ji =
⋃
j∈[i]

Ij.

Initialize B with one element u0 ∈ U . In the ith round, we simply add Ii to B.
Notice that we thereby cover forms of (U ∪ V ) with span(B), e.g., in the first round,
we covered u0 and its I1-neighbor π1(u), since π1(u) is a linear combination of u and
I1. Thus, at any time, if a form l is covered, its neighbor πi(i) is also covered. So
there are always equally many forms of U and V covered.

8For a full proof, cf. [SS09]
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We now pick the smallest subset S ⊆ [r], such that ({u0}∪
⋃
j∈S Ij) is a set of linear

dependent forms. Without loss of generality, and with i0 = |S|, let S = [i0]. Then, by
construction, u0, I1, . . . , Ii0−1 are independent, and thus u0 ∈ span(Ji0). Then, since
all I1, . . . , Ir are independent, span(Ji0) must be independent of Ii0+1, . . . , Ir.

Let us examine the ith step9 more closely. Take a u′ that has been covered in
the last round (i.e. in the (i − 1)th round). Notice that its Ii-neighbor will not
have been covered until this (the ith) round, due to the following: Say u′ ∈ U , then
v′ = πi(u

′) = (cu′ + v) ∈ V , with c ∈ F×, and v ∈ span(Ii), v 6= 0. If v′ had already
been covered, then v ∈ span(B). But since Ii is independent of B, that would mean
that v ∈ (span(Ii) ∩ span(B)) = {0}, which is a contradiction.

Hence, this ith round doubles the amount of covered forms.
Since |U | = |V | = d, this doubling can happen at most log2 d times, and thereby

r − 2 ≤ log2 d.

This is a contradiction, therefore U and V must be similar.

Proof of Theorem 2.3.1. For circuits of fanin 3, the theorem follows directly from
Lemma 2.3.5: Take the linear forms of T1 and T2 to be the linear forms of U and
V respectively. The matching forms Ii will be those of T3. By the lemma, there can
be at most (log2 d + 2) linear independent forms in T3. Repeat this by taking the
matching forms to be of T2 and T1 to get a rank bound

rank(C) = O(log2 d).

For higher fanins, cf. [SS09].

2.4 kk rank bound over R
The above (almost optimal) rank bound of (k3 log d) is valid for any field F. For fields
of characteristic 0, better results may be achieved, as shown by Kayal and Saraf in
2009 [KS09]. They proved that over R (or rather any extension of Q that is embedded
in R), identities have rank bound kk. Notice that this bound is independent of the
degree d, and thus a lot closer to the bound O(k) conjectured by Dvir and Shpilka
than the one for arbitrary fields.

The proofs are based heavily on incidence geometry, especially the Sylvester–Gallai
Theorem, and its higher dimensional versions. We will focus on these geometric the-
orems in Chapter 3, and on the proof of Kayal and Saraf’s rank bound in Chapter
4.

9i /∈ {1, r}
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Chapter 3. Sylvester–Gallai Theorems

In this chapter, we will present those results from incidence geometry that proved
to be very useful in handling identities. They are all based on the Sylvester–Gallai
Theorem.

In 1893, Sylvester asked whether it is possible to find a set of non–collinear points
in R2 such that, for each line passing through two points of the set, the line contains
a third point of the set. In 1933, Gallai showed that such a set does not exist: The
Sylvester–Gallai Theorem asserts that in every set of points spanning a 2–dimensional
linear space over R, there are two points such that the line passing through these
points does not meet any third point of the initial set.

Later, in 1965, Hansen extended this to higher dimension [Han65] by proving that
any set of points spanning a space isomorphic to Rn contains a subset of points span-
ning a hyperplane of Rn in such a way that all but one of the points in the subset
only span an (n − 2)–dimensional subspace, and only by adding the last point does
the dimension increases to a hyperplane.

Serre proposed a similar problem in 1966: whether such a configuration as given by
Sylvester must be coplanar over the complex projective space. This was proven by
Kelly in 1986 [Kel86].

In the meantime, several proofs for both problems were given. A very elementary
proof of the Sylvester–Gallai Theorem is presented in Borwein and Moser’s survey
paper [BM90]. Unfortunately, this proof does not extend easily to the complex case.
Therefore, we will be following Elkies, Pretorius and Swanepoel’s proof [EPS06], which
sets up the case over R in such a way that one can prove the complex case with the
same arguments, which facilitates the proof of the latter dramatically.

Almost as a corollary to Hansen’s Theorem, Bonnice and Edelstein [BE67] proved
that for a finite set of points spanning (a space isomorphic to) R2n, there is a subset
of exactly (n+ 1) points that span an n–dimensional subspace.

This fact will be heavily relied on by Kayal and Saraf’s Hyperplane Decomposition
Lemma [KS09], which states that, given a finite set of points spanning Rn, there is a
“core” subspace of lower dimension, say ncore < n, such that this core subspace can
be extended at least n−ncore

2
times into disjoint subspaces, each of dimension exactly

(ncore + 1).

Remark 3.0.1. When discussing geometric properties, we work in the projective
space, i.e. we restrict ourselves to the following:

• For points in Rn, we do not allow a point to be in the origin

O = (0, . . . , 0)T .
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• For any two distinct points in a, b ∈ Rn, we do not allow the two points to be
on the same line passing through the origin. I.e., there is no c ∈ R, such that
a = cb.

We can construct this situation in the following way: For each point Pi ∈ Rn, we
consider the line

L(Pi) = {λPi | λ ∈ R}.

Then, we select a hyperplane V ⊂ Rn as follows:

1. V ∩O = ∅,

2. V ∩ L(Pi) 6= ∅ for all points Pi.

We now can map a point Pi into V by the linear projection π : Rn → V , with

π(Pi) = L(Pi) ∩ V.

Remark 3.0.2. In the rest of this chapter, we will often loosely1 refer to d–dimensional
linear spaces as Rd.

Definition 3.0.3. A Sylvester–Gallai configuration (SG configuration) is a finite set
of non–collinear points, such that, for each line passing through two points, there is a
third point of the set on this line.

Definition 3.0.4. For n, d ∈ N, n < d, and a d–dimensional linear space V , define
the following:

• An n–flat , is an affine n–dimensional subspace of V .

• A hyperplane is a (d− 1)–flat in V .

• Let S be a finite set of points that span V . A hyperplane H of V is called
ordinary (with respect to S), if H is spanned by (S ∩ H) and there exists a
P ∈ H, such that ((S \ {P}) ∩H) spans a (d − 2)–dimensional flat of V . P is
called the leader , ((S \ {P}) ∩H) the follower .

• A n–flat F of V is called an elementary n–flat, if |F ∩ S| = (n + 1), and F is
spanned by exactly these (n+ 1) points..

From the definition, the following is immediately obvious: Let F be an elementary
flat of V , spanned by a set of points S. Then F is an ordinary flat, with every point
in S being a leader.

Definition 3.0.5. We can associate a d–dimensional linear space V with its dual V ∗,
a duality map taking k–flats in V to (d− k − 1)–flats in V ∗.

1By isomorphism.
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For the proof of the Sylvester–Gallai Theorem, the following will be of importance:

Remark 3.0.6. Notice that the dual of a point is a hyperplane and vice–versa.
For R2 and its dual, with a duality map π, say we have points P1, P2, . . . , Pn that

are all on the line L. Then notice the following:⋂
i∈[n]

π(Pi) = π(L). (3.1)

In words: The dual of the points Pi (which will be lines) all intersect in one point: the
dual of the line L (which will be a point).2

3.1 The Sylvester–Gallai Theorem

The Sylvester–Gallai Theorem asserts that one cannot arrange a set of points in R2 in
such a way that no line in R2 meets exactly two points of this set. There are various
different proofs known for this. We have chosen this specific proof since it translates
rather easily into a similar statement over C. A very simple proof of the Sylvester–
Gallai Theorem, using only basic geometric properties in R2, can be found in Borwein
and Moser’s survey paper [BM90].

Theorem 3.1.1 (Sylvester–Gallai). There is no Sylvester–Gallai configuration in R2.

In order to prove this, we will need to prove the following theorem first.

Theorem 3.1.2. Say we have the following triangles:
In a plane, three non–collinear points P1, P2, and P3 are given. The lines joining

all pairs of points form a triangle, and for all i ∈ [3], we label the line opposite to Pi
with Li. Now, for all all distinct i, j, k ∈ [3], let Ljk be a (third) line passing through
Pi such that Ljk 6= Lj and Ljk 6= Lk.

3 (We pick Ljk and Lkj as the same line.)
Then the following holds:

• Either, for all distinct i, j, k ∈ [3],, Li is parallel to Ljk.

• Or, the area of ∆(L1, L2, L3) is larger than the area of at least one of the follow-
ing:

∆(L12, L2, L3) ∆(L1, L12, L3) ∆(L1, L2, L13)

∆(L13, L2, L3) ∆(L1, L23, L3) ∆(L1, L2, L23)

∆(L1, L12, L13) ∆(L12, L2, L23) ∆(L13, L23, L3)

2This can be naturally extended to higher dimensional linear spaces and higher dimensional flats.
E.g., in Rd, if we have a set of points all contained in a hyperplane, the dual of the points (now
hyperplanes) will all intersect in a point (the dual of the hyperplane).

3See Figure 3.1.
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This is a reformulation of a proposition of Rainwater, which was proven by Diananda
and Bager [RDB61]. Following the lead of Elkies, Pretorius, and Swanepoel [EPS06],
we will give a slightly more complicated version of the proof, since this will carry over
very well to the complex case. Note that in order to prove both cases of Theorem
3.1.2, it is enough to show that the area of L1L2L3 cannot be less than that of all the
other triangles, and that, if equality holds, the appropriate lines must be parallel.

L13
L12

L23P1

P2

P3
L3

L1

L2

Figure 3.1: Example of triangles in Theorem 3.1.2

Proof. Without loss of generality, assume that we are working in P2, on the affine
plane identified with

∑3
i=1 xi = 1 in R3,4 such that the lines Li have the equation

xi = 0. (Note that the multiplicity of determinants ensures that a minimal volume
triangle remains so.) Then, the points Pi are exactly (δi,1, δi,2, δi,3)

T .5

For all distinct i, j, k ∈ [3], let Ljk and Lkj be such that they are the same line6,
and notice that Ljk passes through Pi. Thus, the equation for Ljk turns out to be

αxj + βxk = 0. (3.2)

This can be transformed7 into α
β
xj + xk = 0. Set αjk := α

β
and, respectively, αkj := β

α
.

Thus, for any j 6= k, we have
αjkαkj = 1. (3.3)

For any distinct i, j, k, note that αjk = 1 iff Li is parallel to Ljk.
8

For A,B,C ∈ R3, the area of a triangle ∆(A,B,C) is
√
3
2
|det[ABC]|. We can

therefore easily compute the area of the nine triangles given above:

4I.e., while the coordinates given are in R3, everything is actually happening in (a linear space
isomorphic to) R2. Therefore, all coordinates and equations are understood to be ∩{x1+x2+x3 = 1}.

5δi,j is 1 iff i = j, 0 else.
6This is allowed by the (loose) restrictions to Ljk in the theorem.
7Note that α, β 6= 0, since otherwise the line would be parallel to Lj , Lk, respectively.
8By equation (3.2)
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The triangle ∆(L1, L12, L3) has the following vertices:

P ′1 =
(
(1− α12)

−1,−α12(1− α12)
−1, 0

)T
,

P ′2 = P2,

P ′3 = P3.

Thus, |det[P ′1, P
′
2, P

′
3]| =

∣∣(1− α12)
−1∣∣.

Let us assume that the area of L1L2L3 is smaller or equal to the area of L1L12L3.
Then, via |(1− α12)

−1| ≥ 1, the following holds:

|1− α12| ≤ 1.

We can repeat the same argument with, e.g., the triangle L1L12L13 in order to obtain

|1− α12 − α13| ≤ 1.

Thus, we obtain for each of the nine triangles an inequality:9

|1− αij| ≤ 1, (3.4)

|1− αij − αik| ≤ 1. (3.5)

Because of equation (3.4), we know that αij ≥ 0. By (3.3) and the AGM inequality10,
it follows that αij +αji ≥ 2, with equality iff αij = αji = 1. Thus, the following holds:∑

i,j∈[3],i 6=j

αij ≥ 6.

Using (3.5), we know that αij + αji ≤ 2, and thus∑
i,j∈[3],i 6=j

αij ≤ 6.

Therefore, if the area of L1L2L3 is not strictly greater than the area of one of the
given triangles, all αij must be equal to 1, and thereby Li must be parallel to Ljk for
all distinct i, j, k ∈ [3].

Now, we have all tools necessary to prove the Sylvester–Gallai Theorem:

Proof of Theorem 3.1.1. Say, for contradiction, that we have a SG configuration in
R2. Via a duality map π, we obtain a set of lines Li with intersection points Pj. Note
that by (3.1) at least three lines pass through each Pj.

9(for all distinct i, j, k ∈ [3])
10The AGM inequality states that for x1, . . . , xn ∈ R>0, the geometric mean is less or equal to the

arithmetic mean, i.e.
n
√
x1 · · ·xn ≤

x1 + . . .+ xn
n

,

with equality iff x1 = . . . = xn. For a proof, cf. e.g. [AZ01, Chapter 16].
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Remember that, originally, we neither had points in the origin, nor two points that
were multiples of each other. It therefore is easy to see that, when we pass over into
the dual, we do not have any two lines that are parallel to each other.

Since all lines are non–parallel, they form triangles. Choose a triangle with minimum
area. Without loss of generality, let the lines forming this triangle be called L1, L2,
and L3 and the vertices be called P1, P2, and P3. Since there is a third line passing
through each vertex we can consider us to be in the situation of Theorem 3.1.2.11 Now,
since our lines are all non–parallel, we get a contradiction to our choice of triangle,
since we find a triangle of even smaller area.

Corollary 3.1.3. For all n ≥ 2, there is no SG configuration in Rn.

Proof. Suppose a SG configuration S exists. Pick 3 non–collinear co–planar points,
say A, B, and C, in S. Since S is a SG configuration, so is (S ∩ span(A,B,C)).
But that would mean that we have a SG configuration in a 2–flat of Rn (which is
isomorphic to R2). This contradicts Theorem 3.1.1.

3.2 Sylvester–Gallai over C
We now can apply the same arguments as before over C. Unfortunately, we get a
slightly weaker result: Instead of a SG configuration being collinear, as over R, over
C it will only be coplanar. An example for a SG configuration in a plane are the nine
points of inflexion of the following cubic curve [Cox48]:

x3 + y3 + z3 = xyz

Definition 3.2.1. For z ∈ C, let Re(z) be the real part of z, and Im(z) the imaginary
part. I.e., for z = a+ bi, a, b ∈ R, let

Re(z) = a,

Im(z) = b.

Theorem 3.2.2. Every Sylvester–Gallai configuration in Cn is coplanar.

By the same arguments as over R, it is enough to prove this fact for n = 3.

Proof. Suppose we have a SG configuration S in C3. Again, we take its dual and call
this S∗.12

Without loss of generality, we work on the affine plane in C4 given by∑
i∈[4]

xi = 1.

11Strictly speaking, we would need to map R2 to {x1 + x2 + x3 = 1} ∩ R3.
12Note that due to our setting, there are no parallel lines.
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Analogous to a triangle being a three-tuple of lines in R2, we call a four-tuple of
distinct planes Π1,Π2,Π3, and Π4 a tetrahedron. Its vertices are Pj =

⋂
k 6=j Πk, for

j ∈ [4]. We can then define the “volume” to be |det[P1, P2, P3, P4]|.13
We select a tetrahedron Π1Π2Π3Π4 of minimal volume and adjust the base coordi-

nates such that its vertices Pj are the standard unit vectors

ej = (δj,1, δj,2, δj,3, δj,4)
τ .

Then Πj has the equation xj = 0.
For j, k ∈ [4], j < k, choose Πjk to be a plane of S∗ such that (Πj ∩ Πk) ⊂ Πjk. Fix

Πkj := Πjk. Then Πjk is specified by

αxj + βxk = 0

for α, β 6= 0. Thus, for each αjk = α
β
, we get the equations

αjkαkj = 1 (3.6)

for all j, k ∈ [4], j 6= k.
Compare the volume of Π1Π2Π3Π4 with that of, e.g., Π1Π12Π3Π4 with vertices

P ′1, P
′
2, P

′
3, and P ′4 being:

P ′1 =
(
(1− α12)

−1,−α12(1− α12)
−1, 0, 0

)τ
,

P ′2 = P2,

P ′3 = P3,

P ′4 = P4.

Then we obtain
|1− α12| ≤ 1.

Considering Π1Π12Π13Π4, we obtain

|1− α12 − α13| ≤ 1.

Considering Π1Π12Π13Π14, we obtain

|1− α12 − α13 − α14| ≤ 1.

Thus we get 28 equations in 12 variables, for all distinct j, k, k1, k2, k3 ∈ [4]:

|1− αjk| ≤ 1, (3.7)

|1− αjk1 − αjk2 | ≤ 1, (3.8)

|1− αjk1 − αjk2 − αjk3 | ≤ 1. (3.9)

As over R, in the following we will present two lemmas that allow us to fix

α13 = α24 = 1.

This then contradicts our choice of Π13 and Π24 since they must be parallel, finishing
the proof of the theorem.

13Notice that the constant factor of
√
3
2 for the area of triangles was of no importance in the proofs

over reals. The same will happen here.
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Let ρ be the cube root of unity, ρ = e
2πi
3 . Note that |ρ| = 1.

Lemma 3.2.3. For all distinct j, k ∈ [4], αjk ∈ C satisfy (3.6)–(3.9) iff

α13 = α31 = α24 = α42 = 1,

α12 = α23 = α34 = α31 = −ρ,
α14 = α43 = α32 = α21 = −ρ2.

Proof. From (3.6) we get
|αjk|+ |αkj| ≥ 2,

with equality iff |αjk| = |αkj| = 1.
Also, the following holds: ∑

j,k∈[4],j 6=k

|αjk| ≥ 12.

As over R, we show that the upper bound of this sum is also 12 in the next lemma.
This finishes the proof of this lemma.

Lemma 3.2.4. Let β1, β2, β3 ∈ C be such that for all S ⊆ [3],∣∣∣∣∣1−∑
n∈S

βn

∣∣∣∣∣ ≤ 1.

Then
∑

n∈[3] |βn| ≤ 3, with equality iff

{β1, β2, β3} = {1,−ρ,−ρ2}.

Proof. Note that since |1− βn| ≤ 1, it must be that Re (βn) ≥ 0 for all n ∈ [3], with
equality iff βn = 0.

Without loss of generality, order the βn such that β2 lies in between β1 and β3.
Then the following is a set of vertices of a hexagon lying within {z ∈ C : |1− z| ≤ 1}:

{0, β1, β1 + β2, β1 + β2 + β3, β2 + β3, β3} .

Its circumference is equal to
(

2
∑

n∈[3] |βn|
)

. But since it is contained in a circle of

radius 1, it can be at most 6, with equality iff it is a regular hexagon with its vertices
touching the border of the circle.14

The lemma follows from this.

14See Figure 3.2.
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1

Re

Im

0

β1

β2

β3

β1 + β2

β1 + β2 + β3

β3 + β2

Figure 3.2: Proof of Lemma 3.2.4

3.3 Extending the Sylvester–Gallai Theorem to higher
dimensional subspaces

The Sylvester–Gallai Theorem shows that for all sets of non–collinear points (in Rn),
there is a line (i.e., a 1–flat) containing exactly 2 of the points. Can a similar statement
be given for higher dimensional subspaces? We will show that for a non-elementary
configuration of points in Rd, there is a subset spanning an ordinary hyperplane of Rd.

Let us begin with a few definitions. Note that in this chapter, we will often index
the geometric objects by their dimension. E.g., a hyperplane of Rn could be called
Hn−1.

We will concentrate on finite sets of points spanning Rd and their properties:

Definition 3.3.1. We call V ⊆ Rd an affine space if it is a translation of a linear
space, i.e. there exists a V ′ ⊆ Rd and a vector u ∈ Rd, such that

V = u+ V ′ = {u+ v | v ∈ V ′} .

We set dim(V ) = dim(V ′).
An affine space is constructed as follows: Let S ⊂ Rd be a set of points. Let n

be the maximum number of linear independent points found in S. Without loss of
generality, call these n points s0, . . . , sn−1. Then we call the affine space spanned by
these points affine-span(S), which is the following:

affine-span(S) = s0 + span ({(s1 − s0), . . . , (sn−1 − s0)}) .

It follows from the construction that the dimension of the affine span of n linearly
independent points is exactly (n− 1):

dim(affine-span(S)) = n− 1.
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On the other hand, an affine space S ′ of dimension n′ must be affinely spanned by at
least (n′ + 1) points:

|S ′| ≥ n′ + 1.

Definition 3.3.2. Let S be a finite set of points spanning Rd. For i ∈ [d], denote the
set of i–flats in Rd spanned by subsets of points in S by Γi, i.e.

Γi := {affine-span(S ′) | S ′ ⊆ S, dim(affine-span(S ′)) = i} .

Note that |S ′| ≥ (i+ 1).
We will call

Γ :=
⋃
i∈[d]

Γi

the configuration Γ (with respect to S).

Remark 3.3.3. Note that Γ0 = S and Γd = Rd.
Also, since S spans Rd, no Γi is empty.

Definition 3.3.4. For all i ∈ [d], Fi ∈ Γi will be split into polyhedral domains by the
subspaces Fi−1 ∈ Γi−1. The closures of these domains will be called the i–dimensional
cells of Γ.15

Figure 3.3: Example of 2–dimensional cells

Remark 3.3.5. Note that every cell is convex.16

Definition 3.3.6. For a set of points S ⊂ Rd, the convex hull H of S is the intersection
of all convex sets that contain S, i.e.

H =
⋂

C⊂Rd convex, S⊆C

C.

15See Figure 3.3.
16I.e., for two points a and b of a cell, the connecting line {(ta+ (1− t)b) | t ∈ [0, 1]} is fully

contained in the cell.
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Definition 3.3.7. A d–dimensional simplex is the convex hull of a set of exactly
(d+ 1) vertices that span a d–dimensional space.

Remark 3.3.8. A simplex is the natural extension of a triangle into higher dimensions.

Definition 3.3.9. Let Ad−1, Bd−1 be two non–parallel hyperplanes of Rd intersecting
in Ld−2. Then Ld−2 splits both hyperplanes in two disjoint parts, i.e.

Ad−1 \ Ld−2 = A1 ∪ A2,

Bd−1 \ Ld−2 = B1 ∪ B2.

These parts form exactly two distinct wedges W1,d,W2,d of dimension d:

W1,d = convex− hull(A1, B1) ∪ convex− hull(A2, B2)

W2,d = convex− hull(A1, B2) ∪ convex− hull(A2, B1)

A    2

A    1

B    1

B    2

W     2

W     1

Figure 3.4: Example of the two wedges W1 and W2 between two lines in R2

Lemma 3.3.10. Let S be a finite set of points spanning Rd. Let Σd be a closed d–
dimensional simplex, such that its vertices are points from S. Let P0 be a point in S
such that it is not in the simplex, i.e.

Σd ∩ P0 = ∅.

Then there is a (d− 2)–dimensional face Fd−2 of Σd and a hyperplane

Hd−1 = affine-span(P0, Fd−2)

of Rd, such that the following holds:

Σd ∩Hd−1 = Fd−2.
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Proof. Consider the set of (d − 1)–dimensional faces of Σd. Each of these faces is
contained in a hyperplane of Rd. Let this set of hyperplanes be called H. Note that
none of these hyperplanes are parallel to another, since Σd is a simplex. Thus, any
two hyperplanes in H form wedges in Rd. Since Σd is the intersection of all possible
wedges, and since P0 /∈ Σd, there must be a wedge W such that P0 is not in this wedge.

Notice that the hyperplane spanned by P0 and the intersection of the bounding
hyperplanes of W satisfy the requirements of the lemma.

x3

x1

x2
P0

Figure 3.5: Example of Lemma 3.3.10 in R3

Definition 3.3.11. For two points A,B ∈ Rn, the line AB is the set

AB := {A+ t(B − A) | t ∈ R} = affine-span{A,B}.

The points in the set with 0 ≤ t ≤ 1 form the interior section of the line, the others
the exterior section.

Lemma 3.3.12. Let S be a finite set of points spanning Rd with configuration Γ. Let
Hd−1 be a hyperplane spanned by a subset of S. Let A0 be a point of S such that it is
not contained in Hd−1, i.e.

Hd−1 ∩ {A0} = ∅.
Let σd−1 ⊂ Hd−1 be a (d− 1)–dimensional cell of Γ.

Let P0 be a point in Hd−1 such that the line A0P0 does not intersect σd−1, and Q0

be a point contained in σd−1.
Then both sections of the line P0Q0 intersect at least one of the hyperplanes spanned

by A0 and a (d− 2)–dimensional face of σd−1.

Proof. Consider the set {
A0X0 | X0 ∈ σd−1

}
.

This is a (d − 1)–dimensional convex cone. Since P0 is outside and Q0 is inside the
cone, both sections of the line P0Q0 obviously must intersect with the boundary of the
cone.

Since every point on the boundary of this cone is contained in a hyperplane spanned
by A0 and a (d− 2)–dimensional face of σd−1, the lemma follows.
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H      d-1

Û    d-1

Q     0

P    0

A     0

Figure 3.6: Example of Lemma 3.3.12 in R3

Theorem 3.3.13 (Hansen [Han65]). Let d ≥ 3, and let Γ be a non–elementary con-
figuration in Rd. Then there exists an ordinary hyperplane of Rd spanned by a subset
of Γ0.

Proof. We prove this via induction. For d = 2 it is the basic Sylvester–Gallai Theorem
3.1.1. Assume that the theorem holds for (d− 1).

Let δd be a d–dimensional cell of Γ. Let σd be a d–dimensional simplex containing
δd, such that it contains no point of Γ0 other than its vertices:

σd ∩
(
Γ0 \

{
V 0
i | V 0

i is a vertex of σd
})

= ∅.

Such a σd exists, because of the following: Take any simplex17 covering δd. If it contains
a point of Γ0 other than those of δd, then note that the simplex is cut into smaller
simplexes by the hyperplanes spanned by this point and the vertices of the original
simplex. One of these new simplexes contains δd.

18 If this new simplex still contains
unwanted points of Γ0, repeat the procedure.19

Note that if Γ were elementary, Rd would be spanned by (d + 1) points, which
would be exactly the vertices of δd and σd (which would be equal). But since it is
non–elementary, there must be a point of Γ0 outside of σd. Thus, by Lemma 3.3.10,
there is a hyperplane Bd−1 ∈ Γd−1, spanned by this point and a (d − 2)–dimensional
face of δd, say Sd−2, such that

Bd−1 ∩ δd ⊆ Bd−1 ∩ σd = Sd−2.

17whose edges coincide with the hyperplanes
18δd must be in exactly one of these simplexes by the definition of a cell.
19See Figure 3.7.
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δd

σd

Figure 3.7: Example of cell δd and a covering simplex σd (for d = 2)

If Bd−1 is elementary, then this is the hyperplane mentioned in the theorem and
the proof is done. Thus, assume that it is not elementary. Later in the proof, we will
need a non–elementary hyperplane not intersecting the interior of δd. Bd−1 is such a
hyperplane. Figure 3.8 shows such a possible Bd−1.

Select a point P0 ∈ Γ0 not in Bd−1, and an interior point of δd (not necessarily in
Γ0), such that the line L1 between these two points20 does not intersect any element
of Γd−2 apart from in the point P0 itself, i.e.

L1 ∩
(⋃

Γd−2

)
= {P0} .

An example of this (and the following) setting is shown in Figure 3.9.
Traveling on L1, starting from P0 (either towards δd, or, if there is no hyperplane

between P0 and δd, away from δd), mark the first non–elementary hyperplane encoun-
tered as Qd−1, the point of intersection respectively as Q0. In other words, the interior
section of P0Q0 neither intersects with δd, nor with any non–elementary hyperplane
in Γd−1.

Now, the point Q0 is located in a (d− 1)–dimensional cell (within Qd−1). Call this
cell δd−1. Further, let γd be the convex cone formed by P0 and δd−1:

γd =
{
P0X0 | X0 ∈ δd−1

}
.

Notice that
δd ⊂ γd.

Since we assumed the theorem to be true for (d − 1), there must be an ordinary
(d − 2)–dimensional hyperplane of Qd−1. I.e., there is a point C0 ∈ Qd−1 ∩ Γ0 and a
(d− 3)–dimensional subspace Sd−3 ∈ Γd−3 such that

affine-span(C0, Sd−3) ∈ Γd−2,

20i.e. the inner section
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Û    d
Î   d

B   d-1

Figure 3.8: A non–elementary hyperplane Bd−1 (for d = 3)

with
(affine-span(C0, Sd−3) ∩ (Γ0 \ {C0})) ⊂ Sd−3

and
(affine-span(C0, Sd−3) ∩ δd−1) ⊂ Sd−3.

If we set
Sd−2 = affine-span(P0, Sd−3) ∈ Γd−2,

we can examine the hyperplane affine-span(C0, Sd−3) ∈ Γd−3.
Let

Sd−1 = affine-span(C0, Sd−2) ∈ Γd−1.

Remember that γd is the cone formed by P0 and the cell δd−1. Then, because of

(Sd−1 ∩ γd) ⊂ Sd−2, (3.10)

it follows that
(Sd−1 ∩ δd) ⊂ Sd−2. (3.11)

Now, if all elements of (Sd−1 \ {C0}) ∩ Γ0 lie within Sd−2, then Sd−1 is an ordinary
(d− 1)–dimensional hyperplane, and the proof is finished.

Therefore, assume that Sd−1 is not ordinary, i.e. there exists a point

A0 ∈ ((Sd−1 \ {C0}) ∩ Γ0) ,

32



Û    d
Î   d

P    0

Û    dÛ
Î   d   d   dÎ

L    1

Q     0 Î   d-1

Q     d-1

Í    d

Figure 3.9: Example setting for Hansen’s proof (for d = 3)
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such that
A0 /∈ Sd−2.

From

• Sd−1 ∩Qd−1 = affine-span(C0, Sd−3),

• affine-span(C0, Sd−3) is ordinary, and

• Sd−3 ⊂ Sd−2,

it follows that
A0 /∈ Qd−1.

Also, because of (3.10) and the fact that A0 /∈ Sd−2, it follows that

A0 /∈ γd,

fulfilling the requirements of Lemma 3.3.12, since the line P0A0 does not intersect δd−1.
Let Td−2 ∈ Γd−2 be the (d−2)–dimensional face of δd−1 found by Lemma 3.3.12, i.e.

affine-span(A0, Td−2) ∈ Γd−1.

Notice that affine-span(A0, Td−2) intersects with L1 precisely in that segment of L1

which does not meet δd. It follows by the choice of Q0 that affine-span(A0, Td−2) is an
elementary hyperplane, thus finishing the proof.

Thus, it remains to be shown that affine-span(A0, Td−2) ∩ δd ⊂ Td−2. But, since
Qd−1 ∩ affine-span(P0, Td−2) = Td−2 and both Qd−1 ∈ Γd−1 and affine-span(P0, Td−2) ∈
Γd−1, they do not intersect the interior of δd. Thus, δd is contained in one of the
wedges created by Qd−1 and affine-span(P0, Td−2). And, since affine-span(A0, Td−2) is
contained in the other wedge, it cannot have points in common with δd, other than
exactly on Td−2.

The main theorem in this chapter is the following of Bonnice and Edelstein [BE67]:

Theorem 3.3.14. Let S be a finite set of points spanning R2k. Then there is a subset
S ′ ⊂ S spanning an elementary k–flat of R2k.

Proof. We prove this by induction.
Case k = 1. This is equivalent to the Sylvester–Gallai Theorem, as each finite set

of points spanning R2 has an elementary 1–flat, i.e. a line, containing exactly 2 points
of the set.

Assume the statement to hold for (k − 1).
Case k. By Theorem 3.3.13, there is an ordinary (2k − 1)–dimensional hyperplane

spanned by a point A0 ∈ S and a (2k − 2)–dimensional flat S2k−2. Notice that S2k−2
has, by induction, an elementary (k − 1)–dimensional flat, say Sk−1. As before,

affine-span(A0, Sk−1)

is an elementary k–flat of R2k with regards to S.
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3.4 Hyperplane Decomposition

As stated in the introduction to this chapter, the Hyperplane Decomposition Lemma
finds a “core” subspace with helpful properties when applied to identity testing.

Remark 3.4.1. Note that for Kayal and Saraf, hyperplanes are subspaces of any
lower dimension. In our case, since a hyperplane is always of dimension one less than
the original space, it would make more sense to call it the Subspace Decomposition
Lemma.

Lemma 3.4.2 (Hyperplane Decomposition Lemma [KS09]). Let S be a finite set of
points spanning Rm. Choose a subset Score ⊂ S, and let Hcore = affine-span(Score) with
mcore = dim(Hcore).

Then there exist subspaces H1, . . . , Hr ⊂ Rm, with r ≥ m−mcore

2
, such that, for

H = affine-span {Hi}i∈[r], the following holds:

1. Each Hi contains Hcore and is of dimension (mcore + 1):

∀ i ∈ [r] : Hcore ⊂ Hi, dim(Hi) = mcore + 1.

2. All (Hi \ Hcore) are disjoint. I.e., dim(H) = mcore + r, and for R ⊆ [r], Pi ∈
(Hi \ Hcore)∀ i ∈ R, the dimension of the space spanned by the Pi is exactly
(|R| − 1):

dim
(
affine-span {Pi}i∈R

)
= |R| − 1.

3. The “additional” dimension of an Hi is spanned by a point of S:

∀ i ∈ [r] : (Hi \Hcore) ∩ S 6= ∅.

4. For all P ∈ (H ∩ S), there is an i ∈ [r] such that P ∈ Hi, i.e. every point of S
that lies within H also lies within an Hi.

Proof. Let

∀ P ∈ (S \Hcore) : HP = affine-span(P,Hcore),

H = {HP}P∈(S\Hcore)
,

and Q be a point in Hcore. Let H ′ be an (m−mcore)–flat of Rm such that

H ′ ∩Hcore = Q,

∀ HP : HP ∩H ′ = LP ,

with LP being lines (i.e., dim(LP ) = 1) such that

Q ⊆ LP .
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The lines LP are chosen such that they are contained in H ′. We call the pencil of
these lines

L = {LP}P∈(S\Hcore)
.

Note that no two lines of L are parallel.
Let H ′′ be a hyperplane of H ′ (i.e., dim(H ′′) = (m−mcore − 1) and H ′′ ⊂ H ′) and

RP points, such that

• ∀ LP : RP = (LP ∩H ′′),

• H ′′ = affine-span(RP )RP ,

• H ′′ ∩Hcore = ∅.

Let
SL = {RP}P∈(S\Hcore)

be the points spanning H ′′ outside of Hcore.
For some r ≥ m−mcore

2
, let Q1, . . . , Qr ∈ SL be the points spanning an ((r − 1)–

dimensional) elementary flat Helem as stated in Hansen’s Theorem (Theorem 3.3.13).
Let L1, . . . , Lr ∈ L be the lines corresponding to Q1, . . . , Qr.

Since H ′′ ∩Hcore = ∅ and Helem ⊂ H ′′, it must be that Helem ∩Hcore = ∅.
Then, the following holds:

affine-span {Li}i∈[r] = affine-span(Q,Helem).

For all i ∈ [r], let
Hi = affine-span(Hcore, Li).

Then, each Hi is in H.
Thus, with

H = affine-span {Hi}i∈[r] ,
it remains to be shown that the properties given hold:

1. That Hcore is contained in Hi directly follows from the definition of Hi. And
since dim(Li) = 1, and Li intersects Hcore in exactly one point, Li expands the
dimension of Hi with regards to Hcore by exactly 1.

2. Since dim(Helem) = (r − 1) and (Helem ∩Hcore) = ∅, it follows that

dim(affine-span (Hcore, Helem)) = (mcore + r).

Note that

H = affine-span {Hi}i∈[r]
= affine-span

(
Hcore ∪ {Hi}i∈[r]

)
= affine-span

(
Hcore ∪ {Qi}i∈[r]

)
= affine-span (Hcore, Helem) .
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Thus,
dim(H) = mcore + r.

Let R and Pi be as in the property. Then from Hi = affine-span (Pi, Hcore)
follows affine-span {Hi}i∈[R] = affine-span {Hi}i∈[R]. By property 1 and the first
part of this property, it must be that dim(affine-span {Hi}i∈[R]) = mcore + |R|.
Since dim(Hcore) = mcore, the dimension of affine-span {Pi}i∈[R] must then be
(|R| − 1).

3. Since Hi ∈ H, and every hyperplane contained in H is spanned by Hcore and a
point of (S \Hcore), this property holds.

4. Let P be a point of (S \ H) such that P does not lie within any Hi. Then
HP ∈ H would be such that

HP ⊂H,
HP 6=Hi

for all i ∈ [r]. Let LP again be the line intersecting HP with H ′.

Note that LP cannot be contained in any Hi, since otherwise HP would be
contained in this Hi. So LP ∈ L such that LP ⊂ (H \Hcore).

Thus, LP ⊂ affine-span {Li}i∈[r]. Call QP = (H ′′ ∩ LP ).

Then QP ∈ affine-span {Qi}i∈[r], and thus Q1, . . . , Qr do not span an elementary
hyperplane, which is a contradiction.

H
      core

P    3

P    1

P    2

Figure 3.10: Example of Lemma 3.4.2
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Chapter 4. Depth–3 Identities

In Chapter 3, we studied geometric properties of sets of points in n-dimensional spaces.
In this chapter, we now will show a way of translating circuits into such sets, such
that we then can work with these geometric properties in order to prove the final rank
bound.

The main idea is simply to translate each linear form into a point in Pn by using the
coefficients within the linear form as coefficients. With the help of this, we will then
present a way to reduce the amount of multiplication gates within a circuit of high
pairwise–rank in such a way that the resulting circuit also has a high pairwise–rank.

In the next part, we will be studying circuits with top fanin 3. We will introduce
the Desmic Conjecture, and thereby show how we can use geometric settings to find
identities. Moreover, we will propose new ideas to work with such translations.

The last part of this chapter will prove the rank bound of kO(k).

4.1 From Circuits to Geometry

As in the previous chapters, let C be a depth–3 circuit of the form

C =
∑
i∈[k]

Ti

=
∑
i∈[k]

∏
j∈[d]

lij

=
∑
i∈[k]

∏
j∈[d]

∑
κ∈[n]

aijκxκ.

Then, for each of the linear forms lij, we can define a point Pij in Pn:

Pij = (aij1, . . . , aijn)τ .

Let the multiset of all these points be called S:

S = {Pij | i ∈ [k], j ∈ [d]} .

Let us label each Ti with a different color i. Then we can also label each point Pij
with the color i. Notice that each point can have several colors, since the same linear
form may appear in various gates.
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So for every point Pij, we have a multiset K(Pij), containing the colors (with mul-
tiplicity) of this point. Let CPij be the set of colors of the point Pij,

1 and mult(Pij, i)
be the multiplicity of the color i in the multiset K(Pij).

On the other hand, let Si denote the multi-subset of S containing only those points
that are colored i. The symmetric difference of two such multisets is

Si∆Sj = {P ∈ S | mult(P, i) 6= mult(P, j)} .

With this setting, for all i, j ∈ [k], i 6= j, notice the following translations between
circuits and their geometric counterparts:

rank(C) ≥ B ←→ dim(span(S)) ≥ B − 1,

pairwise-rank(C) ≥ A←→ dim(span(Si∆Sj)) ≥ A− 1.

We will now introduce a rather technical definition, which will be used in the proof
of the Fanin Reduction Lemma (Lemma 4.2.4).

Definition 4.1.1. Given the setting above and

• a flat Fcore spanned by points in S,

• a set F = {F | S ′ ⊆ S, F = span(S ′), Fcore ⊆ F as sets of points} of flats being
spanned by points of S, and each of these flats fully contains the flat Fcore,

• a pair of colors i 6= j, and

• an A ∈ N,

we say that a flat F ∈ F splits the colors i, j, if there is a point

P ∈ ((F \ Fcore) ∩ (Si∆Sj)).
2

We say that the pair of colors i, j is over-split (with regards to Fcore, F , and A) if F
contains more than A splitting flats, else we call the pair under-split .

4.2 Fanin Reduction

The Fanin Reduction Lemma offers a way to “remove” multiplication gates from a
simple circuit with high pairwise–rank, and obtaining a new simple circuit that still
has high pairwise–rank.

Definition 4.2.1. Let C ∈ ΣΠΣ(k) be of the form C =
∑

i∈k Ai. Then the pairwise–
rank of C is

pairwise-rank(C) := min
1≤i<j≤k

{rank (sim(Ai + Aj)} .

If k = 1, we set pairwise-rank(C) = 1.

1I.e., CPij
is K(Pij) without multiplicity.

2View F and Fcore as sets of points, i.e. (F \ Fcore) = {P ′ | P ′ ∈ F,@ F ′ ∈ Fcore : P ′ ∈ F ′}.
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Definition 4.2.2. For a circuit C containing a linear form l, let C|l=0 be a circuit
obtained as follows: Let π : Rn → Rn be of rank(π) = (n− 1), and ker(π) = span(l).
Apply π on C to obtain a circuit C|l=0 = π(C).

Remark 4.2.3. With this definition, notice the following:

• For two different linear transformations, e.g. π and π′, π(C) and π′(C) are
equivalent3. Therefore, we will simply refer to the circuit C|l=0.

• Since the linear form l occurring in the circuit C is transformed to zero, the
whole gate containing l vanishes. Thus, C|l=0 contains strictly fewer gates than
C.

• For a circuit C containing a linear form l, if C ≡ 0, then also C|l=0 ≡ 0.

Lemma 4.2.4 (Fanin Reduction Lemma [KS09]). Let k,A ∈ N, B = 3(A+ 1)k2. Let
C be a simple ΣΠΣ(k) circuit with pairwise-rank(C) ≥ A and rank(C) ≥ B.

Then there is a linear form l within C for which pairwise-rank(C|l=0) ≥ A.

Proof. Following the notation of Section 4.1, since pairwise-rank(C) ≥ A, for all i, j ∈
[k], i 6= j,

dim(span(Si∆Sj)) ≥ A− 1

holds. Therefore, for every i 6= j, pick a set of A points Sij ⊆ (Si∆Sj), such that these
span an elementary (A− 1)-flat:

dim(span(Sij)) = A− 1.

Denote the union of these subsets by Score:

Score =
⋃

i,j∈[k],i 6=j

Sij.

We can now apply the Hyperplane Decomposition Lemma 3.4.2 with Fcore = span(Score).
We then receive flats F1, . . . , Fr for an r ≥ m−mcore

2
= B−k2A

2
with mcore = dim(Fcore),

each of dimension (mcore + 1).
We now select a flat F ′ ∈ {Fi}i∈[r], such that for all points of S within (F ′ \ Fcore)

the multiplicity of a pair of colors i and j is equal. This must exist, since each of
the (at most) k2 pairs of under-split colors has at most A splitting flats, but there
are r ≥ (A + 1)k2 flats to choose from. Thus, for all undersplit {i, j}, and for all
P ∈ (S ∩ (F ′ \ Fcore)), we have mult(P, i) = mult(P, j).

Let l be the linear form corresponding to such a point with equal multiplicity, i.e.
π(l) = P ∈ (S∩ (F ′ \Fcore)). This will be the form used to reduce the rank as required
by the lemma. Thus, we still need to show that pairwise-rank(C|l=0) ≥ A. I.e., for all
Ai|l=0 and Aj|l=0 that remained non–zero, the it has to be shown that the following
holds:

rank(sim(Ai|l=0 + Aj|l=0)) ≥ A.

3I.e., there is an invertible linear τ , such that π(C) = τ(π′(C)).
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Notice that if CP contained all colors, l would be contained in all gates of C,
contradicting the simplicity of C. Also, if CP were to contain (k−1) colors, then C|l=0

would only consist of a single multiplication gate, and the proof would be finished.
We therefore only consider |CP | ≤ (k − 2).

Thus, we can select two colors i and j that are not in CP . The proof then finishes
by distinguishing two cases:

Case 1: The pair i and j is over-split. I.e., there exist at least A flats other than F ′

splitting i and j. Without loss of generality, let these be F1, . . . , FA. For t ∈ [A],
let Qt ∈ Ft such that mult(Qt, i) 6= mult(Qt, j). Let Sl = {Qt}t∈[A].
We can show that

dim(span(Sπl )) = A− 1

by the following: By Lemma 3.4.2, it follows that dim(span({P} ∪ Sl)) = A.
Since 0 is not in span({P} ∪ Sl)), we have dim(span({0, P} ∪ Sl)) = A + 1.
Then, from dim(ker(π)) = 1, π(0) = 0, and π(P ) = 0, it directly follows that
dim(span(Sπl )) = A− 1.

In order to show that dim(span((Si∆Sj)
π)), it is now enough to show that Sπl ⊆

(Si∆Sj)
π). For that, take a Qπ

t ∈ Sπl , and the respective Qt ∈ Sl, such that
π(Qt) = Qπ

t .4 Since mult(Qt, i) 6= mult(Qt, j), it follows that mult(Qπ
t , i) 6=

mult(Qπ
t , j), and thereby Qπ

t ∈ (Si∆Sj)
π. Since this holds for all t ∈ [A], it must

be that Sπl ⊆ (Si∆Sj)
π).

This concludes the proof for the first case.

Case 2: The pair i and j is under-split. I.e., for all points Q ∈ (S ∩ (F ′ \ Fcore)) :
mult(Q, i) = mult(Q, j).

Let
{Q1, . . . , Qs} = (Si∆Sj)

core = Fcore ∩ (Si∆Sj).

Note that (by choice of Fcore) dim(span((Si∆Sj)
core)) ≥ (A − 1). As in Case

1, we will show that this (Si∆Sj)
core contains a subset of points which span a

(A− 1)-dimensional space, which will conclude the proof: Let

(Si∆Sj)
core,π = {π(Q) | Q ∈ (Si∆Sj)

core}.

As before, by span((Si∆Sj)
core,π) ⊆ Fcore and P /∈ Fcore, we have

dim(span({P} ∪ (Si∆Sj)
core)) = A,

and thereby
dim(span((Si∆Sj)

core,π)) = A− 1.

It now only remains to be shown that (Si∆Sj)
core,π ⊆ (Si∆Sj)

core: For t ∈ [s], let
π(Qt) = Qπ

t ∈ (Si∆Sj)
core,π. Notice that the line combining P with Qt intersects

4This Qt must be unique: Say it is not. Then let Q′t be another such point that maps to Qπt .
Then P,Qt, and Q′t are collinear. But this is a contradiction to Lemma 3.4.2.
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Fcore in exactly one point.5 Thus, any point Q′t (other than Qt) for which π(Q′t) =
Qπ
t must lie within (F ′ \ Fcore), and then mult(Q′t, i) = mult(Q′t, j). By this

and the definition of (Si∆Sj)
core, Qt is then the only preimage of Qπ

t for which
mult(Qt, i) 6= mult(Qt, j) holds. But thereby we get mult(Qπ

t , i) 6= mult(Qπ
t , j),

and thus Qπ
t ∈ (Si∆Sj)

core,π.

Therefore,
(Si∆Sj)

core,π ⊆ (Si∆Sj)
core,

completing the proof.

4.3 Fanin 3 Circuits

Before studying arbitrary depth–3 circuits, we will restrict ourselves to depth–3 circuits
of fanin 3 in order to better understand the correlation between circuits and their
geometric representation. We will, e.g., only have to deal with 3 colors, since we
restrict ourselves to 3 products: C = T1 + T2 + T3.

4.3.1 An Identity of rankR = 4

The Desmic Conjecture [Bor83] presents a configuration of three sets of points span-
ning R3, such that any line intersecting two of these sets also intersects the third.
Using the 12–point Desmic configuration, we are able to use this as a guide to finding
an identity of fanin 3 and depth 4. It can be shown that this is the only such config-
uration of less than 27 points, and therefore this identity is also the unique identity
with these properties.

Figure 4.1 shows the 12–point Desmic configuration, with the 3 different sets of 4
points each: red, green, and blue points. Notice the labels on the various vertices:
The axes are labeled as such. Then, we pick one vertex, and label it y. Then, the
rest of the vertices are simply labeled by their geometric configuration in space (with
regards to the vertex y).

This can be directly converted into an identity C of rank 4 (note that the labels are
grouped into 3 multiplication gates by their respective color):

C(y, x1, x2, x3) = y(y + x1 + x2)(y + x1 + x3)(y + x2 + x3)

−(y + x1)(y + x2)(y + x3)(y + x1 + x2 + x3)

+x1x2x3(2y + x1 + x2 + x3)

= 0.

5Since the line lies entirely within F ′, and since dim(F ′) = (dim(Fcore) + 1).
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y + 1
2
(x1 + x2 + x3)

x1

x2

x3

y

y + x1 + x3

y + x2 + x3

y + x1 + x2

y + x1

y + x3

y + x2

y + x1 + x2 + x3

∞

∞

∞

Figure 4.1: 12–point Desmic conjecture

4.3.2 No Identity of rankC = 5?

In the complex projective plane, and with ω being the 3rd root of unity, i.e. ω = e2πi/3,
it is obvious that the nine points of inflection

(1 : −1 : 0) (0 : 1 : −1) (−1 : 0 : 1)
(1 : −ω : 0) (0 : 1 : −ω) (−ω : 0 : 1)
(1 : −ω2 : 0) (0 : 1 : −ω2) (−ω2 : 0 : 1)

of the cubic curve defined by

x3 + y3 + z3 = xyz.

form a SG configuration [Cox48].
We might expect that this helps us to find an identity over C of rank = 5, as the

Desmic Conjecture does over R. But after working with this configuration, this seems
unlikely, and thus we give the following:

Conjecture 4.3.1. There is no identity of rankC = 5 and fanin 3.

4.3.3 Geometric Questions over Fanin 3: Matchings

We will now further study the relationships between geometry and circuits of depth 3
and top fanin 3.
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The main tool we will be using is a matching between two sets of linear forms. We
are mainly interested in the amount of matchings we can find for two such sets, and
suggest bounds for several types of matchings.

Definition 4.3.2. We call a non–zero linear form l a matching between two (multi)sets
U and V of linear forms, if it induces a mapping of U onto V via

ml : U −−−−−−−−→
u7→(cuu+dul)

V,

with cu ∈ F×, du ∈ F. We call cu the scaling factor of u to ml.
For convenience, we will also use l for the map ml.

Definition 4.3.3. Two linear forms l and m are similar (l ∼ m), if there exists a
c ∈ F× such that l = cm. Two matchings are similar if their underlying linear forms
are similar.

Two matchings are coprime if their underlying linear forms are coprime.

Lemma 4.3.4. Let U, V be two sets of linear forms, each of rank = 2. Then there
can be infinitely many coprime matchings between U and V .

Proof. Without loss of generality, let U = {x1, x2} and V = {(x1 + x2), (x1 − x2)}.
Then l = (x1 + cx2) is a matching for all c 6= 0, because

x1 + x2 =
1

c
l +

(
1− 1

c

)
x1,

x1 − x2 = l + (−1− c)x2.

Lemma 4.3.5. If u1, u2, u3 ∈ U are linearly independent, then for all v1, v2, v3 ∈ V
there exists at most one linear form l, up to coprimality, that maps

u1
l7→ v1,

u2 7→ v2,

u3 7→ v3.

Proof. Let S := span(u1, v1) ∩ span(u2, v2) ∩ span(u3, v3). Then l ∈ S, and since
rank(S) = 2 iff span(u1, v1) = span(u2, v2) = span(u3, v3) = S, it follows that
rank(S) < 2, since u1, u2, u3 are linearly independent.

Thus, there can be only one l up to coprimality.

Example 4.3.6. Let us look at matchings of U = {x1, x2, x3} onto V = {αx1 + x2 +
x3, x1 +αx2 + x3, x1 + x2 +αx3}, over F[x1, x2, x2]. We can find 4 coprime matchings:

l1 = (x1 + x2 + x3),

l2 = (x1 + αx2 + αx3),

l3 = (αx1 + x2 + αx3),

l4 = (αx1 + αx2 + x3).
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Let us further study matchings m between U = {x1, x2, x3, x4} and V . We can find
different types of matchings:

Type 1 m /∈ span(U): Then, without loss of generality, we can view this as m = x5,
so

U
x57→ V = {x1 + α1x5, . . . , x4 + α4x5}.

There cannot be any other matching l, because

l ∈
⋂
i∈[4]

span (xi, l(xi)) ,

but span(xi, l(xi)) 6= span(xj, l(xj)) for i 6= j.

Type 2 m =
∑

i∈[4] xi: Then, V will be of the form

V = {α1x1 + x2 + x3 + x4,

x1 + α2x2 + x3 + x4,

x1 + x2 + α3x3 + x4,

x1 + x2 + x3 + α4x4}

and it follows that α1 = α2 = α3 = α4.

Type 3 m =
∑

i∈[3] xi: Then, without loss of generality, V will be of the form

V = {α1x1 + x2 + x3,

x1 + α2x2 + x3,

x1 + x2 + α3x3,

x1 + x2 + x3 + αx4}

and it again follows that α1 = α2 = α3.

Notice that for every type, there is, up to coprimality, at most one matching possible.

Definition 4.3.7. For a set X and an element x (not necessarily in X), we say that
x ∈s X if there exists a c ∈ R, c 6= 0, such that cx ∈ X.

Let us further study the method of viewing the linear forms as vectors. We use the
coefficients of the linear forms as entries in the vectors. We can then apply methods
known from linear algebra. Let l be a linear form. By abuse of notation, we also call
its associated vector l. We can then make the following statement:

Definition 4.3.8. Let l, l′ be linear forms viewed as vectors in Rn. Following the
natural definitions in linear algebra, define

• the inner product (l, l′) =
∑

i∈[n] lil
′
i ∈ R,
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• |l| as |l|2 = (l, l),

• and

l‖l′ :=

(
l,
l′

|l′|

)
l′

|l′|
l⊥l′ := l − l‖l′ .

Remark 4.3.9. Using this notation, let us view a matchingm between U = {u1, . . . , ud}
and V = {v1, . . . , vd}. Then we can see, by looking at the image of ui, that

m⊥ui ∈s {v1⊥ui , . . . , vd⊥ui}.

Theorem 4.3.10. If rankU ≥ 3, then there are at most (d2+d−2) matchings between
U and a V , where d = |U | = |V |.

Proof. Let m be a matching from U = {u1, . . . , ud} to V = {v1, . . . , vd}. Assume
without loss of generality that u1, u2, u3 are linearly independent.

If m /∈ span(u1, u2), say, m ∈ u + span(u1, u2) where u /∈ span(u1, u2), then the
images respectively of u1 and u2 suggest that

m⊥u1 ∼ (u2 + w1), (4.1)

m⊥u2 ∼ (u1 + w2) (4.2)

for some w1, w2 /∈ span(u1, u2). And m is already fixed (up to similarity) by these two
properties, since for m = au1 + bu2 + cw, with w1 = dw and w2 = d′w, it follows

b

c
= α,

a

c
= β,

and thus
m = c(βu1 + αu2 + u).

By (4.1) and (4.2), these are d2 possibilities for m.
Now, if m ∈ span(u1, u2), then (4.1) and (4.2) will be

m⊥u1 ∈s {αu2, . . .},
m⊥u2 ∈s {βu1, . . .}.

Then, without loss of generality, select the subsets U ′ = {u3 + spani(u1, u2)}ki=1 of U
and V ′ = {u3 + spani(u1, u2)}2ki=k+1 of V . Then, the matchings between U ′ and V ′

are already all the matchings between U and V that are in span(u1, u2). Notice that
m | (

∏
(V ′)−

∏
(U ′)), where

∏
(X) for a set X is the product of all its elements. Since

U ′ and V ′ are sets of at most (d−2) linear forms, the degree of the polynomial (
∏

(V ′)−∏
(U ′)) is at most (d − 2). Taking the matchings in span(u1, u2) into consideration,

we get at most (d− 2) matchings in this case.
Thus, there are at most (d2 + d− 2) matchings between U and V .
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We can further use this method to view the problem geometrically. Let us first only
look at rank(U) = 3, that means that our vectors are all in R3. Let these vectors be
the generators of lines passing through the origin, i.e. for a linear form l we have,
using its corresponding vector, a line {al : a ∈ R3}. The vectors of matchings between
two linear forms l1 and l′1 will, by the definition of matchings, have to be on the plane
span(l1, l

′
1). Thus, for sets of linear forms U = {l1, l2, . . .} and V = {l′1, l′2, . . .} and

a matching m, the planes span(li,m(li)) must intersect in one line, generated by the
vector m, c.f. figure (4.2).

m

l1

l2

l′1

l′2

z

x

y

Figure 4.2: Matching m in R3

Note that all objects intersect the origin, and we are not interested in depth infor-
mation. Thus, let us draw the unit ball, i.e. the ball with radius 1, around the origin.
Now, every line, or rather linear form, intersects this ball exactly twice, and we can
find a plane cutting the ball in half with exactly one intersection of every linear form
on each side. We continue to work with the projection on one of these halves. Thus,
our lines turn into points, our planes turn into lines, and we lose one dimension, so we
can work in P2. After flattening out the projection, figure (4.2) could look something
like figure (4.3).

l′2

l2l1

l′1

m

Figure 4.3: Matching m in P2

Definition 4.3.11. The convex hull of a set of points in R2 is the smallest polygon,
such that all points are inside or on the polygon, and the polygon does not have an
inner angle greater than π. In other words, any line intersecting the polygon must
intersect exactly twice, or be tangent to an edge or corner.
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Remark 4.3.12. For a set of n points in R2, the convex hull can have at most n
corners.

Up to now, we differentiated between points coming from U and V by coloring them
appropriately. Let us ignore the colors now, and study intersections of lines between
arbitrarily picked points. Obviously, there will be at least as many matchings found
as if one were to consider the coloring.

First, let us study the case that |U | = |V | = 3 and where the convex hull is a
hexagon. We can always find a matching in the center of the hexagon, i.e. the
intersection of the lines between opposite corners. The most matchings we can find
in this case is 4: one inside and three outside of the convex hull. This situation is
displayed in figure (4.4).

Figure 4.4: Matchings for |U | = |V | = 3

Lemma 4.3.13. There are U and V , with rank(U
⋃
V ) = 3 and d = |U | = |V |, such

that there are at least d matchings between U and V .

Proof. Let us put a regular d–gon in the (x, y)–plane with its midpoint on the origin.
Mark the disjoint sets of parallel lines with Pi, and the corners of the d–gon counter-
clockwise with vi. Notice that each line in any set Pk contains a vi and vj such that
i 6= j mod 2.

We can then rotate the d–gon around the x and y axes, such that each Pi creates a
matching. Since there are d sets of parallel lines, we get d matchings.

Consider the equation

(y + v1)(y + v3) · · · (y + v2d−1)− (y + v2)(y + v4) · · · (y + v2d).

The matchings show that (v1 − v2), (v2 − v3), . . . , (v2d−1 − v2d) all divide this. Thus,
we have an identity T1 − T2 + T3 = 0, with

T1 := (y + v1)(y + v3) · · · (y + v2d−1)

T2 := (y + v2)(y + v4) · · · (y + v2d)

T3 := (v1 − v2)(v2 − v3) · · · (v2d−1 − v2d),
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of degree d and rank 3.
If d is odd, then the following also holds:

y | (T1 − T2)

Thus, there exist d+ 1 coprime matchings.

Lemma 4.3.14. Let U and V be sets of linear forms, such that d := |U | = |V | > 4 and
r := rank(U) = rank(V ) ≥ 4. Then, with n being the number of matchings between U
and V , it can be that

n ≥ |U |
rank(U)

.

Proof. Let U = U1∪ . . .∪Ur−2 and V = V1∪ . . .∪Vr−2. Let v1, . . . , v2d ∈ span(x1, x2),
such that they form a regular 2d–gon, and let

Ui := {yi + v1, yi + v3, . . .}
Vi := {yi + v2, yi + v4, . . .}

Then rank(U) = rank(V ) = r and |U | = |V | = (r − 2)d.
From the rank = 3 case, we know that there can be d or more coprime matchings

between Ui and Vi.

We now formulate some conjectures over R:

Conjecture 4.3.15. Let U and V be sets of linear forms, such that d := |U | = |V | > 4
and rank(U) = rank(V ) ≥ 4. Then there are strictly less than d coprime matchings
between U and V .

Conjecture 4.3.16. Let U ⊂ R2 with d := |U | finite. Then there are not more than
d
2

distinct matchings outside of the convex hull of U .

We conjecture even a stronger version of Conjecture 4.3.15:

Conjecture 4.3.17. For any two sets U and V of linear forms, with |U | = |V | ≥ 4,
there cannot be more than (log2|U |+ 2) non–similar matchings.

Example 4.3.18 (Matchings on the hypercube). Let U and V be sets of linear forms
with rank(U) = rank(V ) ≥ 4. Let F be such that char(F) 6= 2.

Obviously, if |U | 6= |V |, there cannot be any matchings.
Let us view F[y, x1, . . . , xn]. We build the sets

U =

{
y +

∑
i∈I

xi

}
I,|I|even

and

V =

{
y +

∑
i∈I

xi

}
I,|I|odd

.
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Say, our linear form inducing a matching is (a0y +
∑n

i=1 aixi) with coefficients aj ∈
F, j = 0, . . . , n. So, for all u ∈ U , we have to find a v ∈ V with corresponding c, d,
such that

v = c

(
y +

∑
I

xi

)
+ d

(
aoy +

n∑
i=1

aixi

)

v′ = c′

(
y +

∑
I′

xi

)
+ d′

(
aoy +

n∑
i=1

aixi

)
...

Thus, we can build a corresponding system of equations, e.g. for our U = {y, y+x1 +
x2, y + x1 + x3, . . .}:

c+ da0 = 1,[da1, da2, da3, . . .]

c′ + d′a0 = 1,[c′ + d′a1, c
′ + d′a2, d

′a3, . . .]

c′′ + d′′a0 = 1,[c′′ + d′′a1, d
′′a2, c

′′ + d′′a3, . . .]

...

with each right part having an odd number of 1’s, the rest all 0.
Now, we study whether such an l = a0y +

∑n
i=1 aixi exists.

On the left column we have c+ da0 = c′ + d′a0 = . . . = 1. If a0 = 0, then

c = c′ = . . . = 1. (4.3)

Else,
c(i) = (1− d(i)a0) 6= 1 (4.4)

as d(i) ∈ F×.
If ai and aj, i 6= j, are non–zero, choose a row where the columns i and j do not

have a c–summand. (This is always possible due to our choice of U .) Now, notice
that the coefficients of xi and xj for elements in V can only be 0 or 1, with 0 being
impossible in this case, since d ∈ F×. Therefore, ai and aj must be equal, and this
row’s respective d must be

d =
1

ai
. (4.5)

Now choose a row where exactly one of the columns i or j has a c–summand (without
loss of generality the i’th column). As above, since daj = 1, ai = aj, and c + dai ∈
{0, 1}, it follows that

c = −1. (4.6)

(Remember that c ∈ F×!) If a0 = 0, this contradicts (4.3), thus it follows that a0 6= 0
and d = d′ = . . . = 2

a0
from (4.4).

It also follows that if a0 = 0, we cannot have more than one ai non–zero (from
(4.6)), whence we are done.
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If a0 6= 0 (and thus c = −1 and d = 2
a0

), for all i ∈ [n], we get (by again choosing

a row without a c–summand in the i’th column) ai = 1
d
. This can be normalized to

a0 = 2, d = 1, ai = 1.
Note that for even n, we have a line with c–summands in all columns. If we take

a0 = 2, d = 1, ai = 1, c = −1, we get

(−1)

(
y +

n∑
i=1

xi

)
+

(
2y +

n∑
i=1

xi

)
= (−1 + 2)y + (−1 + 1)x1 + (−1 + 1)x2 + . . .

= y /∈ V.

Therefore, for even n, a0 can only be 0.
It is easy to verify that for even n, the forms xi (i ∈ [n]) yield matchings, while for

odd n, (2y + x1 + . . .+ xn) is another matching.

Remark 4.3.19. Note that the case |U | = |V | = 4 is the hypercube as described in
4.3.1.

4.4 Higher Fanins

The following is the main result of Kayal and Saraf [KS09].

Theorem 4.4.1 (Rank Bound for ΣΠΣ(k) Circuits). Let c : N → N, c(k) =
3k((k + 1)!)2. Let C be a simple, minimal ΣΠΣ(k) circuit s.t. C ≡ 0.

Then
rank(C) ≤ c(k).

Proof. Let C be a simple and minimal circuit,

C =
∑
i∈[k]

Ai =
∑
i∈[k]

∑
j∈[d]

lij.

We prove the theorem via induction: It is obviously true for k = 1. Assume the
theorem to hold for k − 1. Then, for k, we can distinguish between two cases:

• pairwise-rank(C) < (c(k)− c(k − 1)):

Thus, there are i, j ∈ [k], i 6= j, for which

rank(sim(Ai + Aj)) < (c(k)− c(k − 1)) .

Without loss of generality, let sim(Ai + Aj) be a polynomial in the variables
X1, . . . , Xt, with t = rank(sim(Ai + Aj)).

For all ι ∈ [t], let αι ∈R [0, 1], and replace the variable Xι with αιZ. Then,
sim(Ai + Aj) is a polynomial in one variable, Z.
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Let C ′ be the circuit C with the same adjustments, i.e.

C(X1, . . . , Xn) = C ′(α1Z, . . . , αtZ,Xt+1, . . . , Xn).

Then,

– C ′ ≡ 0 (since C ≡ 0),

– rank(C ′) = k − 1 (since Ai and Aj are merged into one gate),

– C ′ is minimal (since C is minimal),

– rank(sim(C ′)) > c(k − 1).

Thus, it follows that sim(C ′) is a simple, minimal ΣΠΣ(k−1) circuit computing
0 with rank(C ′) > c(k − 1). This contradicts our assumption.6 Therefore, this
case cannot happen.

Let us therefore study the second case:

• pairwise-rank(C) ≥ (c(k)− c(k − 1)):

Thus, for all i, j ∈ [k], the following holds:

rank(sim(Ai + Aj)) ≥ c(k)− c(k − 1)

>
c(k)

2
> c(k − 1) + 1.

We can now apply the Fanin Reduction Lemma (4.2.4) with A = (c(k − 1) + 1)
and B = c(k), in order to find a linear form l in C, such that for C ′ = C|l=0, we
have

pairwise-rank(C ′) ≥ c(k − 1) + 1.

I.e., for any subset S ⊆ [k], the following holds:

rank(
∑
i∈S

Ai) ≥ c(k − 1) + 1.

Let A′i = Ai|l=0. Since C ′ = C|l=0 =
∑

i∈[k]Ai|l=0 =
∑

i∈S A
′
i = 0, pick the

smallest S possible such that the equation holds.7

With this S, sim(
∑

i∈S A
′
i) is a minimal, simple ΣΠΣ(k − 1) circuit8 computing

the zero polynomial with

rank(sim(
∑
i∈S

A′i)) ≥ c(k − 1) + 1,

contradicting the assumption.

6That the theorem is valid for (k − 1).
7Such an S will have at most (k − 1) elements, since one of the k-many Ai is set to zero by ·|l=0

and thus does not contribute to the sum.
8Actually, it is a ΣΠΣ(k′) circuit for k′ = |S| ≤ (k − 1).
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Therefore, the rank of C cannot be larger than c(k):

rank(C) ≤ c(k).
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Chapter 5. Future work

By finding new and improving the previous algebraic and combinatorial results, Saxena
and Seshadhri have proposed a rank bound of 3k2 [SS10].1 This result will improve the
previously best known rank bound from an exponential kO(k) into a quadratic O(k2)
over reals. Dvir and Shpilka conjectured polynomial rank bound in k, and actually
showed identities of rank O(k). Thus, Saxena and Seshadhri’s rank bound is almost
an optimal bound.

5.1 Quadratic rank bound

We will give a short overview of the basic theorems (without proof) and definitions,
following the 3-step order as proposed in [SS10]. Note that these work over arbitrary
fields F, except for the bounds given in the third step, which only work over reals since
they are strictly connected to the Sylvester-Gallai Theorems.

Matching the Gates in an Identity. For a base field F, let R be the ring of polyno-
mials in n variables over F, i.e. R := F[x1, . . . , xn]. Let L(R) be the set of all

linear forms in R, i.e. L(R) :=
{∑

i∈[n] aixi | a1, . . . , an ∈ F
}

.

Theorem 5.1.1 (Theorem 5 [SS10]: Matching-nucleus). Let C =
∑

i∈[k] Ti be a

minimal ΣΠΣ(k, d)-circuit computing the zero polynomial. Then there exists a
linear subspace K ⊆ L(R), such that

• rank(K) < k2, and

• ∀i ∈ [k], there is a K-matching πi between T1 and Ti.

This linear subspace K is called mat-nucleus of C.

This splits C into a part with terms that are within mat-nucleus, having low
rank k2, and the term not within mat-nucleus, which are similar 2.

Certificate for Linear Independence of Gates. In addition to the above setting, let
LK(Ti) := (L(Ti)∩K). For a list S of linear forms, let M(S) :=

∏
l∈S l (or, since

S may be empty, M(∅) := 1).

1As before, k denotes the fanin of the simple, minimal depth-3 circuit C, representing the poly-
nomial computing zero.

2I.e., for each term l in T1 and not in mat-nucleus, there is a term in mat-nucleus matching l to
a term in each of the remaining T2, . . . , Tk.
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Theorem 5.1.2 (Theorem 7 [SS10]: Nucleus). Let C =
∑

i∈[k] Ti be a minimal

ΣΠΣ(k, d)-circuit computing the zero polynomial. Let {Ti | i ∈ I} be a maximal
set of linearly independent terms, with 1 ≤ k′ := I < k. Then there exists a
linear subspace K ⊆ L(R), such that

• rank(K) < 2k2.

• ∀i ∈ [k], there is a K-matching πi between T1 and Ti.

• ∀i ∈ I, let Ki := M(Lk(Ti)). The terms {Ki | i ∈ I} are linearly indepen-
dent.

This linear subspace K is called nucleus of C.

In addition to Theorem 5.1.1, it now holds that if C is strongly minimal3, then
the nucleus identity is also strongly minimal.

Invoking Sylvester-Gallai Theorems. Saxena and Seshadhri came up with the notion
of SGk-closed set, which will allow to take a slightly different approach on the
Sylvester-Gallai Theorem:

Definition 5.1.3 (Theorem 9, 11 [SS10]: SGk-closed). Let S ⊂ Pn−1. Then,
S is called SGk-closed , if for every set of k linearly independent points V ⊆ S,
span(V ) contains at least (k + 1) points of S.

Define the following operator: SGk(F,m) is the largest possible rank of an SGk-
closed set of at most m points in Pn−1.

Theorem 5.1.4 (Theorem 10 [SS10]: Sylvester-Gallai for higher dimension).
Let k ∈ N and S ⊂ Rn be a finite set of points. If S is SGk-closed, then

rank(S) ≤ 2(k − 1).

Note that this is actually only a rephrased version of Theorem 3.3.13, and it
is therefore currently known to be only true over R. From this, it follows that
SGk(R,m) ≤ 2(k − 1).

One further definition will lead to the main theorem, the rank bound.

Definition 5.1.5 (Definition 14 [SS10]: Independent fanin). Let C =
∑

i∈[k]Ti
be a ΣΠΣ(k, d) circuit. The ind-fanin of C is the size of the maximal I ⊆ [k]
such that {Ti}i∈I are linearly independent polynomials.

Theorem 5.1.6 (Theorem 15 [SS10]: Final bound). Let |F| > d. Let C be a
simple, minimal, ind-fanin k′, ΣΠΣ(k, d) circuit. Then the rank of C is at most

2k2 + (k − k′)SGk′(F, d).

3I.e., T1, . . . , Tk−1 are linearly independent.
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5.2 Conclusion

The aforementioned result by Saxena and Seshadhri [SS10] is extremely close to Dvir
and Shpilka’s O(k) rank conjecture, so one might pose the question whether further
intense study towards an even better bound would still be fulfilling.

Actually improving the rank bound to O(k) might still be interesting, since it may
yield further methods for depth–3 PIT that will become useful when studying circuits
of depth 4.4 Since we currently do not have too many tools for higher depths, it might
therefore still be worthwhile first tackling depth-3 circuits.

4Agrawal and Vinay have shown that an efficient blackbox algorithm for depth–4 circuits also
solves PIT for “low” degree circuits of all depths greater than 4 [AV08].
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